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This paper proposes a comprehensive framework for project selection problem under uncertainty and
subject to real-world constraints, like segmentation, logical, and budget constraints. The framework con-
sists of two main phases. In the first phase, the candidate projects are ranked considering the uncertainty,
through a Monte Carlo simulation linked to a multi-criteria approach. In the second phase, the overall
complete preorder of the projects in different iterations is first determined and then used in another
Monte Carlo simulation linked to an integer programming module in order to effectively drive the final
portfolio selection while satisfying the budget, segmentation and other logical constraints. The proposed
framework is implemented in a case study to show its usefulness and applicability in practice. Finally, a
comparison is carried out between the proposed approach and its deterministic counterpart and the cor-
responding results are discussed.
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1. Introduction

A project will not be successful unless all, or at least most of the
participants are not only competent but also motivated to produce
a satisfactory outcome. To achieve this, a number of methods, pro-
cedures and techniques have been developed, which together with
the general management and people skills, enable the project man-
ager to meet the set criteria of time cost and performance/quality
in the most effective way (Lester, 2007).

Operational Research (OR) has given essential scientific contri-
butions to the success of Project Management not just through
multiple models to understand and to represent projects but also
by the development of algorithms and aids to support the deci-
sional role of project manager. Tavares (2002) has discussed the
major contributions of OR to the project management area. In this
regard, a well-known problem, addressed by different OR tech-
niques, is project selection.

Project selection is a strategic decision problem which is often
characterized by multiple, conflicting and incommensurate criteria
(Liesiö, Mild, & Salo, 2007) while the decision maker (DM) has to
decide a portfolio of the most attractive alternatives by taking into
account different aspects of the projects’ efficiency (Mavrotas,
Diakoulaki, & Kourentzis, 2008). In other words, in the project
selection problem a decision maker allocates limited resources to
ll rights reserved.
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a set of competing projects, considering one or more corporate
goals or objectives (Medaglia, Graves, & Ringuest, 2007).

Project selection is a very complex decision making process
since it is affected by many critical factors such as the market con-
ditions, raw materials availability, probability of technical success
and government regulations (Bard, Balachandra, & Kaufmann,
1988). In addition, there is a high level of risk for the uncertainty
or incompleteness of project information which make the DM feel
hard to analysis correctly (Wang, Xu, & Li, 2009). Obviously, wrong
decisions in project selection have two negative consequences: On
the one hand, resources are spent on unsuitable projects and, on
the other hand, the organization loses the benefits it could have
gained if these resources had been spent on more suitable projects
(Martino, 1995).

In this paper, a comprehensive framework is introduced that
considers real-world constraints and deals with all possible kinds
of uncertainties in the input data of project selection problem,
i.e., performance values (PVs), criteria weights (CWs) and prefer-
ence thresholds. In the first phase, the PROMETHEE method linked
to a Monte Carlo simulation structure is implemented in order to
rank the candidate projects. The output of simulation provides
the probabilities of achieving different ranks for each project. Then,
a linear assignment model is adapted to calculate the overall rank-
ings amongst all simulation iterations. In the second phase, overall
rankings are used for another Monte Carlo simulation by which the
augmented scores are determined and fed into an integer program-
ming (IP) model. This IP model has been inspired from Mavrotas
et al. (2008) in which the most proper projects are selected based
on the augmented scores and subject to budget, segmentation and
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other possible constraints. The IP model overcomes the bias
against low cost combination of projects which is usually occurred
in the knapsack-type formulation. Also, the IP model used here
does not need the total scores reported by MCDA method but it
needs only the ordinal ranks of the projects. Another benefit of this
IP model is its protection against the rank reversal problem which
often occurs when ranking multiple projects using MCDA tech-
niques with different input parameters.

The main contributions of the paper are twofold: Lowering the
uncertainty level of important input data and identifying those re-
sources that their capacities should be extended. That is, we first
try to find those uncertainties that have the most impact on the
ranking of the projects. In this way, the decision makers will be
able to concentrate on the most important areas and make lower
their uncertainties via increasing their knowledge. Furthermore,
the proposed framework indicates which resources have the most
impact on the final selection of projects; therefore, the managers
can analyze the decision of extending these resources. Finally,
the procedure presented here, considers the uncertainties in an
easy-to-understand method while being efficient and applicable.

The rest of the paper is organized as follows. The relevant liter-
ature is reviewed in Section 2. The preliminaries for the PROM-
ETHEE method as well as its modified version to handle
uncertain data are given in Section 3. The proposed framework
and its modules are described in Section 4. The proposed method
is implemented for a real case study and the corresponding results
are discussed in Section 5. Finally, Section 6 concludes this paper.
2. Literature review

Project portfolio selection has been discussed by many
researchers for more than 40 years. The reasons that attract
researchers to this topic for such a long period of time could be
the following (Iamratanakul, Patanakul, & Milosevic, 2008):

� Project portfolio selection is always a challenging issue for R&D
and product development departments. Even though many
researchers have already done various works, the nature of
the topic is very broad such that there are always opportunities
for future research.
� The research on project portfolio selection can be applied to

other similar areas such as technology selection. In fact, the pro-
ject and technology selection are similar topic where their pro-
cesses and applications are sometimes interchangeable.
� The topic itself has some impact on a wide range of practices.

