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Abstract—Disk failures are very common in modern storage systems due to the large number of inexpensive disks. As a result, it
takes a long time to recover a failed disk due to its large capacity and limited I/O. To speed up the recovery process and maintain a
high system reliability, we propose a hierarchical code architecture with erasure codes, OI-RAID, which consists of two layers of codes,
outer layer code and inner layer code. Specifically, the outer layer code is deployed with disk grouping technique based on Balanced
Incomplete Block Design (BIBD) or complete graph with skewed data layout to provide efficient parallel I/O of all disks for fast failure
recovery, and the inner layer code is deployed within each group of disks to provide high reliability. As an example, we deploy RAID5 in
both layers to achieve fault tolerance of at least three disk failures, which meets the requirement of data availability in practical systems,
as well as much higher speed up ratio for disk failure recovery than existing approaches. Besides, OI-RAID also keeps the optimal data
update complexity and incurs low storage overhead in practice.
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1 INTRODUCTION

With the rapid development of data acquisition devices,
the volume of digital data increases exponentially. To
meet the demand of huge storage capacity and high I/O
bandwidth, RAID (Redundant Arrays of Independent Disks)
[19] or distributed storage systems (e.g., Dynamo [8] and
Azure [5]), which aggregate a set of independent disks,
are two types of common solutions. Due to the large
number of devices being deployed, component failure
becomes a common event in modern storage systems.
Thus, data redundancy must be introduced to prevent
data loss when component failure happens.

Replication and erasure code are two common ap-
proaches to provide data redundancy. Replication can be
easily deployed in storage systems and provides high
I/O bandwidth, but it incurs high storage overhead.
On the other hand, erasure code can achieve the same
reliability in a RAID with replication, while it only
incurs an order of magnitude smaller storage overhead.
Thus, it is widely used in modern storage systems to
provide high reliability. Typical erasure codes include
RAID5 code which tolerates one disk failure, RDP [6],
EVENODD [2] and X-code [30] for RAID6 tolerating two
concurrent disk failures, STAR code [15] tolerating three
disk failures, and RS (Reed-Solomon codes) [16] or CRS
(Cauchy Reed-Solomon codes) [3] tolerating an arbitrary
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number of concurrent disk failures.
Upon disk failures, RAID recovers the lost data to

keep the same data availability, and the recovery process
should be done as fast as possible to reduce the window
size of vulnerability of permanent data loss. Xiang et
al. [28, 29] proposed a hybrid recovery scheme to speed
up the recovery process, which reduces about 25% of the
data volume for single disk failure recovery for RDP and
EVENODD. Xu et al. [31] and Zhu et al. [32] used the
similar approach to speed up single disk failure recovery
for X-code and STAR code etc. Shen et al. [21] further
speeded up the recovery process of single disk failure by
reducing the number of I/Os during the recovery. Tamo
et al. [23] proposed a MDS code, Zigzag, which only
needs 1

r of total data in a RAID to recover a failed disk,
if Zigzag is designed to treat r concurrent disk failures.
However, if r is large, Zigzag will perform its encoding
and decoding in a large Galois field GF (2n), which will
reduce its performance and practicality.

Although all the works above aim to speed up the
recovery process, the recovery of a failed disk still takes
a very long time. For example, nowadays, terabyte disks
are being widely used in large-scale storage systems.
Writing terabytes of data to a commercial disk, e.g., a
disk with 4TB, will take much more time than traditional
disks without responding to any user requests. In prac-
tice, most storage systems should serve user requests
during the recovery process, so online recovery becomes
necessary as any system shutdown may cause a huge
economic loss, and the interference between the recovery
process and user requests may degrade the performance
significantly. Thus, in online recovery scenario, the re-
covery process can only be executed when the system is
idle, and as a result, it may last dozens of hours.

To substantially speed up the recovery process, Wan
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et al. [26] proposed S2-RAID, which can recover a failed
disk by taking only about 1/r of the recovery time com-
pared to conventional RAID5 if all disks are divided into
r groups. However, S2-RAID introduces high storage
overhead and only tolerates single disk failure. Besides,
since S2-RAID divides all disks into groups, and each of
which contains multiple disks, it requires a large number
of disks. Thus, S2-RAID may not be able to provide
adequate reliability levels required by applications due
to its limited fault tolerance.

In this paper, we propose a hierarchical RAID archi-
tecture, OI-RAID, which consists of two layers of codes:
outer layer code and inner layer code. The main advantages
of OI-RAID, which are also our main contributions in
this paper, can be summarized as follows.

• OI-RAID accesses much less data from each of the
surviving disks for failure recovery and provides
parallel and conflict-free failure recovery among
all surviving disks. So it could achieve dozens of
times of speed-up for single disk failure recovery
compared to conventional RAID systems.

• OI-RAID tolerates arbitrary three disk failures and
some patterns of more than three disk failures by
deploying RAID5 code in both layers, achieving
higher reliability than 3-replication, which is an
accepted industry standard. Clearly, we can also
achieve higher level of fault tolerance by deploying
other codes in both layers.

• OI-RAID needs nearly the theoretically fewest disks
to achieve a certain speedup in data recovery. Mean-
while, compared with conventional RAID systems
tolerating multiple disk failures, OI-RAID reads
much less data from surviving disks for recovery.

• We also evaluate the performance of OI-RAID in real
systems, including the recovery time in both offline
and online scenarios, as well as the user response
time in both normal model and failure mode.

The rest of this paper is organized as follows. We
first review related works in Section 2, then provide
background on erasure code and two typical RAID
architectures and motivate OI-RAID in Section 3. We
illustrate the construction of OI-RAID with an example
in Section 4, and introduce the general design in Sec-
tion 5. In Section 6, we present the construction of OI-
RAID based on complete graph. In Section 7, we present
the reliability analysis and the recovery algorithm of OI-
RAID. We conduct numerical analysis to show the per-
formance of OI-RAID in Section 8 and further evaluate
the performance in real systems in Section 9. Finally,
Section 10 concludes the paper.

2 RELATED WORK

There have been several approaches proposed to speed
up the recovery of disk failures [13, 17, 24, 27, 28, 32].
Some of them speed up the recovery through exploiting
workload characteristics. For example, Tian et al. [24]
proposed a popularity-based mutlti-threaded algorithm

which reconstructs the data in frequently accessed areas
prior to that in infrequently accessed areas to exploit
access locality. This method shortens reconstruction time
and alleviates system access performance degradation.
Some other approaches speed up the recovery by mini-
mizing the total volume of data that need to be read from
the surviving disks. For example, Xiang et al. [28] pro-
posed an optimal hybrid recovery method which uses
both row parity and diagonal parity during recovery
process to minimize the number of disk reads in RDP
code storage systems. Zhu et al. [32] used a replace re-
covery algorithm to achieve near-optimal single-disk re-
covery performance in general XOR-based erasure code
systems. However, all these methods optimize recovery
algorithm based on the existing storage systems with
concrete data layout. They only speed up the recovery
below two times than that of traditional algorithms.
Hence rebuilding a terabyte disk using these optimized
recovery algorithms still takes a very long time.

