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Abstract—With the rapid popularity of the Internet, a large
amount of new malware is produced every day, while the
traditional signature based malware detection algorithm is unable
to detect such unseen malware. In recent years, many machine
learning based algorithms have been proposed to detect new
malware, and several of these algorithms are able to achieve
quite good detection performance when supplied with plenty
of training data. However, most of these algorithms just focus
on how to improve the classification performance, while the
robustness is not taken into consideration. This paper performs
a detailed analysis on the robustness of four well-known machine
learning based malware detection approaches, i.e. the DLL and
API feature, the string feature, PE-Miner and the byte level
N-Gram feature. We proposed two pretense approaches under
which malware is able to pretend to be benign and bypass
the detection algorithms. Experimental results show that the
performances of these detection algorithms decline greatly under
the pretense approaches. The lack of robustness makes these
algorithms unable to be used in real world applications. In future
works of machine learning based malware detection, researchers
have to take the problem of robustness seriously.

I. INTRODUCTION

Malware is the program which damages the computer systems

or steals sensitive information from computers. There are

huge amounts of new malware appearing every day and they

pose a great threat to the computer security. According to

the statistics provided by AV-TEST [1], the numbers of new

malware appeared in 2014 and 2015 both exceed 140 million.

Effective malware detection algorithms are required to protect

computer systems.

Signature based approach is the most popular method used

by antivirus software. Human experts extract a small piece of

binary code from a malicious program and regards the piece as

the unique signature of the program. If an incoming program

contains the signature, the antivirus software will identify it as

malware. Signature based approach is very efficient to detect

known malware with a low false positive rate. However, for

new malware the signature usually cannot be extracted in time

and in such case the antivirus software is unable to detect it.

Due to the ability to predict the attributes of unseen in-

stances, machine learning has been applied to detect new

malware by classifying programs into benign programs or

malware. Machine learning based malware detection algo-

rithms usually consist of two processes, i.e. feature extraction

and classification. The feature extraction process converts the

original programs to feature vectors. Then the classification

process will train a binary classifier on the feature vectors in

the training set, and the classifier is able to predict whether a

test feature vector is malicious or not.

There are a lot of feature extraction algorithms proposed

by different researchers in recent years. The most popular

algorithms among them are the dynamic link library (DLL)

and the application programming interface (API) features, the

string feature, PE-Miner and the byte level n-gram feature.

The DLL, API and string features were proposed by Schultz

et al. [2]. The absence or presence of a DLL, API or string is

converted to a binary feature value. Shafiq et al. proposed

an algorithm called PE-Miner [3] which uses 189 fields

from the PE header, section headers and the import table as

features. Inspired by the word level n-gram feature used in

text classification, Kolter et al. extracted n-gram features from

sequences of program bytes and selected the most relevant

features by information gain to detect malware [4][5].

Many other malware detection models are based on these

features. For example, Dahl et al. [6] and Pascanu et al. [7]

used API feature in their neural network models for malware

detection. An ensemble of different features such as DLL, API,

string and PE fields was used by Saxe et al. [8] in their deep

learning model.

Most of the feature extraction algorithms just regard mal-

ware detection as a regular machine learning problem and

mainly aim at improving the final detection performance.

However, these algorithms usually ignore an important aspect

of malware detection, i.e. the robustness. If malware authors

know how these algorithms work, they would adopt some

pretense techniques accordingly in order to bypass these

algorithms. Therefore, the robustness of malware detection

algorithms should be evaluated seriously. If an algorithm is

able to detect malware with a high accuracy but can be easily

bypassed by some simple pretense techniques, it cannot be

used in real world applications.

This paper performs a detailed analysis on the robustness of

four well-known feature extraction algorithms for malware de-

tection. Two pretense approaches which generate fake benign

features for malware are proposed to avoid being detected by

these algorithms. A series of experiments are conducted to get

the actual detection performance of these algorithms under the

pretense approaches.

Using pretense to bypass malware detection algorithms is

similar to the idea of adversarial examples [9] in deep learning.
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Szegedy et al. applied some small perturbation to real images,

in order to make a trained neural network unable to classify

them correctly [10], and the images after perturbation are

called adversarial examples. Grosse et al. generated adversarial

examples from a neural network based malware detection

model for Android malware and showed that the neural net-

work has a high misclassification rate on adversarial examples

[11].