The project selection research can be categorized based on the
two perspectives: fields of application and solution methods. Pro-
ject selection is implemented in a wide variety of fields. For exam-
ple, Chiadamrong (1999) presented an integrated fuzzy multi-
criteria decision making method for manufacturing strategies
selection. Kim, Park, and Seo (1997) proposed a matrix approach
for telecommunications technology selection. Vieira Jairo, Khator,
and Stange (1996) developed a portfolio selection model through
mathematical programming in CAD environment. Lesusky, Rhudy,
and Wiginton (1987) developed a knowledge-based system for
information systems project development consulting. Park, Park,
and Ntuen (1990) presented an integrated economic and strategic
approach for investment decisions. Blasak and Ganti (1987) used a
model to select microcomputer applications for hospital manage-
ment. Fitzpatrick and Askin (2005) used their model to form effec-
tive worker teams. However, categorizing the research based on
fields of application is not the focus of this section; instead, the
presented solution methods will be discussed in the following.
Traditional project selection approaches would focused mainly
on quantitative tools, such as discounted cash flow, net present va-
lue (NPV), return on investment (ROI) and payback period (Libera-
tore, 1987). However, these approaches ignore multiple factors
impacting the project selection, and do not provide a useful trans-
formative formula to combine all relevant criteria into a single
decision making model (Brewer, Gatian, & Reeve, 1993). Therefore,
multiple-criteria scoring and ranking methods are widely em-
ployed to improve project selection in businesses. These methods
are used to score projects with respect to each of the evaluation
objectives. Each objective is assigned a weight, and each project
is scored with respect to the objectives (Chen & Cheng, 2009).

Iamratanakul et al. (2008) summarized the past and the present
literature on project portfolio selection. They highlighted six
groups of project portfolio selection methods including: benefit
measurement methods, mathematical programming approaches,
simulation and heuristics models, cognitive emulation approaches,
real options, and ad hoc models. They report that each methodol-
ogy does not address all of project portfolio selection aspects be-
cause each of which has its own advantages and disadvantages.
For more information about the project portfolio selection models,
the interested reader is referred to Graves and Ringuest (2003) and
Iamratanakul et al. (2008). Fig. 1 shows the categorization of pro-
ject portfolio selection models presented by Iamratanakul et al.
(2008).

Surprisingly, although there is inherent uncertainty when
determining the different input data like performance values
(PVs) and criteria weights (CWs), but little attention has been paid
to address the project selection process under uncertainty. At be-
low, we present the most relevant research works dealing with
uncertainty in the project selection area.

Charnes and Stedry (1966) proposed a technique named as
chance-constrained programming model in which random vari-
ables are defined to consider uncertainty for availability of facilities
that are required for performing R&D projects. But, other kinds of
uncertainties are not considered in this method. Li (2009) consid-
ered budget uncertainty in highway investment decision making
using a stochastic optimization model that explicitly addresses
budget uncertainty in highway investment decision making. Li
and Madanu (2009) presented an uncertainty-based methodology
for highway project level life-cycle benefit/cost analysis and pro-
ject evaluation. They analyzed project benefits by three ap-
proaches: deterministic, risk-based, and uncertainty-based ones.
Then, the three sets of estimated project benefits are implemented
in a stochastic optimization model for project selection. They
showed that there are significant differences with and without
uncertainty considerations. Li and Sinha (2004) presented another
methodology for highway investment decision making under
uncertainty that uses Shackle’s model for uncertainty-based pro-
ject benefit analysis and system optimization for project selection.
Shackle’s model overcomes limitations of the risk-based life-cycle
cost analysis approach by using degree of surprise as a measure
of uncertainty associated with possible outcomes of performance
measures utilized for project benefit analysis. By presenting a case
study, they revealed significant differences in project selection re-
sults using the proposed methodology versus the existing risk-
based approach. Wey (2008) considered uncertainty of available
budget, the chance of success and the efficient allocation of the
project team in the urban renewal projects selection. Three tech-
niques are integrated: integer-constrained multi-objective optimi-
zation, Monte Carlo simulation, and the Analytic Network Process
where the probability distributions are used to describe costs.
Medaglia et al. (2007) considered project selection as a stochastic
multi-objective linearly-constrained optimization. They proposed
an evolutionary method with partially funded projects, multiple
(stochastic) objectives, project interdependencies (in the objec-
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Fig. 1. A classification of project portfolio selection models (Iamratanakul et al., 2008).
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tives), and a linear structure for resource constraints. This method
is based on posterior articulation of preferences and is able to
approximate the efficient frontier composed of stochastically
non-dominated solutions. They compared the method with the
stochastic parameter space investigation method (PSI) and illus-
trated it with a R&D portfolio problem under uncertainty based
on Monte Carlo simulation.

As mentioned before, little attention has been paid so far to con-
sider different kinds of uncertainties in the project selection process
simultaneously. Some researchers (specially Medaglia et al., 2007),
have tried to consider uncertainty in the project selection problem
in a comprehensive way; but from the practical point of view, such
models add complexity to an already complex process, and the re-
sult may often be a loss of transparency to the decision maker, in
contrary to the methods of MCDA (Stewart, 2005). So, in this paper
we have tried to present a new procedure which uses the advanta-
ges and capabilities of the PROMETHEE method linked to a Monte
Carlo simulation in order to consider and possibly make lower all
kinds of uncertainties of project selection problem in an acceptable
complexity level. In addition, our procedure incorporates an assign-
ment phase under uncertainty which has been neglected in the
most of previous relevant works. Also, two linear assignment mod-
els are proposed to aggregate the simulation results.

At below, we first give some preliminary introductions to
PROMETHEE method and its variants under uncertainty and then
go through the details of the proposed framework.