Besides, various works that focus on optimizing the
data layout are also proposed [1, 9, 12, 14, 18, 25, 26], and
these methods usually achieve greater recovery speed
improvement because recovery process utilizes more
disks to rebuild a single failed disk in parallel. For
example, Wan et al. [26] proposed a skewed sub-array
RAID architecture called S2-RAID. They divide all the
disks into several groups and divide each physical disk
into several logic storage units. Each subRAID consists of
certain logic storage units from different groups so that
recovery can be done in parallel. However, S2-RAID5
system tolerates only one arbitrary disk failure. Muntz et
al. [18] proposed a parity declustering layout organized
by balanced incomplete block designs. As there is no
general techniques to directly construct a small block
design, the parity declustering layout does not have
the ability to provide dozens of times of speed-up in
recovery. Outside these two methods, Huang et al. [14]
deployed a local reconstruction code which reduces the
bandwidth and I/Os required for recovery, and the code
was deployed in the Windows Azure Storage. Rouayheb
et al. [9] proposed a series of regeneration codes which
consist of an outer MDS code and an inner repetition
code. These codes cost minimum bandwidth in recov-
ery. Tsai et al. [25] proposed a new variant of RAID
organization to improve storage efficiency and reduce
the performance degradation when disk failure occurs.
All these existing methods still speed up the recovery
in a limited range or only provide limited reliability.
Different from them, our OI-RAID provides a relatively
large speed-up ratio, while maintaining high reliability.

3 BACKGROUND AND MOTIVATION

In this section, we introduce erasure codes and the re-
lated works which speed up disk recovery by optimizing
data layout. We discuss the merits and drawbacks of
these methods and then motivate our design.
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3.1 Erasure Codes and RAID5 Code

With an erasure code, k data blocks are encoded into
m blocks. The original k data blocks can be decoded
from any l (k ≤ l ≤ m) out of the m encoded blocks. To
better serve user requests, most of existing erasure codes
are so-called systematic codes, i.e., the k original data
blocks are included in the m encoded blocks forming a
stripe. To minimize storage overhead and increase data
availability, many erasure codes are designed such that
the k original data blocks can be decoded from any k out
of the m encoded blocks, which are so-called Maximum
Distance Separable (MDS) codes. With a (k,m) system-
atic MDS code, there are m disks, where k disks store the
original data blocks, and m− k disks store the encoded
blocks (usually called parity blocks). A (k,m) MDS code
can tolerate any m− k concurrent disk failures.

RAID5 code is a systematical MDS code which toler-
ates one disk failure. Assume that there are k data blocks
B1,B2, ...,Bk, RAID5 encodes them into a parity block P
by simply XOR-summing them, i.e., P = B1⊕B2⊕...⊕Bk.
Figure 1 shows the layout of a left-symmetric RAID5
consisting of five disks, four data blocks and one parity
block in the same row form a stripe. The parity block
is encoded from (i.e., the XOR-sum of) the four data
blocks in the same stripe. Moreover, the parity blocks are
rotationally stored among the disks for load balancing.
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D1 1

D2 2

D3 3

P4

D0 1

D1 2

D2 3

P3

D4 0
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P1

D2 0

D3 1

D4 2

P0

D1 0

D2 1

D3 2

D4 3

Disk0 Disk1 Disk2 Disk3 Disk4

Data block

Parity block

Fig. 1: Layout of the left-symmetric RAID5.

If a disk in Figure 1 fails, we can read all the
data/parity blocks in surviving disks, then perform the
same XOR computation in each stripe to rebuild the
failed disk. However, we should read all the data in
the system to reconstruct the data in the failed disk,
so the reconstruction process will last for a long time
as current commercial disks usually store terabytes of
data. To speed up the reconstruction, some data layouts
of erasure code, with which the reconstruction can be
performed in parallel, have been proposed. We introduce
two typical ones in the following two sub-sections.

3.2 S2-RAID

S2-RAID [26] is a skewed sub-array RAID architecture
in which reconstruction can be done in parallel. Figure 2
shows an example of S2-RAID5(3,3) which consists of 9
disks D0,D1, ...,D8. In this example, disks are divided
into three groups and the entire storage space of each
disk is further divided into three storage units. All the
storage units are labeled in a skewed way and the ones
with the same label form a subRAID. There are nine
subRAIDs and each subRAID is deployed with RAID5.
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Fig. 2: Layout of S2-RAID5(3,3).

Now suppose that disk D4 is failed. To rebuild the stor-
age unit labeled 1 in disk D4, we first read storage units
labeled 1 in D1 and D7, perform an XOR computation,
then write the reconstructed data into multiple spare
disks or available space on surviving disks temporarily.
In the same way we can rebuild storage units labeled 3
and 8 in D4. The shaded areas in Figure 2 show that we
only read at most one storage unit from each surviving
disk to rebuild the three failed storage units in parallel.
Hence we expect that this data layout could achieve
three times of speed-up in single disk failure recovery
compared to traditional RAID5 layout.

3.3 Parity Declustering
Parity declustering [12, 18] is designed based on bal-
anced incomplete block design (abbr. as BIBD) [11],
which is also used in the construction of our OI-RAID,
so in the following, we first review the theory of BIBD.

A (b, v, r, k, λ)-BIBD arranges v distinct objects into
b tuples1 satisfying the following properties: (1) each
tuple contains k objects and each object appears in r
tuples, and (2) each pair of objects are contained in
exact λ tuples. The five parameters b, v, r, k, λ satisfy the
following two equations:

bk = vr,

λ(v − 1) = r(k − 1).

Eq. (1) shows an example of (7, 7, 3, 3, 1)-BIBD, where
there are 7 distinct objects and 7 tuples. Each tuple
contains 3 objects and each object appears in 3 tuples.
Any pair of objects are contained in exactly one tuple.

Tuple T0 : 0, 2, 6 Tuple T1 : 0, 1, 3 Tuple T2 : 1, 2, 4
Tuple T3 : 2, 3, 5 Tuple T4 : 3, 4, 6 Tuple T5 : 0, 4, 5
Tuple T6 : 1, 5, 6

(1)

When implementing an erasure code into an RAID
system, each disk is divided into many blocks. The
erasure code is independently performed in each stripe,
where each stripe consists of some blocks with exactly
one block out of a disk. In conventional RAID systems,
the term stripe size is the number of blocks in a stripe.
The parity declustering is actually a mapping that allows
stripes with stripe size G to be distributed over C disks
(C is larger than G). Figure 3 is an example of parity

1. The term tuple is called block in the literatures about block design,
but it is easily confused with the commonly used definition of a block
as a contiguous chunk of data in storage. So we use tuple by following
the work in [12].
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declustering constructed with the BIBD shown in Eq. (1).
In this example, there are 7 disks D0,D1, . . . ,D6, each of
which is divided into blocks (we just show the first three
blocks in each disk). The blocks with the same number
form a stripe and the stripe size is 3. The mapping
associates disks with objects, and associates stripes with
tuples. For example, Tuple T0 in Eq. (1) defines the layout
of stripe 0 in Figure 3, which consists of the three blocks
on D0, D2 and D6, respectively.
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Fig. 3: Layout of parity declustering with G = 3, C = 7.

Now assume that disk D3 in Figure 3 is failed. This
disk contains three blocks which are parts of stripe 1,
3 and 4, respectively. The other six surviving blocks
belonging to these three stripes are stored on the other
six surviving disks with one on each. So we can rebuild
D3 in the same way as in S2-RAID. The shaded areas
show that we only need to read exactly one block, which
is only one-third of the data compared to conventional
RAID, from each of all the surviving disks to reconstruct
the three failed blocks. Theoretically, we could expect
that the recovery speed with parity declustering in Fig-
ure 3 is three times as that of conventional RAID.

