22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1,

JANUARY/FEBRUARY 2017

Generic Soft-Error Detection and Correction
for Concurrent Data Structures

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk

Abstract—Recent studies indicate that transient memory errors (soft errors) have become a relevant source of system failures. This
paper presents a generic software-based fault-tolerance mechanism that transparently recovers from memory errors in object-oriented
program data structures. The main benefits are the flexibility to choose from an extensible toolbox of easily pluggable error detection
and correction schemes, such as Hamming and CRC codes. This is achieved by a combination of aspect-oriented and generative
programming techniques. Furthermore, we present a wait-free synchronization algorithm for error detection in data structures that are
used concurrently by multiple threads of control. We give a formal correctness proof and show the excellent scalability of our approach
in a multiprocessor environment. In a case study, we present our experiences with selectively hardening the eCos operating system and
its benchmark suite. We explore the trade-off between resiliency and performance by choosing only the most vulnerable data structures
for error recovery. Thereby, the total number of system failures, manifesting as silent data corruptions and crashes, is reduced by 69.14

percent at a negligible runtime overhead of 0.36 percent.

Index Terms—Fault tolerance, concurrency, aspect-oriented programming, object-oriented programming, operating systems

1 INTRODUCTION

E RRORS in main memory are one of the primary hardware
causes of today’s computer-systems failures [1], [2].
Recent studies on current DRAM technology (DDR2 and
DDR3) confirm an approximate fault rate of 0.044 FIT /Mbit
[3] to 0.066 FIT/Mbit [4]. For a computing cluster with tera-
bytes of main memory—such as the “Jaguar” supercom-
puter at Oak Ridge, Tennessee—this fault rate “translates to
one failure approximately every six hours” [4]. The ever increas-
ing demand for larger computer memory worsens this reli-
ability problem. Furthermore, as VLSI technologies move to
higher chip densities and lower operating voltages, the sen-
sitivity to electromagnetic radiation is expected to increase
dramatically [5], [6].

Most DRAM faults manifest as transient errors (soft
errors), randomly distributed over a system'’s lifetime [3],
and cannot be resolved by device replacement. A remedy to
this problem is the widespread use of single-bit-error correct-
ing and double-bit-error detecting (SEC-DED) memory hard-
ware. However, at least 17 percent of DRAM errors affect
multiple bits [2], [3], [4]. Chipkill [7] tolerates word-wise
multi-bit errors by interleaving a word on independent
DRAM chips, at the cost of reduced performance and up to
30 percent higher energy consumption due to forced nar-
row-1/O configuration [8]. Low-cost systems, primarily
addressed in this paper, cannot afford such a costly hard-
ware mechanism.

Several studies report that a large share of memory errors
is masked by the application software, for example, by

o The authors are with the Department of Computer Science, Technische
Universitit Dortmund, Dortmund 44227, Germany. E-mail: {christoph.
borchert, horst schirmeier, olaf.spinczykj@tu-dortmund.de.

Manuscript received 1 Oct. 2014; revised 13 Feb. 2015; accepted 29 Mar.
2015. Date of publication 29 Apr. 2015; date of current version 18 Jan. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TDSC.2015.2427832

overwriting a transient error [9], [10]. This behavior is
highly application specific and can be exploited to selec-
tively apply error recovery to only the critical memory
accesses.

We propose a software-based memory-error recovery
that exploits application knowledge about memory
accesses, which are analyzed at compile time and hardened
by compiler-generated runtime checks. A challenge is the
placement of the runtime checks in the control flow of the
software, requiring to analyze which program instructions
work on which parts of the memory. In general, this is an
undecidable problem for pointer-based programming lan-
guages. However, if we assume an object-oriented program-
ming model, we can reason that non-public data-structure
members are accessed only within member functions of the
same class. Thus, data structures (objects) can be examined
for errors by inserting a runtime check before each member
function call. To reduce the overhead, we apply static pro-
gram analyses, which yield an economic subset of call sites.
Thereby, faults that occur while an object is “in use” go
undetected. The research question is whether our approach
keeps the risk of undetected faults at an acceptable level.

In the following sections, we describe our experiences
with applying object-level error recovery to the embedded
Configurable operating system (eCos) [11], written in object-ori-
ented C++. Our software-based approach offers the flexibil-
ity to choose from an extensible toolbox of error-detecting
and error-correcting codes, for example CRC and Hamming
codes.

An inherent problem of software-based fault-tolerance
mechanisms—when applied to an operating system—is to
ensure correctness under concurrent execution. For instance,
the eCos’ scheduler function get_current_thread()
is executed without acquiring a kernel lock, thereby permit-
ting the scheduler data structure to be modified concur-
rently by another thread of control. Verifying the CRC code

1545-5971 © 2015 |IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires |IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 23

for a changing scheduler object certainly fails and must be
handled carefully.

The present paper improves over our previous conference
publication [12] by introducing a wait-free synchronization
algorithm for concurrent memory-error detection and correc-
tion. In the following Sections 2 and 3, we summarize the
generic object protection (GOP) presented in [12]. Extending
that publication, we make three new contributions:

e We present a wait-free synchronization algorithm
that improves the efficiency of software-based mem-
ory-error detection and correction (Section 4). The
performance gain scales with the degree of concur-
rency and reaches an order of magnitude for 64
threads.

e We formally prove the correctness of our synchroni-
zation algorithm (Section 4).

e In the completely revised and extended evaluation,
we demonstrate the effectiveness and efficiency of
the wait-free GOP applied to the eCos kernel test
suite (Section 5). Substantiated by extensive fault-
injection (FI) campaigns, we explore the optimiza-
tion potential opened up by fine-grained configura-
bility and the choice among five different detection
and correction variants. We propose a configuration
heuristic yielding a near-optimal trade-off between
runtime overhead and reliability gains, and provide
measurements on real hardware.

Finally, general limitations of our approach are discussed in
Section 6, followed by a comparison to related work (Section
7), after which the paper concludes (Section 8).

2 PROBLEM ANALYSIS

“... the only DRAM bit errors that cause system crashes
are those that occur within the roughly 1.5% of memory
that is occupied by kernel code pages.” [1]

In general, the operating-system (OS) kernel is the most
important piece of software regarding dependability, as all
other software components depend on the OS. A crash of
the OS terminates all running applications, and recovery by
a system reset leaves persistent data, such as file systems, in
a defective state. Surprisingly, in spite of their impact on
total system resiliency and—compared to the rest of the sys-
tem—their very small memory footprint, state-of-the-art OS
kernels are not equipped with countermeasures against
transient memory errors: An efficient software-based fault-
tolerance technique would offer an enormous potential to
reduce system failures.

Our approach to efficient software-based memory-error
correction is to exploit knowledge on the application’s
behavior and its OS usage profile. Focusing on special-pur-
pose embedded systems, this profile can be assumed to
remain largely unchanged over a system’s lifetime. Our
working hypothesis is that only a small application-dependent
subset of the OS’s state is actually “mission critical”, and
faults in other parts of memory do not affect the system’s
stability. Accordingly, only the critical memory space needs
recovery, calling for a configurable and highly localized
application of error detection (EDM) and error-recovery
mechanisms (ERM).

2.1 Fault Model

To assess the validity of this working hypothesis, we exam-
ine the fault resiliency of eCos by fault-injection. The fault
model for the FI experiments is based on uniformly distrib-
uted single-bit faults in the data memory. A large-scale
study [3] from the year 2013 confirms that this fault model
is valid for contemporary memory technologies.

In particular, we only inject faults into the data and BSS
memory segments. We assume that read-only data and
code (text) is stored in far more reliable (EEP)ROM or Flash.
This assumption is reasonable for low-cost embedded sys-
tems. For systems that load read-only data and code sec-
tions into RAM, we assume that these sections are covered
by other EDM/ERMSs, such as software-implemented peri-
odic error checking [13].

2.2 Baseline Assessment: eCos Fault Susceptibility
We use a set of benchmark and test programs, bundled with
eCos itself, to assess the fault susceptibility of the operating
system. Both the benchmark programs and the eCos kernel
are implemented in object-oriented C++, and compiled for
an 1386 target. We use FaIL* [14], our versatile FI framework
based on the Bochs IA-32 (x86) emulator, to inject uniformly
distributed single-bit faults into the data and BSS memory
segments.

Afterwards, we observe the benchmark behavior and
classify the FI results into benign and failure. We defer a fur-
ther differentiation of failures into Silent Data Corruptions
(SDC), CPU exceptions, and timeouts to Section 5, as such a
differentiation is not necessary for the baseline assessment.

Table 1 aggregates the total failures per program symbol
respectively contiguous memory area, confirming that the
top ten symbols that caused the THREAD] benchmark to fail,
amount to 97.8 percent of all observed abnormal program
terminations. The MUTEX1 results (in the same table) display
a similar address-space clustering, yet with a different dis-
tribution: As MuTex1 exhibits a different OS usage profile, a
different subset of the program state causes the most often
failure.

This baseline assessment reveals that in the chosen set of
benchmarks, the stacks and the global kernel data structures
are the most susceptible.

2.3 Solution Requirements

Our analysis in this section shows that, depending on the
structure of the OS and the way it is used, the memory space
exhibits “neuralgic spots”, i.e., data objects that are much
more critical than the remaining memory regions. By apply-
ing an EDM/ERM to only these critical objects, the system’s
dependability would be improved significantly with only
minimal overhead.

However, the approach poses some software-engineer-
ing challenges: As the set of critical objects depends on the
application scenario, the mechanism has to be implemented
in a generic way so that it can be reused in all possible sce-
narios. Ideally, the solution would be modular and
completely separated from the targeted software compo-
nent. This would allow developers to reuse the generic
EDM/ERM in different operating systems or even on the
application-software level.

