
Analysis of Software Repositories Using
Process Mining

Roohi Arora and Anchal Garg

Abstract Software repositories such as Issue Tracking Systems (ITS) log bug
history that contains important information about the activities followed during bug
resolution. Mining of ITS can provide useful insights of such processes. This study
uses process mining to extract knowledge from the event logs recorded in bug
history report of ITS Monorail to determine the as-is process model. This study will
help in identifying the kind and source of inefficiencies and inconsistencies and
eventually help improving the software bug resolution process.

1 Introduction

Software repositories such as Issue Tracking Systems (ITS), peer code review
systems, and version control subsystems store trails of different software devel-
opment activities. The bug history of the ITS database includes unique identifica-
tion number of the bug, its publisher, priority, status, state, different dates, summary
and labels, programmers working on a bug and operating system in which it occurs.
ITS follows a defined sequence of activities through its lifecycle from the time it is
first reported to when it is closed, viz. unconfirmed, untriaged, assigned, started,
fixed, reopened, and verified. Mining ITS will help us identify the sequence of
activities actually followed by programmers while resolving a bug and thus help us
in identifying the lacunas and improve the process of resolving the issue. Such
study can be a step to improve the overall process quality for best software engi-
neering practices. Process Mining is one of the techniques that can provide useful
insights into the quality of the process and aid as an assessment tool of ITS process.

R. Arora (&)
Accenture Solutions Private Limited, Pune, Maharashtra, India
e-mail: roohi9arora@gmail.com

A. Garg
Department of Computer Science & Engineering, Amity School of Engineering
& Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
e-mail: agarg@amity.edu

© Springer Nature Singapore Pte Ltd. 2018
S.C. Satapathy et al. (eds.), Smart Computing and Informatics, Smart Innovation,
Systems and Technologies 78, https://doi.org/10.1007/978-981-10-5547-8_65

637



The interest in the area of Mining Software Repositories (MSR) has gained
significant importance by researchers over past few years. Poncin [1] first used
process mining to discover process map by combining events from different
repositories. Sunindyo [2] analyzed bug reporting system of Red Hat Enterprise
limited and performed conformance checking for process improvement. Gupta and
Surekha [3] mined the bug report history of open source project such as Firefox and
Mozilla to study process inefficiencies. Gupta et al. [4] analyzed multiple reposi-
tories such as ITS, peer code review subsystem and version control subsystem to
improve software defect resolution process. Similarly, a study was conducted by
Zimmermann et al. [5] on Windows operating system to categorize probable causes
of reopened bugs.

Lately, a lot of work had been done by researchers to process mine software
configuration management activities [6, 7] but no work has been performed on the
ITS of Google Chromium. Hence, it is worthwhile to study the process from this
repository and derive useful insights. One of the widely accepted web browser viz
Google Chrome, derives its source code from Chromium. This work conducts in
depth analysis of the event logs of ITS repository of Google Chromium.

The motivation behind this study is to mine the bug history of ITS to identify the
bug resolution process. This study will help us provide useful insights into the
process which can aid in identifying whether the sequence of activities is performed
as desired or are there any inefficiencies and inconsistencies. In case of lacunas, the
study will help us determine the kind and source of inefficiencies, thus providing us
a roadmap on resolving such concerns in future. The kind of analysis will might
help in improving the efficiency and productivity of the process.

This paper is structured as follows: Sect. 2 gives the details of the dataset
adapted for conducting the study, Sect. 3 discusses the details of the work done,
Sect. 4 presents and discusses the results of the experiment.

2 Experimental Dataset Adapted

This paper uses Google Chromium’s Monorail Issue Tracker for the study. The
details of experimental dataset used for the study are given in Table 1.

Table 1 Details of the
dataset used for experiment

Attribute Value

First issue creation date 8 April 2015

Last issue creation date 18 February 2016

Date of extraction 28 February 2016

Total issues extracted 23,826

Range of issues 475,000–525,000

Total number of events 77,752

638 R. Arora and A. Garg



3 Simulation Model

This research framework has four different stages Data Extraction, Data Cleaning,
Process Mining and Process Analysis.

Data Extraction: Python script was used to extract trails from the ITS of Google
Chromium. Details of issues extracted are given in Table 1. A trail contains all the
information associated to a particular issue. Open and closed issues are considered
for analysis in this study.

Data Cleaning: Only relevant attributes such as issue ID, status, updated time,
closed date, and actors (resources) were selected for analysis. The comments that
depicted the progress of the work done on the issues were extracted and appended.
Missing values (NULL) and inconsistencies if any were removed. An initial state
REPORTED was created for all the issues based on attributes such as Published
Time and Owner. Finally, the final event log was obtained with attributes such as
timestamp, issue id, activity and resource associated with that issue.