3.4 Motivation

As mentioned above, both S2-RAID and parity decluster-
ing substantially speed up the recovery process of single
disk failure. S2-RAID even achieves a higher speed-up
with larger group size. However, the storage system will
have more disks with a larger size of groups, which
leads to more frequent disk failures. So S2-RAID with
a large scale may not be sufficiently reliable because it
tolerates only one arbitrary disk failure. On the other
hand, in S2-RAID, all the disks in the same group with
the failed disk do not participate in the recovery, it can
not fully exploit the parallelism of all disks in the system.
For parity declustering, it needs BIBDs of large scale to
achieve high speed-up rate for the recovery process. On
the one hand, it is difficult to find a BIBD with a large
scale. On the other hand, parity declustering with BIBDs
of large scale also needs many disks, so it makes a large
scale storage system not sufficiently reliable as parity
declustering also tolerates only one arbitrary disk failure.

Motivated by the strong demand of high-speed recov-
ery of disks with terabytes of data and the demand of
high reliability of large scale storage systems, we aim to
develop a new code architecture to achieve fast recovery.
Meanwhile, we also aim to tolerate at least three disk
failures, which is an industry standard, with small stripe

size and low storage overhead. In the following sections,
we will present the design of our OI-RAID and show
how it achieves these goals.

4 AN EXAMPLE OI-RAID CONSTRUCTION

OI-RAID is designed as a hierarchical architecture of two
layers. We divide all disks into groups and divide each
group of disks into regions, and finally we group all
regions into tuples based on BIBD. The first layer, called
outer layer, is a RAID5 based on all regions within a
tuple, and the second layer, called inner layer, is a RAID5
within each region, where a parity block is encoded
from all data blocks along the same diagonal. OI-RAID
achieves high recovery speed with the outer layer code,
and achieves high data reliability with codes in both
layers. In this section, we first use an example as in
Figure 4 to explain the main idea of OI-RAID.

Figure 4 is based on the (7, 7, 3, 3, 1)-BIBD shown in
Eq. (1). In Figure 4, 21 disks are divided into 7 groups
G0,G1, ...,G6, with 3 disks in each. We further divide
each disk into 3 equal-sized parts. The same parts of all
disks within a group form a region. We define a group of
disks as an object in the BIBD. So the (7, 7, 3, 3, 1)-BIBD
is based on set G = {G0,G1, ...,G6}. A tuple consists of 3
groups, e.g., tuple T0 = {G0,G2,G6}, which corresponds to
three regions which are the first regions from G0,G2,G6,
respectively, as shown in Figure 4 in the dashed boxes.
Similarly, for tuple T1 = {G0,G1,G3}, it corresponds to
the second region from group G0 and the first regions
from group G1 and group G3. There are 7 tuples, and
each group is included in 3 tuples, which correspond to
the 3 regions being distributed into 3 different tuples. In
Figure 4, each pair of groups are just included in one
tuple, which means that there are one region out of each
group and the two regions are included in just one tuple.

Given the above definitions, we explain the design
of the outer layer code and the inner layer code in the
following two subsections.

4.1 The Design of Outer Layer Code
To maximize the parallel recovery I/Os of all disks in the
system, we divide each part of a disk into three storage
units, each unit storing data or parity blocks. As shown
in Figure 4, each region is a 3×3 matrix of storage units.
The outer layer of OI-RAID is a RAID5 among all regions
in the same tuple with skewed data layout. Take tuple
T0 as an example, we label the first six units in the first
region of group G0 as 0, 1, ..., 5, in a row-major order. For
the region of tuple T0 from group G2, we circularly shift
all labels in the second row to right on one position. The
data layout of the region from group G6 is accordingly
shifted from the region in group G2.

Now we take the three storage units, one from each
group with the same label, as an outer layer code vector
with RAID5, i.e, two units store data blocks, and one
stores the parity which is the XOR-sum of the two data
blocks. Take the three units labeled 0 as an example, we
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Fig. 4: An example of OI-RAID layout. Inner layer code: P0 = 1
⊕

5, P1 = 2
⊕

3, P2 = 0
⊕

4. Outer layer code:
units with the same number form a code vector.

can store two data blocks, say B1 and B2, in D0 and D6,
respectively, and store the parity block B1 ⊕ B2 in D18.
The outer layer code within other tuples are constructed
similarly, as shown in Figure 4.

4.2 The Design of Inner Layer Code
The code of inner layer is RAID5 and it is deployed
within each region. In Figure 4, each region is a 3 × 3
matrix of units. We store the data blocks in the first two
rows and the parity blocks in the third row. Each parity
block is the XOR-sum of the two data blocks along the
same diagonal. Take the first region in Figure 4 as an
example, each of the units labeled 0, 1, 2, 3, 4, 5 stores
a data block, while each of the units labeled P0, P1, P2

stores a parity block. The parity block in unit P0 is the
XOR-sum of the data blocks in unit 1 and 5.

From Figure 4, we can see that if a disk fails, say the
shadowed D9, OI-RAID only reads up to one storage
unit from each of the surviving disks in other groups for
the recovery (the storage units hold parity blocks in the
inner layer will be recovered when the system is idle).
Thus, the recovery process can be greatly accelerated.
Besides, OI-RAID can also tolerate at least three disk
failures when both layers are deployed with RAID5.

5 GENERAL OI-RAID DESIGN

In this section, we present the general design of OI-
RAID. In particular, its outer layer is based on a
(b, v, r, k, λ)-BIBD, and its inner layer is a special RAID5.

5.1 The Code Design
To realize an OI-RAID based on a (b, v, r, k, λ)-BIBD,
there should be v × g disks in the RAID, where g ≥ k is
a prime. We first divide all disks in a RAID into a set
of v groups, each group contains g disks. Suppose that
the BIBD is built on the set G = {G0,G1, ...,Gv−1} of disk
groups. We further divide each disk into r equal-sized
parts, and divide each part into g storage units. The g
parts, one from each disk of a group, form a region. Thus,
a region is a g × g matrix of storage units.

Outer layer code. According to the BIBD, all regions of
all disks can be divided into b tuples, each tuple contains
k regions. We introduce the design of the outer layer

code by focusing on one tuple, and the code design of
different tuples are the same. Suppose that we label the
(g − 1)× g storage units of the first region in a tuple as
a matrix L0 = (Pi,j)(g−1)×g, then the (g − 1)× g storage
units of the l-th region in the same tuple will be labeled
as Ll = (Pi,(j−i×l)modg)(g−1)×g, where 1 ≤ l ≤ k−1. Note
that the last g storage units which are in last row will be
used to store parity blocks of the inner layer code.

We take the k storage units, one from each region,
with the same label as a code group, and deploy RAID5
within each code group. Suppose that the k data/parity
blocks stored in the k storage units labeled Pi,j are
B0
i,j ,B1

i,j , ...,B
k−1
i,j , respectively, we can just take Bk−1

i,j

as the parity block and simply deploy RAID5 code as
Bk−1
i,j = B0

i,j⊕B1
i,j⊕...⊕Bk−2

i,j . Figure 5 shows an example.

