
J Supercomput
DOI 10.1007/s11227-016-1928-z

ATSDS: adaptive two-stage deadline-constrained
workflow scheduling considering run-time
circumstances in cloud computing environments

Reihaneh Khorsand1 · Faramarz Safi-Esfahani2 ·
Naser Nematbakhsh2 · Mehran Mohsenzade1

© Springer Science+Business Media New York 2016

Abstract A significant aspect of cloud computing is scheduling of a large number
of real-time concurrent workflow instances. Most of the existing scheduling algo-
rithms are designed for a single complex workflow instance. This study examined
instance-intensive workflows bounded by SLA constraints, including user-defined
deadlines.The schedulingmethod for theseworkflowswith dynamicworkloads should
be able to handle changing conditions and maximize the utilization rate of the cloud
resources. The study proposes an adaptive two-stage deadline-constrained scheduling
(ATSDS) strategy that considers run-time circumstances of workflows in the cloud
environment. The stages are workflow fragmentation and resource allocation.In the
first stage, the workflows according to cloud run-time circumstances (number of Vir-
tual Machines (VMs) and average available bandwidth) are dynamically fragmented.
In the second stage, using the workflow deadline and the capacity of the VMs, the
workflow fragments created are allocated to the VMs to be executed. The simulation
results show improvements in terms of workflow completion time, number of mes-
sages exchanged, percentage of workflows that meet the deadline and VM usage cost
compared to other approaches.

Keywords Deadline-constrained workflow · Instance-intensive workflow
scheduling · Workflow fragmentation · Cloud computing · Self-adaptive systems ·
Fuzzy systems

B Reihaneh Khorsand
reihaneh_khm@yahoo.com

1 Department of Computer Engineering, Science and Research branch, Islamic Azad University,
Tehran, Iran

2 Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1928-z&domain=pdf

R. K. M. Esfahani et al.

1 Introduction

In a workflowmanagement coalition, the termworkflow denotes automation of a busi-
ness process in which specific documents, information or tasks are transferred from a
given participant to another to be processed according to a set of procedural rules [1].
Research in e-government and e-business applications have led to the introduction of
a new type of workflow called instance-intensive workflow [2]. Unlike computation-
intensive workflows in e-science, instance-intensive workflows are defined based on
large numbers of concurrent and simple workflow instances. Samples of instance-
intensive workflows are bank check processing, loan allocation processing, insurance
claims processing, online train ticketing, and many e-government and e-business sce-
narios [3–5]. The present study uses a loan-application workflow to illustrate the
features of instance-intensive workflows. Special circumstances can increase loan
requests and online loan allocation processing systems must be able to handle very
large demands for online loan allocation at the same time. Generally, a single loan allo-
cation process is relatively simple and can bemodeled as a workflow in a few relatively
simple steps. When faced with a huge number of instance-intensive workflows, tradi-
tional workflow technology struggles to use existing resources to provide satisfactory
services. The emergence of cloud computing provides a solution to this by allow-
ing these workflows to access shared data and run computations on cloud resources
effectively. In this situation, cloud workflow scheduling becomes a key issue.

The scheduling problem is to decide which workflow task will be run by which
computing resource at what point in time [6]. Tan [7] used a distributed schedul-
ing approach to fragment the workflow into several fragments and transmit them to
their performers in related locations. Several studies have addressed the problem of
scheduling in distributed systemswhich createworkflow fragments dynamically [7,8].
To increase the proficiency of the scheduling approach, workflow fragmentationmeth-
ods must adapt themselves to the run-time environment automatically. The dynamics
of a cloud run-time environment are usually independent metrics and are the number
of physical machines and virtual machines, average available bandwidth among VMs,
workloads and deadline of each workflow [9–11]. Few studies have presented adaptive
approaches thus far and none consider cloud run-time environment [2,12,13]. Their
primary problems are the failure to create adaptable fragments and efficient allocation
of workflow fragments to VMs. These eventually result in a high number of messages
exchanged, long completion time and high number of SLA violations at run-time.

An adaptive two-stage deadline-constrained scheduling (ATSDS) strategy is
proposed in the current study that considers run-time circumstances of deadline-
constrained workflows in the cloud environment. The hypothesis is that feedback
such as the number of VMs and bandwidth available from the run-time environment
will decrease the number ofmessages exchanged, completion time, VMusage cost and
number of SLA violations. The goal is to provide an adaptable and scalable scheduler
for the cloud run-time environment. In the first stage of operation (workflow frag-
mentation), the workflow is dynamically fragmented by considering cloud run-time
circumstances (number of VMs and average available bandwidth) to determine the
adaptability of the fragments to run-time circumstances. In the second stage (resource

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

allocation), the workflow deadline and capacity of the VMs are considered when the
new fragments are allocated to the VMs to be executed.

Section 2 provides an overview of related works. Section 3 presents the pro-
posed ATSDS approach that considers run-time circumstances in a cloud computing
environment. Section 4 provides an performance evaluation of the ATSDS strategy.
Conclusions remarks and future works are discussed in Sect. 5.

2 Related work

Research related to the topic can be grouped into three general categories. The first is a
type of workflowmodel topology. The second is workflow fragmentation methods in a
distributed environment and adaptability of fragmentation. The third is prior workflow
scheduling methods.

2.1 Workflow model topology

A workflow model (also called a workflow specification) is a process that formally
specifies two different but complementary factors: (a) the steps involved in workflow
execution, such as components, tasks, activities or services; (b) the dependencies
between stepswhich specify the order inwhich the steps can be executed. The topology
of aworkflowmodel can be block based or graph based [14]. In a block-based topology,
control flow is specified as a programming language, such as using block structures like
“if” or “while” in C programming language. This kind of modeling is similar to that
of programming languages in basic computers and leads to a simple conversion to the
executable code. Additionally, flow control of workflows in graph-based programming
languages is determined by explicit control connections between activities. Kopp [15]
and Nguyen [16] showed that all graph-based models can be converted into block-
based approaches and vice versa. The present study exploited the block-based method
owing to its simplicity and resemblance to some programming languages.

2.2 Workflow fragmentation

A fragmentation method creates workflow fragments that group together some of the
workflow model elements (activities, control flows, data flows, etc.) [7]. Workflow
fragmentation forms the basic foundation to support workflow distributed executions,
increasing scalability, reuse and outsourcing of workflow fragments [17]. Fragmen-
tation can be done at two times under two different strategies. The first strategy is to
apply compiler techniques to detect parallel and sequential activities of a workflow for
fragmentation. In this approach, a workflow is pre-fragmented in a central server and
then the fragments are created statically and sent to distributed servers to be executed.
A workflow can be analyzed and improved by a designer or a compiler. This is the
simplest method, but is not flexible because static fragments are produced at com-
pilation time. The second strategy is run-time based and dynamically fragments the
workflow at run-time. In fact, the fragments do not exist prior to this and are produced
dynamically. This provides some degree of variability, but is often costly.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Different methods have been presented for workflow fragmentation, using a vari-
ety of techniques with different forms of execution. Distributed approaches are
divided into two broad categories: fully- and partially fragmented workflow. A fully
fragmented workflow is fully partitioned to the finest level of granularity in the
activity level and the fragments are then executed by one or several servers. For
example, this method was applied to partition workflows in [5,18–21]. The crite-
ria for partial workflow fragmentation methods differ according to the workflow
designer’s perspective and produce coarser granularity levels [22–26]. In compar-
ison with the fully fragmented workflow methods, partial workflow fragmentation
reduces the number of fragments created, inter-fragment interaction and eventually
decreases bandwidth usage. In partial workflow fragmentation, static approaches
are based on the opinions of the system analyst and designer at design time
[5,18,19].