II. DLL AND API FEATURES

A. Introduction

The behaviors of malware are usually carried out by calling

system DLLs and APIs. Therefore, DLL and API can be used

as the discriminative features to detective malware.

The dimension of a DLL feature vector is equal to the

number of system DLLs; each element in the feature vector

corresponds to a system DLL. If a program calls a DLL,

the corresponding element in the feature vector is set as

1, otherwise it is set as 0. The API feature vector can be

constructed in the same way.

B. Characteristics of DLL and API Features

1) Datasets: The dataset used in this paper consists of 9998

benign programs and 9183 malware samples, with a total size

of 9.12GB. The benign programs are collected from the system

executables of Windows operating systems and a variety of

application software. The malware samples come from VX

Heaven virus collection [12].

2) Characteristics: In this paper we use two scores to

measure the characteristics of a binary feature, i.e. information

gain and malicious tendency.

Information gain measures the relevance between a feature

and the class [13] which is often used for feature selection. A

feature with larger information gain usually contributes more

to the final classification performance.

Malicious tendency reflects the extent to which a feature

tends to appear in malware, which is defined as PM (f) −
PB(f), where PM (f) represents the proportion that the f -th

feature appears in malware samples and PB(f) represents the

proportion that the f -th feature appears in benign programs.

A larger malicious tendency means the feature is more likely

to appear in malware and therefore it is potentially related to

malicious behaviors.

In the experiments we used 22 system DLLs and there are

4214 distinct system APIs in these DLLs. For each DLL and

API feature, its information gain and malicious tendency are

plotted in scatter graphs, as shown in Figure 1 and Figure 2.

It can be seen that for both DLL and API features, the

features with large information gain mostly have negative

malicious tendency. That is, the features which contribute a lot

to the classification mainly come from benign programs. Only

a small number of features have positive malicious tendency

and their information gain are quite small. The features tend

to appear in malware usually contribute less to classification.

In such conditions, the classifier will mainly make use of

benign features to judge whether a program is benign or
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Fig. 1. Information gain versus malicious tendency of DLL features
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Fig. 2. Information gain versus malicious tendency of API features

malware. It is hard for the classifier to learn the patterns of

malicious behaviors.

Malware authors can take advantages of this characteristic to

bypass the malware detection algorithm, by artificially adding

some unnecessary benign behaviors to malware. For example,

benign programs usually use GUI to interact with users, while

malware usually hides itself from users. The GUI related

DLLs and APIs will appear frequently in benign programs

and infrequently in malware. If a program uses GUI it is more

probable to be classified as a benign program. If a malware

author intentionally calls GUI related DLLs and APIs, the

malware will have benign characteristics and the malware

detection algorithm will probably recognize the malware as

benign.

C. Pretense for DLL and API Features

In this section we propose two approaches for malware to

pretend to be benign, and show how the performance of the

malware detection algorithm declines under such pretense.

The pretense is performed by modifying malware’s feature

value, but there is a restriction on the modification. If a

feature value is 0, we can easily modify it to 1 by calling

the corresponding DLL or API. Adding an irrelevant DLL

or API does not influence the function of the program. If a
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feature value is 1, it is not easy to modify it to 0 (i.e. remove

the DLL or API from the program) without damaging the

integrity of the program. Although a few of DLLs or APIs

can be removed by replacing them with similar ones, the

replacement may involve many human efforts and removing

such a small number of DLLs or APIs only has small influence

on the final classification performance. In this paper we want

to develop automatic pretense methods which can be applied to

a variety of malware without human involvement. Therefore,

when modifying a feature value, we set up a restriction that

we can only change 0 to 1 and cannot change 1 to 0.

For a malware sample, we will manually modify its feature

values according to a chosen benign program, in order to make

it look like the benign program and avoid the detection of

the malware detection algorithm. For each dimension of the

feature vector, if the malware sample’s value is 0 and the

benign program’s value is 1, the malware sample’s value will

be modified to 1.

1) Choosing a Benign Program for Malware: For a mal-

ware sample, we proposed two approaches to choose a benign

program to modify its feature values, i.e. the random approach

and the max pretense approach. The random approach just

chooses a benign program randomly from the training set,

while the max pretense approach uses some strategies to make

the pretended feature vector like benign to the maximum

extent.