24 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1,

JANUARY/FEBRUARY 2017

TABLE 1
Quantitative Fault-Injection Results: Top Ten Fault-Susceptible Symbols (or, Contiguous Memory Areas) for the Unmodified THReAD1
and mutex1 Benchmarks

THREAD1 MUTEX1
Symbol Size #Failures (%) Symbol Size #Failures (%)
thread 264 9.20 x10° (39.5%) stack 7,632 1,687,203 (31.8%)
Cyg_RealTimeClock: : rtc 52 4.29 x10° (18.4 %) thread_obj 416 1,487,037 (28.0%)
stack 5,088 3.31 x10° (14.2 %) cvar2 12 287,551 (5.4 %)
Cyg_Scheduler: :scheduler 132 8.53 x108 (3.7 %) cvarl 8 226,016 (4.6 %)
comm_channels 96 8.53 x10% (3.7 %) mo 20 207,538 (3.9 %)
ptl 4 8.53 x10 (3.7 %) comm_channels 96 195,392 (3.7 %)
Cyg_Interrupt::dsr_list_tail 4 853 x10% (3.7 %) ml 20 184,180 (3.5 %)
hal_interrupt_objects 896 8.53 x10% (3.7 %) cvar0 8 177,824 (3.3%)
hal_interrupt_handlers 896 8.53 x10% (3.7 %) Cyg_Interrupt::dsr_list 4 155,904 (2.9 %)
Cyg_Scheduler_SchedLock: : sched_lock 4 853 x108 (3.7 %) Cyg_Scheduler: :scheduler 132 148,663 (2.8 %)
3 GENERIC OBJECT PROTECTION e ... before a method of a critical object is executed,

“A little redundancy, thoughtfully deployed and
exploited, can yield significant benefits for fault tolerance;
however, excessive or inappropriately applied redundancy
is pointless.” [15]

During the design of the generic EDM/ERM, special care
has to be taken to minimize runtime overhead. Therefore,
our solution follows two main design principles:

1) We exploit application knowledge at compile time
and, thus, minimize the number of runtime checks.

2) We balance the trade-off between the cost of inserted
checks and the gained error-detection rate.

3.1 Exploiting Object-Oriented Program Structure

A running program generates a sequence of read and write
operations on different memory cells. While a write opera-
tion overwrites a preceding transient memory fault, a read
“consumes” preceding faults and makes the program use
wrong data. To avoid this, the write operation can store
redundancy, which can be used to detect and correct bit
flips by the read operation.

To reduce the costs of such an approach, we follow
design principle 2 by identifying groups of subsequent read
and write operations with temporal and spatial locality.
When we find such a group, the check can be performed
only once before the first operation of the group, and the
redundancy for multiple memory cells can be saved once
after the last operation.

This grouping is effective when there are long periods in
which the memory cells are unused between one group and
the next. If a fault occurs at a random point in time, the prob-
ability that it hits such an inter-group time frame is high.
Thus, we can still detect most faults, but have a drastically
reduced overhead.

The key question for the efficient implementation of the
sketched mechanism is how to detect the temporal and
spatial connections of read and write operations at compile
time (design principle 1). Object orientation is the most
natural answer: If the program was designed in an object-
oriented manner, there is an implicit connection between
its data objects (instances of classes) and the program
code that manipulates them (methods of the class). We
can thus approximate a group of related read and write
operations by a method of a class that manipulates an
object. This means that ...

our mechanism checks whether the object suffered
from a memory fault.
e ...after the execution of the method, redundancy for
the object’s state is stored.
Aspect-oriented programming (AOP) [16] is the implemen-
tation technique that we find most suitable for this task.

3.2 Applying Aspect-oriented Programming

The idea behind aspect-oriented programming is to provide
language features that support the modular implementation
of crosscutting concerns, i.e., concerns of the implementation
that affect various different locations of the program in a
systematic way. This is achieved by defining rules such as
the following;:

“In programs P, whenever condition C arises, perform
action A.” [17]

As P, C, and A can be provided by the programmer, AOP
offers a generic mechanism to instrument arbitrary pro-
grams (P) with error detection and correction code (A)
whenever a member function of a critical object is executed
(C). A tool called aspect weaver typically performs a code
transformation at compile time and carries out the
demanded adaptation of the control flow. Aspect-oriented
language extensions are, for instance, available for Java
(Aspect] [18]) and C++ (AspectC++ [19]). The latter is
strongly focused on compile-time code adaptation and pro-
vides a compile-time introspection mechanism, which allows
the programmer to write generic actions that depend on the
target program’s structure.

Fig. 1 shows a simplified version of our generic object-
protection mechanism written in the AspectC++ lan-
guage. The aforementioned rules are defined with the
advice keyword, as in lines 3, 8 and 10. In AspectC++,
rules (advice definitions) that implement a common con-
cern are grouped in an aspect. The definition of our
GenericObjectProtection aspect starts in line 1 with
the keyword aspect. A benefit of aspect-oriented pro-
gramming over other implementation techniques is that
crosscutting concerns can be implemented in a separate
module close to a natural-language description. For
example, the pieces of advice in lines 8 and 10 are almost
a literal translation of the two rules mentioned at the end
of Section 3.1: In line 11, a function check () is called
before any call to a member function of a protected class. In

BORCHERT ET AL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 25

e N

1 | aspect GenericObjectProtection {

2 pointcut protectedClasses() = "Cyg_Scheduler" || "Cyg_Thread"; // list of critical eCos classes

3 advice protectedClasses() : slice class { // generic class extension ("introduction")

4 char replica[JPTL::MemberIterator<JoinPoint, SizeOfNonPublic>::EXEC::SIZE]; // redundancy data

5 void check() { JPTL::MemberIterator<JoinPoint, CheckReplica>::exec(this); } // detect/handle errors

6 void update() { JPTL::MemberIterator<JoinPoint, UpdateReplica>::exec(this); } // recalculate 'replica’

7 +

8 advice call(protectedClasses()) || construction(protectedClasses()) : after() {

9 tjp->target()->update(); } // generic advice

10 advice call(protectedClasses()) : before() {

11 tjp->target()->check(); } };)

Fig. 1. A highly simplified implementation of the generic object-protection mechanism written in AspectC++.

line 9, a function update () is called after a member func-
tion call or the construction of a protected class’ instance.

The built-in pointer tjp (this joinpoint) can be used
by advice code to access context information about the
condition that triggered its execution in a generic way.
tjp->target () yields the target object of the function
call or object construction, respectively. Besides the
target () function, the AspectC++ JoinPoint API provides
much more context information, especially static type infor-
mation such as the type of the calling and the called object
(JoinPoint: :That and JoinPoint: : Target).

Advice definitions are also generic in the sense that
they use the pointcut protectedClasses () to address
the points of adaptation. A pointcut is merely an alias for
a reusable part of a condition. In line 2 it is defined to
match the Cyg_Scheduler class and the Cyg_Thread
class. Alternatively, the wild-card character % can be
used in pointcut expressions to match all classes, or the
pointcut can be generated by an external tool (see
Section 5.3).

In AspectC++ the adaptation mechanism can also insert
structural extensions. The advice in line 3 shows this fea-
ture. Here the protected classes are extended by three new
members: A data member replica, which will store the
object’s data redundantly, and the two member functions
check () and update (). The details of the implementation
can be easily replaced to support different EDM/ERMs,
e.g., using a Hamming code or cyclic redundancy check
(CRC). An essential language feature needed by our EDM/
ERMs is, again, the JoinPoint type. For structural exten-
sions, this built-in type is the interface to the introspection
mechanism of AspectC++, which provides information
about the target type of an extension for the inserted mem-
bers. For example, it describes all data members of the tar-
get class including their type. We can exploit this
information by using it as a parameter for generative C++
template metaprograms, such as the JPTL: :MemberIter-
ator. Thereby, we generate the instructions that copy or
compare each data member’s value to replica. Template
metaprogramming is a powerful, Turing-complete [20] code-
synthesis mechanism at compile time.

3.3 Implementation Challenges

3.3.1 Generic Redundancy

The redundancy for objects is directly inserted into the pro-
tected classes as additional class members (see Fig. 1, line
4). By this means, the redundancy becomes an integral part
of each class instance and the C++ compiler automatically

allocates the needed memory space whenever such an
object is constructed.

The challenge of this approach is that—for an ERM such
as the Hamming code—the amount of redundant bits
depends on the protected data’s size. We cannot use the
built-in sizeof operator of C++ to determine the object
size, because at the point where the redundancy member is
introduced, the class type is incomplete. Then again, the
redundancy member increases the object size.

Thus, we need to calculate the size of all data members
prior to the introduction of redundancy. This is were the
compile-time introspection feature of AspectC++ comes
into play. With the provided information about the individ-
ual data members, a template metaprogram can apply the
sizeof operator independently to each data member. In
Fig. 1, the SizeOfNonPublic metaprogram sums up the
individual sizes and filters out public1 data members, var-
iable-size® data members, and compiler-generated align-
ment padding. The result is a compile-time constant that
defines the size of the introduced replica array.

3.3.2 Static Data Members

In addition to ordinary data members of objects, our
approach also covers static data members of classes.
Therefore, our complete GOP implementation inserts a
static_replica data member accompanied by
static_check() and static_update() functions.
These functions implement the EDM/ERMSs specifically
for static data members, which are distinguishable from
object members by AspectC++’s compile-time introspec-
tion API. Similar to the advice definitions shown in Fig. 1,
additional advice definitions trigger the static_check
and static_update functions before and after all mem-
ber-function calls.

3.3.3 Object Composition

The next challenge is the composition of objects. Let the
class C contain a class-type member C,,;, plus redundancy:
C={Csu,...,R}. Given this definition, the subobject—an

1. We exclude public data members, because they are accessible
from anywhere outside of member functions. The object-oriented para-
digm discourages developers to use this feature in order to restrict
access and prevent unwanted modifications by other software
components.

2. The C++ language supports variable-size data members for com-
patibility with legacy C code. Such data members are uncommon in C+
+ code because they break class inheritance due to unknown object size
at compile time.

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1,

instance of Cs,,—would be protected twice, both by R and
its own redundancy R,,;. It is sufficient to cover subobjects
only once, so that we decided to exclude class-type mem-
bers from the GOP. We implemented the exclusion of sub-
objects by C++ type traits [21], which is a template-based
technique that allows to make decisions based on types, for
instance by testing whether a data member is of class type
(subobject), a pointer, an integer, and so on. Additionally,
this technique offers a way to tailor GOP to cover only par-
ticular data members, for instance just pointers. We have
not further investigated this opportunity, yet.

