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Exemplar-based Image Inpainting using Multiscale
Graph Cuts

Yunqiang Liu and Vicent Caselles

Abstract—We present a novel formulation of exemplar-based
inpainting as a global energy optimization problem, written
in terms of the offset map. The proposed energy functional
combines a data attachment term to ensure the continuity of
the reconstruction at the boundary of the inpainting domain
and a smoothness term that ensures a visually coherent recon-
struction inside the hole. This formulation is adapted to obtain
a global minimum using graph cuts algorithm. In order to
reduce the computational complexity, we propose an efficient
multiscale graph cuts algorithm. Moreover, to compensate for
the loss of information at low resolution levels we use a feature
representation computed at the original image resolution. This
permits to alleviate the ambiguity induced by comparing only
color information when the image is represented at low resolution
levels. Our experiments show the good performance of the
proposed algorithm when compared with other recent algorithms.

Index Terms—Image inpainting, offset map, graph cuts, feature
vector

I. INTRODUCTION

IMAGE inpainting, also known as image completion or dis-
occlusion, is an active area of research in image processing.

It aims to obtain a visually plausible interpolation in a region
of the image where the data is missing or we want just to
modify it. It has become a standard tool in image and video
processing with many applications to image restoration (e.g.,
scratch or text removal in photographs), new view synthesis
[1], [2] (e.g. filling the dis-occluded regions), object removal,
image coding [3], [4] and transmission [5] (e.g., recovery of
the missing blocks), etc.

Most inpainting methods found in the literature can be
classified in two main categories: geometry- and exemplar-
based methods.

In geometry-based methods, images are usually modeled
as functions with some degree of smoothness, for instance,
expressed in terms of the curvature of the level lines or
the total variation of the image. They take advantage of the
smoothness assumption and interpolate the inpainting domain
by continuing the geometric structure of the image (its level
lines, or its edges), usually as the solution of a (geometric)
variational problem, or by means of a partial differential
equation (PDE). Such PDE can be derived from variational
principles, as is the case for instance in [6], [9], [11], or
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inspired by phenomenological modeling [8], [10], [13], [12].
These methods show good performance in propagating smooth
level lines or gradients, but fail in the presence of texture. They
are often referred to as structure inpainting methods.

In most cases, geometry-oriented methods are local in the
sense that they are based on PDEs. An implication of this is
that, among all data available from the image, they only use
the information at the boundary of the inpainting domain. This
frequently tends to introduce blurring artifacts in textured or
large missing regions.

Exemplar-based methods were initiated by the work of Efros
and Leung [17] on texture synthesis using non-parametric
sampling techniques. In this context, texture is modeled as
a two dimensional probabilistic graphical model, in which
the gray, or color, value of each pixel is conditioned by its
neighborhood. These methods rely directly on a sample of the
desired texture to perform the synthesis. The value of each
target pixel p is copied from the center of a (square) patch
in the sample image, chosen to match the available portion
of the patch centered at p. Exemplar-based methods have
been adapted to inpainting [20], [19], [15]. As opposed to
geometry-based methods, the exemplar-based approaches are
non-local: to determine the value at a pixel, the whole image
may be scanned in the search for a matching patch. They
provide excellent results in recovering textures or repetitive
patterns, but they may have difficulties in interpolating the
image geometry if there are no examples of it.

Different strategies have been proposed to combine geom-
etry and texture inpainting. Bertalmio et al. [18] decomposed
the image into structure and texture components, inpainting
each of them separately using geometry- and texture-based
techniques, respectively. The final result is the composition
of the two completed layers. Criminisi et al. [19] extended
the texture synthesis approach by gradually propagating the
information of the known region into the hole according to
a priority order. This order is determined by the strength of
the incoming edges and by a confidence map that takes into
account the amount of known information in the patch. In this
way it encourages the propagation and continuity of strong
edges and the concomitant information into the hole. Xu et al.
[21] improved the method of [19] by defining a patch priority
order based on structure sparsity that can better distinguish
between texture and structure, and is more robust to the con-
tinuation of edges. They also use a sparse linear combination
of exemplars to infer patches in a framework of sparse rep-
resentation, improving the consistency of the selected patches
with their surroundings. Sun et al. [22] proposed to improve
visual consistency by first propagating the structure, and then
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filling-in the remaining unknown regions using a patch-based
texture synthesis technique. This method requires the user
to specify the curves that define, or approximate, the most
salient missing structures. Jia et al. [23] propose a two-step
method based on performing first a texture-based segmentation
of the input image and extrapolating the region boundaries
by tensor voting to generate a complete segmentation of the
image. In a second step missing colors are synthesized using
tensor voting. Tensor voting is a very attractive method for
maintaining curvature; however it cannot perform well on
complex structures. Moreover, image segmentation of natural
images is a difficult task.

Most of the above exemplar-based approaches are greedy
procedures where each target pixel is visited only once, and
the results are very sensitive to the order in which pixels are
processed. Contrary to the greedy methods, some approaches
[27], [28], [29], [24], [25] formulate image inpainting as
a discrete global optimization problem, where the image is
modeled using a Markov Random Field (MRF) with pair-
wise interactions. In [27], the objective function is minimized
using efficient belief propagation. In [30], [28], expectation-
maximization (EM) schemes are used for texture synthesis
or image completion. The EM-like algorithms require an
initialization which, as it turns out, may get easily stuck into
poor local minima. A multi-resolution approach is applied for
fixing this problem. Starting at the coarsest level, the inpainting
technique is then applied sequentially to each scale, using the
upsampled result of the previous scale as initialization. This
has become a common strategy for energy optimization in
image inpainting methods.