We use the DLL feature as an example to introduce the max

pretense approach. The set of DLLs called by the malware

sample is denoted as M , while the set of DLLs called by

the i-th benign program in the training set is denoted as Bi.

|Bi−M | is the number of DLLs that called by the i-th benign

program but not called by the malware. The larger |Bi −M |
is, the more benign DLL features the pretended malware

will have, and the more likely that the pretended malware

will bypass the malware detection algorithm. Different DLL

features are usually not of equal importance, and therefore

for each DLL feature f we assign a weight to it using its

information gain IG(f). Then the objective to be maximized

becomes
∑

f∈Bi−M

IG(f).

The pretense method should also make sure that the cho-

sen benign program and the malware have enough common

characteristics. If the benign program and the malware are

quite distinct from each other, their combination will look

unnatural. After the malware detection algorithm collected a

large amount of such pretended malware samples, it will learn

the pattern of such unnatural combination of two distinct sets

of DLLs and use this pattern to classify unnatural combination

as malware. If the benign program and the malware have lots

of common characteristics, their combination will look more

like a normal program and this will make the learning of the

combination pattern uneasy. The common DLLs called by the

benign program and the malware Bi ∩M can represent their

common characteristics. After assigning each DLL feature a

weight using information gain we get the second objective to

be maximized
∑

f∈Bi∩M
IG(f).

The two objectives can be converted to one objective by

adding them up, i.e.
∑

f∈Bi−M

IG(f) +
∑

f∈Bi∩M
IG(f) =

∑

f∈Bi

IG(f). This sum only needs to add up the informa-

tion gain of appeared DLLs in the benign program and is

independent of the malware. Thus it can be calculated for

all the benign programs in the training set in advance and

does not need to be calculated again for each malware sample.

This process will significantly reduce the time complexity of

pretense. We also tried to use a weighted sum of the two

objectives and the two weights are tuned on a validation

set to improve the pretense performance. The weighted sum

did not show significant better pretense performance than the

unweighted sum. Besides, weighted sum is not independent

of the malware so that it cannot be calculated in advance,

resulting in a much higher time complexity than unweighted

sum. Therefore, in this paper we just add the objectives up

without weights.

If we directly choose the benign program with the largest∑

f∈Bi

IG(f), all malware samples will use the same benign

program. When the malware detection algorithm has enough

pretended malware samples it will learn this pattern and

classify the samples with this benign program’s features as

malware. Therefore, the pretense method should keep the

diversity of benign program’s distribution. We will penalize the

benign program that has already been used by other malware

samples using a penalty factor λ. If the i-th benign program

has already been used by T (i) malware samples, for current

malware we will use Formula 1 to choose the optimal benign

program, i.e. the i∗-th benign program.

i∗ = argmax
i

(
∑

f∈Bi

IG(f)− λT (i)) (1)

2) Experiment Settings: For each pretense approach, two

experiments are conducted. In the first experiment the pretense

approach is only applied to malware in the test set. A classifier

is trained on the original training set without pretense and the

detection performance on the pretended malware in the test set

is reported. If the pretense approach becomes popular, a lot of

pretended malware samples will appear on the Internet. After

collecting enough pretended samples the malware detection

algorithm is able to train a classifier to distinguish pretended

malware from benign programs. Therefore, in the second

experiment the pretense approach is firstly applied to malware

in the training set and then applied to malware in the test set.

A classifier is trained on the pretended malware in the training

set and the benign programs in the training set. The classifier is

able to learn some patterns of the pretended malware, e.g. the

unnatural combination of features from two programs. Then

the detection performance on the pretended malware in the

test set is reported.

When the pretense approach is applied to the training set or

the test set, the benign programs used to modify malware’s

features are both chosen from the training set. Generally

speaking, the benign programs in the test set can be regarded
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as unseen samples. We can only use existing benign programs

(i.e. benign programs in the training set) to modify malware’s

features.

The random forest with 100 trees is used as the classifier

for all the experiments in this paper. Five-fold cross validation

is used to get the final results. To tune the parameter λ in

Formula 1, the training set is split into a smaller training set

and a validation set and line search is performed to search the

λ with the lowest accuracy on the validation set.

3) Experimental Results: The experimental results of DLL

and API features are presented in Table I and Table II

respectively. TPR is abbreviated to true positive rate and FPR

is abbreviated to false positive rate. “no-pretense” represents

that the pretense is applied to neither the training set nor the

test set. “rand-tst” represents that the random approach is only

applied to malware in the test set, while “rand-tra-tst” means

pretense is applied to both the training set and the test set.