3. Preliminaries

3.1. PROMETHEE method

Several Multi-Criteria Decision Aid (MCDA) methods have been
proposed in recent decades to help the decision makers in selecting
the best alternatives. In the meantime, the PROMETHEE (Prefer-
ence Ranking Organization Method for Enrichment Evaluations)
family of outranking methods and their applications has attracted
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much attention from academics and practitioners (Behzadian,
Kazemzadeh, Albadvi, & Aghdasi, 2010).PROMETHEE technique is
one of the best known and most widely applied outranking method
because it follows a transparent computational procedure and can
be easily understood by actors and DMs (Georgopoulou, Sarafidis,
& Diakoulaki, 1998).

The PROMETHEE method was developed by Brans (1982) and
further extended by Vincke and Brans (1985). Recently, Behzadian
et al. (2010) have presented a comprehensive literature review in
order to uncover, classify, and interpret the current research on
PROMETHEE methodologies and applications. They classified the
application areas into Environment Management, Hydrology and
Water Management, Business and Financial Management, Chemis-
try, Logistics and Transportation, Manufacturing and Assembly, En-
ergy Management, Social, and Other Topics.

The PROMETHEE is based on developing a preference function
Pj(a, b) which is a function of the difference dj between the ratings
of two alternatives for every criterion j (for example:
dj = f(a, j) � f(b, j), where f(a, j) and f(b, j) are performance values
of alternatives a and b regarding to criterion j, respectively). Then,
a specific preference function is defined for each criterion and is
used to determine the degree of preference, Pj(a, b). Fig. 2 shows
six general preference functions suggested by Brans, Vincke, and
Mareschal (1986). Indifference q and preference p threshold values
may also have to be defined for selected preference function.

Then, the multi-criterion preference index,
Q
ða; bÞ, is defined as

the average of the preference functions as follows:
d
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Fig. 2. General preference functions (Hyde et al., 2003).
Y
ða; bÞ ¼

PJ
j¼1wjPjða; bÞPJ

j¼1wj

ð1Þ

where wj is the weight assigned to the criterion j. After that, two
outranking indices, i.e., the positive and negative flows are defined
for alternative a regarding to all alternatives, set A:

/þðaÞ ¼
X

A

Y
ða; bÞ ðpositive flowÞ ð2Þ

/�ðaÞ ¼
X

A

Y
ðb; aÞ ðnegative flowÞ ð3Þ

where /þðaÞ denotes that how much the alternative a is dominating
other ones and /�ðaÞ shows that how much the alternative a is
dominated by the others. In this way, the total outranking value,
net flow, is then determined by:

/ðaÞ ¼ /þðaÞ � /�ðaÞ ð4Þ

Notably, some variations of the PROMETHEE method have been
developed while they differ in the type of dealing with flow indices
and their output. PROMETHEE I provides a partial ranking, includ-
ing possible incompatibilities while PROMETHEE II shows a com-
plete ranking of alternatives. PROMETHEE V extends the
application of the PROMETHEE II in which the several options
can be selected in respect to a set of constraints. Another variant
in this family is the PROMETHEE GAIA, a geometrical analysis tool
for interactive aid, which presents the results in a geometrical
plane with the aim of reducing the multi-dimensional criteria
space to a two-dimensional criteria plane which allows direct vi-
sual presentation of the results.

3.2. PROMETHEE under uncertainty

A DM is faced with two kinds of uncertainties when using the
PROMETHEE method: assignment of PVs and elicitation of CWs.
PVs are assigned by experts to each criterion for each alternative.
Generally, the DM does not have a full knowledge and access to
the alternatives being assessed because they are predicted future
events or out of the reach. So, there may be some imprecision, con-
tradiction, arbitrariness and/or lack of consensus in determining
PVs. PROMETHEE has tried to take these uncertainties into account
by defining and using general preference functions but DM
encounters another kind of uncertainty in selecting the proper
preference function and defining preference and indifference
thresholds (Salminem, Hokkanen, & Lahdelma, 1998). CWs are
the other inputs that add another kind of uncertainty to the deci-
sion making process; especially when there are multiple DMs.

Hyde, Maier, and Colby (2003) introduced a stochastic method
to incorporate uncertainty in the decision making process. In this
way, uncertainty in the input data, i.e., PVs and CWs, are defined
using probability distributions. Then, a reliability analysis by using
Monte Carlo simulation is performed. Finally, a significance analy-
sis is undertaken using the Spearman rank correlation coefficient.
This method is employed in this paper in order to deal with uncer-
tainties in the PROMETHEE part of the proposed procedure for pro-
ject selection.

4. Proposed project selection framework

The proposed framework involves six stages including the:
problem definition, Monte Carlo simulation I, improvement of
uncertainty level, ranking aggregation, Monte Carlo simulation II
along with the final allocation as well as a sensitivity analysis on
constraints. Fig. 3 shows the structure of our framework and the
interaction between its stages. It is not required to determine
thresholds if a probability distribution function is fitted or defined
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for each criterion but if there is enough knowledge to determinis-
tically set performance values in one or more specific criterion/cri-
teria; a proper preference function should be selected, like Fig. 2,
and the preference thresholds should be set as well (Hyde et al.,
2003). That is why the determination of thresholds and their distri-
butions are shown by dashed lines in Fig. 3.