Some dynamic execution methods create workflow fragments dynamically [7,8].
Tan and Fan [7] introduced a theoretical dynamic workflow fragmentation method
using the Petri net. In this method, a business workflow instance could be deployed
to a specific server executing a number of immediate tasks while partitioning the
remaining parts and sending them to another server. This approach uses a step-
wise workflow run-time environment to improve system flexibility. Their approach
lacks sufficient fragmentation criteria because it is designed to transfer fragments
by judging only their preconditions. Cheng and Zeng [27] introduced a static qual-
ity of service (QoS)-based method to partition a centralized workflow model into
fragments. Their method uses “minimum execution cost within a deadline” (MCD)
and “minimum execution time with a budget” (MTB). They presented a definition
for Markov decision process-based fragment scheduling with an MTB objective in
a real-time system. The advantage of this method is that it is easy to perform, but it
is not flexible because fragmentation is static and compiler based. The current study
dynamically fragments each business workflow according to cloud run-time circum-
stances using a modified version of the hierarchical fragmentation method discussed
in Sect. 3.1.

2.2.1 Adaptability of fragmentation

Adaptability aims to adjust various parameters in response to changes at run-time.
The main categories for workflow adaptability are on-the-fly, locate/relocate and
hybrid methods [4]. In the on-the-fly approach, workflow fragments could be made
dynamically at run-time or taken from a repository containing pre-compiled frag-
ments. It can also later reconfigure them to reduce the system burden [7,10,28].
The locate/relocate approach uses workflow fragmentation and searches for the
most suitable run-time agent/web service to execute a fragment. The fragments
are then relocated to reduce system threshold violation based on run-time cir-
cumstances [5]. The hybrid approach combines the first two approaches to obtain
more efficient run-time adaptability. To the best of our knowledge, no research
has introduced and investigated workflow fragmentation based on the hybrid
approach.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

2.3 Summary of workflow scheduling methods

Workflow scheduling allows creation of one ormore executable workflow instances by
applying suitable resources. Schedulers assign the available resources to the workflow
tasks/fragments [29]. Several studies [30–38] have discussed the different aspects of
workflow/job scheduling and provide a historical perspective and relevant context for
the present study. They explain how hardware and software can work in concert on
scalable multi-processor systems using illustrative examples and applications for job
scheduling. The current study addresses scheduling in the more modern context of the
cloud.

Wu et al. [9] introduced a market-oriented hierarchical scheduling strategy for
cloud-based scientific workflows which utilizes two basic scheduling stages. In the
service level scheduling stage, service-based fragmentation is used to assign tasks-
to-service in which workflow tasks are mapped to cloud services. In the task-level
scheduling stage, task-to-VMassignment can be done locally in clouddata centers. The
tasks of a workflow application are mapped to cloud services in global cloud markets
based on their QoS requirements for run-time. Because this method produces many
small groups of task-to-VM assignments, to reduce the high overhead, fragmentation
methods that are capable of running large-sized workflows in a cloud environment
must be provided in future research.

Zhu et al. [39] suggested a two-stage method known as a high-throughput work-
flow scheduling algorithm within a user-defined deadline that schedules a scientific
workflow on an on-demand resource provisioning system such as the cloud. In the first
stage, modules are classified into fragments by means of the polynomial-time longest
path (LP) algorithm, denoted as “find critical path” (FCP). Next, the prioritized mod-
ule mapping algorithm “P modules mapping” (PMM) is run to allocate the fragment
to the network graph until convergence of the “end-to-end delay” (EED) is reached.
In their study, fragmentation is run-time based and the authors intend to implement
fragmentation and scheduling in local cloud test beds to support different scientific
workflows.

Zhang et al. [10] proposed an iterative ordinal optimization (IOO) method for sci-
entific workflow scheduling on cloud computing platforms. The authors demonstrated
that the IOOmethod can effectively generate a suboptimal schedule for most NP-hard
problems. Their approach does not require a post-design phase such as a run-time
environment. Because this method produces many small groups of task-to-VM assign-
ments, fragmentation methods that are capable of running large-sized workflows in a
cloud environment must be provided in future research to overcome the high overhead.

Liu et al. [40] suggested a compromised-time-cost (CTC) scheduling algorithm
which considers the characteristics of cloud computing to accommodate instance-
intensive workflows. The CTC algorithm calculates the sub-deadlines for tasks of
the last instance and the sub-deadlines for tasks of other instances based on the last
instance by assuming that the schedule follows the stream-pipemode. It then calculates
the estimated execution time and cost of each service. It then allocates each task to
the service using round-robin scheduling to provide an execution time that does not
exceed the sub-deadline and has the lowest total cost.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Ta
bl
e
1

A
su
m
m
ar
y
of

pr
io
r
w
or
kfl

ow
sc
he
du

lin
g
m
et
ho

ds

L
ite

ra
tu
re

T
im

e
of

fr
ag
m
en
ta
tio

n
A
da
pt
ab
ili
ty

W
or
kfl

ow
fr
ag
m
en
ta
tio

n
m
et
ho

d
Sc

he
du

lin
g

m
et
ho

d
C
lo
ud

ba
se
d

C
om

pi
le
r

ba
se
d

R
un

-t
im

e
ba
se
d

[7
]

–
√

O
n-
th
e-
fly

B
as
ed

on
w
or
kfl

ow
ci
rc
um

st
an
ce
s

Fr
ag
m
en
ts
ca
n
m
ig
ra
te
to

ex
ec
ut
io
n
se
rv
er
s
by

m
ob
ile

ag
en
ts
.

Sc
he
du
lin

g
m
et
ho
d
is
un
sp
ec
ifi
ed

–

[2
]

–
–

–
N
o
fr
ag
m
en
ta
tio

n
A
m
ul
tip

le
Q
oS

co
ns
tr
ai
ne
d
sc
he
du
lin

g
st
ra
te
gy

of
m
ul
ti-
w
or
kfl

ow
s

√
[5
]

√
–

L
oc
at
e/
re
lo
ca
te

A
ct
iv
ity

dr
iv
en

m
et
ho
d

(F
ul
ly

di
st
ri
bu
te
d)

It
us
es

an
ag
en
t-
ba
se
d
B
PE

L
ce
nt
ra
liz
ed

en
gi
ne
,n

am
el
y
N
IN

O
S.

It
se
ar
ch
es

fo
r
th
e
m
os
ts
ui
ta
bl
e
ru
n-
tim

e
ag
en
t/w

eb
se
rv
ic
e
to

ex
ec
ut
e
an

ac
tiv

ity

–

[2
8]

–
√

O
n-
th
e-
fly

B
as
ed

on
ru
n-
tim

e
ci
rc
um

st
an
ce
s

It
us
es

W
A
D
E
/J
A
D
E
pe
rf
or
m
er

ag
en
ts
.S

ch
ed
ul
in
g
m
et
ho
d
is

un
sp
ec
ifi
ed

–

[2
7]

√
–

–
B
as
ed

on
Q
oS

(M
C
D
,

M
T
B
)

M
ar
ko
v
D
ec
is
io
n
Pr
oc
es
s-
ba
se
d
fr
ag
m
en
ts
ch
ed
ul
in
g
an
d
us
e

m
ob
ile

ag
en
ts
in

m
ig
ra
tin

g
w
or
kfl

ow
sy
st
em

s
–

[9
]

–
√

–
B
as
ed

on
se
rv
ic
e
an
d
ta
sk

Tw
o
ba
si
c
sc
he
du
lin

g
st
ag
es
;n

am
el
y,
se
rv
ic
e
le
ve
la
nd

ta
sk

le
ve
li
n

cl
ou
d-
ba
se
d
ex
ec
ut
io
n
V
M
s

√

[3
9]

–
√

–
C
on

tr
ol
-p
at
h-

dr
iv
en

A
tw
o-
st
ep

sc
he
du

lin
g
al
go

ri
th
m

to
ac
hi
ev
e
en
d-
to
-e
nd

de
la
y

im
pr
ov
em

en
ta
nd

lo
w
ov
er
he
ad

in
cl
ou

d
in
fr
as
tr
uc
tu
re

√

[1
0]

√
–

O
n-
th
e-
fly

B
as
ed

on
ta
sk

A
n
ite
ra
tiv

e
or
di
na
lo

pt
im

iz
at
io
n
(I
O
O
)
m
et
ho
d
fo
r
sc
ie
nt
ifi
c

w
or
kfl

ow
sc
he
du

lin
g

√

[4
0]