Fig. 5: An example layout of the outer layer code.
Inner layer code. The inner code is deployed within

each region with RAID5, while the data blocks are
encoded along the same diagonal. Suppose that the
data/parity blocks in a region is a matrix of (Bi,j)g×g,
we just take the g blocks Bg−1,0,Bg−1,1, ...,Bg−1,g−1 in
the (g − 1)-th row as parity blocks and simply deploy
RAID5 code as

Bg−1,g−1−j =

g−2⊕
i=0

Bi,<i−j>g , (2)

where <i−j>g=(i−j) mod g. Figure 6 shows an example.

Fig. 6: An example layout of the inner layer code.
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5.2 Implementation of OI-RAID
To construct BIBDs, we can use perfect difference sets
[7], which are already listed out by Singer et al. [22]. In
particular, from each of the perfect difference sets, we
can construct a Youden square, which corresponds to a
BIBD. Table 1 shows some examples of BIBDs with the
corresponding perfect difference sets.

b v r k λ perfect difference set
7 7 3 3 1 0,1,3

13 13 4 4 1 0,1,3,9
21 21 5 5 1 0,1,4,14,16
31 31 6 6 1 0,1,3,8,12,18
51 51 8 8 1 0,1,3,13,32,36,43,52
73 73 9 9 1 0,1,3,7,15,31,36,54,63
91 91 10 10 1 0,1,3,9,27,49,56,61,77,81

TABLE 1: A partial list of BIBDs.
Benefits of BIBD: By constructing OI-RAID with BIBD,
single failure recovery can be greatly accelerated, mainly
because BIBD distributes all the code groups across the
whole RAID system. Besides, the outer layer of OI-RAID
is a RAID5 among all regions in the same tuple, hence
the number of regions in each tuple, which is decided by
parameter k in BIBD, determines the storage overhead of
OI-RAID. Thus, if k is larger, then the storage overhead
of OI-RAID should be lower. In other words, with BIBD,
OI-RAID only incurs low storage overhead.
Limitations: For BIBD based OI-RAID design, its param-
eters fully depend on the BIBD used in the outer layer.
As there is no general technique to directly construct
a BIBD, we can just apply the known BIBDs, e.g., the
ones in the partial list mentioned above. Therefore, we
can not implement OI-RAID with an arbitrary number
of disks. For example, for a (b, v, r, k, λ)-BIBD, OI-RAID
assumes that the storage system must have v×g (g ≥ k)
disks. Even though we can add some virtual disks which
store value of 0, the restriction on the number of disks
with BIBD still remains as a serious problem in practi-
cal systems. Therefore, we also develop an alternative
scheme to construct OI-RAID by using complete graph.
We introduce the detailed design in the next section.

6 OI-RAID BASED ON COMPLETE GRAPH

As discussed in Section 5.2, OI-RAID based on BIBD
can not construct RAID with an arbitrary number of
disks due to the limitation on BIBD design. To relax
this restriction so as to provide OI-RAID design with
general number of disks, we propose another way to
construct OI-RAID by using complete graph, which is
a kind of simple undirected graph in which each pair
of distinct vertices are connected by a unique edge. The
complete graph which contains n vertices is denoted by
Kn. Figure 7 shows an example of complete graph K4,
which contains four vertices and six edges.

As discussed in Section 5, to build OI-RAID, we group
all the regions into tuples based on BIBD first. Actually,
BIBD can be viewed as a specific block design, if we
build OI-RAID based on complete graph, we should

G0 G1

G2 G3

0

1

2

3

4

5

Fig. 7: An example of complete graph K4.

also construct the corresponding block design first. The
construction of block design based on complete graph is
a mapping, in which vertices are mapped to the objects
and edges are mapped to the tuples. For example, in
Figure 7, edge 0 is adjacent to vertex G0 and G1, hence
tuple T0 of the block design contains the objects of G0

and G1 as shown in Eq. (3). Similarly, edge 4 is adjacent
to vertex G1 and G2, so tuple T4 contains G1 and G2.

Tuple T0 : G0,G1 Tuple T1 : G1,G2 Tuple T2 : G2,G3

Tuple T3 : G0,G3 Tuple T4 : G1,G3 Tuple T5 : G0,G2
(3)

With the block design, the construction of OI-RAID
based on complete graph is similar to that based on
BIBD. Suppose that the block design contains v objects,
then the OI-RAID based on complete graph needs v× g
disks, where g is also a prime. Figure 8 shows the layout
of OI-RAID based on complete graph K4 with g being
3. There are 12 disks, which are divided into 4 groups,
with 3 disks each. With the same method in Section 4,
we divide the whole disk array into a region matrix,
and each region is a 3× 3 matrix of storage units. Then
we can divide all the regions into tuples based on the
block design shown in Eq. (3). For example, as tuple
T0 = {G0,G1}, so the first region in group G0 and G1

are allocated into the same tuple. Similarly, as tuple T1
= {G1,G2}, the second region in group G1 and the first
region in group G2 are allocated into the same tuple. In
the same way, we group all the regions into six tuples.

The outer layer code is also deployed among all the
regions in the same tuple. However, as each tuple only
contains two regions in Figure 7, we can not deploy
RAID5 or some other erasure codes. Instead, we use
replication here. All the storage units are labeled in the
skewed way as mentioned in Section 4.1. Every two
storage units with the same label store the same raw
data and they are two replicas, hence the outer layer of
OI-RAID could tolerate one arbitrary disk failure. The
inner layer code is also the same as in Section 4.2, so OI-
RAID based on complete graph and BIBD can achieve
the same level of fault-tolerant.

When we build OI-RAID based on complete graph,
as the outer layer adopts replication instead of erasure
codes, so over half of the storage space is stored with
redundancy, and thus introduces a high storage over-
head. Therefore, it is more cost-efficient to build OI-
RAID based on BIBD in terms of storage overhead.
However, OI-RAID based on complete graph provides
us an another choice, and this scheme can make the
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Fig. 8: OI-RAID based on complete graph K4.

system have a small scale. To avoid confusion, in the
following of this paper, we refer OI-RAID to the scheme
that is based on BIBD, while for OI-RAID based on
complete graph, we will use the full name.

7 RELIABILITY AND FAILURE RECOVERY

In this section, we analyze the reliability of OI-RAID,
and present the scheme for recovery of failed disks.

7.1 Reliability

Reliability analysis of OI-RAID. The reliability of OI-
RAID can be characterized by the following theorem.
Theorem: OI-RAID tolerates 3 concurrent disk failures.
Proof: We first define the concept of parity set. A parity
set of a parity block is the set of blocks consisting of
the parity block and all data blocks from which the
parity block is generated. For example, in Figure 9, the
parity sets of parity blocks B0,7 and B2,5 are PS(B0,7) =
{B0,2,B0,3,B0,7} and PS(B2,5) = {B0,5,B1,5,B2,5}.

There are three cases for three concurrent disk failures:
(1) all the three disks are in the same group, (2) one failed
disk is in a group and the other two are in another group,
(3) the three failed disks are in three different groups.
We now show that OI-RAID can recover all failed data
in any of the above three cases.