4.1. Problem definition

Problem definition is the first stage in every multi-criteria deci-
sion making problem. Problem definition is handled by experts and
actors. Actors are some authorities, directly or indirectly involved
in the policy making process and groups of people affected by deci-
sions. Briefly, we can mention the following steps for this stage:

� Identifying the actors.
� Defining the projects (P1, P2, . . . , Pn).
� Defining the criteria (C1, C2, . . . , Cm).
� Providing the criteria weights by actors (w1, w2, . . . , wm).
� Assigning the criteria performance values of projects by experts

(xij).
� Fitting the most appropriate probability distributions to actual

input data or defining them based on decision makers’
knowledge.
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Defining proper criteria is highly dependent to the kind of pro-
jects (e.g., information systems, construction or R&D project types)
and stakeholders’ utilities. Many researchers have suggested differ-
ent criteria for specific project selection problems. Buss (1983)
considered intangible benefits, technical importance, and degree
of compatibility with corporate objectives for ranking computer
projects. Henriksen and Traynor (1999) defined relevancy, risk,
reasonableness and return criteria for ranking R&D projects. Liang
and Li (2008) defined detailed criteria for enterprise information
system project selection and categorized them into the four cate-
gories, i.e., benefits, opportunities, costs and risks.

In the situations where relatively a large number of actors are
involved in the decision making process, the CWs of the actors
can be considered as a representative sample of the CWs of the
stakeholders’ population. Then, goodness of fit statistics is used
to determine the best fitted distributions. But, in the situations that
a small number of actors are involved, either a normal or uniform
distribution can be fitted to address the CWs (Hyde et al., 2003).

Performance values may be qualitative or quantitative. The
uncertainty, imprecision and variability in the quantitative PVs
can be indicated by the continuous probability distributions such
as uniform, normal or logistic. The distribution can be defined by
a range of values; for example, if we define a uniform distribution,
we should set only its lower and upper bound. For qualitative cri-
teria, a discrete uniform distribution can be utilized (Hyde et al.,
2003).

As mentioned before, if DM has enough knowledge to determin-
istically set the performance values in one or more specific crite-
rion/criteria; it is required to select a proper preference function
and also set its preference thresholds. These thresholds can be
either probabilistic or deterministic. If they are probabilistic, a
proper probability distribution should be defined too.
4.2. Monte Carlo simulation I

Monte Carlo simulation method investigates the stochastic per-
mutations of uncertainties. Each uncertainty is addressed by a
proper distribution function. The Monte Carlo simulation method
is done by running a number of iterations. At each iteration, a sam-
ple value is first extracted from each probability distribution. Then,
the concerned analysis, here PROMETHEE method, is performed
based on these sampled values. The output of this analysis is saved
as a record. It is important to run sufficient iterations in order to
have a valid simulation output. One way is to determine a specific
number of iterations (i.e., 1000, 2000, 5000, and so on) by consid-
ering the size of projects and the importance of risks. Another way
is to stop the simulation process when the sampled values are able
to fit the probability distribution which they have been extracted
from. For the situations where there are dependencies between
PVs, it is suggested to use the method proposed by Rezaie, Amaln-
ika, Gereie, Ostadi, and Shakhseniaeea (2007) and Rezaie, Gereie,
Ostadi, and Shakhseniaee (2009) which considers the dependen-
cies while sampling the values in order to provide feasible sampled
values.
4.3. Improvement of uncertainty level

It is beneficial to make lower the uncertainty level in every deci-
sion making parameter (i.e., CWs and PVs). Some parameters re-
lated to some activities or processes have uncertainty in their
nature and it is not possible to significantly lower their uncertainty
level. But, others can be lowered by revising them via enhancing of
DM’s knowledge. A key aspect that should be considered is to con-
centrate on those parameters which have the most impact on pro-
ject rankings. Some parameters have a little impact on rankings
and it is not worthy to work on them. Hyde et al. (2003) used sig-
nificance analysis to identify the relative contribution of each input
parameter when determining the ranking of projects. The most sig-
nificant inputs are determined using the Spearman rank correla-
tion coefficient as follows (Kottegoda & Rosso, 1997):

R ¼ 1� 6
Pd

i¼1D2
i

dðd2 � 1Þ

 !
ð5Þ

where d is the total number of records (simulation iterations), and
Di is the difference between the rank of total flow of a specific alter-
native and the rank of a specific input parameter in iteration i. The
value of R lies between �1 and +1. The values of +1 and �1 indicate
significant impact of considered parameter on the projects’ ranking.
When R is close to zero, it is concluded that the parameter does not
have significant impact on the ranking. In this way, those parame-
ters that have the most impact on projects’ ranking are refined by
collecting more data, where it is possible, to reduce the level of their
uncertainty.

4.4. Calculating the overall ranking

Running the Monte Carlo simulation I results in many records.
Thus, it is needed to aggregate these records and assigning a un-
ique rank to each project. A linear assignment model is proposed
to aggregate the simulation records.

Accordingly, we first use the ‘Ranking’ database to report the
probability of different ranks that a project can achieve. For exam-
ple, consider four projects that have been analyzed via 1000 simu-
lation iterations. Assume that project 1 has achieved ranks 1
(worst), 2, 3, and 4 in 650, 210, 130, and 10 iterations, respectively.
If we denote Pij as the probability that project i can achieve rank j;
we have: P11 = 0.65; P12 = 0.21; P13 = 0.13; P14 = 0.01.So, Pij is calcu-
lated as follows:

Pij ¼
The number of iterations that project i has achieved rank j

Total number of iterations
ð6Þ

Then, the following linear assignment model is adopted in order
to determine the overall rank of each project (i.e., the most appro-
priate rank), based on the ranks probabilities extracted from the
simulation study:

Maximize Z ¼
X

i

X
j

Pij:xij

Subject to
X

j

xij ¼ 1 i ¼ 1;2; . . . ;n

X
i

xij ¼ 1 j ¼ 1;2; . . . ;n

xij 2 f0;1g

ð7Þ

where xij = 1 denotes that the overall rank of project i is considered
as j.