3.3.4 Static Call-Site Analysis

Before a member function is executed, the GOP triggers
error detection, and after return from that function, the
redundancy is updated. Technically, this could be done by
the caller or the callee. However, the former approach offers
optimization opportunities: Consider two member func-
tions f; and f> of the same data structure and the following
call sequence: main() — obj.f1() — obj.f2(). In this case, a
check before f, would immediately follow the check before
fi. Checks on such call sites can be skipped, but only if the
caller and callee refer to the same object. The AspectC++
JoinPoint API (see Section 3.2) again provides the neces-
sary information for optimization, namely the class type of
the caller (JoinPoint::That) and the callee (Join-
Point::Target). These class types can be tested on
equality by C++ type traits at compile time. Only if both
types are identical, the actual pointers to the caller/callee
objects, obtained by t jp->that () and tjp->target ()
respectively, need to be compared. Optimizing compilers,
such as GCC, resolve the pointer comparison at compile
time when a data flow from the caller to the callee is dis-
covered, for example, on a function invocation with C++’s
this pointer (implicitly or explicitly). The GCC provides
a programming interface to its data-flow analysis by the
intrinsic __builtin_constant_p (exp), which evalu-
ates whether the expression exp (i.e., the pointer compari-
son) is a compile-time constant. Only if the static data-flow
analysis succeeds, the particular check/update operations
are optimized out.

The call-site approach further enables the minimization of
the time window between checks and redundancy updates,
because outgoing function calls that leave a protected data
structure can be handled additionally. As an example, con-
sider a member function f that calls the C-library function
printf (). Then, inside f, the call to printf () can be
enclosed by inverted EDM/ERM-actions: fudate() —
print f() = fereer()- Thus, during the execution of printf (),
the data structure of f is safe. These additional checks/
updates greatly improve error detection and correction capa-
bilities, especially for calls that block the running process.

3.3.5 Inheritance and Polymorphism

In object orientation, inheritance allows a derived class to
access data members of its base classes. Thus, when a
derived class is used, all its base classes have to be verified.
This is the case for the aforementioned classes Cyg_Sched-
uler and Cyg_Thread of eCos, which inherit from four
base classes each.

JANUARY/FEBRUARY 2017

The information about base classes is provided by the
compile-time introspection mechanism of AspectC++:
JoinPoint: :BaseClass<I> identifies the /" base class.
By this means, a generative C++ template metaprogram can
recursively iterate over all base classes and invoke check/
update actions on each of them.

The second challenge concerns polymorphism by virtual
functions, which are dispatched at runtime to the actual
function’s implementation, depending on the callee object’s
type. Hence, it is impossible to determine the type of a poly-
morphic object at compile time.

Polymorphism conflicts with our static call-site analysis
approach. We decided to complement the static analysis by
a dynamic dispatch of check/update actions. For classes
with inheritance, the functions that check/update the
redundancy are also declared as virtual, so that their invoca-
tion is dispatched to the most derived class. After that, the
base classes are processed as described above.

In summary, data structures that are built from several
base classes are treated holistically by the base-class itera-
tion plus dynamic dispatch to allow for polymorphism.

4 CONCURRENT ERROR DETECTION

“... critical sections are poorly suited for asynchronous,
fault-tolerant systems: if a faulty process is halted or
delayed in a critical section, nonfaulty processes will also
be unable to progress.” [22]

Operating-system developers try to minimize critical sec-
tions, that is, pieces of code that are only executed by one
process at a time, in favor of scalable lock-free synchroniza-
tion schemes. For instance, the eCos’ scheduler function
get_current_thread () is executed without acquiring a
kernel lock, thereby permitting the scheduler data structure
to be modified concurrently by another thread of control.
Such nonblocking synchronization improves the scalability
on multiprocessor systems.

However, the concurrent modification of shared kernel
objects complicates our GOP. The two basic operations
check () and update(), which examine an object for
memory errors and store its redundancy as described in the
previous sections, can be disturbed by concurrent execution
in subtle ways. For example, verifying a checksum for a
shared object, which is concurrently being modified,
certainly fails. Additional critical sections, guarding the
check () and update () operations, would enforce correct
execution at the expense of the undesired properties of
locking, such as convoying and priority inversion (see, for
example, [23]). To avoid these drawbacks, we developed a
wait-free synchronization algorithm for GOP that provably
retains any lock-free kernel execution.

4.1 Wait-free Synchronization

“A method is wait-free if it guarantees that every call finishes
its execution in a finite number of steps.” [23] This means,
that a wait-free algorithm is necessarily lock-free’, ruling
out the use of critical sections that delay other threads of

3. The lock-free condition only guarantees system-wide progress, and
allows for individual threads to starve [23].

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 27

control. We can exploit a particular insight to address wait-
freedom for GOP: If an object is—at some point in time—
being modified by another thread, we can skip any further
check () and update () operations on that object at the
same time. The thread that entered the object first has already
verified the object. The other way around, the thread that
leaves an object last is committed to properly update the
object’s redundancy. Thus, a consensus on “which thread was
first?”(or last, respectively) has to be found at runtime.

To identify whether an object is being used, we introduce
a per-object thread counter into each shared class instance.
This counter is atomically* incremented when a thread calls
a member function, and decremented on function return.
Hence, a zero counter indicates an unused object that needs
verification before usage. Likewise, a counter value of one
causes an update of the object’s redundancy before return-
ing from the current member function.

However, a running check () or update () operation
can be preempted, and other threads could modify the
object concurrently. To track such race conditions, we addi-
tionally introduce a dirty flag into each shared object. Each
thread marks its presence by writing a thread-unique” value
into the dirty flag. A preempted thread checks for a “lost”
race condition by examining whether the dirty flag has been
overwritten. If so, the preempted thread invalidates its
checksum computation and continues without retry.

In the following, we specify the sketched algorithm more
precisely by a formal model that allows us to prove its
correctness.

4.2 Formal Model and Verification

We describe the wait-free synchronization algorithm for our
generic object protection in Promela [24], a specification lan-
guage targeted to abstract models of concurrent programs.
This allows us to focus on the interaction and synchroniza-
tion of concurrent threads, and further enables a tool-based
verification of correctness properties.

Promela permits a limited set of language features in a C-
like syntax. Fig. 2 shows the complete abstract model of the
wait-free algorithm. Line 1 defines the thread-unique values
(1...N) by using the predefined variable _pid that identi-
fies each Promela process, starting with zero. Lines 3-7
describe the data structure used in our model. An instance
of CriticalcClass, the global shared object defined in
line 8, consists of two ordinary member variables, a check-
sum, and three synchronization variables: A dirty flag and
thread counter as described in Section 4.1, and a version
tag. The checksum exemplifies the redundancy introduced
by the GOP, and the synchronization variables are also
introduced by an aspect. Lines 10-12 define a macro® for the
checksum computation. Likewise, the semantic of an atomic
compare-and-swap instruction is defined in the lines 14-18:
Only if the memory location (first argument) contains the
value oldval, then newval is written to that memory

4. Every multiprocessor architecture we know supports atomic read-
modify-write instructions, such as compare-and-swap.

5. For example, the address of a thread’s current stack frame suffi-
ciently identifies a thread.

6. Promela does not support callable functions; reusable code frag-
ments must be specified as inline macros.

(" N
#define thread_ID() (_pid+l) /* thread-unique value {1...N} =/

1
2
3| typedef CriticalClass {

4 int memberl = 5, member2 = 2; /* ordinary members x*/

5 int checksum = 7; /* introduced by the aspect */

6 int dirty = 0, counter = 0, version = 0 /* wait-free sync */
7|}

8| CriticalClass object; /* global shared object */

9

10| inline compute_checksum(obj, chksum) {
1 chksum = obj.memberl; /* non-atomic computation x*/
12 chksum = chksum + obj.member2 }

14| inline compare_and_swap(location, oldval, newval) {
15 d_step { /* one single indivisible statement */

16 if
17 :: (location == oldval) -> location = newval
18 ;1 else fi } }

20| inline enter(obj) {

21 if

2 :: (obj.counter == 0) -> /x object not in use %/

23 int version = obj.version; /* remember version */

24 int checksum_tmp;

25 compute_checksum(obj, checksum_tmp)

26 if

27 11 (checksum_tmp != obj.checksum) -> /* bit error */

28 if

29 11 (obj.dirty == 0) -> /* check for race condition */
30 assert(version != obj.version) /* false positive */
31 11 else fi

32 1 else fi

33 i else fi;

34 obj.counter = obj.counter + 1; /* atomic */
35 obj.dirty = thread_ID() }

37| inline leave(obj) {

38 obj.dirty = thread_ID();

39 /* hardware memory barrier (MFENCE) needed for TSO */
40 if

41 :: (obj.counter == 1) -> /* the last thread leaving */

42 compute_checksum(obj, obj.checksum) /* update checksum x/
13 obj.version = obj.version + 1;

44 compare_and_swap(obj.dirty, thread_ID(), 0) /* atomic */
45 : else fi;

16 obj.counter = obj.counter - 1 /* atomic */ '}

'
3

active[4] proctype threads() { /* start 4 threads */

49 enter(object);

50 object.memberl = object.memberl + thread_ID()*3; /* modify */
51 object.member2 = object.member2 - thread_ID(); VE T */
52 leave(object) }

54| /* global invariant specified in linear temporal logic */
55/ 1tl { always ((object.dirty != 0) ||
56\» (object.checksum == object.memberl + object.member2)) }/

Fig. 2. Executable abstract model of the wait-free synchronization algo-
rithm, specified in Promela. Correctness properties are printed on
highlighted background.

location. In Promela, an arrow (->) denotes the then condi-
tion of a preceding 1if statement. The value comparison and
potential exchange are implemented indivisibly.

The wait-free synchronization algorithm is split into
two procedures, which are carried out before an object is
used (enter) and after object usage (leave). The enter
procedure works as follows: First, we check whether the
object is already being used by testing the thread
counter. Only if unused, we proceed with lines 23-32,
which copy the object’s version tag to a local memory
location (line 23), and compute the object’s checksum
(lines 24-25). If the checksum mismatches, we first check
for a “lost” race condition to avoid false positives, indi-
cated by a nonzero dirty flag (line 29) or by a differing
version tag (line 30). Otherwise, there would be a

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1,

hardware memory error, which is not part of the abstract
model. Finally, as we either have successfully verified
the object or skipped the verification due to concurrent
modification, we increment the object’s thread counter
atomically and store the thread-unique value in the
dirty flag (lines 34-35). From that point in time, the
object is marked as “in use”, and further checksum verifi-
cations are skipped. Since the counter and dirty vari-
ables are not written before the checksum verification step
has been completed, concurrent attempts to verify the
checksum proceed until the fastest thread has succeeded.
This procedure guarantees that there is always one
thread that does not skip the verification.

