
Candoia: A Platform and Ecosystem for Mining Software
Repositories Tools

Nitin M Tiwari Ganesha Upadhyaya Hridesh Rajan
Iowa State University

226 Atanasoff Hall, Ames, IA, 50010, USA
{nmtiwari,ganeshau,hridesh}@iastate.edu

We introduce Candoia, a platform and ecosystem for build-
ing Mining Software Repositories (MSR) tools. The plat-
form is designed to support building of MSR tools by pro-
viding necessary tools and abstractions that hide the com-
plex details of version control, bug databases, source code
programming languages and forges. The ecosystem allows
easy sharing and accessing of MSR apps for researchers and
practitioners. We have some initial evidence about Can-
doia’s applicability in building robust MSR tools (over two
dozen prebuilt apps in the first public release of Candoia),
adoptability and interoperability (apps run on widely used
projects such as Apache Tomcat, Apache Hadoop etc) and
easy customizability (an user study). Candoia is available
for download from http://candoia.org.

1. INTRODUCTION
Mining Software Repositories (MSR) research has aided

in solving many software engineering (SE) problems— de-
fect prediction, source code analysis and pattern discovery,
mining specifications, social network analysis for software
development to name a few. In this work we describe Can-
doia, a platform and an ecosystem to ease building, sharing,
adopting, and customizing MSR tools. In Candoia, MSR
tools are built as “apps” akin to mobile apps for Android
and iOS platforms. Candoia apps have the property “build
once, run everywhere”, where an app once built can run on
a large variety of project settings1.

Main technical benefits of Candoia come from its ability
to provide necessary tools2 and abstractions3 to ease build-
ing of MSR tools. Candoia users are not required to build

1By software project setting we mean a combination of ver-
sion control systems (VCS) such as CVS, SVN, GIT, etc., bug
databases such as Bugzilla, Issues, Jira, etc., forges such
as SF.net, GitHub, Bitbucket, etc., programming languages
such as Java, Javascript, PHP, etc.
2By necessary tools we mean tools such as language parsers,
version control data reader, bug data adapters, etc.
3Abstractions unifies the differences in MSR data, such as
differences in GIT and SVN version control data.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2892662

tools for making their app applicable in practice and they
need not worry about making the app compatible with differ-
ent project settings. Candoia platform handles the aspects
of accessibility, interoperability and customizability of the
Candoia apps. Here, by accessibility we mean availability of
data and infrastructure used in building the MSR tool [14],
by compatibility we mean ability of the MSR tool to work
across different project settings without requiring rebuild,
and by customizability we mean ability of the MSR tool to
allow easy customization to fit usage scenarios in practice.

2. RELATED WORK
There has been efforts along two directions to help MSR

researchers and practitioners. First set of approaches pro-
vide i) platforms for reusing of tools and allow low cost ad-
dition of new tools [4], ii) frameworks that define database
schemas for MSR data (such as revision history, source code,
etc.) and provide access to this data via SQL [2, 1, 9, 6, 7,
3, 11] and iii) infrastructures for downloading projects from
open-source repositories, analyzing the source code, revision
histories and other MSR data, and building the dataset for
testing the hypothesis [12, 10, 12]. Second set of approaches
provide a repository of datasets from open-source reposi-
tories so that researchers do not have to collect and curate
datasets [5, 13, 8]. When compared to first set of approaches
that are mainly focused on enabling faster MSR prototyping,
Candoia addresses easier building and customizing of MSR
tools and achieves interoperability of the built tools. When
compared to second set of approaches that are focused on
providing standard datasets, Candoia allows MSR analysis
of the user specific datasets.