“max-pret-tst” and “max-pret-tra-tst” represent the usage of

the max pretense approach for different subsets.

TABLE I
THE PRETENSE RESULTS OF DLL FEATURE

TPR FPR Accuracy AUC

no-pretense 88.62% 41.86% 72.73% 81.27%
rand-tst 42.25% 41.86% 50.53% 53.20%
rand-tra-tst 47.90% 23.04% 63.05% 67.54%
max-pret-tst 2.83% 41.88% 31.65% 23.66%
max-pret-tra-tst 30.38% 33.12% 49.41% 52.04%

When there is no pretense in the training set and the test

set, the DLL feature results in a high detection rate (i.e.

TPR) and a high false alarm (i.e. FPR). When the random

approach is applied to the test set, the detection rate on

the pretended malware decreases by 52.3%. If the pretended

malware samples are added to the training set the detection

rate just increases a little. When the max pretense approach is

applied to the test set, the detection rate is only 2.83%, which

means the malware detection algorithm does not work at all.

Even after the classifier is trained on the pretended malware,

the detection rate only reaches 30.38%, with a false alarm of

33.12%.

TABLE II
THE PRETENSE RESULTS OF API FEATURE

TPR FPR Accuracy AUC

no-pretense 94.34% 9.23% 92.48% 97.58%
rand-tst 22.02% 9.09% 57.93% 64.19%
rand-tra-tst 53.25% 7.82% 73.54% 78.75%
max-pret-tst 0.05% 9.15% 47.38% 32.40%
max-pret-tra-tst 34.08% 13.32% 61.50% 69.12%

When pretense is not applied to the training set and the

test set, the API feature has better detection performance than

DLL feature because API has more detailed information than

DLL. When only applying pretense to the test set, the detection

rate decreases from 94.34% to 22.02% and 0.05% for the two

pretense approach respectively. After the classifier is trained

on the pretended malware, the detection rate still cannot rise

to an acceptable level.

It can be seen that DLL and API features are not robust

to these pretense approaches and the pretended malware can

avoid the detection of the classifier easily.

III. STRING FEATURE

The executables usually contain many printable strings in

their binary contents. Schultz et al. [2] used these strings as

the features to detect malware.

After analyzing the string features with large information

gain we found that the strings mainly consist of DLL and

API names in the import section and the user-defined string

constants. 46% of the top 400 strings in information gain are

DLL or API strings.

For user-defined string constants, it is very easy to add

irrelevant strings to a program and hide an existing string by

some obfuscation operations such as XOR and bit shift. Given

a malware sample and a benign program, we can modify the

malware’s feature vector to make it exactly the same as the

benign program’s feature vector by hide the features that only

appear in the malware and add irrelevant strings that only

appear in the benign program.

Therefore, we only need to consider the DLL and API

strings, while the pretense analysis given in the previous

section can be generalized to these strings. We conclude that

string features are also not robust enough and the malware

detection algorithm can be easily bypassed.

IV. PE-MINER

A. Introduction

On windows operating systems, the executables are usually

in PE format [14]. The PE format has many fields in the head

of an executable such as time date stamp, number of sections

and virtual addresses of sections. PE-Miner [3] regards these

fields along with DLLs as the features to detect malware.

B. Characteristics of PE-Miner

We found that the meanings of many PE fields are not

related to the malicious behaviors of malware. For example,

the feature with the largest information gain is time date stamp.

Benign programs usually use normal time date stamp while a

lot of malware samples use abnormal time date stamp such

as zero value (i.e. ‘1970-01-01 00:00:00’). Actually time date

stamp has nothing to do with a program’s behaviors. If the

malware authors know the abnormal time date stamp will be

used as a feature to detect malware, they can just use normal

time date stamp in their malware.

Many PE fields can be modified unrestrictedly without

crashing the functions of the program, such as time date stamp,

linker version and image version. Some address related fields

such as address of entry point can be modified with little

restriction. The new value should be kept in a valid address

range and the compiler should rearrange the corresponding

code or data to the new address. For example, if we changed
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the address of entry point, the compiler should move the code

piece at the entry point to the new address.

Other PE fields can only be modified in the increasing direc-

tion such as number of sections, size of code and virtual sizes

of sections. For example, the size of code can be increased by

inserting irrelevant code, but decreasing the size of code may

crash the program. Although it is possible to decrease the size

of code by manually removing some redundant code, this will

involve many human efforts and cannot be applied to a variety

of malware. Therefore, we only consider to increase these PE

fields in the pretense approach.