After object usage, the leave procedure is executed,
which overwrites the object’s dirty flag at first (Iine 38). If
the current thread is the only thread using the object, indi-
cated by a counter of one, the object’s checksum gets
updated (line 42). Further on, the version tag is incre-
mented, and we try to reset the dirty flag to zero by the
atomic compare_and_swap instruction (line 44). This suc-
ceeds only if the dirty flag still contains our thread-unique
value stored in line 38, meaning that there had not been any
concurrent modification of that particular object. Otherwise,
the compare_and_swap fails and the dirty flag remains
nonzero, because the object is used concurrently by another
thread. Finally, the thread counter is atomically decre-
mented (line 46).

The role of the version tag becomes evident once the
dirty flag is reset to zero (line 44). Consider a thread
that is preempted while verifying the object’s checksum
(line 25). In the meantime, other threads could update
the object and reset the dirty flag. When the suspended
thread is resumed, the pending checksum verification
certainly fails, as old data, originating from before the
preemption, goes into the checksum computation of the
updated object. This is an instance of the “ABA” problem
[23], which occurs when a shared variable switches
unnoticedly from state “A” to state “B”, and back to “A”
again. In our case, “A” denotes an “unused object” and
“B” means the opposite. The common solution is a ver-
sion tag, incremented on each state transition. A suffi-
ciently large integer variable will not wrap around
during the time a thread is preempted.”

The remaining lines 48-56 of Fig. 2 are needed for for-
mal verification with the SPIN [24] model checker. Four
threads are started (lines 48-52) that concurrently invoke
the enter procedure, modify the shared object, invoke
the leave procedure, and exit afterwards. SPIN evalu-
ates all possible execution sequences, which potentially
interleave, of these four threads. Note that the case of
multiple invocations of the procedures per thread is cov-
ered by a specific, non-interleaving execution of different
threads. The primary verification property is specified in
linear temporal logic (1tl), claiming that—always—the
object’s checksum is valid or the dirty flag is nonzero.
Line 30 ensures that there are no false positives caused by
race conditions.

7. Even if the same object was modified a billion times a second, a
64-bit version tag would overflow after 585 years.

JANUARY/FEBRUARY 2017

4.3 Correctness Proof

A limitation of model checking is that only finite models can
be verified, as the model checker exhaustively analyzes the
model’s state space. Therefore, we give a proof by complete
induction that holds for any number of threads. The induc-
tion basis is already proven by model checking for one to
four threads. For simplicity, we assume the thread-unique
IDs to be defined as {1,...,N} for N threads and an
unbounded version tag. In the following inductive step,
N+1 concurrent threads execute the enter and leave pro-
cedures as in Fig. 2.

Theorem 1. If a thread with ID X is verifying the checksum, then
every checksum mismatch caused by a race condition (false pos-
itive) is detected by the assert statement in line 30.

Proof. Assume not. A race condition is not detected by the
assert statement only in the following state:

dirty =0 and wversion = versiony

with versionx being the value of obj .version at the
time when thread X reads it for the first time (line 23).
For N+1 threads that run to completion, the value of
versiony cannot exceed N, because thread X has not fin-
ished, yet. We differentiate between two cases:

1) versiony € {1,...,N} = At least one thread has
already incremented the version variable before thread
X reads it for the first time. Such threads cannot modify
the object’s data members and checksum anymore, so
that at most N out of N+1 threads can contribute to a
race condition. Applying the induction hypothesis, we
know that every race condition is detected for up to N
threads.

2) versiony = 0 = The initial value of the version
variable indicates that no thread has updated the object’s
checksum, yet. Before the object could be modified by
another thread, the dirty flag has to be overwritten
(line 35), yielding a nonzero value. The only way to reset
the dirty variable to zero is a prior increment of the
version variable (lines 43—44). Hence, a modifying race
condition causes a nonzero dirty flag or nonzero ver-
sion variable, contradicting the proof assumption. 0

Theorem 2. If a thread with ID X updates the object’s checksum
and resets the dirty variable to zero (lines 42—44), then the
checksum is valid. (This is equivalent to the Itl claim).

Proof. The dirty variable can only be reset if the condition
obj.dirty=X holds when thread X executes line 44
(compare_and_swap). Additionally, line 44 is only
reached if thread X had exclusive access to the object
at a previous point in time (when evaluating line 41).
In between, any other thread that modifies the
object overwrites the dirty variable with its own
thread ID unequal to X (line 35). Thus, when the
compare_and_swap succeeds, thread X had exclusive
access to the object while computing the checksum (line
42). Hence, the checksum is valid. O

4.4 Relaxed Memory Consistency
We have implicitly assumed sequential-consistent shared
memory in Section 4.2 to verify the formal model.

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 29

Sequential consistency requires that all shared memory
accesses of one processor are instantly visible to the other
processors, and that such memory accesses are ordered
with respect to the executed programs (refer to [25] for a
detailed explanation). However, most contemporary multi-
processors implement relaxed memory-consistency guaran-
tees for performance optimizations [25]. This allows for a
reordering of memory accesses by the hardware. For
instance, a store operation could be delayed to hide memory
latency. Unfortunately, such a reordering breaks our wait-
free synchronization algorithm. Consider swapping lines 34
and 35 in Fig. 2—the correctness properties would be vio-
lated. Thus, every access to the synchronization variables
(dirty, counter, and version) must appear strictly in
the specified order.

The predominant memory-consistency relaxation, imple-
mented by the x86 and SPARC architectures, is Total Store
Ordering (TSO) [26]. The only reorderings allowed in TSO
concern store instructions, which can be delayed after a sub-
sequent load instruction, given that the load instruction
accesses a different memory location. Other instruction
pairs, such as two store operations, are never reordered.
TSO is attributed to per-processor store buffers, which cache
recent memory writes until they are committed to memory.
The store buffer is flushed implicitly by an atomic CPU
instruction or explicitly by an MFENCE instruction on x86,
enforcing all pending memory operations to complete. Con-
sidering the formal model in Fig. 2, there is only one store/
load instruction pair that accesses the synchronization vari-
ables (lines 38/41). This instruction pair must be explicitly
serialized by an MFENCE CPU instruction for TSO architec-
tures (line 39).

Another source of memory-access reordering is an opti-
mizing compiler. Therefore, additional compiler memory
barriers® are required around every access to the synchroni-
zation variables to locally prevent instruction reordering at
compile time. Furthermore, this disables the caching of val-
ues in CPU registers, which would otherwise have an effect
similar to the aforementioned store buffers.

4.5 Fault-Tolerant Synchronization

Recalling the initial motivation for the wait-free synchroni-
zation algorithm to enable concurrent detection of memory
errors, the algorithm itself needs to be resilient against
memory errors as well. If memory errors corrupt the three
synchronization variables dirty, counter, and version
(see Section 4.2), the running program must not fail. The
two variables dirty and version get overwritten regu-
larly and are solely used to skip or invalidate the check ()
and update () operations of the protected object. Bit errors
affecting dirty and version are harmless and can be
safely ignored.

On the other hand, a corrupted value in the counter
variable could cause an undesired update () operation
while the object is being used by another thread. Further-
more, as the counter is only incremented and decre-
mented, bit errors are never overwritten. Therefore, we use

8. For example, the GCC implements a compiler memory barrier by
an inline assembler statement: asmvolatile (””::: ”"memory”) ;

4et+11
3.5e+111
3e+11}
2.5e+111
2e+111
1.5e+11
1e+11t
5e+10+ .

0% 15 22 29 36 43 50 57 64

Number of threads

Baseline
--- Wait-free
Spinlock

Runtime [CPU clock cycles]

Fig. 3. Slowdown caused by synchronization: The spinlock becomes a
bottleneck (less runtime is better).

arithmetic error coding [27], or rather AN codes, to protect the
counter variable. Instead of incrementing the counter by
1, we add a large9 odd constant value A. Thus, a valid
counter always contains a multiple of A. Since bit errors
will likely turn that value into a non-multiple of A, most
errors can be detected, e.g., all single-bit flips [27]. Likewise,
decrementing the counter variable is implemented by sub-
tracting A.

To reduce the complexity of the abstract model in Fig. 2,
only error detection is addressed. If we additionally apply
error-recovery mechanisms to repair bit errors in the
affected objects, it becomes evident that a short critical sec-
tion, guarding the recovery instructions, is unavoidable: If
an object is going to be repaired, it must not be modified
concurrently by other threads. Hence, for error recovery,
the synchronization algorithm remains wait-free with the
exception that only in the event of a hardware error, a lock
is used until the error is resolved. The recovery lock cannot
introduce a deadlock, since the second Coffman condition
(hold and “wait for” resources) [29] is not satisfied: The
recovery instructions do not need to wait for additional
resources but run to completion.

4.6 Scalability to Many Cores

In this section, we evaluate how the wait-free synchroniza-
tion algorithm performs compared to a locking-based
approach that we presented in our previous conference
paper [12]. The locking-based solution uses a per-object
spinlock'’ during the check () and update () operations.
We implemented a micro benchmark by one shared object
containing an array of 16 integers (64 bytes). A thread first
computes the sum of the integer array, and then stores that
sum to each array element. This procedure is repeated one
million times per thread. We applied GOP, introducing a
CRC-32 code into the shared object (see Section 5 for
details). The micro benchmark was run on a 32-core Intel
Xeon E5-4650 system, supporting 64 hardware threads by
hyper-threading.

Fig. 3 shows the slowdown caused by the synchroniza-
tion schemes for 1-64 threads, concurrently operating on
the shared object. The Baseline curve denotes the runtime
without any error detection, increasing slowly with the num-
ber of threads due to memory contention. The Wait-free
curve shows a similar pattern despite the overhead caused

9. In this study, we chose A to be 127, as suggested by [28].
10. We use boost: :detail: :spinlock (BOOST_SP_HAS_SYNC
variant) from the Boost C++ libraries to avoid further bus contention by
giving up a thread’s remaining time slice if acquiring fails too often.