3. THE PLATFORM AND ECOSYSTEM
A typical workflow of a Candoia user is shown in Fig-

ure 1. Candoia users are either researchers, who are eval-
uating their MSR research prototype or practitioners, such
as developers, testers, designers, program managers, support
engineer, etc, who are adopting and customizing MSR tools
based on their needs. Candoia users use Candoia platform
and ecosystem for: i) configuring their project repositories
(local or remote), ii) browse and install the existing apps
(apps that are prebuilt or shared by other users) and iii)
run the apps and visualize the output. Candoia provides
various capabilities to its users. Table 1 lists these capabili-
ties. We now describe how Candoia platform and ecosystem
is able to provide these capabilities.

Candoia apps are built using common web technologies
such as HTML5, CSS, and Javascript which makes building

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 759

Figure 1: An Overview of a Typical Workflow for a Candoia User

apps accessible to most developers. A Candoia app has a
predefined structure for developing various aspects, such as
MSR logic, visualization, app structure, etc. The use of a
domain-specific language for developing each aspect of an
app makes it easier to build them and keeps the lines of
code small. Candoia allows integration of external libraries,
such as Weka or R using well defined extension points while
building the app.

Table 1: Capabilities of Candoia

Applicability
Enable robust tool development by offering
well-defined interfaces to MSR technologies and
by providing extension points to add new technologies

Adoptability Adopting new app is simply by “Install & Run”

Compatibility
An app built for one project setting works for
a different setting without requiring any changes,

Customizability Only app-specific customizations are required
Accessibility sharing apps by publishing them on store
Scalability Process level parallelism; each app runs as a process

Candoia platform provides tools and abstractions for fa-
cilitating the process of building, adopting and customizing
Candoia apps. The platform tools read MSR data from user
projects which eases adopting MSR tools. The MSR data
is represented using well defined abstractions and schemas
that serve two purposes: i) hides complex details of version
control, bug databases, source code programming languages
and forges from app developers, and ii) provides uniform ac-
cess to MSR data of different sources, such as version con-
trol data from GIT and SVN. Candoia apps are built using
the abstractions becomes easily compatible across different
project settings. Customizing a Candoia app requires cus-
tomizing only app specifics. An example app specific cus-
tomization is visualizing an app output using advanced R
charts (bar-charts and pie-charts) instead of tabular form.

4. PRELIMINARY RESULTS
We have built over two dozen apps that were of interest to

MSR researchers— bug detection apps, software evolution
apps, project management apps, static code analysis apps
to name a few. Popular source code metrics app computes
and displays various metrics such as Chidamber & Kemerer
metrics, and object oriented metrics (NOPM, FanOut, etc).

Table 2: Evaluation projects. VCS: Version Control
System, PL: Programming Language, D: Developers

Projects
Size
(KB)

LOC AST Revs Bugs D VCS PL
Bug
data

Tomcat 4900 366459 1209368 15493 3023 29 SVN Java Bugzilla
Hadoop 3300 1758594 7490096 11529 10333 49 GIT Java Jira
JUnit 4 68 29809 164754 2066 148 121 GIT Java Issues
SLF4j 18200 151676 67867 1330 332 53 GIT Java Jira

Bootstrap 2500 61513 197348 11519 213 700 GIT JS Issues
Node.js 542 1533926 1759485 10762 955 30 GIT JS Issues
Grunt 680 3509 22172 1312 155 20 GIT JS Issues
JQuery 20100 40626 160602 5882 165 86 GIT JS Issues
PMD 2700 150435 1330824 7947 1394 77 GIT Java Tickets
JEdit 3100 214126 580194 24025 3926 7 SVN Java Tickets

Wait-notify police app is a bug detection app that checks and
warns against the improper usage of wait-notify features.
The details about other apps can be found in our technical
report [15] and these apps are available for download in our
public release of Candoia.