Process Mining: Process Mining was performed for analyzing the event logs of
ITS using DISCO tool. Generated event log were mined from multiple perspectives
to derive insightful process maps of the ITS process Discovered process maps were
further analyzed to scrutinize the performance of the developers, productivity of the
process and list the shortcoming so that its overall performance and efficiency could
be enhanced. Process Mining ITS of Google Chromium will assists developers to
become familiar with the development process, its progress, obstacles and chal-
lenges. It will also reveal what developers are actually doing in contrast to what
they claim they have been doing.

Process Discovery: The discovered process map is presented in Fig. 1. Edges
between the activities represent transition between the activities in a process.
Frequency of transition is indicated on the edge. Darker edge corresponds to more
frequent transition in contrast to lighter edge signifying less frequent transition.

4 Results and Analysis

The process map generated for the ITS repository was analyzed, initially to
determine the frequency of each activity. Table 2 present the results of activity
frequency analysis.

Activity Frequency Analysis: For all 23,826 issues Reported is the initial
activity. A significant number of bugs have been fixed as reported by Fixed activity.
However, the frequency of issues being Verified is apparently low indicating that
issues are being fixed but are not being Verified either by the tester or by the person
who initially Reported that issue. This probably indicates a loophole in the system.
Thus, once the issue is Fixed, it should prompt its owner or the tester to verify the
resolved issue and assign Verified status, if it works well or ReAssigned if it is
unresolved. The frequency of Wontfix is comparatively high which is undesirable.

Analysis of Software Repositories Using Process Mining 639



A detailed analysis revealed that the programmers are reworking on the issues that
cannot be Fixed. Further, many activities developers are reworking on the issues
that have been resolved earlier as indicated by Duplicate status. Thus, during
assignment additional information should be provided for issues already marked

Fig. 1 Process map of ITS of Google Chromium with labeled absolute frequency

Table 2 Activities and their
relative frequency

Activity Relative frequency (%) Frequency

Reported 30.64 23,826

Fixed 18.01 14,008

Wontfix 13.27 10,320

Assigned 10.67 8,294

Duplicate 7.05 5,483

Verified 5.81 4,521

Available 5.13 3,991

Started 4.14 3,223

Untriaged 3.63 2,824

Archived 0.83 648

Unconfirmed 0.66 512

Ext. dependency 0.14 107

640 R. Arora and A. Garg



Duplicate. This would save the efforts of developers and thus reduce organizational
cost. Many issues are still Available after being assigned priority and being
Confirmed which is again not an efficient practice. Untriaged status of the issues is
a matter of concern as the developers may be fixing issues having low priority when
there high priority issues lined up. Few issues have Unconfirmed status, but this can
be mended if it is Confirmed as soon as an issue is Reported, sooner it is Confirmed
and Triaged sooner it is in the hands of developer. Very few issues have External
Dependency as their status which is good for our process.

Event Frequency Analysis: An analysis of event frequency revealed various
loopholes. First, 3/23826 events have frequency 1, indicating that the issue is
Reported but no further event/activity is performed on it and that is a matter of
concern. Although the number is too low but such a practice should be avoided as the
issue may be of high priority and severity which might reduce the quality of the
product or may appear in later stages of development and cost huge to the devel-
opment team and organization. Second, in few cases Fixed issues are being reas-
signed. Such issues are reopened several times as the root cause of the issues might
not be clear. This has caused delay of 273 days. If we analyze the event frequency of
closed issues which have been Fixed and Verified there do 8714 cases with 30,668
events constitute 36% of the total cases and 42% of the total events. However, many
of these issues are restarted and reassigned and do not adhere to the process but they
are eventually Fixed and Verified. Numbers of events range from 3 to 16.

Variant Analysis: For 23,826 cases, 757 unique variants were obtained. Most
frequent variants are listed in Table 3.

Top 4 variants cover 38% of the total cases and 33% of the total events. Majority
of the variants have self loop, i.e., the activity is repeated twice. It may be assumed
that the developers might not be sure of their decision that is delaying the final issue
resolution. Variant analyses reveal that many issues are being reassigned status
(Fixed/Wontfix/Duplicate) after 300 or more days.