Case 1: In the design of outer layer code, each parity
block is encoded from data blocks from different regions,
where all regions come from different groups of disks.
So if all failed disks are in the same group, only one
data/parity block in a parity set of the outer layer
code is failed. Thus, all failed data/parity blocks can be
reconstructed with RAID5 code. If OI-RAID is based on
complete graph, the every two replicas in the outer layer
are stored in different groups, hence all the failed disks
in the same group can also be recovered.

Case 2: In the second case, the only one disk which
is failed in a group can be recovered with the inner
layer code. After the only failed disk in a group being
recovered, the other two failed disks can be recovered
with outer layer code, which is similar to Case 1.

Case 3: In the third case where all failed disks are
in different groups. Each of the failed disks can be
recovered within its group with the inner layer code.

By summarizing the above cases, we conclude that,
either based on BIBD or complete graph, OI-RAID could
recover three arbitrary failed disks.

Fig. 9: An example of the layout of a tuple (region set).

We point out that even if all the disks in a group are
failed, they can still be recovered with outer layer code.
If a single disk in a group is failed, it can be recovered
with inner layer code. Hence the region set in Figure 9
can also tolerate some patterns of four or even more disk
failures. So OI-RAID achieves higher reliability than 3-
replication which is an accepted industry standard.

S2-RAID and parity declustering are designed along
the same lines as OI-RAID. Both of them divide all
disks in a RAID into some groups and then perform
an erasure code on top of different groups. If we deploy
RAID5 in S2-RAID and parity declustering, both of them
tolerate one disk failure. With another layer of RAID5 in
each group, OI-RAID tolerates at least three disk failures.
Thus, the system reliability of OI-RAID is much higher
than that of S2-RAID and parity declustering.
OI-RAID design for tolerating more than three disk
failures. Note that OI-RAID can only tolerate three
arbitrary failures if RAID5 is used in both layers. To
support higher reliability, we can use erasure codes with
higher liability in both layers. The simplest and also most
commonly used erasure code is RS code, so we propose
to use RS code in both layers so as to provide higher
fault tolerance. For example, in Figure 10, we deploy
Reed-Solomon code RS(3,5) in the inner layer and use
RAID5 in the outer layer. As the inner layer tolerates
two arbitrary disk failures and the outer layer tolerates
one disk failure, we can prove that the whole OI-RAID
could tolerate all cases of five disk failures.

D0 D1 D2

Outer Layer Parity

Inner Layer Parity

D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

RS(3,5) code

Fig. 10: OI-RAID with RS(3,5) code in the inner layer.

Table 2 shows the fault tolerance level of OI-RAID
with different erasure codes, in which all the numbers
denote the number of disk failures that could be tol-
erated. For example, if the inner layer tolerates 2 disk
failures and the outer layer tolerates 3 disk failures, then
the whole OI-RAID tolerates 11 arbitrary disk failures,
which achieves a really high reliability.

7.2 Failure Recovery
In this subsection, we first explain how to speed up the
recovery of OI-RAID, and then present the scheme.

If we rebuild a failed disk with outer layer code, we
conclude that we only read up to one storage unit from
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Outer Layer
Inner Layer 1 2 3

1 3 5 7
2 5 8 11
3 7 11 15

TABLE 2: Fault tolerance of OI-RAID by deploying codes
with different fault tolerance levels in both layers.

each disk in other groups to reconstruct all units in the
parity sets in outer layer in this disk. For example, in
Figure 9, if disk D4 fails, we can reconstruct unit B1,1

and B1,3 in D4 with outer layer code as

B1,1 = B0,1 ⊕ B2,1, B1,3 = B0,3 ⊕ B2,3.

We see that it reads only one unit from each of disks
D0,D1,D7,D8. The unit B1,7 will be reconstructed when
the storage system is idle, because it always store inner
layer parities so that it will not be accessed by users.

On the other hand, if we rebuild a failed disk with
inner layer code, we should read all data blocks from
the surviving disks within this group. For example, in
Figure 9, if disk D4 fails, we can rebuild D4 with inner
layer code as follows, but three storage units are read
from each of the disks D3,D5.

B1,1 = B1,4 ⊕ B1,6,

B1,3 = B1,0 ⊕ B1,8,

B1,7 = B1,2 ⊕ B1,5.

From the above analysis, we should reconstruct a
data/parity block with outer layer code prior to inner
layer code so as to leverage device-level parallelism. In
particular, if there are less than 4 disk failures, the failed
disks can be recovered by using Algorithm 1.

Algorithm 1 Recovery Algorithm of OI-RAID

Require:
The array of failed storage units U [0...N ];
The flags of each failed storage unit F [0...N ];

1: f = N ;
2: for i = 0 to N − 1 do
3: if F [i] == 0 and U [i] is the single failed unit in its outer

layer parity set then
4: Reconstruct U [i] in its outer layer parity set;
5: F [i] = 1;
6: f −−;
7: end if
8: if F [i] == 0 and U [i] is the single failed unit in its inner

layer parity set then
9: Reconstruct U [i] in its inner layer parity set;

10: F [i] = 1;
11: f −−;
12: end if
13: end for
14: Repeat Steps 2-13 until f == 0;

8 NUMERICAL ANALYSIS

In this section, we study the performance of OI-RAID
via numerical analysis. Specifically, since 99.75% of the
system failures are single disk failure [20], we show the

efficiency of OI-RAID by comparing the recovery per-
formance of single disk failure of OI-RAID with that of
other two typical RAID architectures, S2-RAID and par-
ity declustering, which are all based on disk grouping. In
particular, we compare their recovery performance with
two metrics: (1) speed-up ratio, which is defined as the
ratio of data volume in the failed disk to the maximum
data volume read from each surviving disk required for
recovery, and (2) read volume ratio, which is defined
as the total number of data/parity blocks read from all
surviving disks for the recovery of one failed block. The
two metrics reflect how much speed improvement the
storage system can achieve and the total volume of data
that needs to be read during the recovery, respectively.

8.1 Speed-up Ratio

We first derive the speed-up ratio of OI-RAID, parity
declustering, and S2-RAID, then compare their perfor-
mance via numerical analysis.

S2-RAID: Suppose that a S2-RAID layout introduced
in Section 3.2 consists of l groups, each of which contains
g disks, then there are l× g disks in total. To reconstruct
g blocks under single disk failure, we only need to read
one block from each disk in other groups. Thus, the
speed-up ratio of S2-RAID is g.

Parity Declustering: Suppose that we deploy parity
declustering layout with a (b, v, r, k, λ)-BIBD introduced
in Section 3.3, then each disk is included in r tuples.
Thus, all data/parity blocks in a failed disk can be
reconstructed by r groups of disks. Note that each pair of
disks are exactly in λ tuples, so each pair of data/parity
blocks participate in the construction of λ failed blocks.
To reconstruct r data blocks in a failed disk, we need to
read exactly λ blocks from each surviving disk. That is,
the speed-up ratio of parity declustering is r

λ .
OI-RAID: Suppose we build OI-RAID with a

(b, v, r, k, λ)-BIBD in Table 1, where each pair of objects
are included in exact one tuple. Accordingly, in the
outer layout, each pair of disk groups participate in
the construction of exact one region set. Since each disk
group contains r regions, the outer layout contributes r
times of speed-up. We note that in OI-RAID, all storage
units in the last row of regions store parity blocks, so
they will never get accessed by users. Other storage
units are encoded in the outer layer so that they may
contain data blocks or parity blocks. During the recovery
process, we treat all the storage units encoded in the
outer layer as data units. Thus, when a single disk fails,
we should rebuild the units encoded in the outer layer
immediately, while the units which store inner layer
parity blocks could be rebuilt later when the storage
system is idle. Therefore, for each region set, we can read
one unit from each disk in other regions to rebuild g− 1
units in parallel without conflict. Thus, OI-RAID could
achieve a speed-up ratio of r × (g − 1).