√
–

–
B
as
ed

on
ta
sk

A
n
in
st
an
ce
-i
nt
en
si
ve

co
st
-c
on
st
ra
in
tc
lo
ud

w
or
kfl

ow
sc
he
du
lin

g
al
go
ri
th
m

na
m
ed

C
T
C
w
hi
ch

ta
ke
s
co
st
an
d
tim

e
as

th
e
m
ai
n

co
nc
er
ns

w
ith

us
er

√

[4
1]

√
–

–
B
as
ed

on
ta
sk

It
cl
as
si
fie
s
w
or
kfl

ow
ta
sk
s
ba
se
d
on

us
er
’s
Q
oS

pr
ef
er
en
ce
,a
nd

co
m
bi
ne
s
w
ith

st
ag
ge
re
d
su
b-
de
ad
lin

es
al
lo
ca
tio

n
cr
ite
ri
a,

pr
op

os
es

a
Q
D
A
sc
he
du

lin
g
al
go

ri
th
m

√

A
T
SD

S
–

√
H
yb
ri
d

H
PD

an
d
ba
se
d
on

ru
n-
tim

e
ci
rc
um

st
an
ce
s

A
n
ad
ap
tiv

e
tw
o-
st
ag
e
de
ad
lin

e-
co
ns
tr
ai
ne
d
sc
he
du
lin

g
st
ra
te
gy

th
at
co
ns
id
er
s
th
e
cl
ou

d
ru
n-
tim

e
en
vi
ro
nm

en
tc
ir
cu
m
st
an
ce
s
fo
r

in
st
an
ce
-i
nt
en
si
ve

w
or
kfl

ow
s

√

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

Li et al. [41] proposed a QoS-based deadline allocation (QDA) algorithm for
instance-intensive workflow task scheduling in a cloud environment. QDA references
the main sub-deadline allocation criteria of the CTC algorithm, uses the QoS utility
function as a service resource selection condition and takes user preferences (i.e., time,
cost) into account. The present study compares the proposed ATSDS algorithm with
the CTC and QDA in Sect. 4.3.

A summary of prior workflow scheduling methods is shown in Table 1. Prior
research for workflow scheduling is constrained with significant limitations. Some
[2,14] have no criteria for fragmentation and result in low performance. Existing
workflow fragmentation solutions [7,20,21,28] are also insufficient. Because these
methods improve distributed execution and scalability, they focus only on fragmenta-
tionwhile neglecting the scheduling component. In addition, some suffer froma lack of
fragmentation adaptability or are not able to move fragments to the cloud [20,27,42].
The ATSDS algorithm was developed to address these problems in a cloud comput-
ing environment. To improve workflow scalability and achieve user-defined workflow
deadlines, both fragmentation and scheduling aspects have been combined (Sect. 3).

3 Proposed approach

The ATSDS framework considers cloud run-time circumstances and its components.
Figure 1 shows the position of the proposed workflow scheduler between two basic
cloud computing layers. The proposed strategy is accomplished in two phases. The
logical fragmentation of workflow in the software-as-a-service (SaaS) layer considers
run-time circumstances delivered from the infrastructure-as-a-service (IaaS) layer and
physical allocation of fragments to the VMs considers the capacity of the VM in the
IaaS layer.

Figure 2 is an overall view of the proposed scheduling strategy and the scheduler
that applies the strategy. From the user perspective, the workflows and the values
associated with them (workflow relative deadline (RD) and absolute deadline (AD))
are submitted to a Fragmenter component. RD is the relative deadline by which the
workflow instances should be completed;missing aRD is acceptable and the remaining
workflow fragments will be sent to the critical list. AD is the last completion time by
which the workflow instance must be completed; missing an AD is not acceptable and
the remaining workflow fragments will be sent to a remove list.

A monitoring component collects the run-time circumstances (number of VMs
and average available bandwidth) and forwards the information to the Fragmenter.
The Fragmenter dynamically and adaptively partitions/re-partitions each workflow
into fragments while considering cloud run-time circumstances. It uses a hierarchical
fragmentation method called the hierarchical process decentralization (HPD) [28]
that fragments the workflow at a suitable level in a workflow hierarchy. The level of
fragmentation is determined at run-time considering number of available VMs and
average available bandwidth among VMs. The ATSDS can apply workflow fragments
in an adaptive fashion. The fragments for each user workflow are added to a waiting
list to be dispatched. The full details of the operation are described in Sect. 3.2.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Fig. 1 Position of the proposed scheduling strategy

Fig. 2 Adaptive two-stage deadline-constrained scheduling (ATSDS) framework

In the IaaS layer, the second stage of the scheduling scenario contains the wait-
ing, critical and removes lists. The algorithm that processes the waiting list sends the
workflow fragments to the dispatcher considering the workflow RD. Under certain
circumstances, the waiting list algorithm may send some fragments to the critical or
remove lists. The dispatcher allocates the workflow fragments received to the VMs
using an appropriate resource allocation method (Sect. 3.3). The scheduler continu-
ously assesses both the waiting and critical lists as long as workflow fragments are
being scheduled.

3.1 Reference workflow and hierarchical fragmentation method

Figure 3 shows the loan-application workflow used as a reference model. The loan
workflow seeks information from two non-resident web services which send credit
statements for the loan requester. When both web services confirm that a requester’s
credit is good, the loan is approved.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

Fig. 3 BPEL view of loan-application workflow [28]

The HPD fragmentation method [28] fragments a business process based on
the existing hierarchy of activities. Fragmentation for an HPD could be initiated
from any level in a workflow tree using a breadth-first search/traverse algorithm.
In the HPD, simple activities are denoted as leaves, while structured activities that
keep the most relevant activities together in a distinct fragment are located in the
middle.

Figure 4 shows the HPD of the loan application. It is accomplished in four levels
with an asterisk denoting the fragments. The whole process tree for one fragment is
wrapped by fragmentation at level 0 (HPD0), as for the centralized approach. The
subsequent levels of fragmentation are HPD1, HPD2, and HPD3; however, HPD3
is the equivalent of the fully distributed method. It is worth mentioning that at run-
time, all fragmentation levels exchanges inputs and outputs between the dependent
fragments in a workflow instance as messages. Also, the independent fragments could
be executed by different VMs in parallel.

3.2 First stage of scheduling scenario: workflow fragmentation

As described earlier, the fragmentation problem shapes the workflow fragments using
a fragmentation method. In distributed systems, this is the duty of the Fragmenter.
The Fragmenter determines which method of fragmentation is commensurate with
run-time circumstances (left side of Fig. 2). In the present study, the input parameters
of the Fragmenter are workflow specification, number of VMs, and average available
bandwidth of the VMs. The workflow fragments are the outputs of this component.
Two adaptability aspects have been introduced: fragment-to-VM proportionality that
is the ratio of workflow fragments to the number of VMs dedicated to the scheduling
system and fragment-to-bandwidth adaptability that is fragmentation commensurate
with the currently available bandwidth. The Fragmenter is first established on the frag-
ment proportionality aspect and makes decisions on the fragmentation level that are
commensurate with the current number of VMs. It then applies available-bandwidth
adaptability to offer a suitable fragmentation set that is commensuratewith the percent-
age of available bandwidth. The bandwidth parameter is affected by the environment
and may change at any time. Fuzzy logic was used to generate precise solutions from
certain or approximate information to model the bandwidth behavior between VMs
(Sects. 3.2.1, 3.2.2).