Variational models are appropriate for combining the main
features of geometry- and exemplar-based inpainting meth-
ods. A variational formulation of Efros-Leung method was
proposed in [31], where the inpainting problem was written
in terms of a correspondence map assigning to each point
of the inpainting domain a corresponding point in the known
part of the image, although the proposed numerical method
was still greedy. The authors also proposed a total variation
regularization of the correspondence map formulation, but did
not study this model numerically. Demanet et al.’s model [31]
is further analyzed by Aujol et al. [32], which also considered
several extensions that include a regularization term on the
reconstructed image (e.g. penalizing the total curvature of
the level lines). Arias et al. [24], [25] proposed a variational
framework for non-local image inpainting that permits to
include features of geometry-based approaches by a proper
choice of the similarity criterion. This is the case of the non-
local Poisson and gradient medians methods which are based
on the comparison of gradient patches [30], [24], [25]. Their
energy is written in terms of the unknown part of the image
and the correspondence map. The computational complexity is
reduced by the use of the Nearest Neighbor Field (NNF) [42].
In [34], the author proposed a variational formulation of Efros-
Leung method where the reconstructed image minimizes the
sum of the distances of each patch to the manifold of patches
determined by the known parts of the image. An equivalent
formulation was also proposed in [43]. Bugeau et al. [33]
iteratively applied texture synthesis and geometric methods in

order to combine features of both of them.
The image inpainting method we propose here is based

on a reformulation of the exemplar-based model in [31] as a
discrete global optimization problem. Our inpainting algorithm
relies on the global minimization of an energy function that
enforces the structure and texture consistency. The proposed
energy functional is written in terms of the offset map and
combines a data attachment term to ensure the continuity of
the reconstruction at the boundary of the inpainting domain
and a term (also derived from a reduced patch comparison)
that ensures a spatially coherent reconstruction inside the hole.
This formulation is adapted to obtain a global minimum using
graph cuts algorithm [37], [39], and can also be interpreted as
a MAP-MRF (Maximum A Posteriori in the Markov Random
Field) estimation problem. In order to reduce its computational
complexity, graph cuts are applied using a multiscale scheme.
Moreover, to compensate for the loss of structure and texture
information at low resolution levels we use a feature represen-
tation that is computed at the original image resolution. This
permits to improve the precision of correspondences when the
image is represented at low resolution levels, and alleviates
the ambiguity induced by comparing only color information.
This is a novel feature of our method.

Although, according to our previous review, the optimiza-
tion of an energy functional is a common approach for
exemplar-based image inpainting [31], [30], [27], [43], [34],
[24], there are significant differences with our method, both
in the energy definition and the optimization strategy. Let us
discuss them in more detail. As we said above, our energy
function is defined in terms of the offset map, comparing
full patches at the boundary of the inpainting domain to
ensure the continuity of the reconstructed image on it, and
using a reduced patch comparison (the four nearest neighbors)
inside the hole that is able to produce a visually coherent
reconstruction. In [27], the authors also consider an objective
function that corresponds to the energy of a discrete MRF
whose nodes are a subgrid of the image and whose labels are
the possible values of the correspondence map. The energy
consists of a boundary term similar to ours and a (pairwise
potential) term measuring how well two patches assigned to
neighboring nodes agree in their overlapping region. If written
in terms of the same variable (either the correspondence or the
offset maps), the two energies would coincide if the energy
in [27] is applied to the full image grid, and the size of the
patches used in the pairwise potential is reduced as in our
method. The formulation of the energy function in terms of
the offset map permits us to use the graph cuts algorithm to
optimize the energy satisfying the assumptions that guarantee
the convergence of α-expansions. The use of the four nearest
neighbors in the pairwise potentials reduces significantly the
number of edges of the graph, and therefore its complexity.
When combined with the multiscale scheme, our experiments
show that the performance times compare advantageously
to the ones of [27]. Our experiments also show the added
flexibility in recovering a coherent reconstruction when using
all image pixels in the hole as nodes of the graph, instead of a
subgrid. As shown in Figure 5(e), some structure inconsistency
is generated using [27].
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The relation of the proposed method with [31] has been
mentioned above and will be explained in more detail in
Section II. In contrast to [31] that uses the correspondence
map as unknown, and a greedy optimization algorithm, the
use of the offset map permits us to optimize the energy
efficiently by means of graph cuts. Essentially the same can
be said when we compare it to [24], [25]. In these papers, the
authors alternatively optimize their energy with respect to the
unknown image and the correspondence map (using for that
the Patch Match algorithm) converging to a critical point [26].
The efficiency of our algorithm compares favorably to the one
in [24], [25].

When addressing the inpainting problem in [41], the authors
consider an energy with a data term and a smoothness term
written also in terms of the offset map (called there the shift-
map). Their data term is used to force the shift-map to look
for pixels in the hole’s complement, and therefore it cannot
always ensure the continuity of the reconstructed image at
the boundary of the hole (an example of this is shown in our
experiment in Figure 10). Thus, the method proposed here can
be seen as a combination of the ideas in [27] and [41], using
in addition an efficient multiscale graph cuts algorithm that
incorporates a feature representation at the lower resolution
scales.