For testing adoptability, compatibility, and scalability we
have prepared a list of candidate projects, as shown in Ta-
ble 2. These projects are widely used by the MSR commu-
nity for testing and evaluation. The table shows project sizes
in terms of Size, and LOC and it can be seen that our evalu-
ation provides sufficiently large candidates to evaluate scal-
ability of Candoia apps. The columns AST, Revs, Bugs, and
D describes MSR data of the projects that Candoia apps can
query. For instance, our source code analysis apps require
source code ASTs, software evolution apps require revision
data, etc. The columns VCS, PL, and Bug data describes
different project settings for adoptability evaluation. In our
evaluation we find that apps built using Candoia runs on
various project settings without requiring any changes. We
performed an user study for understanding the customiz-
ability aspect of Candoia. We found that participants were
able to perform the customizations fairly quickly [15].

Acknowledgments. This work was supported in part
by the US National Science Foundation under grants CCF-
15-18897, CNS-15-13263, and CCF-14-23370. Dalton Mills
and Trey Erenberger helped with the Candoia frontend code,
Eric Lin helped with coding Candoia apps, and Hoan Nguyen
provided us helpful feedback on the draft.

760

5. REFERENCES
[1] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer:

An infrastructure for large-scale collection and
analysis of open-source code. Sci. Comput. Program.,
79:241–259, Jan. 2014.

[2] J. Bevan, J. E. James Whitehead, S. Kim, and
M. Godfrey. Facilitating software evolution research
with kenyon. In ESEC/FSE-13: Proceedings of the
13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 177–186.
ACM Press, 2005.

[3] V. Dallmeier and T. Zimmermann. Extraction of bug
localization benchmarks from history. In Proceedings
of the 22nd IEEE/ACM international conference on
Automated software engineering, pages 433–436, 2007.

[4] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: An
Agile Reengineering Environment. In Proceedings of
the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 99–102. ACM, 2005.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A Language and Infrastructure for Analyzing
Ultra-Large-Scale Software Repositories. In
Proceedings of the 35th International Conference on
Software Engineering, ICSE ’13, pages 422–431. IEEE
Press, 2013.

[6] G. Gousios and D. Spinellis. Alitheia core: An
extensible software quality monitoring platform. In
Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 579–582. IEEE
Computer Society, 2009.

[7] G. Gousios and D. Spinellis. GHTorrent: GitHub’s
data from a firehose. In MSR ’12: Proceedings of the
9th Working Conference on Mining Software
Repositories, MSR ’12, pages 12–21. IEEE, 2012.

[8] G. Gousios, B. Vasilescu, A. Serebrenik, and
A. Zaidman. Lean GHTorrent: GitHub Data on
Demand. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR’14,
pages 384–387. ACM, 2014.

[9] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi,
S. Crespi, D. Poshyvanyk, C. Fu, Q. Xie, and
C. Ghezzi. An empirical investigation into a
large-scale java open source code repository. In
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, page 11. ACM, 2010.

[10] J. Howison, M. Conklin, and K. Crowston. Flossmole:
A collaborative repository for floss research data and
analyses. IJITWE ’06, 2006.

[11] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A
database of existing faults to enable controlled testing
studies for Java programs. In Proceedings of the 2014
International Symposium on Software Testing and
Analysis, pages 437–440, 2014.

[12] G. Pinto, W. Torres, B. Fernandes, F. Castor, and
R. S. Barros. A Large-Scale Study on the Usage of
Java’s Concurrent Programming Constructs. Journal
of Systems and Software, 106:59–81, 2015.

[13] Promise 2009.
http://promisedata.org/2009/datasets.html.

[14] G. Robles. Replicating MSR: A study of the potential
replicability of papers published in the Mining
Software Repositories proceedings. In 7th IEEE
Working Conference on Mining Software Repositories
(MSR), pages 171–180, 2010.

[15] N. M. Tiwari, D. D. Mills, G. Upadhyaya, E. Lin, and
H. Rajan. Candoia: A Platform and an Ecosystem for
Building and Deploying Versatile Mining Software
Repositories Tools. Technical Report TR15-13, Iowa

State University, Nov. 2015. In submission.

761