30 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1, JANUARY/FEBRUARY 2017
TABLE 2
EDM/ERM Variants, and Their Effective Line Counts as Determined by the cloc Utility
Aspect/Module Description LOC
CRC A CRC-32 implementation leveraging Intel’s SSE4.2 instructions (EDM). 163
TMR Triple-modular redundancy, using two copies of each data member and majority voting (EDM/ERM). 124
CRC+DMR CRC (EDM, see above), plus one copy of each data member for additional error correction (ERM). 210
SUM+DMR A 32-bit two’s complement addition checksum (EDM), plus one copy of each data member (ERM). 198
Hamming Software-implemented Hamming code (EDM/ERM), processing 32 bits in parallel. 355
Framework Generic object-protection infrastructure, the basis for all concrete EDM/ERM implementations. 2,371

by frequent CRC computations. In contrast, the Spinlock var-
iant slows down dramatically as the concurrent threads
exceed a number of 16. For 64 threads, the runtime differs
by almost an order of magnitude between the wait-free and
spinlock variants. Even for a single thread, the wait-free
implementation is slightly faster. This benchmark quantifies
the advantage of the wait-free synchronization algorithm,
which scales much better as the number of threads increase.
This feature could be essential for future many-core sys-
tems, with possibly hundreds of processors.

5 IMPLEMENTATION AND EVALUATION

In the following, we describe the implementation of five con-
crete EDMs/ERMs based on the generic object-protection
mechanism. Subsequently, we demonstrate their configura-
bility on a set of benchmark programs bundled with eCos.
We show that the mechanisms can easily be adapted to pro-
tect a specific subset of the eCos kernel data structures, e.g.,
only the most critical ones determined in a baseline assess-
ment (cf. Section 2). We present fault-injection experiment
results that compare the effectivity of different configurations
of a single EDM, followed by a comparison of all five EDMs/
ERMSs. Additionally, we measure their static and dynamic
overhead, and draw conclusions on the overall methodology.

5.1 EDM/ERM Variants

We implemented five EDMs and ERMs listed in Table 2 to
exemplarily evaluate the generic object-protection mecha-
nism. Especially the Hamming-code implementation has
been significantly enhanced since our previous publication
[12]: A template metaprogram generates an optimal Ham-
ming code tailored for each data structure. Moreover, we
applied the bit-slicing technique [13] to process 32 bits in
parallel. Thereby, the Hamming-code implementation can

correct multi-bit errors, in particular, all burst errors up to
the length of a machine word (32 bit in our case). Besides
burst errors, the CRC variants (see Table 2) cover all possi-
ble 2-bit and 3-bit errors in objects smaller than 256 MiB by
the CRC-32/4 code [30].

All implementations use the wait-free synchronization
algorithm from Section 4. Additionally, we integrated a
check of virtual-function table pointers into the GOP, simi-
lar to [31]. Each EDM/ERM variant is implemented as a
generic module and can be configured to protect any subset
of the existing C++ classes of the target system.

In the following subsections, we refer to the acronyms
introduced in Table 2, and term the unprotected version of
each benchmark the “Baseline”.

5.2 Evaluation Setup

We evaluate the five EDM/ERM variants on eCos 3.0 with a
subset of the benchmark and test programs that are bundled
with eCos itself, namely those 19 implemented in C++ and
using threads (omitting cLock1 and cLockTrRUTH due to their
extremely long runtime). Table 3 briefly describes each
benchmark and records its number of dynamic system calls.
Because eCos currently does not support x64, all binaries
are compiled for i386 with the GNU C++ compiler (GCC
Debian 4.7.2-5); eCos is set up with its default configuration,
including GCC optimization level -O2, and GRUB startup.
Furthermore, we disable both serial and VGA output, as the
benchmarks report on success or failure before finishing,
and such time-consuming output would completely mask
out any EDM/ERM runtime overhead.

Again, we use the uniformly distributed transient single-
bit fault model in data memory (see Section 2.1), i.e., we
consider all program runs in which one bit in the data/BSS
segments flips at some point in time.

TABLE 3

eCos Kernel Test Benchmarks
Benchmark Description / Testing domain Syscalls Benchmark Description / Testing domain Syscalls
BIN_SEM1 Binary semaphore functionality(2 threads) 28 MUTEX2 Mutex release functionality (4 threads) 46
BIN_SEM2 Dining philosophers (15 threads) 659 MUTEX3 Mutex priority inheritance (7 threads) ~ 55,308,146
BIN_SEM3 Binary semaphore timeout(2 threads) 28 RELEASE Thread release() (2 threads) 117
CNT_SeEM1 Counting semaphore functionality (2 thr.) 35 SCHED1 Basic scheduler functions (2 threads) 18
EXCEPT1 Exception functionality(1 thread) 52 SYNC2 Different locking mechanisms (4 thr.) 2,425
FLAG1 Flag functionality (3 threads) 78 SYNC3 Priorities and priority inheritance (3 thr.) 39
KILL Thread kill() and reinitalize() (3 threads) 23 THREADO Thread constructors/destructors (1 thr.) 4
MBOX1 Message box functionality(2 threads) 94 THREAD]1 Basic thread functions (2 threads) 17
MQUEUE] Message queues (2 threads) 73 THREAD2 Scheduler and thread priorities (3 thr.) 41
MUTEX1 Basic mutex functionality (3 threads) 40

The number of dynamic system calls (Syscalls) is shown in the last column.

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 31

Bochs, the IA-32 (x86) emulator back end that our FarL*
fault-injection framework [14] currently provides, is config-
ured to simulate a modern 2.666 GHz x86 CPU. It simulates
the CPU on a behavior level with a simplistic timing model of
one instruction per cycle (with the exception of the HLT
instruction, which spans multiple cycles until the next inter-
rupt). Moreover, Bochs does not simulate a CPU cache. There-
fore the results obtained from injecting memory errors in this
simulator are pessimistic: We expect that a contemporary
cache hierarchy would mask some main-memory bit flips, for
example, when a cache line is written back to main memory.

5.3 Optimizing the Generic Object Protection

As described in Section 3.2, the generic object-protection
mechanisms from Table 2 can be configured by specifying
the classes to be protected in a pointcut expression. Either a
wild-card expression selects all classes automatically, or the
pointcut expression lists a subset of classes by name. In the
following, we explore the trade-off between the subset of
selected classes and the runtime overhead caused by the
EDM/ERMs.

We cannot evaluate all possible configurations, since
there are exponentially many subsets of eCos-kernel clas-
ses (the power set). Instead of that, we compile each
benchmark in all configurations that select only a single
eCos-kernel class for hardening. For these sets that contain
exactly one class each, we measure their simulated run-
time, and subsequently order the classes from the least to
most runtime overhead individually for each benchmark.
This order allows us to cumulatively select these classes in
the next step: We compile each benchmark again with
increasingly more classes being protected (from one to all
classes, ordered by runtime). Fig. 4 shows the cumulative
runtime of the respective selections for the CRC variant.
Note that the maximum number of selected classes varies
with each benchmark, as we only include classes that are
used at all. The benchmarks can be divided into two cate-
gories, based on their absolute runtime:

1) Long runtime (more than 10 million cycles). For any
subset of selected classes, the runtime overhead stays
negligible (e.g., BIN_sEm2). The reason is that the long-
running benchmarks spend a significant amount of
time in calculations on the application level or con-
tain idle phases.

2) Short runtime (less than 10 million cycles). The EDM/
ERM runtime overhead notably increases with each
additional class included in the selections (e.g., BIN_-
seM1 benchmark). These benchmarks mainly execute
kernel code.

Fig. 4b shows the results of an extensive FI campaign with
FaiL* (totaling 87 million FI experiments) for the same bench-
mark variants. The absolute count of failed benchmark runs
is broken down into Silent Data Corruptions, timeouts (the
benchmark does not terminate after FI), and CPU exceptions.
The FI results indicate that we can again apply the runtime
classification obtained from Fig. 4a to find an optimal trade-
off between runtime overhead and fault tolerance:

e All long-running benchmarks become more resilient
(lower failure counts) with each additional selected

class, such as the BIN_sem2or THREAD] benchmarks.
For those benchmarks, every subset of selected clas-
ses results in less than 1 percent runtime overhead.
Thus, it seems wise to protect all kernel classes to
achieve an optimal resilience level.
e On the other hand, the short-running benchmarks
benefit from the GOP only if the runtime overhead
of the class selection stays below 1 percent (e.g.,
ExcepTl in Figs. 4a and 4b; selection of four classes).
When the runtime overhead exceeds 1 percent, the
additional exposure of unprotected data to faults
due to runtime outweighs all gains of the EDM/
ERM. For some benchmarks (e.g., BIN_sEM1), there
are no classes that can be protected with less than
1 percent overhead. Those benchmarks are most
resilient without GOP (see Section 5.6 for a further
discussion).
It turns out that for our set of benchmarks, the following
heuristic yields a good trade-off between runtime and fault
tolerance: We only select a particular class if its protection incurs
less than 1 percent runtime overhead. Using this rule of thumb
can massively reduce the efforts spent on choosing a good
configuration, as the runtime overhead is easily measurable
without running any costly FI experiments.

5.4 Protection Effectiveness & Variant Comparison
With the optimized configurations for the CRC variant from
the previous section (1 percent overhead limit), we evaluate
the other EDM/ERM mechanisms described in Table 2.
Fig. 5 shows the FI results (additional 46 million FI experi-
ments) that compare the different mechanisms among each
other. The results indicate that the five EDM/ERMs mecha-
nisms are similarly effective in reducing failure counts, and
reduce the failure probability by up to 79 percent (MBox1
and THREAD], protected with CRC) compared to the baseline.
The benchmarks with little improvement in the optimal case
in Fig. 4b (using CRC) do not significantly improve with the
other ERMs, either. The total number of system failures—
compared to the baseline without GOP—is reduced by
69.14 percent (CRC error detection), and, for example, by
68.75 percent (CRC+DMR error correction).

For the FI experiments without sampling (all benchmarks
except for BIN_sEmM2, FLAG], KILL and syNC2), even 74.11 percent
of the baseline’s failures are prevented by the Hamming
variant. Only 1.54 percent of the failures are not covered by
the GOP and still originate from protected kernel data struc-
tures, whereas most remaining failures (24.35 percent) stem
from unprotected data, such as the stacks of the application
and the kernel.