Summarizing, the main contributions of this paper are:
1) The inpainting problem is formulated using an exemplar-

based approach as an energy optimization problem for
the offset map. The energy function consists of a data
attachment term that ensures the good continuation of
the reconstructed image at the boundary of the inpainting
domain and a term that favors spatial coherence in the
image completion. The formulation is adapted to obtain
a global optimum using graph cuts.

2) We propose a multiscale graph cuts algorithm to effi-
ciently solve the energy minimization problem in which
a feature vector representation is introduced to compare
patches at low resolution, to compensate the informa-
tion loss. This representation can significantly eliminate
ambiguities and improve the accuracy of the offset map.

Let us finally explain the organization of the paper. In
Section II we introduce our energy functional, written in terms
of offset map. In Section III we propose a multiscale graph
cuts algorithm and discuss some details of the algorithm.
Experimental results and comparison with other algorithms
are given in Section IV. In Section V we summarize the
conclusions of the paper.

II. A MODEL FOR EXEMPLAR BASED IMAGE INPAINTING

A. The Demanet-Song-Chan formulation for Inpainting

In the paper [31], the authors proposed a reformulation of
the texture synthesis method by Efros and Leung [17] as
an optimization problem, which is well adapted for image
inpainting. Since it is at the basis of our formulation, let us
briefly review it.

Let D = {1, . . . ,M} × {1, . . . , N} denote the image
domain, and let u : D → IRn be a given image, where n = 1
for gray level images and n = 3 for color ones. To fix ideas,

let us work in the color case and write u = (ui)
3
i=1. Let us

denote by Ω a hole in the image, that is, a subset of D where
the image u is not known. The objective of image inpainting
is to fill-in the hole Ω using the information from the known
part of the image Ωc = D\Ω, see Figure 1. We denote by ∂Ω
the boundary of the hole. Since we are at the discrete level,
we consider the boundary points as part of Ω.

Given a pixel p ∈ Ω, we denote by Ψp the patch of the
image centered at p, that is, the restriction of the image u to
a neighborhood Qp = p + Q0 of p. We have denoted by Q0

a neighborhood of 0, typically a square domain centered at 0.
Interpreting Efros and Leung [17] method as the solution

of an optimization problem, Demanet, Song and Chan [31]
proposed to find an optimal correspondence map T : Ω→ Ωc

that minimizes the criterion

Ec(T ) =
∑
p∈Ω

∑
h∈Q0

|u(T (p+ h))− u(T (p) + h)|2. (1)

T (p) ∈ Ωc represents the point from which we copy its color
at p ∈ Ω. Notice that T (p+h) is not defined when p+h 6∈ Ω
and u(T (p) + h) is also not defined whenever T (p) + h ∈ Ω.
But, let us keep this notation avoiding the technicalities of the
more correct one that would exclude these cases. Notice also
that, once a minimizer T of Ec has been found, the interpolated
image can be defined in Ω as u(p) = u(T (p)), for all p ∈ Ω.

The authors acknowledge the difficulty in minimizing (1)
and propose an algorithm based on local minimizations close
to the algorithm in [17]. They select a pixel p near the border
of Ω and find T (p) as the minimizer of the Euclidean distance
‖Ψp −ΨT (p)‖2, where only the known parts of the neighbor-
hoods are compared. Then they define u(p) = u(T (p)). They
repeat this process for all pixels of Ω using an onion peeling
strategy. After this step, all pixels of Ω have been visited and
the image u reconstructed in Ω. Then the previous algorithm
is repeated until the energy does not decrease any more.

Since it will be convenient for our purposes, let us write
T (p) = p + m(p), where m : Ω → IZ2 represents the offset
map. Then

Ec(T ) =
∑
p∈Ω

∑
h∈Q0

|u(T (p+ h))− u(T (p) + h)|2

=
∑

q∈Ω+Q0

∑
h∈Q0

|u(T (q))− u(T (q − h) + h)|2

=
∑

q∈Ω+Q0

∑
h∈Q0

|u(q +m(q))− u(q +m(q − h))|2,

where we wrote q = p+h to obtain the second equality. Thus,
by minimizing this energy we aim to impose that the offset of
the neighbors of q, say m(q − h), has also to be valid for q.
That is, both values u(q+m(q)) and u(q+m(q−h)) should
be visually consistent. This would be the case if the offset
map is constant or locally constant. Together with the above
computation, this observation serves as a starting point for our
formulation.
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B. The proposed inpainting model

Let us formulate the inpainting problem as the computation
of an offset map m : Ω→ IZ2 that minimizes the energy

E(m) = Ed(m) + λEs(m), (2)

where λ > 0, and Ed(m) and Es(m) stand for the data and
smoothness terms of the energy, respectively. Knowing the
offset map, we reconstruct the image u in Ω by u(p) = u(p+
m(p)), for all p ∈ Ω. The choice of the offset map m as an
optimization variable will be justified in Remark 3.2.