There are 57 PE fields which can only be increased. For

each of these fields, we use information gain and class

difference to measure its characteristics. Before calculating

class difference all fields are standardized to have zero mean

and unit variance. Class difference for the f -th field is defined

as FM (f)−FB(f), where FM (f) is the field’s average value

in malware samples and FB(f) is the field’s average value in

benign programs. The information gain and class difference

of the 57 fields are shown in Figure 3.
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Fig. 3. Information gain versus class difference of the 57 PE fields which
can only be increased

The points with positive class difference are not far from

the horizontal zero line while many points have negative

class differences and some negative points stay quite far from

the horizontal zero line. Negative class difference means the

average field value of malware is smaller than that of benign

programs’. There is enough space for malware authors to

increase these fields with negative class differences to make

malware look like benign.

C. Pretense for PE-Miner

A benign program is firstly chosen to modify malware’s

feature value. PE-Miner uses PE fields and DLLs as features.

For the PE fields which can be modified unrestrictedly, the

malware’s value will be modified to the benign program’s

value. For PE fields which only be modified in the increasing

direction, if the malware’s value is smaller than the benign

program’s value the malware’s value will be modified to the

benign program’s value. After a PE field is modified, we may

need to rearrange the corresponding content of the executable

to make sure the format of the executable is still valid. For

example, if we increase the number of sections, we should add

some irrelevant sections to the executable. DLL features can

be modified in the same way as the previous section.

The fields used by PE-Miner include the virtual addresses

and the virtual sizes of 15 data directories and 3 sections.

If the virtual sizes are increased some data directories or

sections may overlap in the virtual address space. If such

overlap happens, the posterior data directory or section should

be shift backwards to eliminate the overlap. The new virtual

addresses of sections after shifting should be aligned with the

field “section alignment”. The file pointers to the sections and

the sizes of the sections on disk may also suffer from overlap

when the sizes are increased. In such case the sections in the

file should also be shifted to eliminate the overlap.

For PE-Miner we also use the random approach and the

max pretense approach to choose the benign program. The

max pretense approach only considers the DLLs used in PE-

Miner and the 57 PE fields which can only be modified in the

increasing direction. The 57 PE fields are continuous while

Formula 1 is defined for binary DLL and API features. For

continuous variables the objective should be redefined. The

binary DLL features in PE-Miner can be viewed as special

continuous variables and they also can only be increased.

Therefore, the DLL features are merged into these PE fields

so that we can use a unified model to deal with these two

kinds of features.

Like the max pretense approach for the binary DLL and

API features, we also define two objectives to be maximized

for continuous variables. The f -th field value of the malware

is denoted as vmf , and the f -th field value of the i-th benign

program is denoted as vbif . The set {f |vmf < vbif} represents

the fields on which the malware has smaller value than the

i-th benign program. The size of this set reflects how much

benign characteristic the i-th benign program will bring to

the pretended malware. It is the first objective of the max

pretense approach. The set {f |vmf = vbif} represents the fields

on which the malware and the i-th benign program hold the

same value, and it can be used to represent the common

characteristics of the two programs. Maximizing its size will

make the combined program look like a normal program

and the pattern of unnatural combination will be weakened.

After adding the two objectives we get the unified objective

|{f |vmf <= vbif}|. After assigning each field a weight using

information gain we can use Formula 2 to choose the benign

program for current malware.

i∗ = argmax
i

(
∑

f |vm
f
<=vb

if

IG(f)− λT (i)) (2)

The experimental results are shown in Table III. Except the

last two rows, the abbreviations in this table are the same as

Table I and Table II.

When there is no pretense, PE-Miner is able to achieve

a relative high detection rate of 97.5%. Under the random

approach, the classifier trained on the dataset without pre-
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TABLE III
THE PRETENSE RESULTS OF PE-MINER

TPR FPR Accuracy AUC

no-pretense 97.50% 3.07% 97.20% 99.57%
rand-tst 2.76% 3.16% 51.80% 69.46%
rand-tra-tst 87.18% 0.23% 93.74% 98.18%
max-pret-tst 0.23% 3.14% 50.60% 50.28%
max-pret-tra-tst 69.76% 5.76% 82.52% 89.33%
max-pret-tst-wos 0.13% 3.05% 50.60% 47.54%
max-pret-tra-tst-wos 49.60% 14.33% 68.40% 73.52%

tense can only detect 2.76% pretended malware. While after

adding the pretended malware to the training set, it will learn

the unnatural combination pattern of pretended malware and

detect 87.18% of them. The max pretense approach tries

to weaken the unnatural combination pattern, and after the

classifier learns from the pretended malware, the detection rate

is 69.76%, which is much smaller than that of the random

approach.