5.5 Efficiency: Static and Runtime Overhead
Although the previous sections illustrated that our protec-
tion mechanisms increase the system resiliency in many
cases, they come at different static and dynamic costs.

Fig. 6 shows the static binary sizes of the benchmark var-
iants analyzed in the previous section. The DATA sections
of all baseline binaries are negligibly tiny (around 450 bytes)
and increase by 5 percent (MQuEUE], all EDM/ERM variants)
up to 79 percent (kiLL and THREAD2, TMR). The BSS is signifi-
cantly larger (in the tens of kilobytes), and varies more

32

75000

50000

25000

2.0e+08
1.5e+08
1.0e+08
5.0e+07

0.0e+00

Runtime [simulator clock cycles]

25000
20000
15000
10000

5000

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,

bin_sem1 bin_sem2
6e+08 =
2e+08
4e+08 =
26408 = 1e+08
0e+00 = y 0e+OO
2 4 6 8 1012
mbox1
2e+08 = 2e+05
1e+08 = 1e+05
0e+00 =
| | | | |
0 5 10 15 2 4 6 8 10
sched1 sync2
9e+06 =
1e+05
6e+06 =
5e+04
II 3e+06 = I
---.. —_ Oe+oo—T--|'T'l|I! W 06400
6 8 02 46 81012

bin_sem3
1e+05
5e+04
y 0e+00
2 4 6 8 10
mqueuel
200000
150000
100000
III I 50000
[|
02 4 6 8 1012
sync3
15000
10000
II 5000
----II.I
[I D I B |

02 46 810

cnt_semi
30000
20000
II 10000
----..I 0
[I A B B |
0 2 4 6 8
mutex1
250000
200000
150000
100000
II 50000
_---I.I
02 4 6 810
thread0
2e+07
I 16407
... 0e+00

Protected classes

VOL. 14, NO. 1,

excepti

0 2 4 6 8

mutex2

O 2 4 6 8 1012
thread1

LI B B |
0 2 4 6

JANUARY/FEBRUARY 2017
flag1
4e+08 =
2e+08 =
0e+00 = y
2 4 6 8 TO
release
5e+05 =
4e+05 =
3e+05 =
2e+05 =
1e+05 =
| 08+00 === -l
| I I R I B |
02 4 6 810

(a) The CRC runtime overhead (in CPU cycles) monotonically increases with the number of selected classes, but only amounts to a negligible
increase for the long-running benchmarks (e.g., BIN_SEM2).

2.5e+07
2.0e+07
1.5e+07
1.0e+07
5.0e+06
0.0e+00

2e+11

1e+11

0e+00

Fault-injection result-type count

bin_sem1

5 10
sched1

15

4e+11

3e+11

2e+11

1e+11

0e+00

8e+09

6e+09

4e+09

2e+09

bin_sem2 bin_sem3 cnt_sem1
4e+07 = 4e+06
de+11 I
7 -
II 3e+11 I des0 3e+06
- II 2e+11 I 2e+07 = I 2e+06
Illll! II- 1e+07 = i
Te+11 - e+0 B 1e+06
-
——
0e+00 0e+00 = 0e+00
[I I I B | [I I B | I I I
0246 81012 02 46 810 0 2 4 6 8
mbox1 maqueuel mutex1
2.0e+08 I 1.2e+08
7.5e+07 =
1.5e+08
I 8.0e+07
5.0e+07 =
III 1.0e+08 I
- 4.0e+07 =
I..._ 5.06+07 = mammmEE 2.5e+07 .I
-t
pa—
0.0e+00 0.0e+00 = 0.0e+00
[I I I | [I I I I B | [I B B B |
02 46 810 0246 81012 02 46 810
sync2 sync3 thread0
3e+06 =
I 4e+07 I 2.0e+10
3e+07 26406 = I 1.5e+10
2e+07 || 1.0e+10
of . N 16406 — I
e+ 5.0e+09
___--... _------ - |
0e+00 = 0e+00 = 0.0e+00
I I I [I I | 1 [|
0246 81012 02 46 810 0 2 4 6

Protected classes

exceptl

I I I |
4 6 8 1012

thread1

1
02

flag1
7.5e+11 —I
508411 = II i
2.5e+11 = Illl._
0.0e+00 =
[I I B |
02 46 810
release
1e+08 = I
5e+07 = I
=0l
0e+00 = mremmmm=
[I I B |
02 46 810

Experiment result

B soc
B Timeout

CPU Exception

(b) Fault-injection results presented as failure counts: The short-running benchmarks (e.g., EXCEPT1) exhibit an optimal fault tolerance with a
small or even empty subset of selected classes. However, the long-running benchmarks (e.g., BIN_SEM2) get more resilient with each additional
class. Results for BIN_SEM2, FLAG1, KILL and SYNC2 are sampling estimates with a maximum relative standard error of 3.55 %.

Fig. 4. Runtime overhead and effectiveness for the CRC mechanism applied to different subsets of increasingly more eCos-kernel classes (actual
names omitted). The baseline corresponds to zero selected classes. Due to their long runtime, we only measured three configurations for kiLL, and
omitted the mutex3 and THReAD2 benchmarks.

between the different benchmarks. It grows more moder-
ately by below 1 percent (MQUEUE1, MUTEX2, RELEASE, SCHED],
THREADO, all EDM/ERM variants) up to 15 percent (BIN_sem2
and MBox1, TMR). In contrast, the code size (TEXT) is even

larger in the baseline (23-145 kiB), and the increases vary
extremely between the different variants:
increases the code by an average of 114 percent, CRC+DMR
on average adds 204 percent, SUM+DMR 197 percent,

While CRC

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES

33

bin_sem2 bin_sem3 except1 flag1 kill mbox1 mqueuel
-
deri2 — de+tl = 2000000 — de4t1 = e | || |
7.5e+11 =
3e+12 — 3e+11 = 1500000 = 2e+11 = 3e+11 — 36407 —
26411 = 5.0e+11 =
= 2e+12 = e+ 1000000 = ot 2e+11 = 2e+07 =
e+11 =
= [| | L | -
g tes12 = EERES - T 500000 — 2.5e+11 = g e Tes11 = EEEERE
@
Q 0e+00 = 0e+00 = (U 0.0e+00 = 0e+00 = 0e+00 = 0e+00 =
> [I [[[[R [R [R
[orrer o Lorrer o orrer o Lorrxr o vorrxr > vorrer ™ vorrxr >
= SXCSSSE EXSSSE SEXSSSE SEXSSSE SEXS=S £ SEXSSS £ SEXCS=S £
a eO0OQQOkF E eO0OQoQOkF E eO0OQoQOkF E eO0OQoQOkF E o000k E eO0OoQOkF E o000k E
a + * £ 4 + £ 4 + £ 4 + £ 4 + £ 4 + £ 4 ++ E
<] m OsS ®© m OsS «© m OsS «®© m OsS © s OsS «© s OsS «© m O «©
[I [I [I [I [T I [I [T T
8 on ow ow ow ow ow ow
g mutex2 release sched1 sync2 thread0 thread1
=
£ 56407 —IIIIII 46406 4e+08 7 2.0e+10 —
= e 3e+05 - 26405 — '
P 26407 - 36406 — - e 156410 =
e+05 = :
26406 — 20+08 = 16405 1.00410 — Experiment result
1e+07 = 1e+05 = . e
1e+06 = 1e+08 = 5.06+09 = smpmememmm [Timeout
CPU Excepti
06+00 — 06+00 — 06+00 — 06+00 — 06+00 — 0.06+00 = xeepton
rrrra [I B | [I B | [I B | [B | [B |
[CRON i s siie] [CRON s aa i} [CRON s siie] [CRON s siie] [CRO N s s siie)] [CRO N s s i e)]
ECS5=E ECS5= S ECSS= S ECS5=E ECS5= S ECS5= S
ooaoak € oOQQF E oOQaF E oOQQF E oOQQF E o0QQOF E
@ + £ 2 + £ 2 + £ a + £ 2 + £ 2 + €
5 g2 f 5 g2 f 5 g2 f 5 g2 f 5 g2 F 5 g2 f
On om on on on om

Fig. 5. Protection effectiveness for different EDM/ERM variants. Benchmarks BIN_sem1, cNT_sem1, muTEX1, and sync3 are missing, as the analysis in
Section 5.3 showed that we cannot improve the baseline with our method. Results for BIN_sem2, FLAGT, kiLL and sync2 are sampling estimates with a

maximum relative standard error of 4.24 percent.

Hamming 200 percent, and TMR is the most expensive at an
average 241 percent code size increase.

But although the static code increase may seem drastic in
places, low amounts of code are actually executed at runtime,
as we only protected classes that introduce less than 1 percent
runtime overhead (see Section 5.3). To verify the runtime on
real hardware, we deployed the benchmarks on a an Intel
Core i7-M620 CPU running at 2.66 GHz, and measured their
real-world timing behavior (with the RDTSCP CPU instruc-
tion). For the very short-running benchmarks, we disabled
interrupts that would introduce extreme jitter (by up to a
magnitude) in the measurements. Fig. 7 shows that the real-
world runtime overhead totals at 0.36 percent for all variants
except for TMR (0.37 percent). This total runtime corre-
sponds accurately (99.8 percent) to the simplistic timing
model of our simulation, aside from the Excertl benchmark,
which triggers machine-dependent CPU exceptions that exe-
cute hundredfold slower on real hardware. The results

bin_sem2 bin_sem3 exceptl flag1

200 =
150 =
100 =

50 =
sched1 sync2

mutex3 release

200 =

Binary size [kiB]

150 =
100 =

o
S
1

CRC =

TMR —
CRC+DMR =

CRC -
Hamming =

Baseline =
CRC =
CRC+DMR =
SUM+DMR =
TMR =
Hamming =
Baseline =
CRC -
CRC+DMR =
SUM+DMR =
TMR =
Hamming =
Baseline =
CRC+DMR =
SUM+DMR =
Baseline =
SUM+DMR =

TMR =

indicate that GOP—when configured appropriately—
involves negligible runtime overhead on real hardware.