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Fig. 4 HPD fragmentation of loan-application business workflow [28]

3.2.1 Fuzzy fragmentation decision-making algorithm

Adaptability is achieved using a modified version of a hierarchical workflow frag-
mentation method (also called HPD [28]) on a reference loan workflow (Sect. 3.1).
Algorithm 1 presents the fuzzy fragmentation decision-making pseudo-code along
with its input and output parameters (lines 1–2). The workflow model is first frag-
mented by the method fragmentSetArray for the HPD approach (line 4). The fragment
set contains the HPD fragments. The first element is analogous to the centralized
fragment set and includes only one member. The last index is also equal to the fully
distributed fragment set.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

Algorithm 1 Fuzzy fragmentation decision-making
1. Input: wm (Workflow Model), bw (Bandwidth), novm (Number of Virtual Machines)
2. Output: granularity Level
3. Begin
4. fsaHPD = fragmentSetArray (wm, “HPD”)
5. fp = findFragmentProportionality (fsaHPD, novm)
6. fpl = findFragmentProportionalityLevel (fp)
7. granularityLevel = findFuzzyGranularity (fsaHPD, fpl, bw)
9. End

The HPD fragmentation of the loan application provides four fragment sets which
include 1 (centralized), 6, 10 and 16 fragments (fully distributed approach). After
obtaining fragment set fsaHPD, fragment proportionality is determined for HPD
fragment sets using findFragmentProportionality, which determines the number of
fragments in which the fragmentation level is closest to the number of VMs (line
5). The number of the fragmentation level is returned by findFragmentProportional-
ityLevel (line 6). Once all the fragments, the available bandwidth and the fragment
proportionality level have been obtained, a suitable fragmentation level is returned
by findFuzzyGranularity (line 7). Algorithm 2 shows how fragment proportionality
is calculated. It determines which number of fragments is closest to the number of
available VMs (lines 4–10). FindFragmentProportionalityLevel has the same func-
tionality as Algorithm 2. The only difference is that the algorithm returns the number
of the levels in the process tree which produce a suitable number of fragments. This
number is closer to the number of available VMs than the other levels. For example, in
an empty communication medium with 7 VMs, the fragmenter produced 6 fragments
equal to the HPD1 approach of the loan application.

Algorithm 2 findFragmentProportionality
1. Input: fsa (Fragment Set Array),

novm (Number of VM)
2. Output: Fragment Proportionality
3. begin
4. distance = novm
5. fp = 0
6. For (0≤i< fsa. Length)
7. if (|numberOfFragments (fsa[i]) –novm|) < distance)
8. distance = |numberOfFragments (fsa[i]) –novm|
9. fp = numberOfFragments (fsa[i])
10. Return distance
11. End

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

3.2.2 Fuzzy granularity level calculation

Fuzzy logic is a many-valued logic used for computing in place of the usual (one or
zero)Boolean logic [43].With fuzzy logic, different types of rules can be implemented.
Before these rules are applied, all input signals must be converted into linguistic vari-
ables. This step is called fuzzification. Different membership functions (or triangular
functions) are used to do this. After the transformation into linguistic variables, the
inference rules can be applied, but defuzzification is then needed to generate a sharp
output value. The current study uses fuzzy logic tomodel bandwidth behavior between
VMs.

To calculate suitable granularity in workflow fragmentation, findFuzzyGranular-
ity is used as shown in Algorithm 3. This method receives the fragment set array
(fsa), fragment proportionality level (fpl) and available bandwidth (bw) as input and
returns the granularity level as the output (lines 1–2). First, the bandwidth is segmented
dynamically and then using fuzzy variable bandwidth, the bw is fuzzified to fbw using
a singleton function (lines 4–5). For each segmented bandwidth Si , a new rule such as
Si → Singleton (fsa[i].fragmentNo()) is created bymakeFuzzyRules (line 6). The rules
created are executed using a rule engine supporting Sugeno rules (line 7). The calcu-
lated fuzzy granularity level fGranularity is later defuzzified using a weighted average
function and a crisp value is calculated by applying a defuzzification method (line 8).

The crisp value fFragments determines the number of fragments required and then a
suitable process-tree level number is returned by findFragmentProportionality which
is the final result of findFuzzyGranularity (lines 9–10). For example, in an empty
communication medium with 7 VMs, the Fragmenter produces 6 fragments equal to
the HPD1 approach of the loan application, but reduces the fragmentation level in the
high-traffic network to HPD0 having lower average bandwidth and creates coarser
fragments to achieve adaptive behavior. At the end of this stage, the related fragments
of different workflows are sent to the waiting list as outputs of the Fragmenter.

Algorithm 3 Find Fuzzy granularity
1. Input: fsa (Fragment Set Array),

fpl (Fragment Proportionality level),
bw (available bandwidth)

2. Output: granularity level
3. begin
4. FuzzyVariable bandwidth = dynamicBandwidthSegmentation (fsa, fpl+1)
5. fbw = fuzzify (bandwidth, Singleton (bw))
6. FuzzyRuleSet = makeFuzzyRules (bandwidth, fpl, fbw)
7. fGranularity = sugenoRuleExecution (FuzzyRulesSet)
8. fFragments = defuzzify (fGranularity)
9. granularity Level = findFragmentProportionality (fsa, fFragments)
10. Return granularity Level
11. End

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

3.3 Second stage of scheduling scenario: resource allocation

3.3.1 Waiting list processing algorithm

Acommonproblemexists in previous deadline-constrainedworkflowscheduling algo-
rithms [44–47]. Most use existing performance estimation techniques [46] such as
analytical modeling [48] and empirical [49] and historical data [50] to determine the
time required to run fragments on the available VMs. Because thesemethods are based
on estimation, they are not sufficiently accurate in operating environments. The cur-
rent study executes the finish time of a current workflow fragment inside a workflow
instance as shown in Fig. 5. Note that this figure is only for an illustration and does
not reflect the result of a real execution.

The algorithm that processes the waiting list decides whether or not a work-
flow instance deadline can be met at any point in the run-time according to the
finish time. As shown in algorithm 4, a traverse operation can be performed for
every fragment on the waiting list. If the finish time of the current workflow
fragment is larger than the absolute deadline, it means the workflow execution
could not be completed by the deadline and is analogous to a deadline viola-
tion; thus, the fragment will be sent to a remove list (lines 2–5). At the end
of each execution round, the status of the fragment is changed to failed on
the remove list and the related violation variable is set to true. After declaring
the status as output, the fragment is removed from the waiting list (lines 6–
8).

As the traverse operation continues, the waiting list processing algorithm examines
the current time of the fragment. If it is between the fragment relative deadline and
absolute deadline, it should be considered as a critical fragment and sent to the critical
list. If there is a fragment in the critical list, it is executed at higher priority than the
non-critical fragments (lines 9–11). If none of the previous cases has occurred, i.e.,the
finish time of the fragment is not larger than the absolute deadline and the fragment is
not critical, then the fragment will be sent to the dispatcher component to be executed
normally (lines 12–13).

Fig. 5 Finish time of a current workflow fragment for a workflow instance

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Algorithm 4 Waiting list processing algorithm
1 begin
2 While (WaitingList.size != 0){
3 if (fragment.get FinishTime () > fragment.get Absolute Deadline ())
4 Fragment.set_Violation of deadline(true)
5 Remove List.add (fragment)
6
7

for(fragment itm: RemoveList){
if (fragmentStatus==FAILED)

8 Waiting List. Removes (fragment)
9 if(fragment.get FinishTime () < getAbsoluteDeadline () && fragment.get FinishTime () >

getRelativeDeadline ()){
10 Critical List.put (fragment)
11 Submit fragment to the Dispatcher
12 else
13 Submit next fragment to the Dispatcher
14 End

3.3.2 Resource allocation

QoS parameters of cloud services vary, but the current studymainly considered execu-
tion time T , execution cost C , memory M and storage capacity Sto describe the QoS
of the VMs in what can be described as a 4-tuple Qs = {T, C, M, S}. T and Care neg-
ative attributes concerning minimization of QoS and Mand S are positive attributes
concerning maximization of QoS. These four attributes were used to calculate the
QoS utility function value of the VMs. Positive attributes can be multiplied by -1 to
convert them to negative attributes. QoS utility function U(VM) is used to map the
QoS attribute vector Qs= {q1(VM), q2(VM), …, qr(VM)} of each candidate VM to
a real value. Formula (1) shows how to evaluate U (VM) for each VM:

U (VM) =
∑r

k=1

Qmax
j,k − qk (V M)

Qmax
j,k − Qmin

j,k

× Wk (1)

where r is the number of VM QoS attributes, qk (VM) is the kth QoS attribute of
each VM,Wk is user preference, Qmax

j,k and QMin
j,k are maximum and minimum values,

respectively, of the kth QoS attribute of all candidate VMs. In accordance with the
type of user preference, the workflow system can use the corresponding Wk vector to
evaluate the VM QoS utility function using Formula (1). For example, the details of
Formula (1) for VM1 are shown in Formula (2) as:

UVM1 =
(
MaxMipsVM − MipsVM1

)

MaxMipsVM − MinMipsVM
∗ Wk Mips + (MaxCostVM − CostVM1)

MaxCostVM − MinCostVM

∗WkCost + (MaxMVM − MVM1)

MaxMVM − MinMVM
∗ WkM

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

+ (MaxSVM − SVM1)

MaxSVM − MinSVM
∗ WkS (2)

The VMs usage cost can be calculated using Formula (3) as:

Cost = Pcost × Length of workflow fragments

Mips
(3)

where Pcost is the cost per CPU unit incurred using the VM.
In summary, each workflow application is partitioned into fragments by the Frag-

menter (Sect. 3.2). The Fragmenter then submits fragments to the waiting list.
The waiting list processing algorithm submits the next fragment to the dispatcher
(Sect. 3.3.1). The dispatcher then distributes the workflow fragments to the VMs by
sorting their QoS utility function values in ascending order.