Analysis of Issues with Different Priority: Issues in chromium ITS needs to
triage with different priorities depending upon their effect the software evolution
process. Issues can be assigned one of the following priorities:

Priority 0: Requires Quick resolution
Priority 1: High impact issues
Priority 2: Low impact issues
Priority 3: Can be resolved anytime

Table 3 Most frequent
variants in the process

S. No. Variant Percentage
(%)

1. Reported!Wontfix!Wontfix 37.78

2. Reported!Fixed!Fixed 28.24

3. Reported!Duplicate!Duplicate 19.19

4. Reported!Assigned 14.79

Analysis of Software Repositories Using Process Mining 641



Further analysis was conducted to identify how the developers handled the
issues with different priorities. We looked for the answers to following questions:
(i) Are the issues served on the basis of their priority? (ii) Do developers fix
problems as per their importance? (iii) To what extent the process followed comply
with the specified process.

An analysis indicates that the issues are resolved as per their priority levels.
Priority 0 and Priority 1 issues are resolved quickly. However, it is also observed
that though the issues are assigned Fixed status after resolution, not all of them are
Verified. Mean case duration of such cases is 67.1 that are undesirable. On the other
hand, issues at Priority 2 and Priority 3 have a delayed response from the resolvers.
Although these issues are not of much importance to the current release but they can
affect functionality in the upcoming releases. Mean case duration of issues with
Priority 2 was 64.9 days and that with Priority 3 is 84.7 days. Analysis also reveals
that 23 issues were assigned invalid priority such as 4, 21, etc. This indicates that
there should be a check while setting the priority of the issue.

The analysis provides vital insights into the bug resolution process. This study
has falsified our conception that the process followed during bug resolution is
satisfactory. As-is process model revealed that the sequence of activities followed is
not as assumed. The developers either skip or duplicate some of the activities. The
issues once Fixed were again Assigned thus wasting efforts of the software
developers and adding to the organizational cost. Few cases were trapped in
between causing delays in resolving the issue. Some cases were Reported but not
Assigned to anyone. Few issues were not assigned priorities causing a risk of an
important and severe issue not being resolved on time. The analysis indicates
inefficiencies and inconsistencies in the process thus adding to the expenses of the
organization. Such analysis may be used by Chromium team to remove the inef-
ficiencies and improve the process. This will both save the efforts of the devel-
opment team and help manage the organizational cost and reputation.

5 Conclusion

In this paper, detailed analysis has been performed on the ITS of Chromium. The
paper provides insights on how process mining of software repositories can help
unveil useful insights into the software development activities. If the organizations
adopt an approach to continuously monitor their software repositories, they can
gain useful insights of their processes. Such practice would improve the quality of
the processes thereby reducing overall operational cost of the software development
that is incurred by the organizations.

642 R. Arora and A. Garg



References

1. Poncin, W., Serebrenik, A., Brand, M.V.D.: Process Mining Software Repositories. In: 15th

European Conference on Software Maintenance and Reengineering, pp. 5–14. IEEE, Germany
(2011).

2. Sunindyo, W. Moser, T. Winkler, D., Dhungana, D.: Improving Open Source Software Process
Quality Based on Defect Data Mining. In: Biffl, S. Winkler, D. and Bergsmann, J. (eds.)
LNBIP, vol. 94, pp. 84–102. Springer Berlin Heidelberg (2012).

3. Gupta, M., Surekha, A.: Nirikshan: Mining Bug History For Discovering Process Maps,
Inconsistencies and Inefficiencies. In: International Conference on Software Engineering, pp. 1.
ACM, Chennai (2014).

4. Gupta, M. Surekha, A., Padmanabhuni, S.: Process Mining Multiple Repositories for Software
Defect Resolution from Control and Organizational Perspective. In: Proceedings of the 11th

Working Conference on Mining Software Repositories, pp. 122–131. ACM, Hyderabad
(2014).

5. Zimmermann, T. Nagappan, N. Guo, P.J., Murphy, B.: Characterizing and Predicting which
Bugs Get Reopened. In: Proceedings of the 34th International Conference on Software
Engineering, pp. 1074–1083, IEEE, Zurcih (2012).

6. Kagdi, H., Collard, M. L., Maletic, J. I.: A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. Journal of software maintenance and
evolution: Research and practice. 19(2), 77–131 (2007).

7. Chen, T. H., Thomas, S. W., Hassan, A. E.: A survey on the use of topic models when mining
software repositories. Empirical Software Engineering, 21(5), 1843–1919 (2016).

Analysis of Software Repositories Using Process Mining 643


	65 Analysis of Software Repositories Using Process Mining
	Abstract
	1 Introduction
	2 Experimental Dataset Adapted
	3 Simulation Model
	4 Results and Analysis
	5 Conclusion
	References