The data term is defined by comparing the patches Ψp and
Ψp+m(p) for the pixels p near the boundary of Ω. The patches
are compared only using their known parts. This term ensures
the continuity of the reconstruction at ∂Ω. Thus, we define the
data term as

Ed(m) =
∑
p∈∂Ω

D(Ψp,Ψp+m(p)), (3)

where

D(Ψp,Ψp+m(p)) =

∑
q∈Q∗p

wg(p,q)du(q,q+m(p))2∑
q∈Q∗p

wg(p,q)
(4)

measures the similarity between the target patch Ψp and the
source patch Ψp+m(p). We have denoted by du(q, q′)2 the
Euclidean distance between the color vectors u(p) and u(q′),
i.e.

du(q, q′)2 =
∑3
i=1(ui(q)− ui(q′))2, q, q′ ∈ D. (5)

The weights wg(p, q) give more importance to pixels near the
patch center and are defined as

wg(p, q) = e−k1|p−q|
2

, p, q ∈ D,

with k1 > 0 (we have taken k1 = 0.25 in our experiments).
Notice that the sum in (4) is extended to the common part of
the two patches, that is

Q∗p = {q ∈ Qp ∩ Ωc : q +m(p) ∈ Ωc}.

When both patches have no common part, the term
D(Ψp,Ψp+m(p)) is set to a constant value. In practice, since
the constant value does not affect the results obtained by
minimizing E , we use the value zero.

The smoothness term aims to impose the visual consistency
of pixel values pointed by the offset map. Given a pixel p ∈ Ω,
we denote byNp a neighborhood of p (e.g. the 4-neighborhood
formed by the horizontal and vertical nearest neighbors). Then
we define the smoothness term as

Es(m) =
∑

p∈Ω\∂Ω

∑
q∈Np

du(p+m(p), p+m(q)). (6)

Notice that du(p+m(p), p+m(q)) in (6) is zero if the offset
map is constant in the neighborhood of p.

The energy function E tries to keep the boundary continuity
using the data term Ed, and get a consistent reconstruction
inside the hole thanks to the smoothness term Es, that says
that two neighboring pixels in the hole should be similar to
some neighboring pair in the known region, as used for photo
montage [40] or image retargeting [41].

Fig. 1. Illustration of the energy function.

Figure 1 illustrates both terms of the energy function. To
illustrate the smoothness term, let p and q be two adja-
cent pixels, marked in red and green colors in Figure 1.
If they have the same offset vector, then they are copied
from two adjacent pixels in the known region, and the term
|u(p + m(p)) − u(p + m(q))| = 0. However, this difference
can be zero while p, q do not necessarily share the same offset
vector. This is also illustrated in Figure 1. Suppose that p
and q are mapped to pixels p1 and q2 in Ωc through their
corresponding offsets m(p) and m(q). Let p2 and q1 be the
neighbors of pixels p1 and q2, respectively. The choice of the
offsets m(p) and m(q) is optimal if the pixels p1 = p+m(p)
and p2 = p+m(q) are similar in color (they are compared in
the term du(p + m(p), p + m(q))), and also q1 = q + m(p)
and q2 = q + m(q) are similar (they are compared in the
term du(q+m(p), q+m(q))). In that case the pixels p, q are
filled-in in a consistent way. Some artifacts may appear if we
cannot find a neighboring pair in Ωc similar to this filled-in
neighboring pair in the hole.

III. OPTIMIZATION OF E USING MULTISCALE GRAPH CUTS

A. Minimizing the energy E via graph cuts

Notice that the energy (6) can be written as

E(m) =
∑
p∈∂Ω

ed(p;m(p)) + λ
∑

(p,q)∈E

es(p, q;m(p),m(q)),

(7)
where E = {(p, q) : p ∈ Ω \ ∂Ω, q ∈ Np} is the set of edges
connecting each pixel p ∈ Ω \ ∂Ω to its neighbors Np in
Ω. The term ed(p;m(p)) is given by (4) and measures the
cost of associating the offset m(p) to pixel p. By writing
ed(p;m(p)) = 0 for pixels p ∈ Ω \ ∂Ω, the first sum
may be extended to Ω. The term es(p, q;m(p),m(q)) =
|u(p + m(p)) − u(p + m(q))| evaluates the consistency cost
of assigning the offsets (m(p),m(q)) to (p, q).

The offsets are the labels associated to each pixel. In our
case the set of labels is a finite set L ⊆ {q − p : q ∈ Ωc, p ∈
Ω}. Given a labeling m : Ω→ L and a particular label α ∈ L,
we say that the labeling m̃ is within an α-expansion of m if
m̃(p) = m(p) each time m̃(p) 6= α. As we shall see below, the
problem of finding the minimum of the energy in the class of
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all α-expansions of m can be formulated as the minimization
of an energy functional depending on a finite set of binary
variables. Then the algorithm realizes cycles through the set of
labels α ∈ L, finding each time the lowest energy α-expansion
move from the current labeling. It adopts m̃ as the new current
labeling if m̃ has a lower energy than the current one. The
algorithm ends when there is no more α-expansion move with
lower energy, for any label α.

To minimize the energy (7) we construct a graph whose
vertices correspond to pixels in Ω. The labeling is identified
with the offset function m that takes a finite number of values
L. If m is the current labeling and α ∈ L, we associate a
binary value X(p) to each vertex p so that X(p) = 1 if p
adopts label α and X(p) = 0 if it keeps the old label m(p).
We then write the energy of a labeling m̃(p) within an α-
expansion of m as a function depending on a finite set of
binary variables.