OI-RAID based on complete graph: Suppose we
build OI-RAID with complete graph Kn, i.e., each vertex
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is connected by n − 1 vertices and each pair of vertices
share one unique edge. Accordingly, in the block design,
each object is contained in n − 1 tuples and each pair
of objects are included in exact one tuple. Therefore,
based on the mapping scheme, each pair of disk groups
participate in the construction of one region set and each
disk group contains n− 1 regions. As a result, the outer
layer contributes n−1 times of speed-up. For each region
set, the skewed data layout and inner layer code are the
same with OI-RAID based on BIBD, if each disk group
contains g disks, the inner layer contributes g − 1 times
of speed-up. Thus, OI-RAID based on complete graph
could achieve a speed-up ratio of (n− 1)× (g − 1).

Numerical Results: We first evaluate the speed-up
ratio of OI-RAID. Figure 11(a) shows the speed-up ratios
of OI-RAID based on the BIBDs in Table 1 and parameter
g at different system scales. In particular, each point in
the figure shows the speed-up ratio of OI-RAID under a
particular setting. Note that we always aim to achieve a
high speed-up ratio with as few disks as possible, so in
Figure 11(a), the optimal curve shows the best choices of
(b, v, r, k, λ) and g, which can achieve high speed-up ratio
with the fewest disks. We see that OI-RAID achieves a
speed-up ratio of 60 with less than 350 disks.

Figure 11(b) shows the speed-up ratios of OI-RAID
based on complete graph. Similarly, each point in this
figure denotes an OI-RAID based on complete graph
Kn and parameter g. The optimal curve is obtained
in the same way as in Figure 11(a). The results show
that OI-RAID based on complete graph could achieve
a speed-up ratio of 100 with 121 disks. From the angle
of speed-up ratio, the OI-RAID based on complete graph
may achieve much better recovery performance than that
based on BIBD, however, OI-RAID based on complete
graph costs much higher storage overhead.

Now we compare the speed-up ratio of OI-RAID with
that of S2-RAID and parity declustering. The results are
shown in Figure 11(c), where the speed-up ratios of OI-
RAID are from the optimal curve in Figure 11(a), those
of parity deculstering are based on the BIBDs in Table 1,
and those of S2-RAID are derived with group number of
3. We see that the increase of the speed-up ratio of parity
declustering is more flat compared to OI-RAID and S2-
RAID as the system scale increases. The reason is that
parity declustering is based on BIBDs, its speed-up ratio
equals to r

λ , which heavily depends on the configuration
of the BIBD even for a larger system scale. Besides, OI-
RAID achieves similar speed up ratio with S2-RAID.
Nevertheless, recall that S2-RAID can only tolerate a
single disk failure, so it may not satisfy the reliability
requirement in applications. On the contrary, OI-RAID
tolerates three disk failures, so it provides both high
speed-up ratio and high reliability.

8.2 Read Volume Ratio
In this section, we evaluate the read volume ratio of dif-
ferent RAID schemes, including S2-RAID, parity declus-
tering, MDS codes, and OI-RAID.

S2-RAID: In a S2-RAID layout consisting of l groups,
each of which contains g disks, there are l storage units
in a subRAID. Note that RAID5 is deployed within each
subRAID, so the read volume ratio of S2-RAID is l − 1.

Parity Declustering: In a parity declustering layout
deployed with a (b, v, r, k, λ)-BIBD, a tuple contains k
disks, which are grouped to form RAID5, so the read
volume ratio of parity declustering is k − 1.

MDS code: For a (k,m) systematic MDS code tolerat-
ing m−k arbitrary disk failures, e.g., Reed-Solomon code
RS(k,m), there are k data blocks and m−k parity blocks
in a stripe. Since any k of the m blocks could reconstruct
the original data, the read volume ratio is k.

OI-RAID: In an OI-RAID deployed with (b, v, r, k, λ)-
BIBD, we only use the outer-layer parities to rebuild data
under single disk failure. Since RAID5 is deployed in the
outer layer and there are k blocks in each parity set, the
read volume ratio of OI-RAID is k − 1.

OI-RAID based on complete graph: In an OI-RAID
based on complete graph kn, as the outer layer is de-
ployed with replication strategy, the read volume ratio
is 1, which is optimum.

Numerical Results: The comparison of the read vol-
ume ratio among OI-RAID ,S2-RAID, parity declustering
and Reed-Solomon code is shown in Figure 12. In this
figure, we can see that S2-RAID and parity declustering
achieve the same performance, mainly because the read
volume ratio is decided by the deployed code, which is
RAID5 code for both S2-RAID and parity declustering.
We also see that the read volume ratio of RAID5 is
smaller than OI-RAID when they cost the same storage
overhead, but we emphasize that OI-RAID has higher
reliability than RAID5 as it tolerates three disk failures
while RAID5 can only tolerate one arbitrary disk failure.
For fair comparison, all the settings of Reed-Solomon
code shown in the figure can tolerate three disk failures,
so they have the same fault tolerance as OI-RAID. We
point out that the curve representing OI-RAID only
contains the optimal trade-off points which can achieve a
lower read volume ratio while incurring a lower storage
overhead. From this figure, we see that the read volume
ratio of OI-RAID is evidently smaller than that of the
Reed-Solomon code. This implies that OI-RAID requires
less network bandwidth and fewer I/Os to perform
single-disk recovery than Reed-Solomon code with the
same storage overhead. In particular, compared with
RS(6,9), which is also used in GFS II in Google [10], the
read volume ratio of OI-RAID under the setting at point
A is reduced from 6 to 3. That is, OI-RAID under the
setting at point A saves 50% of reconstruction cost.

8.3 Lower Bound of System Scale
To achieve the maximum speed-up ratio and the mini-
mum read volume ratio, a storage system may need a
large number of disks. To evaluate the scale of a storage
system, we define Lbound(α, β) as follows.

Definition of Lower Bound Lbound(α, β): It is defined
as the minimum number of disks needed to construct
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Fig. 11: Speed-up ratio under different system scales.
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Fig. 12: Comparison of read volume ratio.

a storage system that can achieve a speed-up ratio of α
and a read volume ratio of β.

Suppose that the volume of data in a failed disk is Ω.
For a RAID which reaches the lower bound Lbound(α, β),
the total volume of data needs to be read for recon-
struction is β × Ω. Because the speed-up ratio is α, the
maximum volume of data we should read from each
surviving disk is Ω/α. As a result, we need at least
⌈(β × Ω)/(Ω/α) = α× β⌉ disks to read out all the data.
Note that α may not be an integer. Containing the failed
disk itself, the lower bound Lbound(α, β) is

Lbound(α, β) = ⌈α× β⌉+ 1. (4)

Recall that there are v × g disks in an OI-RAID
mentioned above. According to Equation (1), we have
v = r(k − 1) + 1 since λ = 1, so an OI-RAID consists
of rg(k − 1) + g disks. On the other hand, Lbound(r(g −
1), k − 1) is equal to r(g − 1)(k − 1) + 1. Therefore, OI-
RAID needs r(k − 1) + g − 1 more disks than the lower
bound. We emphasize that the parameters r, k, and the
group size g are relatively small, e.g., r = k ≤ 6 and
g ≤ 11. So OI-RAID needs only a few more disks than
the theoretical minimum, so as to achieve the highest
speed up of single disk failure recovery.