5.6 Interpretation of the Results

As software-implemented error detection and correction
always introduces a runtime overhead, protected variants
naturally run longer than their unprotected counterparts,
increasing the chance of being hit by memory bit flips
(assuming them to be uniformly distributed). Consequently,
there exists a break-even point between, metaphorically,
quickly crossing the battlefield without protection (and a
high probability that a hit is fatal), and running slower but
with heavy armor (and a good probability to survive a hit).
The benchmarks in Section 5.3 we identified to be not effec-
tively protectable with the GOP are on the unfavorable side
of this break-even point: The additional attack surface from
the runtime and memory overhead outweighs the gains
from being protected for all configurations.

kill mbox1 mqueuel mutex2

thread0 thread1 thread2
Binary
section
DATA
0 TexT
EEE=E = & M s
| [I I I R I | | I R I R I | | I R R B I |
D VOEXXXEXDP 20X EXYP QOELTTD
£ £EaX=SS=SE £Eaxs=S=S=E£ £xs3sS3SE
£ © Ono 0ok E o OnoakF g€ o OnoaokF E
£ a + = £ a + = £ a + + £
S m o = S m o = S m o = ©
T T 5 T T S T T 5 T
O ®n O »n o wn

Fig. 6. Static code and data/BSS segment size of the EDM/ERM variants: The code (TEXT) segment grows due to additional CPU instructions, with

CRC (detection only) being the most lightweight.

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1, JANUARY/FEBRUARY 2017
bin_sem2 bin_sem3 except1 flag1 kill mbox1 mqueuel mutex2
3e+04 =
o 6e+08 = H 4e+06 =] 2e+08 = 2e+04 =
3 4e+08 = 2e+08 —| 30106 4e+08 = 2e+08 =] 2e+08 - 2e+04 —| 2e+04 —|
- 26+06 = | 1e+08 —| _ _ 16404 =]
& 26408 — le+08 1e+06 — 26+08 56407 = le+08 Ter04 56403 —
—6 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00
s)
o, mutex3 release sched1 sync2 thread0 thread1 thread2
o 3e+09 X 20405 = oo o
6e+03 = | 2 - e 2e+03 —F{ AT _ i
E 26400 — s 2e+03 2e05 50103 - 26+07 2e+08
- - 1 - - -
5 1e+09 = 20403 =] 1e+03 1408 - 1e+08 7 16407 1e+08
0e+00 =TT 0e+00 =TT 0800 = Trrr T 0800 =TT 0000 =TT 000 TR T %00 ST
Qoo > Qe @ Qe ® Q> Q> oo > Qe @
£XSSSE E£EXSSSE EXSSSE EXSSSE £XSSSE £XSSSE £EXSSSE
2000k E 00Ok E e0oak E 00Ok E 00Ok E Elelal=lag= 00Ok E
g &2 5 g &2 § g &2 § g &2 E g &2 5 g 52§ g &2 §
o §¥5 T o o F5 T o F5 T @ ¥ T D §¥5 T o
on om om [&17] [&17] omn om

Fig. 7. Runtime on real PC hardware (with error bars showing the 95 percent confidence interval).

A more detailed analysis of what distinguishes these
benchmarks from the others reveals that they actually repre-
sent the pathologic worst case for GOP: Unlike “normal”
applications that spend a significant amount of time in cal-
culations on the application level, or waiting for input or
events from the outside, this subset of benchmarks only exe-
cutes eCos system calls. This reduces the time frame
between an update () after the usage of a system object,
and the check () at the begin of the next usage (cf. Section
3.2), to a few CPU cycles. The fault resilience gains are mini-
mal, and the increased attack surface all in all increases the
fault susceptibility significantly. Nevertheless, we do not
believe the kernel-usage behavior of these benchmarks is
representative for most real-world applications, and do not
expect this issue to invalidate our claim that GOP is a viable
solution for error detection and correction in long-living
data structures.

For the remaining benchmarks, the analysis in Section 5.4
shows that the EDM/ERMs mainly differ in their static
overhead. CRC is clearly the best choice when detection-
only suffices. For error correction, the Hamming code turns
out best. The high redundancy of the DMR variants and
TMR are overkill—at least unless much more destructive
fault models are considered.

6 DiISCUSSION

In the previous section, we showed that the GOP mechanism
significantly improves the fault tolerance of the eCos operat-
ing system. This section considers the general validity of our
findings by discussing the limitations of our approach.

6.1 Safety versus Performance

By design, the GOP mechanism cannot detect memory
faults that occur while an object is in use. Thus, faults that
corrupt a protected object while a member function is exe-
cuting can still lead to a failure.

Recall that our fault-injection tool does not simulate CPU
caches. An actively used object would likely be stored in a
CPU cache that hides memory faults while the object is
cached. But even without caches, we show in Section 5.4
that only 1.54 percent of the failures originating from kernel
data structures remain after applying GOP. This small frac-
tion validates our design assumption that uniformly distrib-
uted faults likely affect objects that are not accessed while
the fault occurs: At most one object can be accessed per CPU
at a time, but all objects can be corrupted by a fault at any
time.

However, for large data objects and long-running mem-
ber functions, the probability that such an object could be
corrupted during access would be higher.

The wait-free synchronization algorithm continues with
the design limitation of ignoring errors during object access.
While guaranteeing that every error in an idle object is
detected upon the next object access, errors in constantly
used objects go undetected. If multiple threads continu-
ously invoke member functions on the same object, and
there are at least two threads executing non-const member
functions at any time, the object’s redundancy never gets
updated. Instead, the wait-free synchronization scheme
skips concurrent checks to improve performance.

The bottom line is, that by offering a trade-off between
safety and performance, the total runtime overhead of the
GOP mechanism is kept at a negligible 0.36 percent while
still preventing most failures.

6.2 Limitation to Object-Oriented Software

The second limitation of our approach is that only object-
oriented software is addressed. Given an object-oriented
programming model, we can exploit that non-public data-
structure members are accessed only within member func-
tions of the same class. Thus, data objects can be examined
for memory errors by inserting a runtime check before each
member function call. Otherwise, for non-object-oriented
pointer-based programming languages, it is undecidable at
compile time which data is accessed by the program
instructions.

Hence, the GOP mechanism is not applicable to common
UNIX and Linux operating systems implemented in the C
programming language. However, our approach can be
applied to every operating system implemented in C++.
Besides eCos, we augmented the L4/Fiasco.OC'! microkernel
with the GOP, yielding almost identical results to those pre-
sented in this study. Furthermore, our approach can also
detect and correct memory errors in application-level soft-
ware, such as the memcached multithreaded key-value store
that is evaluated in [32].

7 RELATED WORK

Software-implemented EDMs/ERMs against memory
errors provide a low-cost alternative to hardware-based
memory-error recovery (see Section 1 for a discussion of
hardware mechanisms). Shirvani et al. [13] evaluate several

11. http:/ / 0s.inf.tu-dresden.de/fiasco/

BORCHERT ETAL.: GENERIC SOFT-ERROR DETECTION AND CORRECTION FOR CONCURRENT DATA STRUCTURES 35

software-implemented error-correcting codes for applica-
tion in a space satellite to obviate the use of a low-perfor-
mance radiation-hardened CPU and memory. Read-only
data segments are periodically scrubbed to correct memory
errors, whereas protected variables must be accessed manu-
ally via a special API to perform error correction. Similarly,
Samurai [33] implements a C/C++ dynamic memory alloca-
tor with a dedicated API for access to replicated heap mem-
ory. Programmers have to manually invoke functions to
check and update the replicated memory chunks. The latter
approach exposes the heap allocator as single point of fail-
ure, which is not resilient against memory errors.

The Java virtual machine has been exercised to extend
heap objects by checksums [34], [35]. These checksums are
verified and updated on each data-member access, for
example, on execution of getfield and putfield byte-code
instructions. Additionally, object duplication has been pro-
posed to recover from memory errors [36]. The error check-
ing on each data-member access involves high overhead, in
contrast to our approach that places checks around function
calls, which are further reduced by the static call-site analy-
sis (see Section 3.3.4). Moreover, a reliable heap allocator
does not protect data stored in data/BSS segments and on
the stack, which is common for operating systems.

Several researchers extend compilers for transforming
non-fault-tolerant software into fault-tolerant implementa-
tions. Fetzer et al. [37] use arithmetic AN encoding [27]
(among other methods) to detect errors by essentially dou-
bling the storage space for the encoded programs. Com-
piler-implemented AN encoding plus redundant execution
is proposed in [28], [38]. Tavarageri et al. [39] use check-
sums to detected silent data corruptions of data memory.
Further code-transformation rules for source-to-source com-
pilers have been proposed in [40], [41], [42]. These
approaches are based on duplicating or even triplicating
important variables of single-threaded user-level programs.
Proof-of-concept source-to-source compilers, being far from
complete, are proposed—a tedious task for the complex C/
C++ language. Our work differs in that we use the general-
purpose AspectC++ compiler that allows us to focus on the
implementation of software-based EDM/ERMs in the OS/
application layer, instead of implementing special-purpose
compilers.

Fault tolerance in the OS/application layer should be
separated from the “business logic” of the application to
reduce complexity. This modularity problem is attacked by
exercising aspect-oriented programming with AspectC++
in [43], [44], [45]. For example, Alexandersson et al. [45]
implemented triple-time-redundant execution and control-
flow checking as a proof of concept, which led to 300 percent
runtime overhead.

Our work differs from all these related works by allow-
ing for configurability to protect only the critical parts of
memory, explicitly hardening an embedded operating system,
and, most importantly, wait-free synchronization for concur-
rent error detection and correction.

8 CONCLUSIONS

Software-based dependability measures such as GOP still
have to prove their practicality. Our work is an important

step into this direction, as it shows that the overhead in
terms of runtime and code size can be reduced to an accept-
able level by exploiting the benefits of a modern software
engineering approach, namely aspect-oriented program-
ming, which facilitates application-specific tailoring of
dependability measures.

Another crucial issue is the scalability of software-based
dependability in the context of multicore systems. The wait-
free implementation of GOP is pioneer work in this field. As
it does not rely on specific OS services or exotic hardware
features, GOP remains highly platform-independent. This
work may be used as a guideline for other researchers or
developers with similar goals. A positive side-effect of
GOP, which will also gain more importance in the future, is
that it not only detects hardware errors, but also unexpected
object modifications caused by race conditions or other bugs
in software. In fact, while applying GOP to eCos, we thereby
found a kernel race condition and an access to an uninitial-
ized object in one of the test programs.