4.5. Monte Carlo simulation II

Because the required costs of each project are stochastic, an-
other Monte Carlo simulation is carried out to make possible per-
forming the two next modules of the proposed framework, i.e.,
calculating the augmented scores and running the allocation IP
model. Notably, the augmented scores will be used in the objective
function of the allocation IP model. The allocations resulted by the
allocation IP model are stored in the allocation database which in
turn will be used when calculating the overall allocations, as de-
scribed in Section 4.5.2.
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4.5.1. Calculating the augmented scores
A common way to deal with both the multiple-criteria and given

constraints in a project selection problem is to use a two-phase ap-
proach where a multi-criteria evaluation of the projects is first car-
ried out using an MCDA method that accounts for both the
qualitative and quantitative criteria for calculating the final score
of each project, and then this information are utilized in the objec-
tive function of an integer programming (IP) model that is able to
incorporate the real-world constraints (see e.g., Abu-Taleb & Mares-
chal, 1995; Golabi, Kirkwood, & Sicherman, 1981; Mavrotas, Diak-
oulaki, & Capros, 2003). In these combined approaches, the
projects’ scores resulting from the first stage of the analysis are often
used in an additive objective function that drives the IP model. Usu-
ally, the IP model has a knapsack form in the form of maximizing the
aggregated performance function of a combination of projects sub-
ject to a budget constraint along with multiple side constraints.

In most of relevant published papers, a mathematical program-
ming model is performed as a portfolio optimizer, which is to max-
imize the aggregated performance of a combination of projects that
comply with the imposed constraints. However, it is somewhat dif-
ferent in Mavrotas et al. (2008). That is, they do not try to maximize
the aggregated performance function but to maximize the compat-
ibility of the final selection with the initial ranking of the projects.
The basic difference between the two concepts is attributed to the
inevitable budget constraint that causes a bias towards selecting
the low cost projects. They use a technique to overcome this prob-
lem by using the appropriately modified coefficients of the IP’s
objective function called augmented scores instead of initial scores.

Augmented scores (as) as proposed by Mavrotas et al. (2008),
are calculated based on the rankings reported by MCDA technique.
The augmented score for ith project (i.e., pi) has the property that
no combination of projects which are lower in the rank and need
lower budget than pi can have an augmented score greater than
pi’s augmented score. In order to find the augmented scores, pro-
jects are sorted according to their multi-criteria score (ms) while
the worst project is put in the first and the best project at the
end. For the worst project, as is assigned to 1. Then, for the kth pro-
ject (k = 2, . . . , n), the following knapsack problem is solved in or-
der to determine the zk:

Maximize zk ¼
Xk�1

i¼1

asi:xi

Subject to
Xk�1

i¼1

cixi 6 ck

xi 2 f0;1g

ð8Þ
Ranking of projects according to 
their multi-criteria score (ms) in 
increasing order (msk+1 ≥ msk) 
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Fig. 4. Flowchart of the algorithm for calculating t
where ci denotes the total cost of the project i. After determining zk,
if zk > ask�1 then ask = zk + 1; otherwise, ask = ask�1 + 1. Fig. 4 shows
the flowchart of this algorithm. Noteworthy, as shown in Fig. 3, cal-
culation of augmented scores is done as a part of the Monte Carlo
Simulation II in order to have different augmented scores in each
iteration.
4.5.2. Allocation IP model
The IP model proposed by Mavrotas et al. (2008) is adopted

here. In order to overcome the bias in selection phase, the model
has only one objective function with the augmented scores as its
coefficients:

Maximize z ¼
Xn

i¼1

asi:xi ð9Þ

where xi is 1 if the project i is selected, otherwise, it is zero.
Moreover, the constraints of IP model are defined regard to the
DM’s available information and preferences. For example, a seg-
mentation constraint may be expressed as ‘‘no more than 50% of
the selected projects must belong to subset A’’ or ‘‘at least 30% of
the selected projects should belong to subset B’’. These two sample
constraints can be, respectively, modeled as:

X
i2SA

xi 6 0:5
Xn

i¼1

xi

X
i2SB

xi P 0:3
Xn

i¼1

xi

ð10Þ

Moreover, an example for logical constraint could be: ‘‘projects
3 and 4 are mutually exclusive’’ or ‘‘if project 2 is selected, then
project 1 must be selected as well’’. These two logical constraints
can be defined as:

x3 þ x4 � 1
x2 � x1 � 0

ð11Þ

And finally, the cost constraint is defined as:

Xn

i¼1

cixi 6 budg ð12Þ

where budg is the total available budget. The output of this alloca-
tion IP model in different simulation iterations are stored in the
allocation database and will then be used when calculating the
overall allocation, as described in Section 4.6.
k = k +1

Endk=n?

1? ask = zk+1

ask = ask-1+1
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No
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∈

1

1

}1,0{i

k

i
ii

x

xas

he augmented scores (Mavrotas et al., 2008).



Table 1
The probability distributions of the criteria weights.

Cost Methodology Personnel Sci. & Act. Cap. Technical Cap.