4 Evaluations

The loan workflow is used as a business workflow to examine the effectiveness of the
proposed ATSDS strategy. The experimental setup and quantitative metrics evaluated
are presented and the ATSDS strategy is studied during four experiments.

4.1 Experimental setup

The cloud simulations and experiments were carried out using the CloudSim 3.0.3
toolkit [51] with ten hosts inspired by the reference [10]. The configuration of the
experiment environment from the toolkit is shown in Fig. 6. The loan workflow and
the HPD fragmentation levels are written in Java. A cloud user sends requests at
specific rates of 100, 500, and 1000 per minute. On producing a cloud user request, a
bandwidth number (0–100) is exponentially generated that simulates the percentage
of network bandwidth available between the VMs. Fragmentation is done by the
Fragmenter separately for each workflow instance by considering the HPD fragments
and feedback data from the run-time environment. Different workflow fragmentation
levels could be used on-the-fly at run-time.After theworkflow fragments are produced,
they are deployed on available VMs using the ATSDS resource allocation method. In
the simulation, each host is equipped with an Intel Xeon processor and 2048 MB
of memory. The physical host runs with Linux OS. Different VMs are installed on
each physical host. Each VM is equipped with one core processor with 512 MB of
memory. MIPS (million instructions per second), the processing capability of each
VM, is different for each VM. The value of MIPS for VMs ranges from 250 to 10,000
with a linear rising function (y = (MIPS of current VM) ×i/5 + 1).

4.2 Metrics for evaluating proposed algorithms

The metrics used to evaluate the proposed scheduling strategy are the completion time
of the workflow, bandwidth usage based on the number of messages exchanged, dead-
line violation and VM usage cost. The completion time of the makespan is usually

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Fig. 6 Experiment environment configuration

the total time from the start of the workflow until all tasks are completed and the out-
puts are completely produced [12,52]. Because ATSDS applies available-bandwidth
adaptability that offers a suitable fragmentation set commensurate with the percentage
of bandwidth available, it is important to determine the average available bandwidth
for the VMs during workflow execution. The available bandwidth is determined by
counting the number of messages exchanged having the same size. The number of
messages passed will increase bandwidth usage [28]. The deadline violation metric
is defined to set deadlines for workflows. Real-time workflow is highly affected by
the deadline, which means it must be executed within a time constraint. Even a slight
delay may cause a deadline violation. The VM usage cost can be calculated using
Formula (3) as described in Sect. 3.3.2.

4.3 Evaluation experiments

Table 2 shows that experiments 1–3 consist of two parts (a and b) that evaluate the
performance of the fragmentation algorithm. Moreover, the overall ATSDS strategy
is evaluated in experiment 4.

4.3.1 Experiment 1 (evaluating ATSDS available-bandwidth adaptability against
Fully distributed fragmentation along with HPD fragmentation, exponential
bandwidth simulator, variable request arrivals, variable VM count)

The proposed ATSDS strategy was equipped with an exponential bandwidth generator
and was tested in the presence of 1, 7, 14, and 21 VMs. A cloud user sent requests

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

Ta
bl
e
2

E
xp

er
im

en
ts
co
nfi

gu
ra
tio

n

E
xp

er
im

en
t

L
ev
el
of

w
or
kfl

ow
fr
ag
m
en
ta
tio

n
in

th
e
fir
st
st
ag
e
of

sc
he
du
lin

g
sc
en
ar
io

R
es
ou
rc
e
al
lo
ca
tio

n
m
et
ho

d
in

th
e

se
co
nd

st
ag
e
of

sc
he
du
lin

g
sc
en
ar
io

V
M

co
un

t
N
um

be
r
of

pa
ra
lle
lw

or
kfl

ow
re
qu
es
t

ar
ri
va
ls
pe
r
m
in
ut
e

Si
ze

of
m
es
sa
ge

R
D
&

A
D

E
va
lu
at
ed

m
et
ri
c

1(
a)

V
ar
ia
bl
e
ba
se
d
on

ru
n-
tim

e
ci
rc
um

st
an
ce
s

C
on
st
an
t(
A
T
SD

S)
V
ar
ia
bl
e
(1
,7

,1
4,

21
)

V
ar
ia
bl
e
(1
00

,
50

0,
10

00
)

C
on
st
an
t(
15
)

–
R
ea
ct
io
n
of

A
T
SD

St
o

ex
po

ne
nt
ia
lb

an
dw

id
th

1(
b)

V
ar
ia
bl
e
ba
se
d
on

ru
n-
tim

e
ci
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
ri
bu
te
d

C
on
st
an
t(
A
T
SD

S)
V
ar
ia
bl
e
(1
,7

,1
4,

21
)

V
ar
ia
bl
e
(1
00

,
50

0,
10

00
)

C
on

st
an
t(
15

)
–

N
um

be
r
of

ex
ch
an
ge
d

m
es
sa
ge
s

2
V
ar
ia
bl
e
ba
se
d
on

V
M
’s
co
un
t

C
on
st
an
t(
A
T
SD

S)
V
ar
ia
bl
e
(1
,7

,1
4,

21
)

C
on

st
an
t(
10

0)
V
ar
ia
bl
e
(0
,1
00

,
20

0,
30

0)
–

C
om

pl
et
io
n
tim

e

3(
a)

V
ar
ia
bl
e
ba
se
d
on

ru
n-
tim

e
ct
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
ri
bu
te
d

C
on

st
an
t(
A
T
SD

S)
C
on

st
an
t(
63

)
V
ar
ia
bl
e
(1
00

,
50

0,
10

00
)

C
on

st
an
t(
30

0)
C
om

pl
et
io
n
tim

e

3(
b)

V
ar
ia
bl
e
ba
se
d
on

ru
n-

tim
e

ci
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
ri
bu
te
d

C
on
st
an
t(
A
T
SD

S)
V
ar
ia
bl
e
(7
,2

1,
63

,1
89

)
C
on

st
an
t(
50

0)
C
on

st
an
t(
30

0)
C
om

pl
et
io
n
tim

e

4(
a)

V
ar
ia
bl
e
ba
se
d
on

ru
n-
tim

e
ct
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
ri
bu
te
d
fo
r
ot
he
r

ap
pr
oa
ch
es

V
ar
ia
bl
e
(A
T
SD

S,
C
T
C
,Q

D
A
)

C
on

st
an
t(
21

)
V
ar
ia
bl
e
(1
00

,
20

0,
40

0,
60

0,
80

0,
10

00
)

C
on

st
an
t(
15

)
10

,1
3

N
um

be
r
of

de
ad
lin

e
vi
ol
at
io
ns
,a
nd

th
e
V
M

us
ag
e
co
st

4(
b)

V
ar
ia
bl
e
ba
se
d
on

ru
n-
tim

e
ct
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
tib

ut
ed

fo
r
ot
he
r

ap
pr
oa
ch
es

V
ar
ia
bl
e
(A
T
SD

S,
C
T
C
,Q

D
A
)

C
on

st
an
t(
21

)
V
ar
ia
bl
e
(1
00

,
20

0,
40

0,
60

0,
80

0,
10

00
)