In the future we aim to explore the possibility to offload
error detection and correction to a spare CPU core, which is
now possible in a scalable manner thanks to wait-free
synchronization.

ACKNOWLEDGMENTS

The authors thank their anonymous reviewers for their very
helpful and encouraging comments. This work was partly
supported by the German Research Foundation (DFG) pri-
ority program SPP 1500 under grant no. SP 968/5-3. A pre-
liminary version of this paper appeared in Proceedings of
the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, June 24-27, 2013.

REFERENCES

[1] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells
and platters: an empirical analysisof hardware failures on a mil-
lion consumer PCs,” in Proc. ACM SIGOPS/EuroSys Eur. Conf.
Comput. Syst, Apr. 2011, pp. 343-356.

[2] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and
the implications for system design,” in Proc. 17th Int. Conf. Arch.
Support Program. Lang. Oper. Syst., 2012, pp. 111-122.

[3] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S.
Gurumurthi, “Feng Shui of supercomputer memory: Positional
effects in DRAM and SRAM faults,” in Proc. Int. Conf. High Perfor-
mance Comput., Netw., Storage Anal., 2013, pp. 22:1-22:11.

[4] V. Sridharan and D. Liberty, “A study of DRAM failures in the
field,” in Proc. Int. Conf. High Performance Comput., Netw., Storage
Anal., 2012, pp. 76:1-76:11.

[5] R. Baumann, “Soft errors in advanced computer systems,” IEEE
Design Test Comput., vol. 22, no. 3, pp. 258-266, May 2005.

[6] S.Y.Borkar, “Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov./Dec. 2005.

[7] T.J. Dell, “A white paper on the benefits of chipkill-correct ECC
for PC server main memory,” IBM Whitepaper, 1997.

[8] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main
memory,” in Proc. 15th Int. Conf. Arch. Support Program. Lang.
Oper. Syst., 2010, pp. 397—-408.

[9]1 A.Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D.
D. Mannaru, A. Riska, and D. Milojicic, “Susceptibility of com-
modity systems and software to memory soft errors,” IEEE Trans.
Comput., vol. 53, no. 12, pp. 1557-1568, Dec. 2004.

[10] K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based
analysis of fault and error sensitivities of dynamic memory,” in
Proc. 40th IEEE/IFIP Int. Conf. Dependable Syst. Netw.., Jun./Jul.
2010, pp. 431-436.

36

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.1,

A. Massa, Embedded Software Development with eCos. Englewood
Cliffs, NJ, USA: Prentice Hall, 2002.

C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative soft-
ware-based memory error detection and correction for operating
system data structures,” in Proc. 43rd IEEE/IFIP Int. Conf. Depend-
able Syst. Netw., Jun. 2013, pp. 1-12.

P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-
implemented EDAC protection against SEUs,” IEEE Trans. Rel.,
vol. 49, no. 3, pp. 273-284, Sep. 2000.

H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O.
Spinczyk, “FAIL*: Towards a versatile fault-injection experiment
framework,” in 25th Int. Conf. Arch. Comput. Syst., Mar. 2012, pp.
201-210.

D. J. Taylor, D. E. Morgan, and J. P. Black, “Redundancy in data
structures: Improving software fault tolerance,” IEEE Trans. Softw.
Eng., vol. SE-6, no. 6, pp. 585-594, Nov. 1980.

G. Kiczales,]. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc.
11th Eur. Conf. Object-Oriented Program., Jun. 1997, pp. 220-242.

R. E. Filman and D. P. Friedman, “Aspect-oriented programming
is quantification and obliviousness,” in Proc. Workshop Adv. SoC,
Oct. 2000.

G. Kiczales, E. Hilsdale, J]. Hugunin, M. Kersten, J. Palm, and W.
G. Griswold, “An overview of Aspect],” in Proc. 15th Eur. Conf.
Object-Oriented Program., Jun. 2001, pp. 327-353.

O. Spinczyk and D. Lohmann, “The design and implementation of
AspectC++,” Knowl.-Based Syst., Special Issue Tech. Produce Intell.
Secure Softw., vol. 20, no. 7, pp. 636-651, 2007.

K. Czarnecki and U. W. Eisenecker, Generative Programming. Meth-
ods, Tools and Applications. Reading, MA, USA: Addison-Wesley,
May 2000.

A. Alexander, C++ Design: Generic Programming and Design Pat-
terns Applied, ser. C++ In-Depth. Reading, MA, USA: Addison-
Wesley, 2001.

M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124-149, Jan. 1991.

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
San Francisco, CA, USA: Morgan Kaufmann, 2008.

G. J. Holzmann, The Spin Model Checker: Primer and Reference Man-
ual, 1st ed. Boston, MA, USA: Addison-Wesley, 2003.

S. V. Adve and K. Gharachorloo, “Shared memory consistency
models: A tutorial,” Computer, vol. 29, no. 12, pp. 66-76, Dec. 1996.
P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“x86-TSO: A rigorous and usable programmer’s model for x86
multiprocessors,” Commun. ACM, vol. 53, no. 7, pp. 89-97, Jul.
2010.

D. T. Brown, “Error detecting and correcting binary codes for
arithmetic operations,” IRE Trans. Electron. Comput., vol. EC-9, no.
3, pp. 333-337, Sep. 1960.

J. Chang, G. A. Reis, and D. I. August, “Automatic instruction-
level software-only recovery,” in Int. Conf. Dependable Syst. Netw.,
Jun. 2006, pp. 83-92.

E. G. Coffman, M. J. Elphick, and A. Shoshani, “System dead-
locks,” ACM Comput. Surv., vol. 3, no. 2, pp. 67-78, Jun. 1971.

G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of
cyclic redundancy-check codes with 24 and 32 parity bits,” IEEE
Trans. Commun., vol. 41, no. 6, pp. 883-892, Jun. 1993.

C. Borchert, H. Schirmeier, and O. Spinczyk, “Protecting the
dynamic dispatch in C++ by dependability aspects,” in Proc. 1st
GI Workshop SW-Based Methods Robust Embedded Syst., Sep. 2012,
pp- 521-535.

A. Martens, C. Borchert, T. O. Geifller, D. Lohmann, O. Spinczyk,
and R. Kapitza, “Crosscheck: Hardening replicated multithreaded
services,” in Proc. Workshop Dependability Clouds, Data Centers Vir-
tual Mach. Technol., 2014, pp. 648-653.

K. Pattabiraman, V. Grover, and B. G. Zorn, “Samurai: Protecting
critical data in unsafe languages,” in Proc. 3rd ACM SIGOPS/
EuroSys Eur. Conf. Comput. Syst., 2008, pp. 219-232.

D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. J. F. Lie,
D. Mannaru, A. Riska, and D. Milojicic, “JVM susceptibility to
memory errors,” in Proc. Symp. JavaTM Virtual Mach. Res. Technol.
Symp., 2001, p. 6.

G. Chen, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin, “Analyzing heap error behavior in embedded
JVM environments,” in Proc. HW/SW Codesign Syst. Synth., pp.
230-235, Sep. 2004.

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

JANUARY/FEBRUARY 2017

G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Object
duplication for improving reliability,” in Proc. Asia South Pacific
Design Autom. Conf., 2006, pp. 140-145.

C. Fetzer, U. Schiffel, and M. Stuflkraut, “An-encoding compiler:
Building safety-critical systems with commodity hardware,” in
Proc. 28th Int. Conf. Comput. Safety, Rel., Security, 2009, pp. 283-296.
N. Oh, S. Mitra, and E. J. McCluskey, “Ed4i: Error detection by
diverse data and duplicated instructions,” IEEE Trans. Comput.,
vol. 51, no. 2, pp. 180-199, Feb. 2002.

S. Tavarageri, S. Krishnamoorthy, and P. Sadayappan, “Compiler-
assisted detection of transient memory errors,” in Proc. 35th ACM
SIGPLAN Conf. Program. Lang. Design Implementation, 2014, pp.
204-215.

A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++
source-to-source compiler for dependable applications,” in Proc.
Int. Conf. Dependable Syst. Netw., 2000, pp. 71-78.

M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano, “A
source-to-source compiler for generating dependable software,”
in Proc. 1st IEEE Int. Workshop Source Code Anal. Manipulation,
2001, pp. 33-42.

M. Leeke and A. Jhumka, “An automated wrapper-based
approach to the design of dependable software,” presented at the
4th Int. Conf. Dependability, Nice, France, 2011.

F. Afonso, C. Silva, S. Montenegro, and A. Tavares, “Applying
aspects to a real-time embedded operating system,” in Proc. 6th
AOSD Workshop Aspects, Components, Patterns Infrastructure Softw.,
2007.

R. Alexandersson and P. Ohman, “Implementing fault tolerance
using aspect oriented programming,” in Proc. 3rd Latin-Amer.
Symp. Dependable Comput., 2007, vol. 4746, pp. 57-74.

R. Alexandersson and J. Karlsson, “Fault injection-based assess-
ment of aspect-oriented implementation of fault tolerance,” in
Proc. 41st IEEE[IFIP Int. Conf. Dependable Syst. Netw., Jun. 2011, pp.
303-314.

Christoph Borchert received the diploma from
Technische Universitat Dortmund, Germany, in
2010, with honors and Hans-Uhde Award. He is
currently working toward the PhD degree at the
Embedded System Software group at Technische
Universitat Dortmund. His research focus is on
fault-tolerant operating systems by aspect-ori-
ented programming.

Horst Schirmeier received the diploma from FAU
in 2007. He is currently working toward the PhD
degree at the Embedded System Software group
at Technische Universitat Dortmund. His research
interests include dependability analysis, fault injec-
tion (he is a principal author of the FaiL* frame-
work), and resilient operating-system design.

Olaf Spinczyk received the PhD degree from the
University of Magdeburg, Germany, in 2002, for
his research on “Operating System Construction
by Aspect-Orientation.” He is a professor of com-
puter science at Technische Universitat Dort-
mund, Germany, where he leads the Embedded
System Software Group. Before moving to Dort-
mund, he was a post doc at the University of Erlan-
gen-Nuremberg, Germany. His current research is
focused on the construction of efficient and reli-
able system software for embedded systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