0.231 0.141 0.143 0.122 0.363
0.223 0.129 0.130 0.114 0.404
0.172 0.140 0.157 0.149 0.382
0.231 0.120 0.129 0.122 0.398
0.167 0.141 0.126 0.132 0.434
0.213 0.140 0.119 0.115 0.413
0.193 0.139 0.132 0.118 0.418
0.225 0.139 0.144 0.124 0.368
0.214 0.134 0.140 0.136 0.376
0.182 0.133 0.144 0.142 0.399
0.16 + 0.08 � BETA(0.908, 0.702) 0.11 + 0.04 � BETA(7.94, 4.56) 0.11 + ERL(0.004, 6) TRI(0.11, 0.115, 0.16) 0.35 + 0.1 � BETA(1.68, 2.01)
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4.6. Determining the overall allocation

Similar to the Monte Carlo simulation I, the second Monte Carlo
simulation generates many records. Thus, it is needed to assign a
unique decision, selected or not, to each project.

To do so, we first use the ‘Allocation’ database and report Ki, the
number of iterations that the project i has been selected by IP mod-
el. In this way, the projects with bigger Ki are most likely to be se-
lected. Then, we use the following objective function subject to all
constraints of the allocation IP model. In this way, the constraints
of the allocation IP model will be satisfied while at the same time
those projects which have previously been selected in most of the
simulation runs, are finally selected:
Table 2
The performance values of the projects.

Project Type Cost Metho

Project 1 Applied 341–447 4–8
Project 2 Basic 31–42 5–8
Project 3 Applied 316–493 3–5
Project 4 Applied 351–496 5–7
Project 5 Developing 142–161 5–9
Project 6 Applied 387–420 3–8
Project 7 Basic 33–45 5–10
Project 8 Developing 101–183 1–3
Project 9 Basic 33–44 0–5
Project 10 Applied 393–453 0–4
Project 11 Applied 307–436 3–7
Project 12 Basic 37–48 2–7
Project 13 Basic 35–47 2–5
Project 14 Basic 35–46 3–6
Project 15 Developing 145–188 2–6
Project 16 Applied 374–486 2–6
Project 17 Basic 35–44 1–4
Project 18 Applied 330–452 0–3
Project 19 Developing 138–151 0–2
Project 20 Applied 307–432 3–4
Project 21 Applied 325–405 4–7
Project 22 Basic 39–50 1–5
Project 23 Basic 37–49 4–7
Project 24 Applied 385–416 1–4
Project 25 Applied 318–441 3–6
Project 26 Basic 37–45 1–3
Project 27 Applied 315–467 2–7
Project 28 Basic 32–46 2–6
Project 29 Developing 129–171 3–6
Project 30 Applied 328–476 5–8
Project 31 Applied 385–464 1–6
Project 32 Applied 304–493 3–6
Project 33 Applied 310–403 0–2
Project 34 Developing 106–166 4–7
Project 35 Applied 322–490 2–6
Project 36 Applied 367–489 2–4
Project 37 Basic 36–46 0–4
Project 38 Basic 33–46 3–6
Project 39 Basic 32–49 3–5
Project 40 Developing 145–158 0–3
Maximize Z ¼
X

i

xiKi

Subject to The constraintðsÞ of IP allocation model
xi 2 f0;1g

ð13Þ
4.7. Sensitivity analysis on allocation IP model

A supplementary sensitivity analysis can be done on the final
(overall) allocation IP model. In this way, we can interpret the dual
prices as the effect of constraints, especially budget constraint, on
the objective function and try to change the resources in order to
widen the final selection list.
d. Personnel Sci. & Act. Tech. Cap.

3–6 2–5 3–7
2–4 3–5 0–1
4–6 4–6 2–4
0–2 2–5 0–2
4–6 3–7 3–5
2–4 1–4 2–6
1–5 0–1 1–5
2–7 3–7 1–4
2–3 1–6 1–2
2–4 3–4 3–5
0–2 2–3 1–4
2–4 0–3 1–6
5–9 5–9 1–6
2–4 2–3 1–5
4–8 4–5 1–4
4–8 1–3 2–6
1–3 5–8 0–3
2–4 3–6 1–3
4–8 2–4 1–5
0–2 4–7 2–5
4–6 3–5 1–5
5–6 3–8 3–4
0–4 1–3 1–6
1–4 1–5 3–5
2–4 1–4 1–4
1–2 1–5 4–9
3–8 2–5 5–10
1–5 4–9 4–6
1–5 2–5 4–6
3–4 4–6 4–5
1–2 4–7 4–8
3–6 2–4 3–6
2–3 3–5 1–3
3–7 1–4 4–7
4–8 5–8 3–5
3–8 5–10 1–6
3–7 1–4 4–6
4–9 5–8 3–5
3–6 1–6 4–6
4–8 2–6 2–4



Fig. 6. The impact of uncertainties on project 4.
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5. Case study

Iran Telecommunication Research Center, ITRC, as the most
experienced research entity in the Information and Communica-
tion Technology field, with more than 39 years of scientific experi-
ence in research and acting as major consultant to the Ministry of
ICT, is the main ICT research base in Iran. ITRC boasts highly expe-
rienced researchers, advanced research facilities as well as dedi-
cated laboratories that enable research teams to conduct their
studies and carry out experiments, under four broad faculties:
Information Technology, Communication Technology, ICT Security,
and Strategic and Economical Studies.

Generally, many research projects are proposed to ITRC and
they should select the most appropriate projects among them.
Three types of projects can be defined as: basic, developing, and
applied projects. Each type has a budget limit. Five criteria are used
to evaluate the projects as follows:

� Cost: Total project cost including all expenses required for pro-
ject completion.
� Proposed methodology: Degree of being step-by-step, well-

planned, scientifically-proven, disciplined, and proper for orga-
nization current status in the proposed methodology.
� The abilities of personnel: Work experience of project team

related to concerned project.
� Scientific and actual capability: Scientific degree and educa-

tional certificates of project’s team.
� Technical capability: Ability of providing technical facilities and

infrastructures.