Let m be a current labeling, and let us restrict the energy E
to the α-expansions of m. Then the energy is defined on the
binary function X : Ω→ {0, 1} as

E(X) =
∑
p∈Ω

ẽd(p;X(p)) + λ
∑

(p,q)∈E

ẽs(p, q;X(p), X(q)),

where ẽd(p;X(p)) = ed(p; (1 − X(p))m(p) + X(p)α)
and ẽs(p, q;X(p), X(q)) = es(p, q; (1 − X(p))m(p) +
X(p)α, (1−X(q))m(q)+X(q)α). For simplicity, let us write
ẽs(X(p), X(q)) instead of ẽs(p, q;X(p), X(q)). Notice that ẽs
satisfies the regularity assumption [37]

ẽs(0, 0) + ẽs(1, 1) ≤ ẽs(0, 1) + ẽs(1, 0). (8)

Indeed

ẽs(0, 0) = |u(p+m(p))− u(p+m(q))|,

ẽs(1, 1) = |u(p+ α)− u(p+ α)| = 0,

ẽs(0, 1) = |u(p+m(p))− u(p+ α)|,

ẽs(1, 0) = |u(p+ α)− u(p+m(q))|,

and (8) follows from the triangular inequality for the Euclidean
norm in IR3. Thus, we can use the α-expansion algorithm as
described in [37]. As proved in [38], if es(p, q; ·, ·) is a metric,
then the α expansion algorithm provides a solution whose
energy is bounded by cE∗, where E∗ is the global minimum of
the original energy functional and c is a universal constant that
depends on the energy. But, notice that for each (p, q) ∈ E
es(p, q; ·, ·) is symmetric and satisfies the triangle inequality,
although it may happen that es(p, q;α, β) = 0 with α 6= β.
Thus, we cannot directly apply the convergence result to the
energy (7) based on es(p, q; ·, ·). But we can apply it if we
use instead

eTTVs (p, q;α, β) = es(p, q;α, β) + εmin(|α− β|, k2), (9)

where ε, k2 > 0, α, β ∈ L (in our experiments, ε = 20, k2 =
5). In this case, eTTVs (p, q;α, β) 6= 0 if α 6= β, it is symmetric
in α, β, and, when restricted to α-expansions, it satisfies (8).
This is sufficient for the previously mentioned results to hold
[38]. As we have experimentally observed, using either es or
eTTVs we obtain the same type of results.

Finally, let us observe that one can interpret the proposed
energy in terms of a MRF [44].

Remark 3.1: As we mentioned above, in practice we take
Np as the 4-neighborhood of p. This is mainly motivated by
computational reasons, since the number of edges of the graph
is proportional to the size of this neighborhood. Thus, our
choice represents a significant reduction of computational time
(around 40% with respect to taking Np as the 8-neighborhood
of p), without compromising the quality of the results.

Remark 3.2: Thanks to the choice of the offset m as our
optimization variable, the function es(p, q; ·, ·) is symmetric
(hence eTTVs (p, q;α, β) is a metric) and the convergence result
mentioned above holds. The symmetry property does not hold
if we use the correspondence map T as optimization variable.

B. Optimization of E using graph cuts at several scales

To further enforce global consistency and to speed up
convergence, we can solve the energy optimization problem
(1) using the graph cuts algorithm in a multiscale Gaussian
pyramid. Each pyramid level decreases image resolution to
half in each spatial dimension. The optimization starts at the
coarsest level and the solution is propagated to finer levels for
further refinement. This is a common strategy in the context
for image inpainting (e.g. [27], [28], [43], [41]).

To fix notations we use L levels of resolution, the level k
being associated to the sampling grid Πk := {0, . . . , 2N−k −
1}2, k = 0 and k = L − 1 corresponding to the highest and
lowest resolution levels, respectively. Let mk denote the offset
map at level k.

At lowest resolution, the offset map could be found by
searching in all positions of the hole’s complement. But,
in most cases, at low resolution the pixels surrounding the
inpainting domain and the pixels in the hole have a similar
pattern and the search range can be constrained by imposing
a bound on the length of the vector mL−1(p). In practice
we impose that the length of mL−1(p) is smaller than γwh,
where γ > 0 is a constant value and wh is the maximum
distance between the pixels in the hole and Ωc (at that level
of resolution). In our experiment, we take γ = 2.

After the offset map mk at level k is obtained, we extend
it to the previous level of resolution k− 1. For that we define
mk−1(2p) = 2mk(p) for each p ∈ Πk, and we interpolate it
on Πk−1 \ Πk using a nearest neighbor interpolation. Then
we refine the offset map at level k − 1 by minimizing
the energy (1) at that level using as a set of labels L a
neighborhood of (0, 0) in IZ2. The final offset map at level
k− 1 is mk−1(p) ∈ mk−1(p) +L. To speed up computations
we used L = {(1, 0), (0, 1), (0, 0), (−1, 0), (0,−1)}. Due to
the multiscale strategy, this refinement is sufficient in most
cases, and increasing the neighborhood size does not improve
the results. In our experiments we have tested this, up to a
neighborhood of size 21× 21.