C
on

st
an
t(
15

)
15

,1
8

N
um

be
r
of

de
ad
lin

e
vi
ol
at
io
ns

4(
c)

va
ri
ab
le
ba
se
d
on

ru
n-
tim

e
ct
rc
um

st
an
ce
s
fo
r
A
T
SD

S
an
d

Fu
lly

di
st
ri
bu
te
d
fo
r
ot
he
r

ap
pr
oa
ch
es

V
ar
ia
bl
e
(A
T
SD

S,
C
T
C
,Q

D
A
)

V
ar
ia
bl
e
(1
,7

,1
4,

21
)

C
on

st
an
t(
50

0)
C
on

st
an
t(
15

)
15

,1
8

N
um

be
r
of

de
ad
lin

e
vi
ol
at
io
ns

an
d
th
e
V
M

us
ag
e
co
st

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Fig. 7 (Experiment 1(a)): reaction of ATSDS algorithm to exponential bandwidth, HPD fragmentation

to servers at request rates of 100, 500, and 1000 requests per minute. Figure 7 plots
the trend of bandwidth change from the left axis and the number of fragments created
from the right axis of the graphs. During the experiment, bandwidth was simulated
with an exponential bandwidth generator and the number of messages exchanged was
counted with applying the fuzzy fragmentation decision-making algorithm. Figure 8
shows that use of the fuzzy fragmentation decision-making algorithm with different
numbers of VMs resulted in a decrease in bandwidth usage.

For simplicity, each experimentwas denoted according to the following convention:
method name +_+ number of VMs. In this experiment, the Fragmenter considered
fragment proportionality and consistently adapted the fragmentation of workflows to
the available bandwidth. Because the bandwidth followed the exponential distribution
pattern, the Fragmenter directed workflow fragmentation from more decentralized
fragments to their more centralized equivalents. Despite the increase in the request
rate, the number of messages exchanged improved in ATSDS about 93.33, 30 and
46.66% over the fully distributed approach. ATSDS reduced the scalability in a high-
traffic network and created coarser fragments, but produced softer fragments in an
empty communication medium.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

100 500 1000
1500

7500

15000

0

2000

4000

6000

8000

10000

12000

14000

16000

100 500 1000

N
um

be
r o

f e
xc

ha
ng

ed
 m

es
sa

ge
s

Number of parallel workflow request arrivals per
second

ATSDS_1

ATSDS_7

ATSDS_14

ATSDS_21

Fully-dis�buted

Fig. 8 (Experiment 1 (b)): number of exchanged message comparison between different levels of frag-
mentation in ATSDS

418.62

1851.36

2764.83

3379.56

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300

C
om

pl
et

io
n

tim
e

of
 W

or
kf

lo
w

s
(s

ec
on

d)

Size of exchanged messages

HPD0_1

HPD1_7

HPD2_14

HPD3_21=Fully distributed

Fig. 9 (Experiment 2): completion time parameter of two workflow scheduling methods plotted against
constant workflow request arrivals and the variable-message size

4.3.2 Experiment 2 (evaluating the effect of message size on completion time,
constant resource allocation method, constant request rate, variable message
size)

Completion time can be affected by the request rate and the size of the messages
exchanged between workflow activities. Messages 0, 100, 200 and 300 kb in size
were applied. To avoid the effect of request rate, the experiment was executed at a
constant request rate of 100 requests per minute. Figure 9 depicts the decrease in
completion time of the fully distributed fragments by other loan fragments. At the 100
request rate, the average decrease in completion time by HPD0, HPD1 and HIPD2
was 87.61, 45.21 and 18.18%, respectively. The number of fragments and size of the
messages exchanged amongworkflow activities were effective in this experiment. The
fully distributed approach improved when the sizes of the messages increased.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

4.3.3 Experiment 3 (evaluating the completion time parameter of loan workflow
instances with different level of fragmentation, constant resource allocation
method)

The completion-time parameter of loan workflow instances was evaluated for the
different fragmentation algorithms using the ATSDS and fully distributed execution
approaches. In the fully distributed approach, the authors statically partitioned a busi-
ness workflow to activity level fragments as described in Sect. 2.2 [5].

Figure 10 shows the completion-time parameter of loan workflow instances for
the different fragmentation algorithms. The ATSDS approach was equipped with a
exponential bandwidth simulator. Figure 10a shows the effect of an increase in the
number of workflow instances on the workflow completion-time parameter. A client
sent requests to servers at request rates of 100, 500, and 1000 requests per minute.
The results show that ATSDS decreased the completion time 16.33% compared to
the fully distributed approach as the number of workflow instances varied. Note that
ATSDS used the maximum fragmentation level (HPD3) in an empty communication
medium (when the amount of request arrivals increased from 1 to 100; Fig. 10a). It
produced softer fragments similar to the fully distributed approach, but reduced the
fragmentation level in a high-traffic network with a lower average bandwidth and
created coarser fragments to achieve adaptive behavior.

To test the scalability and the adaptability of ATSDS, the number of VMs were
varied from 7 to 21, 63, and 189 as suggested by Zhang [10]. Figure 10b shows the
effects of the number of VMs on workflow completion time. When the VM number
increased from 7 to 63, the completion time for both approaches decreased. When
it increased from 63 to 189, neither approach changed. It can be concluded that: (1)
the workflow completion time will decrease when the VMs increase and will reach a
point where further addition of VMs fail to decrease the completion time; (2) a VM
number could be configured for the best execution; (3) an increase in the number of
VMs up to 63 decreased completion time 43.98% for ATSDS over the fully distributed
approach. A method for automatically determining how many VMs is optimal for the
best execution must be a subject of future research.

4.3.4 Experiment 4 (evaluating the deadline violation and the VM usage cost
parameters of the loan workflow instances, variable request arrivals, constant
level of workflow fragmentation, variable scheduling method)

Experiment 4 evaluated the performance of the algorithms used in the first and second
stages of ATSDS. The proposed strategy was compared with the CTC [40] and QDA
[41] scheduling algorithms (in Sect. 2.3). The CTC algorithm only considers cost and
the QDA algorithm considers both time and cost. ATSDS takes various aspects of QoS
into account. Figure 11a, b shows the effect of an increase in the number of workflow
instances up to 1000 per minute for the loan application for deadline violation and
VM usage cost, respectively, with different relative and absolute deadline times. In
Fig. 11a, the deadline violation and theVMusage costATSDS forQDAwere 38.67 and
43.75% and for CTC were 16.32 and 0% with an increase in the number of workflow
instances. As the number of workflow instances increased, the number of VMs was

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

0

50

100

150

200

250

300

350

400

100 500 1000

C
om

pl
et

io
n

tim
e

of

W
or

kf
lo

w
s(

se
co

nd
)

Number of parallel workflow request arrivals per minute

Fully-distributed approach ATSDS

0

50

100

150

200

250

300

350

400

450

7 21 63 189

C
om

pl
et

io
n

tim
e

of
 W

or
kf

lo
w

s
(s

ec
on

d)

Number of VMs

Fully-distributed approach ATSDS

(a)

(b)

Fig. 10 Completion time parameter of twoworkflow schedulingmethods plotted against number of parallel
workflow request arrivals and the number of VMs. a (Experiment 3 (a)) Effect of workflow instance number
for 63 VMs. b (Experiment 3 (b)) Effect of VM number for 500 workflow instance

fixed, meaning deadline violations increased and the performance of all policies in
meeting the deadline dropped off.