Ten actors are involved to set criteria weights. The probability
distribution of weights is fitted using input analyzer module of
Arena 7. Table 1 shows the assigned weights and their best fitted
probability distributions. In this way, the probability distributions
of the above criteria are respectively fitted to Beta, Beta, Erlang, Tri-
angular, and Beta with the parameters and offset values presented
in the last row of Table 1.Then, 5000 sample data are generated for
each fitted distribution which are then used in the Monte Carlo
simulations.

Performance values of 40 specific projects are determined as
uniform distributions with min and max probable values as shown
in Table 2. The project types have also been mentioned in Table 2.
For example, projects 1, 2, and 5 are of applied, basic, and develop-
ing types, respectively.

After performing the Monte Carlo simulation I, Spearman rank
correlation coefficient is used to calculate the impact of different
uncertainties on the projects ranking. This analysis indicates those
Fig. 5. The impact of uncertain
uncertainties which have the most impact on the project rankings.
Figs. 5 and 6 show this analysis for all projects and only for project
4, respectively. As shown in Fig. 6, the performance values in the
criteria 1, 2, and 4 have the most impact, about 63%, on the respec-
tive ranking. So, if possible, lowering these three uncertainties will
significantly affect the final ranking. Furthermore, the experts can
work more on the uncertainties to lower the uncertainty level in
general.

Overall ranking of each project is determined by implementing
the proposed linear assignment optimization model. The projects
are sorted from the worst to the best in order to determine the aug-
mented scores. Table 3 shows the calculated augmented scores in
regard to sampled costs at one iteration. Bold items in Table 3
show the states where Zk is greater than ask�1 and a jump is hap-
pened in the augmented scores. The allocation IP module creates
each record of allocation database. Four constraints have been con-
sidered for our case study. Eq. (14) enforces the allocated budget to
be satisfied; which is 6000 million Toomans (Iranian monetary
unit) for the ‘‘IT Strategic management and governance’’ unit.
Eqs. (15)–(17) imply the segmentation constraints. In this way,
60, 10, and 30 percentages of the given project portfolio are se-
lected among the applied, basic, and developing candidate projects,
respectively.

Xn

i¼1

cixi 6 6000 ð14Þ
ties on ranking of projects.



Table 4
The summary of allocation database.

Project The first five records Ki

1 2 3 4 5

Project 1 � � � � � 100
Project 2 0
Project 3 � � � � � 100
Project 4 0
Project 5 � � � � � 100
Project 6 � � � � � 100
Project 7 0
Project 8 0
Project 9 0
Project 10 0
Project 11 0
Project 12 0
Project 13 0
Project 14 0
Project 15 � � � � � 100
Project 16 � � � � � 98
Project 17 0
Project 18 1
Project 19 � � � � � 100
Project 20 � � � � 94
Project 21 � � � � � 99
Project 22 0
Project 23 0
Project 24 � 3
Project 25 � 6
Project 26 0
Project 27 � � � � � 100
Project 28 1
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x2 þ x7 þ x9 þ x12 þ x13 þ x14 þ x17 þ x22 þ x23 þ x26 þ x28

þ x37 þ x38 þ x39

6 0:1
Xn

i¼1

xi ð15Þ

x5 þ x8 þ x15 þ x19 þ x29 þ x34 þ x40 � 0:3
Xn

i¼1

xi ð16Þ

x1 þ x3 þ x4 þ x6 þ x10 þ x11 þ x16 þ x18 þ x20 þ x21 þ x24

þ x25 þ x27 þ x30 þ x31 þ x32 þ x33 þ x35 þ x36

� 0:6
Xn

i¼1

xi ð17Þ

Table 4 shows the first five records of allocation database where
the selected projects have been shown with the star marks. This ta-
ble also shows the number of iterations that each project has been
selected by the IP model, Ki. After that, the overall allocation is
determined via the IP model (13). Table 5, shows the final solution
with the average cost equal to 5796.5 million Toomans. Final solu-
tion includes 12 applied, 2 basic, and 6 developing projects. The
modules have been coded in MATLAB and an optimization toolbox
is used for running of all optimization modules, i.e., the overall
ranking model (7), the augmented scores model (8), the allocation
IP model (9, 14–17) and the overall allocation model (13). The pro-
cess time for 5000 iterations of simulation I and 100 iterations of
Table 3
The calculated augmented scores according to the sampled costs in an iteration.

Project ask c Zk

Project 4 1 423.5 -
Project 33 2 356.5 0
Project 18 3 391 2
Project 11 4 371.5 2
Project 25 5 379.5 4
Project 10 6 423 5
Project 24 7 400.5 5
Project 20 8 369.5 2
Project 21 9 365 2
Project 16 10 430 9
Project 3 11 404.5 9
Project 9 12 38.5 0
Project 6 22 403.5 21
Project 36 23 428 22
Project 8 24 142 12
Project 32 37 398.5 36
Project 2 38 36.5 0
Project 31 75 424.5 74
Project 7 76 39 38
Project 14 77 40.5 76
Project 17 78 39.5 76
Project 15 270 166.5 269
Project 35 552 406 551
Project 30 553 402 551
Project 40 554 151.5 231
Project 1 941 394 940
Project 19 942 144.5 193
Project 23 943 43 78
Project 26 944 41 78
Project 29 1966 150 1965
Project 12 1967 42.5 944
Project 22 1968 44.5 1967
Project 13 1969 41 944
Project 37 1970 41 1969
Project 34 5908 136 5907
Project 5 5909 151.5 5908
Project 28 5910 39 76
Project 39 5911 40.5 5910
Project 27 25,604 391 25,603
Project 38 25,605 39.5 5910

Project 29 � � � � � 100
Project 30 � � � � � 100
Project 31 � � � � � 100
Project 32 � � � � � 100
Project 33 1
Project 34 � � � � � 100
Project 35 � � � � � 100
Project 36 � � � � 98
Project 37 0
Project 38 � � � � � 100
Project 39 � � � � � 99
Project 40 � � � � � 100

Table 5
The final selected projects.