OI-RAID: In Figure 13(a), we show the optimal curve
of OI-RAID and the associated lower bound. We can see
that the system scale of OI-RAID is just a little bit larger
than the lower bound for achieving the same speed-up
ratio. Even in the worst case, OI-RAID requires 40/301 =
13.3% more disks than the theoretical lower bound so as
to achieve the same speed-up ratio, i.e., 60× of speed-up
compared to conventional RAID.

S2-RAID: The S2-RAID5 can tolerate just one arbi-
trary disk failure, so it can not satisfy the reliability

requirement of large-scale storage systems. To solve this
problem, we deploy Reed-Solomon code in S2-RAID.
Figure 13(b) shows the relationship between the speed-
up ratio and the system scale when we deploy RS(6,9)
code into S2-RAID layout. In this figure, the number of
disks that S2-RAID needs is far more than the lower
bound. In the worst case, S2-RAID needs 176/355 =
49.6% more disks than the lower bound. Due to the
extremely large system scale meaning a large disks cost,
it is impractical to deploy Reed-Solomon code in S2-
RAID. Thus, there is a tradeoff between the high speed-
up ratio and high reliability for S2-RAID, while OI-RAID
can achieve both.

Parity Declustering: As stated in Section 8.1 and
Section 8.2, the speed-up ratio of parity declustering is
r
λ and its read volume ratio is exactly k − 1. According
to Equation (1), we have v = r(k − 1)/λ + 1. Accord-
ing to Equation (4), we can calculate the lower bound
of number of disks required by parity declustering as
Lbound(r/λ, k − 1) = r(k − 1)/λ + 1. The result implies
that parity declustering reaches the lower bound on the
number of disks, which benefits from the features of
BIBD. These features also makes OI-RAID require only
a fewer more disks than the lower bound because the
outer layer of OI-RAID is also based on BIBDs.
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Fig. 13: The lower bound of system scale.

8.4 Storage Overhead of OI-RAID

We point out that some trade-off points on the optimal
curve in Figure 11(a) may not meet the needs due to its
high storage overhead. Therefore, we further show the
relationship between the speed-up ratio and the storage
overhead for OI-RAID with BIBD in Figure 14(a). We
define the storage overhead as the ratio of redundancy
here. For example, if the system contains n storage
units and m of them are redundancy, then the storage
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overhead is m/n. We see that the storage overhead of OI-
RAID under all appropriate settings are between 0.2 and
0.6, and the setting with higher speed-up ratio usually
incurs lower storage overhead. Figure 14(b) shows the
storage overhead of OI-RAID based on complete graph.
We see that the lowest storage overhead is 0.54, meaning
that over half of storage units are redundancy, which
is much higher than that of OI-RAID based on BIBD.
Therefore, OI-RAID based on complete graph trades
storage for recovery performance.
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(b) OI-RAID via complete graph

Fig. 14: Storage overhead.

For comparison, we further consider two typical codes
in Table 3. As mentioned before, RS(6,9) is used in GFS II
in Google and it can tolerate three arbitrary disk failures.
RS(10,14) is used in HDFS-RAID in Facebook [4] and
it can tolerate four arbitrary disk failures. In particular,
the trade-off point A in Figure 14(a) represents the OI-
RAID system defined by (13,13,4,4,1)-BIBD with g being
equal to 11. This setting costs a little bit lower storage
overhead than RS(6,9), and achieves a speed-up ratio
of 40. That is, it only takes 1

40 of time to recover a
failed disk. Since the system scale is 143, it is practical to
build a storage system by using the parameters at this
point. Similarly, point B represents the OI-RAID system
defined by (21,21,5,5,1)-BIBD with g being equal to 11.
This setting costs lower storage overhead than RS(10,14)
while achieving a speed-up ratio of 50.

code overhead reliability storage system
RS(6,9) 0.33 3 GFS II

RS(10,14) 0.29 4 HDFS-RAID

TABLE 3: Storage overhead of two Reed-Solomon codes.

8.5 Summary
To summarize the results presented before, we list some
typical configurations for S2-RAID, parity declustering,
and OI-RAID, as well as their speed-up ratios, read vol-
ume ratios and the associated lower bound on the num-
ber of disks required for system construction. In Table 4,
S2(α, β) represents a S2-RAID layout which consists of
α groups, each of which contains β disks. PD(α, β, λ)
represents a parity declustering layout deployed with a
(α, α, β, β, λ)-BIBD. OI(α, β, λ, g) represents an OI-RAID
deployed with (α, α, β, β, λ)-BIBD and each disk group
consists of g disks. OICG(α, g) represents an OI-RAID
based on complete graph Kα and group size g. Finally,
system scale means the number of disks in the system.
From Table 4, we can have the following conclusions.

layout
speed-

up
ratio(α)

read
volume
ratio(β)

Lbound

(α, β)
system
scale

storage
over-
head

S2(3, 3) 3 2 7 9 0.33
S2(5, 5) 5 4 21 25 0.2

S2(3, 17) 17 2 35 51 0.33
PD(7,3,1) 3 2 7 7 0.33
PD(21,5,1) 5 4 21 21 0.2
PD(51,8,1) 8 7 51 51 0.13
OI(7,3,1,3) 6 2 13 21 0.56
OI(7,3,1,7) 18 2 37 49 0.43

OI(13,4,1,11) 40 3 121 143 0.32
OI(21,5,1,11) 50 4 201 231 0.27
OICG(11,11) 100 1 101 121 0.54

TABLE 4: Performance comparison of various codes
under various typical settings.

• OI-RAID could achieve a high speed-up ratio while
keeping a low read volume ratio. For example, the
read volume ratios of OI(21,5,1,11) and PD(21,5,1)
are both 4, but OI(21,5,1,11) could achieve a speed-
up ratio of 50, while PD(21,5,1) only achieves a
speed-up ratio of 5.

• OI-RAID achieves much higher reliability (tolerat-
ing three disk failures) than S2-RAID (tolerating
only one disk failure) with only a small storage
overhead. For example, OI(7,3,1,7) only incurs 10%
larger storage overhead than S2(3, 17), while still
guarantees the same read volume ratio and an even
higher speed-up ratio.

• OI-RAID based on complete graph achieves much
better recovery performance than that based on
BIBD while costing much higher storage over-
head. For example, OICG(11,11) utilizes 110 fewer
disks than OI(21,5,1,11) to achieve more than 50×
of speed-up ratio, but the storage overhead of
OICG(11,11) is also doubled.

• OI-RAID could utilize fewer disks than S2-RAID to
achieve an even higher speed-up ratio. For example,
S2(3, 17) utilizes 51 disks to achieve a speed-up ratio
of 17, but OI(7,3,1,7) utilizes 2 fewer disks to achieve
a higher speed-up ratio of 18.