The VM usage cost of CTC was lower than for QDA and the VM usage cost
for ATSDS was almost identical to the CTC for users who prefer the lowest cost.
Figure 11b shows that at different relative and absolute deadline times, the deadline
violation for ATSDS was 34.25% better than QDA and 50.74% better than CTC with
an increase in the number of workflow instances. CTC used the round-robin allocation
algorithm, which does not consider the capacity of the VMs and loads the fragments
in a circular form. This is why it showed a less favorable value compared to ATSDS
in all cases. Because resource allocation in ATSDS operates according to execution
time, execution cost, memory, and storage capacity of VMs, it has a greater effect
on decreasing the percentage of deadline violations for ATSDS policies compared to
QDA and CTC policies for a high number of workflow instances.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

Fig. 11 Comparison diagram of
number of deadline violations
and the VM usage cost for 1000
workflow instances among the
QDA versus CTC versus
proposed ATSDS algorithms,
VM count = 21. a (Experiment
4 (a)-part 1): evaluating the
deadline violation parameter,
relative deadline time = 10,
absolute deadline = 13. b
(Experiment 4 (a)-part 2):
evaluating the VM usage cost
parameter, relative deadline time
= 10, absolute deadline = 13. c
(Experiment 4 (b)): evaluating
the deadline violation parameter,
relative deadline time = 15,
absolute deadline = 18

0
100
200
300
400
500
600
700
800
900

1000

100 200 400 600 800 1000

N
um

be
r o

f d
ea

dl
in

e
V

io
la

tio
ns

Number of parallel workflow request arrivals per
second

CTC QDA ATSDS

0

5000

10000

15000

20000

25000

30000

100 200 400 600 800 1000

V
M

s u
sa

ge
 c

os
t

Number of parallel workflow request arrivals per
second

CTC QDA ATSDS

0

100

200

300

400

500

600

700

800

900

1000

100 200 400 600 800 1000

N
um

be
r o

f d
ea

dl
in

e
V

io
la

tio
ns

Number of parallel workflow request arrivals per
second

CTC QDA ATSDS

(a)

(b)

To verify the effect of VM number, the simulation compared deadline violations
and VMs usage cost for constant workflow request arrivals. The results are shown in
Fig. 12. As seen, the deadline violations and VM usage cost for ATSDS increased 0

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

ATSDS: adaptive two-stage deadline-constrained workflow...

0

100

200

300

400

500

600

1 7 14 21

N
um

be
r o

f d
ea

dl
in

e
V

io
la

tio
ns

Number of parallel workflow request arrivals per
second

CTC QDA ATSDS

0

5000

10000

15000

20000

25000

1 7 14 21

V
M

 u
sa

ge
 c

os
t

Number of parallel workflow request arrivals per
second

CTC QDA ATSDS

(a)

(b)

Fig. 12 (Experiment 4 (c)): Comparison diagram of number of deadline violations and the VM usage cost
for 1,7,14,21 VMs among the QDA versus CTC versus proposed ATSDS algorithms, constant workflow
request arrivals (500). a (Experiment 4 (c)-part 1): evaluating the deadline violation parameter, relative
deadline time = 15, absolute deadline = 18. b (Experiment 4 (c)-part 2): evaluating the VM usage cost
parameter, relative deadline time = 15, absolute deadline = 18

and 100% over QDA and 22.08 and ∼0% over CTC, respectively, with an increase
in the number of VMs. Figure 12a-1 shows that when the VM number increased
from 1 to 21, deadline violations for the three approaches decrease. ATSDS achieved
the lowest percentage of deadline violations in all cases. For the VM usage cost,
Fig. 12a-2 shows that CTC achieved the lowest VM usage cost in all cases. The CTC
algorithm did not consider execution time, memory and storage capacity of the VMs;
thus the correspondingVMs usage cost was the lowest. ATSDS specified the execution
time, memory, and storage capacity of the VMs according to user preference and the
simulation results met expectations.

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

R. K. M. Esfahani et al.

5 Conclusion and future work

Instance-intensiveworkflows and their execution play an increasingly important role in
e-government and e-business applications. The proposed adaptive two-stage schedul-
ing strategy considers run-time circumstances for instance-intensive workflows on the
cloud. In the first stage, the Fragmenter is established on the proportional fragment
and offers a suitable fragmentation set that is commensurate with the current number
of VMs and the percentage of bandwidth available between them. In the resource allo-
cation stage, according to the workflow deadline and the capacity of VMs, the created
fragments are allocated to them to be executed. The evaluation results showed that
ATSDSmore efficiently scheduled businessworkflows and that the proposed fragmen-
tation algorithm performed better than approaches that do not use adaptive behavior,
such as fully distributed execution. Scalability and adaptability were the final targets.
The results of simulations indicated that the proposed scheduling algorithm decreased
the number of messages exchanged under an increased workload, the workflow com-
pletion time, the percentage of workflows that met the deadline and the VM usage cost
with respect to CTC and QDA scheduling approaches. Future research will consider
other fragmentation algorithms and other adaptability aspects to improve the frag-
mentation stage for instance-intensive workflows. The current experiments utilized
the loan-application business workflow; thus, testing on other real-world application
workflows that should be performed in future research. Implementation of auto-scaling
mechanisms for the underlying VMs in response to performance requirements is an
additional area of interest. The number of essential computing resources at peak times
is greater than the average need and, when demand for workflow execution is low,
computing resources largely sit idle and waste a large amount of energy. Implementa-
tion of elasticity is crucial for delivering resources and reducing the cost of operation.
Workflow state management can improve the proposed workflow scheduling system.
In other words, if a workflow requires re-fragmentation, then it must be able to retrieve
its last state in a new fragment after being re-fragmented.

References

1. Workflow management coalition (1999) Workflow management coalition terminology & glossary.
http://www.wfmc.org/

2. XuR, LiuX,XieY,Wang F, ZhangCh (2014) Logistics scheduling based on cloud business workflows.
In: IEEE 18th Int. Conf. Comput. Support. Coop. Work Des

3. Liu X, Ni Z, Yuan D, Jiang Y,Wu Z, Chen J (2011) A novel statistical time-series pattern based interval
forecasting strategy for activity durations in workflow systems. J. Syst. Softw. 84:354–376

4. Safi-Esfahani F, Azmi Murad M, Nasir Sulaiman M (2011) Run-time adaptable business process
decentralization. Third Int. Conf. Information, Process. Knowl. Manag., no. c, pp 76–82

5. Li G, Muthusamy V (2010) A distributed service oriented architecture for business process execution.
ACM Trans. Web, vol. V

6. Sudha M, Monica M (2012) Dynamic adaptive workflow scheduling for instance intensive cloud
applications. J Expert Syst (JES), vol. 1, No. 1, Copyr. World Sci. Publ., vol. 1, no. 1, pp. 31–36

7. Tan W (2007) Dynamic workflow model fragmentation for distributed execution. Comput Ind
58(5):381–391

8. Atluri V, Chun S, Mukkamala R (2007) A decentralized execution model for inter-organizational
workflows. Distrib Parallel Databases, pp. 55–83

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://www.wfmc.org/

ATSDS: adaptive two-stage deadline-constrained workflow...

9. Wu Z, Liu X, Z Ni (2013) A market-oriented hierarchical scheduling strategy in cloud workflow
systems. J Supercomput, Springer Sci. Media, LLC 63(1):256–293

10. Zhang F, Cao J, Hwang K, Li K, U. Khan S (2015) Adaptive workflow scheduling on cloud computing
platforms with iterative ordinal optimization. IEEE Trans Cloud Comput, vol 7161

11. Hoenisch P, Schulte S, Dustdar Sh (2013)Workflow scheduling and resource allocation for cloud-based
execution of elastic processes. IEEE 6th Int. Conf. Serv. Comput, Appl, 2013

12. Banerjee S, AdhikariM,Kar S, BiswasU (2015)Development and analysis of a new cloudlet allocation
strategy for QoS improvement in cloud. Arab J Sci Eng 40:409–1425

13. Mohialdeen IA (2013) Comparative study of scheduling al-grotihms in cloud computing. J Comput
Sci 9(2):252–263

14. Mendling J, Lassen KB (2006) On the transformation of control flow between block-oriented and
graph-oriented process modeling languages. Inderscience Enterp. Ltd

15. Kopp O, Martin D, Wutke D, Leymann F (2008) On the choice between graph-based and block-
structured business process modeling languages. Model. betrieblicher Informations Syst. (MobIS
2008), Saarbrücken

16. Nguyen BT, Nguyen DH, Nguyen TT (2014) Translation from BPMN to BPEL, current techniques
and limitations. Copyr. 2014 ACM 978-1-4503-2930-9/14/12, pp 21–30

17. Mancioppi M, Danylevych O, Karastoyanova D (2011) Toward classification criteria for Process frag-
mentation techniques. 7th Int. Work. Bus. Process Des., pp 1–12

18. GuoL, RobertsonD,BurgerY (2005)A novel approach for enacting the distributed businessworkflows
using BPEL4WS on the multi-agent platform. In: Proc. IEEE Int. Conf. Ebus. Eng. Washington, DC,
pp 657–664

19. Viroli M, Denti E, Ricci A (2007) Engineering a BPEL orchestration engine as a multi-agent system.
Sci Comput Program 66(3):226–245

20. Baresi L, Maurino A (2006) Towards Distributed BPEL Orchestrations. Electron. Commun. EASST,
vol. 3

21. Baeyens T (2013) BPM in the cloud. Springer, Berlin, LNCS 8094, pp 10–16
22. Khalaf R, Kopp O (2008) Maintaining data dependencies across BPEL process fragments. Int J Coop

Inf Syst 17:259–282
23. Khalaf R (2006) E Role-based decomposition of business processes using BPEL. IEEE Int. Conf, Web

Serv
24. FdhilaW,YildizU (2009)Aflexible approach for automatic process decentralization using dependency

tables University of California. IEEE 7th Int. Conf. Web Serv., ICWS
25. SadiqW, Sadiq S (2006)Model driven distribution of collaborative business processes. IEEE Int. Conf.