Project Cost Type

L.B. U.B.

1 341 447 Applied
3 316 493 Applied
5 142 161 Developing
6 387 420 Applied
15 145 188 Developing
16 374 486 Applied
19 138 151 Developing
20 307 432 Applied
21 325 405 Applied
27 315 467 Applied
29 129 171 Developing
30 328 476 Applied
31 385 464 Applied
32 304 493 Applied
34 106 166 Developing
35 322 490 Applied
36 367 489 Applied
38 33 46 Basic
39 32 49 Basic
40 145 158 Developing

Total average cost: 5796.5
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simulation II was about 38 min which seems to be reasonable
when running a real case. Notably, two optimization modules,
i.e., the one for calculating the augmented scores and the IP alloca-
tion model, are run in each iteration of the Monte Carlo simulation
II. Consequently, the computation time could be considerable for
the large number of iterations. Accordingly, we first tried for
1000 iterations which took nearly 6 h of CPU time in our case
study. Then, we performed only 100 iterations which only took
about 35 min of CPU time and when we checked the results of
these two different runs, we observed the same results. So, we
chose 100 iterations as an acceptable number of iterations for
the Monte Carlo simulation II.

It should be noted that the sensitivity analysis on constraints
could be easily done in general using the well-known concepts
and methods given in the duality theory, but in our case study it
could not be performed since the allocated budget was fixed and
could not be changed. Also, the segmentation ratios, 0.1, 0.3, and
0.6, were defined in our case as a fixed values based upon the man-
agement’s policies and priorities.

Furthermore, it was interesting to perform a comparison be-
tween our proposed approach and its deterministic counterpart.
For this, the mean of each distribution function were considered
as the deterministic case followed by determining the overall rank-
ing, the augmented scores, and the overall allocation deterministi-
Table 6
The comparative results of deterministic and stochastic models.

Project Selection decision

Deterministic Stochastic

Project 1 � �
Project 2
Project 3 �
Project 4 �
Project 5 � �
Project 6 � �
Project 7
Project 8 �
Project 9 �
Project 10 �
Project 11 �
Project 12
Project 13
Project 14
Project 15 � �
Project 16 �
Project 17
Project 18 �
Project 19 � �
Project 20 � �
Project 21 � �
Project 22
Project 23
Project 24 �
Project 25 �
Project 26
Project 27 �
Project 28
Project 29 � �
Project 30 �
Project 31 �
Project 32 �
Project 33 �
Project 34 � �
Project 35 �
Project 36 � �
Project 37
Project 38 �
Project 39 � �
Project 40 �

Total 20 20
cally by using the method proposed by Mavrotas et al. (2008).
Table 6 shows this comparison which implies the significant differ-
ences between the results. The main reason for justifying these dif-
ferent results can be regarded to simplifying assumption of
determining a unique value for the problem inputs in the deter-
ministic case while even the small changes in these values will sig-
nificantly changes the overall ranking.
6. Conclusion

A comprehensive framework for project selection under uncer-
tainty is proposed in this paper. This framework is able to incorpo-
rate the real-world constraints and accounts for all possible kinds
of uncertainties in the project selection problem, i.e., those in the
performance values (PVs), criteria weights (CWs) and preference
thresholds. The PROMETHEE method is embedded into a Monte
Carlo simulation framework in order to rank the projects under
uncertainty. The output of simulation is used to determine the
probabilities of achieving different ranks by each project and also
to analyze the impact of different uncertainties on the final rank-
ing. A linear assignment model is proposed to calculate the overall
ranking amongst all simulation iterations. Overall ranking is then
used to determine the augmented scores, i.e., the coefficients of fi-
nal selection model. The final selection model is an integer pro-
gramming one that selects the most appropriate projects subject
to segmentation, logical, and cost constraints. The IP model over-
comes the bias against low cost combination of projects which is
usually occurred in the knapsack-type formulation. The proposed
framework is applied to a case study and the corresponding results
are presented. The results have been compared with a determinis-
tic approach which shows significantly different results. In sum-
mary, the main contributions of the proposed framework can be
outlined as follows:

� Tackling both phases of project selection problem, i.e., the rank-
ing and assignment phases.
� Linking the PROMETHEE method with Monte Carlo simulation

to cope with all kinds of uncertainties; including those of
related to performance values, criteria weights, and preference
thresholds.
� Linking up the simulation-based PROMETHEE scores and

assignment phase via the proposed linear assignment model.
� Linking the allocation IP model with another Monte Carlo sim-

ulation to cope with cost uncertainties in the assignment phase.
� Identifying the most important parameters which their uncer-

tainty level need to be lowered as a result of uncertainty
analysis.
� Enabling to detect those resource constraints which have the

most effect on the project selection decision.

There are also several ways to extend this work. First, a compar-
ative study between the final results of suggested model with the
existing models in the literature seems to be interesting. Another
suggestion is to address the parameters’ uncertainties as fuzzy
numbers instead of probability distributions for which all steps
of the proposed framework must be adapted in a fuzzy environ-
ment. Preparing commercial software is another suggestion which
is really beneficial for both academicians and practitioners.
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