The reasons for using a multiscale graph cuts algorithm are
two-fold: the first one is obviously to reduce the computational
cost, the graph labeling at the original image resolution being
computationally intensive because of the large number of
labels and pixels in Ω. The second is that the smoothness
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(a) (a) (b) (b) (c) (c) (d) (d)

(e) (e) (f) (f) (g) (g) (h) (h)

Fig. 2. Feature vector representation.

term, that uses at each scale the 4 nearest neighbors, can
capture more spatial information at the lowest resolution level.
This helps to avoid getting stuck into bad local minima. For
the same reason, also the multi-scale strategy is used in the
PatchMatch method [42].

In our experiments, the image size at the lowest resolution
is around 80× 80, and we use 2 to 5 levels for most images.
During the image downscaling from the original size to the
smallest one, most of the image information, specially the
structure and texture of the regions, is lost. Thus, it is easy
to find wrong offset labels for pixels at lowest resolution, and
is difficult to correct this at higher resolution using a small
search range.

In order to avoid this problem, we keep more structure
and texture information at lowest resolution. For that, when
working in the lowest resolution grid ΠL−1, we use a feature
vector with 7 components, namely

U(p) = {(uL−1
i (p))3

i=1, gx(p), gy(p), Gx(p), Gy(p)},

where uL−1 denotes the image at lowest resolution, p ∈ ΠL−1,
and the last four items are the gradient-related features

gx(p) =
1

22L

∑
q∈Vp

∇xI(q), gy(p) =
1

22L

∑
q∈Vp

∇yI(q),

Gx(p) =
1

22L

∑
q∈Vp

|∇xI(q)|, Gy(p) =
1

22L

∑
q∈Vp

|∇yI(q)|.

I(q) =

∑3

i=1
ui(q)

3 denotes the image intensity, and Vp is the
2L × 2L square set of pixels of the highest resolution grid
Π0 that are represented by pixel p ∈ ΠL−1. We have denoted
∇xI(q) = I(i+1, j)−I(j), ∇yI(q) = I(i, j+1)−I(j), q =
(i, j) ∈ Π0 (these values being zero if q is on the boundary of
the image domain, corresponding to a mirror symmetry of the
original image). Thus, the gradient features at lowest resolution
are just the average of gradient information computed at the
highest resolution level. This type of features is also used in
SURF (Speeded Up Robust Features) descriptor [46].

When working at the lowest resolution level, we redefine

the energy E by replacing du in (4) and (6) by

dU (p, p′)2 =
∑3
i=1(uL−1

i (p)− uL−1
i (p′))2

+(gx(p)− gx(p′))2 + (gy(p)− gy(p′))2

+(Gx(p)−Gx(p′))2 + (Gy(p)−Gy(p′))2,

(10)

where p, p′ ∈ ΠL−1. The use of additional features at lower
resolution levels is the main difference with other methods
that also use a multiscale strategy, e.g. [27], [28], [43], [41].

Figure 2 shows the properties of the feature space represen-
tation for four distinctively different image-intensity patterns
within a sub-region. Due to the smoothness of the downscaled
image, the three different patterns shown in Figures 2(a), 2(b),
and 2(c) will result in a pattern similar to the one in Figure 2(d)
when they are represented at lowest resolution, the structure
and texture information being lost. Notice that one cannot
distinguish these four patterns using only information at the
lowest resolution level, and the graph cuts algorithm easily
finds a wrong offset map. However, the situation improves if
we represent the pixel at lowest resolution using the proposed
feature space, where the last four feature entries represent
the nature of the underlying intensity pattern at the original
image resolution. In Figure 2(a), which contains a square wave
pattern in the y direction, the value of Gy is high, but all others
are relatively low. If the intensity increases gradually in the y
direction as in Figure 2(c), both values gy and Gy are high. The
proposed feature vector representation permits to eliminate the
ambiguity represented in Figure 2 and improve the accuracy
of the offset map.

As we have said before, the proposed features are similar to
SURF descriptors [46]. Being based on the gradient, they tend
to be more useful for differentiating between geometric struc-
tures (based on edges). But, although one could devise textures
for which they are not discriminative, they represent also an
improvement in this case, and we can use their performance
in shape recognition tasks in favor of this assertion, acknowl-
edging also the limitations (e.g. ambiguities) that they have
in this context. As shown by our experiments, the proposed
features, which combine color components and gradients from
the original image, result into a distinctive representation for
different structures and textures. Other feature vectors based
on Gabor functions or wavelets could also be used.

In practice, we first build-up four gradient images
∇xI,∇yI, |∇xI|, |∇yI| at the original image size, and then
downscale them to lowest resolution. Then we compute the
values of gx, gy, Gx, Gy at lowest resolution.

C. On regularization terms

Robust regularization techniques, e.g. total variation [45],
are frequently employed for ill-posed inverse problems in
image processing. As we have already mentioned, the smooth-
ness term can be thought of as a regularization term (by the
intermediate of the image u). Since we are using graph cuts as
optimization procedure, we can easily add other regularization
terms, as in (9). We can also consider the penalization of large
offsets.
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We assume that if two patches in Ωc have a similar
distance to the target patch centered at p ∈ Ω, the patch with
the shortest offset has a higher probability to fit the target
patch. As in [43], based on this assumption, large offsets are
penalized using the cost

Er =
∑
p∈Ω,p+m(p)∈Ωc

β1

1+e−k2m(p)2
, (11)

where β1, k2 > 0 (in our experiments we have taken β1 = 200
and k2 = 0.25). Notice that this is a unary term that is added
to the energy E .