Serv. Comput., pp 1–4
26. Zhai Y, Su H (2007) A data flow optimization based approach for BPEL processes partition. IEEE Int.

Conf. E-bus. Eng., pp 410–413
27. Cheng J (2012) An agent-oriented approach to process partition and planning in migrating workflow

systems. Eng Appl Artif Intell 25(4):837–845
28. Safi-Esfahani F, Azmi Murad M, Nasir Sulaiman M (2011) Adaptable decentralized service oriented

architecture. J Syst Softw 84(10):1591–1617
29. Teng F, Yang H, Li T, Yang Y (2013) Scheduling real-time workflow on mapreduce-based Cloud.

978-1-4799-0048-0/13/$31.00 2013 IEEE, pp 117–122
30. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-

and-data-decomposition approach. J Parallel Distrib Comput, pp 188–192
31. Arabnia HR (1993) Downloaded from Iran library: (http://www.libdl.ir) | Sponsored by Tehran Busi-

ness School (http://www.tbs.ir). In: Proc. 7th Annu. Int. High Perform. Comput. Conf. (1993) High
Perform. Comput. New Horizons Supercomput. Symp. Calgary, Alberta, Canada, June, pp 349–357

32. Arabnia HR (1989) A transputer network for fast operations on digitised images. Int J Eurograph.
Assoc. (Comput. Graph. Forum) 8(1):3–12

33. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with SIMD machine architectures.
Int. J. Eurographics Assoc. (Computer Graph. Forum), 6(1):3–12

34. Arabnia H. R (1995) A distributed stereocorrelation algorithm. In: Proc. Comput. Commun. Networks
(ICCCN’95), IEEE, pp 479-482

35. Arabnia HR (1986) Operations on raster images with SIMD machine architectures. Int. J. Eurograph.
Assoc. (Comput. Graph. Forum) 5(3):179–188

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://www.libdl.ir
http://www.tbs.ir

R. K. M. Esfahani et al.

36. Arabnia HR (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput,
Springer Publ. vol. 10, No. 3, pp 243–270, vol 269, pp 243–269

37. Bhandarkar S, Arabnia HR (1995) The Hough transform on a reconfigurable multi-ring network.
Parallel Distrib Comput 24(1):107–114

38. Wani MA, Arabnia HR (2003) Parallel polygon approximation algorithm targeted at reconfigurable
multi-ring hardware. J Supercomput 25(1):43–63

39. Zhu M, Cao F (2014) High-throughput scientific workflow scheduling under deadline constraint in
clouds. J Commun 9(4):312–321

40. Liu K, Jin H, Chen J, Liu X, Yuan D (2010) A compromised-time-cost scheduling algorithm in
SwinDeW-C for instance-intensive cost-constrained workflows on cloud computing platform. Int J
High Perform Comput Appl 24(2010):1–16

41. Li H, Ge S, Zhang L (2014) A QoS-based scheduling algorithm for instance-intensive workflows in
cloud environment. Control Decis. Conf. (2014 CCDC), 26th Chinese, pp 4094–4099

42. Topcuoglu H, Hariri S, Wu M (2002) Performance-effective and low-complexity. IEEE Trans Parallel
Distrib Syst 13(3):260–274

43. VegaD (2010) Towards fuzzy granularity control in parallel/ distributed computing. Int J Child Comput
Interact, pp 43–55

44. Moens H, HandekynK (2013) Cost-aware scheduling of deadline-constrained task workflows in public
cloud environments. 978-3-901882-50-0c 2013 IFIP, pp 68–75

45. Ghafarian T (2013) Deadline-constrained workflow scheduling in volunteer computing systems.
Springer Int. Publ. Switz

46. Mao M, Humphrey M (2011) Auto-scaling to minimize cost and meet application deadlines in cloud
workflows. SC11, Novemb. 12–18, 2011, Seattle, Washington, USA Copyr. 2011 ACM 978-1-4503-
0771

47. RamakrishnanL, Chase JS,GannonD,NurmiD,Wolski R (2011)Deadline-sensitiveworkfloworches-
tration without explicit resource control. J Parallel Distrib Comput 71(3):343–353

48. Harper jS, Wilcox DV (2000) A toolset for the performance prediction of parallel and distributed
systems. Int J High Perform Comput Appl 14(3):228–251

49. Cooper K, Dasgupta A, Kennedy K, Koelbel C, Mandal A, Marin G, Mazina M, Berman F, Casanova
H, Chien A, Dail H, Liu X, Olugbile A, Sievert O, Xia H, Johnsson L, Liu B, Patel M, Reed D, Deng
W, Mendes C (2004) New grid scheduling and rescheduling methods in the GrADS project. NSF Next
Gener. Softw. Work. Int. Parallel Distrib. Process. Symp. St. Fe, IEEE CS Press. Los Alamitos, CA,
USA

50. Jang S, Wu X, Taylor V, Texas A, Station C, Mehta G, Vahi K, Deelman E, Way A, Del Rey M, (2004)
Using performance prediction to allocate grid resources. Tech. Rep. 2004-25, GriPhyN Proj. USA, pp
1–11

51. Mostinckx S, Van Cutsem T, Timbermont S, Boix E.G, Tanter E, De Meuter W (2011) CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exp. Publ. Wiley Online Libr., vol 39, no. 7, pp 661–699

52. Li G,MuthusamyV, JacobsenH (2010) A distributed service-oriented architecture for business process
execution. ACM Trans. Web, 4(1)

123

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

	ATSDS: adaptive two-stage deadline-constrained workflow scheduling considering run-time circumstances in cloud computing environments
	Abstract
	1 Introduction
	2 Related work
	2.1 Workflow model topology
	2.2 Workflow fragmentation
	2.2.1 Adaptability of fragmentation

	2.3 Summary of workflow scheduling methods

	3 Proposed approach
	3.1 Reference workflow and hierarchical fragmentation method
	3.2 First stage of scheduling scenario: workflow fragmentation
	3.2.1 Fuzzy fragmentation decision-making algorithm
	3.2.2 Fuzzy granularity level calculation

	3.3 Second stage of scheduling scenario: resource allocation
	3.3.1 Waiting list processing algorithm
	3.3.2 Resource allocation

	4 Evaluations
	4.1 Experimental setup
	4.2 Metrics for evaluating proposed algorithms
	4.3 Evaluation experiments
	4.3.1 Experiment 1 (evaluating ATSDS available-bandwidth adaptability against Fully distributed fragmentation along with HPD fragmentation, exponential bandwidth simulator, variable request arrivals, variable VM count)
	4.3.2 Experiment 2 (evaluating the effect of message size on completion time, constant resource allocation method, constant request rate, variable message size)
	4.3.3 Experiment 3 (evaluating the completion time parameter of loan workflow instances with different level of fragmentation, constant resource allocation method)
	4.3.4 Experiment 4 (evaluating the deadline violation and the VM usage cost parameters of the loan workflow instances, variable request arrivals, constant level of workflow fragmentation, variable scheduling method)

	5 Conclusion and future work
	References