• Parity declustering achieves the lower bound on
the system scale, while the speed-up ratio of the
system constructed with the lower bound number of
disks is also small. For example, PD(51,8,1) utilizes
only 51 disks, but the speed-up ratio is only 8. By
comparison, OI(7,3,1,7) utilizes 49 disks to achieve
a speed-up ratio of 18.

In practical scenarios, we should chose an appropriate
configuration to construct OI-RAID by taking an overall
consideration according to actual demands.

9 PERFORMANCE IN REAL SYSTEMS

In this section, we evaluate the performance of OI-RAID
in real systems. In the following, we first describe the
experiment setting, and then show both the recovery
performance and user performance.
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(a) OI-RAID: offline recovery
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(b) OI-RAID: online recovery
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Fig. 15: Recovery performance.

9.1 Experiment Setting
Our experimental testbed consists of a cluster system
with a number of Sugon I620-G20 nodes, the hardware
details of each node are listed in Table 5. The nodes
are interconnected through an Mellanox FDR MSX6025F
InfiniBand Switch, we use iSER (iSCSI Extensions for
RDMA) over the network to eliminate TCP/IP pro-
cessing overhead. We use the libaio library to asyn-
chronously access each storage node and implement a
new array controller to handle address mapping and
data recovery. User requests also go through the array
controller to access the underlying storage servers. We
implement parallel recovery at device level, precisely, we
use a queue in the controller to cache some requests, then
send them in batches to disks and issue them in parallel.

OS CentOS 7.3
CPU 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

Memory 64 GB
Network card Mellanox MT27500 ConnectX-3

Disks 12x Seagate ST1000NM0023, 1TB, 7200RPM

TABLE 5: Hardware details of each node.
To evaluate online recovery performance, we consider

two real-world I/O traces, Financial1 and WebSearch1.
Financial1 trace was collected from OLTP applications
running at a large financial institution, and this workload
is write dominated (76.84% writes). WebSearch1 trace
was collected from a web search engine, and it is read
dominated (99.98% reads). We replay the traces by using
the btreplay tool in Linux. We implement online recovery
with two threads, which are responsible for recovery and
user requests respectively, and let them compete for the
same resources of CPU and disk bandwidth.

9.2 Recovery Performance
We show the recovery time of OI-RAID in both offline
and online scenarios, and also consider different system
scales and block sizes. Besides, we also compare OI-
RAID with other schemes including parity declustering,
S2-RAID, RAID5 and RS code.

Figure 15(a) and Figure 15(b) show the reconstruction
time of OI-RAID in both offline and online scenarios.
For offline recovery, all resources of CPU and disk band-
width are used for recovery, while for online recover, we
also run Financial1 during recovery and use two threads

to compete for the resources, one for recovery and the
other for user requests. In this experiment, we consider
different system scales by varying the number of disks
from 21 to 57, and also vary the block size from 1MB to
4MB. To save experiment time, we limit the amount of
reconstruction data as 100GB. From both figures, we see
that the reconstruction time decreases as system scales
increases. That is, we can achieve a higher speed-up ratio
when deploying OI-RAID with more disks. This result
is consistent with the numerical analysis in Figure 11.
Besides, we see that the reconstruction time can get
reduced with a larger block size in general cases. This
is mainly because with OI-RAID, only a part of data on
each surviving disk is required for recovery, so surviving
disks are not accessed continuously and larger block size
can amortize the disk seek time. However, when system
scale becomes large, large block size may not lead to
the reduction of reconstruction time, e.g., as shown in
Figure 15(a), when the number of disks increases to 45,
the reconstruction time is not reduced as the block size
increases. This is mainly because when the number of
disks become large, the aggregated disk bandwidth is
even larger than the network bandwidth, so the system
bottleneck is not the disk seek time caused by random
I/O any more.

We further compare OI-RAID with other four RAID
schemes, and we also show the recovery performance of
these schemes in both offline and online scenarios. In this
experiment, we fix the number of disks as 45, and the
block size as 4MB. So OI-RAID is designed based on the
(35, 15, 7, 3, 1)-BIBD with g = 3. For fair comparison,
we configure the RAID schemes to make them have
the same read volume ratio. In particular, For S2-RAID,
we make it consist of 3 groups, each of which contains
15 disks. We deploy the parity declustering scheme by
using a (33, 45, 22, 3, 1)-BIBD. For RAID5, we deploy a
variant which consists of 15 groups of conventional 2+1
RAID5 arrays. For RS code, we also deploy a variant
which consists of 5 groups of RS(6,9) arrays.

Figure 15(c) shows the comparison results. We see that
comparing to conventional RAID schemes like RAID5
and RS code, OI-RAID can significantly reduce the re-
construction time, e.g., by up to 10×. For S2-RAID and
parity declustering, both of which are already optimized
for speeding up recovery, OI-RAID achieves very similar
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(a) Response time in normal mode
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(b) Response time during recovery
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(c) Degraded read performance

Fig. 16: Average user response time in normal mode and failure mode.

recovery performance. However, OI-RAID provides at
least three arbitrary disk failures, while both S2-RAID
and parity declustering considered in this experiment
only tolerate single disk failure. Therefore, OI-RAID
simultaneously achieves both high reliability and high
recovery performance.

9.3 User Performance
Now we show the user performance of OI-RAID and
compare it with other schemes studied above. In this
experiment, we still use the same configuration as before.

We first focus on the average user response time, and
the results are shown in Figure 16. We see that in normal
or failure-free mode (Figure 16(a)), OI-RAID has similar
performance with RS code under Financial1 trace, but
both OI-RAID and RS perform worse than the other
three schemes. This is mainly because OI-RAID and RS
tolerate three disk failures, so they have more parities
and introduce more writes due to parity update as the
Financial1 trace is write dominated. However, for the
read-dominated workload WebSearch1, all the schemes
provide similar user performance as parities have no
impact on read performance in failure-free mode.

When disk failure happens and the recovery process
runs simultaneously with user requests, different results
can be observed, see Figure 16(b). In particular, since
OI-RAID speeds up the recovery process comparing to
RS code, which provides the same fault tolerance with
OI-RAID, the average response time of OI-RAID gets
significantly reduced by comparing to that of RS code.

Finally, to show the degraded read performance, we
focus on the read-dominant workload only. As shown in
Figure 16(c), we see that OI-RAID outperforms RAID5
and RS, this is due to the benefit of accessing only part of
data from each surviving disk to reconstruct failed data.

Now we focus on the user throughout. Figure 17(a)
shows the throughput results in normal mode, and Fig-
ure 17(b) shows the results of degraded read throughout,
in which case we run only the read-dominated workload
WebSearch1. We find that the results are consistent with
those of average user response time shown in Figure 16.

10 CONCLUSION
In this paper, we propose a new RAID architecture, OI-
RAID, which achieves fast recovery and high reliability.
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(a) Throughout in normal mode
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(b) Degraded read throughput

Fig. 17: User throughput in normal mode and degraded
read throughput.

OI-RAID consists of two layers of codes. The outer layer
is organized by using BIBDs or complete graph, and
the inner layer is encoded with RAID5 along diagonal
lines. OI-RAID can tolerate at least three arbitrary disk
failures if RAID5 are deployed in both layers. In sum-
mary, OI-RAID provides an effective option to build a
storage system with fast data recovery, high reliability,
low reconstruction cost and storage overhead, as well as
an acceptable system scale.
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