Using the penalization of large offsets and the regularization
eTTVs in (9) we can obtain improvements for some images, as
shown in Figure 3. However, in most of the tested images, we
can achieve similar results without using both regularization
terms.

IV. EXPERIMENTS

In this section, we evaluate the proposed image inpainting
algorithm on a variety of natural images. We start by describ-
ing the parameter setup used in our experiments. Then we
display the results obtained with our algorithm in several cases
of test, namely in scratch/text removal, error concealment, and
object removal. We also compare our algorithm with some
state-of-art inpainting methods.

A. Implementation Details

Let us specify the parameter choices that are needed to
implement the proposed algorithm.

1) The Patch Size in the Data Term: The size of the patch Ψ
in the data term helps to capture the local image characteristics
around the boundary of the hole, and get a good continuation
of the image structure and texture. We use the following
practical rule: we fix the size of the patch for images at lowest
resolution and we increase linearly the size when doubling the
resolution in each dimension. In practice, the lowest resolution
image size we consider is around 80× 80 for which we use a
patch of size 7×7. For a real number a, let us denote by [a] is
the greatest integer ≤ a. Thus, given an image of size M ×N
(larger than 80 × 80) a good practical rule is to use patches
of size wp × wp, where wp = 7 + 2

[
3
2k
]
, and k satisfies

4−kM ×N = 80× 80. We have used the expression 2
[

3
2k
]

instead of 3k to have patches of odd dimensions.
As an example, when the image size is 1000 × 1000, the

patch size is 17 × 17. Figure 4 illustrates how the choice
of patch size affects the quality of the inpainting result.
Smaller patch sizes allow more matching possibilities without
capturing the image structure, and this does not always permit
to obtain a good reconstruction. Up to a certain limit, a bigger
patch size can capture the texture characteristics better, how-
ever with less matching possibilities. From the experiments we
conclude that our adaptive patch size rule permits to obtain
satisfactory results.

2) The Number of Multi-scale Levels: We set up the size of
the image at lowest resolution, say a×b. The number of levels
of the multi-scale algorithm is set using the following rule: we
consider one level of resolution for images of size a× b and
we add an additional level when doubling the resolution in

each dimension. As we said above, in practice, we take the
size of the lowest resolution images as 80 × 80. Thus, given
an image of size M ×N (larger than 80× 80) the number of
levels is set to L = [k] + 1, where [k] is given as above by
4−kM ×N = 80× 80.

As an illustration, when the size of the original image is
800 × 600, as in Figure 5a, we have L = 4. In the first
row of Figure 5 we show the results obtained for different
number of levels, the processing times are also reported within
parenthesis. As one can see, the computation time decreases
significantly with the number of levels. When using 5 levels,
as in Figure 5(d), we have a lower computational complexity,
although some block artifacts appear in the inpainted image.
For comparison, we display in Figure 5(e) the result obtained
using Komodakis et al.’s method [27]. Considering the com-
putational cost and the quality of the results obtained, in the
experiments that follow the number of levels is adaptively set
to L = [k] + 1.

In the second row of Figure 5 we show the results obtained
using different number of resolution levels for a smaller image,
of size 200 × 200. In this case, the value of L given by the
above rule is L = 2.

3) Search Range: For computational efficiency, we can also
set a restricted search range around the hole, specifying it by
a bound on the maximum offset. The bound is given by γwh,
where γ is a constant value, and wh is the maximum distance
between the pixels in the hole and its complement, that is
wh = maxp∈Ω d(p,Ωc). We show in Figure 6 how the search
range affects the inpainting results. We see that the best results
are obtained for γ = 2 in Figure 6(c). When the search range
is too small, e.g. γ = 1 in Figure 6(b), one does not capture
enough similar patterns. The result obtained when we search
in the full hole’s complement, displayed in Figure 6(d), is a
little worse than the one in Figure 6(c). We observe that, in
Figure 6(c), appropriate pixels that exist near the inpainting
region are preferentially selected for matching. Let us also
point that, a larger search range will increase the computation
cost significantly. Thus, the strategy of restricting the search
range may be useful if the available computation time imposes
us this choice.

B. Experimental results

1) Benefits of Using the Proposed Feature Representation:
In order to justify the improvement of inpainting performance
due to the proposed feature representation, in Figure 7 we
compare the results obtained when we consider three different
types of features to represent the pixel information. In the
first one, see Figure 7(b), pixels (at each scale) are repre-
sented using only the color vector. In the second, see Figure
7(c), they are described at each scale using the color and
gradient vectors. In the third, see Figure 7(d), we use our
feature representation. In this case, the recovered texture and
structure are more plausible. This may be explained since the
feature representation helps to eliminate the ambiguities at low
resolution, and improves the accuracy of the offset map.

2) Scratch and Text Removal: Let us evaluate the per-
formance of the proposed inpainting algorithm for scratch
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(a) Image with mask (b) No regularization (c) With regularization (9) (d) With regularization (11) (e) With both regularizations

Fig. 3. Comparison of different regularization terms.

(a) Image with mask (b) wp = 3 (c) wp = 5 (d) wp = 11 (e) Adaptive

Fig. 4. The influence of the patch size on the results.

(a) Image with mask (b) With 3 levels (828s) (c) With 4 levels (84s) (d) With 5 levels (39s) (e) Komodakis’ (998s)

(f) Image with mask (g) With 1 level (83s) (h) With 2 levels (28s) (i) With 3 levels (12s) (j) Komodakis’ (37s)

Fig. 5. The influence of the number of levels of the multiscale algorithm.

(a) Image with mask (b) γ = 1 (13s) (c) γ = 2 (31s) (d) Full image (93s)

Fig. 6. Influence of the search range.
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(a) Image with mask (b) Color (c) Color+Gradient (d) Feature representation

Fig. 7. Influence of the Feature Representation.

and text removal by comparing it with the geometry-based
inpainting algorithm in [13] and the exemplar-based one
in [19]. The original images (which can be found in
http://r0k.us/graphics/kodak/) and the corresponding results
are shown in Figure 8. The first column shows the images with
the scratch or text mask, the second, third and fourth columns
display the results obtained using the methods in [13], [19],
and ours, respectively. For qualitative comparison, the peak
signal-to-noise ratio (PSNR) (indeed the average of the PSNRs
of the color channels (R, G, B)), and the processing time are
also presented within parenthesis.

As one can see in Figure 8, Bornemann et al.’s method [13]
introduces some blur, but since the inpainting area is very thin,
visually, the result is comparable with that of Criminisi et al.’s
method [19]. The result obtained with the proposed method
improves the above methods on both objective and subjective
criteria.

3) Block Recovery for Spatial Error Concealment: Error
concealment is widely used as a post-processing step to allevi-
ate the negative effect of erroneous blocks. In this experiment,
we consider the case of blocks of size 16x16 which are of
common use for image and video encoding. Figure 9 shows
the results obtained using the methods in [13], [19], and ours.
For qualitative comparison, the PSNR and the processing time
are also presented within parenthesis. As it can be seen, the
proposed method shows better performance for block recovery
than those in [13] and [19].

4) Object Removal: We applied the proposed algorithm
to inpaint the missing region after object removal and
we display some results comparing it with other algo-
rithms. Some of the images used (see Figures 10 and 11)
were taken from the image benchmark [43] available at
http://yokoya.naist.jp/research/inpainting/. Some others (see
Figures 12 and 13) were taken from [35], available at

http://graphics.cs.cmu.edu/projects/scene-completion/. In Fig-
ure 10, we compare our algorithm with Bornemann et
al. [13], Criminisi et al. [19], Bugeau et al. [33], Ko-
modakis et al. [27], (using the implementation of the code in
http://lafarren.com/image-completer/), Pritch et al. [41], and
Barnes et al. [42] methods. These images are challenging
because the inpainting area is large and contains both structure
and texture information. The geometry-based method [13]
introduces blurring artifacts. Although the exemplar-based
methods [19], [33], [27], [41], [42] do not suffer from blurring,
they do not recover the structure information perfectly, may be
because the edges arriving to the hole’s boundary are not very
sharp. The proposed method outperforms the others, giving
more plausible results. Figure 11 shows some other examples.
As these results show, edges and textures are well recovered
using the proposed method.

Figures 12 and 13 show some results obtained using images
taken from [35]. They are larger than those in the two previous
experiments and the holes are also larger. Figure 12 shows the
comparison with three other methods [19], [27], [35]. As one
can see, our method is able to recover the large area of the
grassland and trees. Hays et al. method [35] also reconstructed
a plausible image with different visual effects, the reason being
that their method uses also other images to copy from. Other
results that permit to compare the proposed method with that
of Hays et al. [35] are displayed in Figure 13. The method
in [35] performs the image completion using the information
from a huge database of photographs gathered from the Web.
We achieve a comparable result using a single image.

5) Computational Cost: We have implemented the pro-
posed method using MATLAB programming language on Intel
2.67 GHz CPU, without optimization. The method is very
efficient especially for large images. For instance, our method
takes 56 seconds for Figure 8, compared with the 724 seconds
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(a) Image with mask (b) Bornemann’s[13] (39.32dB,27s) (c) Criminisi’s[19] (39.30dB,724s) (d) Ours (40.47dB, 56s)

(e) Image with mask (f) Bornemann’s[13] (34.45dB,31s) (g) Criminisi’s[19] (33.77dB,807s) (h) Ours (35.18dB,74s)

Fig. 8. Results for scratch and text inpainting.

(a) Image with mask (b) Bornemann’s[13] (37.65dB,34s) (c) Criminisi’s[19] (36.27dB,374s) (d) Ours (39.29dB,71s)

Fig. 9. Results for block recovery.

needed by Criminisi et al.’s method [19]. For Figure 12,
Criminisi et al.’s [19] and Komodakis et al.’s [27] methods
take 524 and 429 seconds to fill-in the holes, respectively.
Our method only needs 78 seconds.

V. CONCLUSIONS

A novel formulation of exemplar-based inpainting is pro-
posed based in the minimization of an energy functional writ-
ten in terms of the offset map. The proposed energy function
jointly considers the continuity of the reconstructed image on
the boundary of the inpainting domain and a visually coherent
reconstruction inside the hole. We used a multiscale graph cuts
algorithm to efficiently solve the energy optimization problem.
Moreover, the use of a feature vector representation permits
to compensate the loss of information at low resolution levels.
Our experiments show the good performance of the proposed
algorithm when compared with other recent algorithms.
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