In the pretense process if data directories or sections overlap

after increasing their sizes they will be shifted backwards. This

will cause new pattern in the pretended malware, i.e. the shift

pattern, and the classifier will learn this pattern to detect such

kind of malware. The suffix “wos” in the last two rows of

Table III means “without shift”. Of course it is impossible not

to shift the overlapped data directories or sections but we just

use these two rows to show the effect of shift pattern. The

detection rate drops from 69.76% to 49.6% if we do not shift

the overlapped data directories or sections, which means the

shift pattern contributes a lot to the detection rate of “max-

pret-tra-tst” and the classifier only learns limited malicious

pattern from malware.

The detection performance declines a lot under the max

pretense approach, which means PE-Miner is also not a robust

malware detection algorithm.

After learning from pretended malware, the achieved de-

tection rate owes more to the combination pattern and the

shift pattern. Actually the PE fields mainly contain some rough

statistics of the executables such as the sizes of sections and

the number of symbols, and these fields are not closely related

to the malicious behaviors of malware. It is possible to develop

more meticulous pretense approach to weaken the effect the

combination and shift patterns and to make PE-Miner hard

to detect such malware. We leave this pretense approach as

future works.

V. BYTE LEVEL N-GRAM FEATURE

A. Introduction

A sliding windows with length N is used to extract N-

Gram features from the byte sequence in a program. N is

a hyper-parameter of the malware detection algorithm which

is usually tuned on a validation set. In most papers the final

chosen value of N is 4. In such case there usually will be

hundreds of millions of N-Gram features and feature selection

is required to select a small amount of discriminative features.

We use information gain to select the 2000 most discriminative

features in all the experiments of this section. The feature value

of an N-Gram is 0 or 1 according to its absence or presence

in a program.

B. Characteristics of N-Gram Feature

N-Gram feature is binary, and we can use the same method

as DLL and API features to analyze it. The information gain

and the malicious tendency of the top 2000 features are shown

in Figure 4.
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Fig. 4. Information gain versus malicious tendency of the top 2000 N-Grams
features

We can see that all the top N-Grams have negative malicious

tendency, which means these features tend to appear in benign

programs. After manually checking the contents of these

features, we found that many of these features come from

the normal string resources in the benign executables, while

malware seldom uses these strings. The malware detection

algorithm can be easily bypassed by adding these irrelevant

strings to malware.

C. Pretense for N-Gram Feature

To apply pretense to a malware sample, we choose a benign

program to inject its full binary content to the binary malware.

This is identical to modify the malware’s feature value from

0 to 1 when the benign program’s feature value is 1 and the

malware’s feature value is 0. The modification of feature value

is not just on the top 2000 features, but on all the hundreds of

millions of features before feature selection. After changing

the feature values, their information gain will also change.

Therefore, when we train a classifier on pretended malware,

we should re-calculate all features’ information gain and select

the most discriminative features again.

The random approach and the max pretense approach used

here are the same as DLL and API features, since N-Gram

feature is also binary. When using max pretense approach for

N-Gram feature, Bi in Formula 1 is the set of all N-Grams

appeared in the i-th benign executable.

The experimental results of N-Gram feature are shown in

Figure IV.

The classifier trained on non-pretended dataset is able to

detect 97.65% non-pretended malware, but it only detects
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TABLE IV
THE PRETENSE RESULTS OF N-GRAM FEATURE

TPR FPR Accuracy AUC

no-pretense 97.65% 4.44% 96.56% 99.27%
rand-tst 2.56% 4.24% 51.24% 51.41%
rand-tra-tst 96.73% 2.25% 97.26% 99.56%
max-pret-tst 0.00% 4.49% 49.88% 34.80%
max-pret-tra-tst 40.92% 15.37% 63.75% 76.49%

2.56% pretended malware when using the random approach

and cannot detect any malware when using the max pretense

approach. When pretended malware samples of random ap-

proach come into the training set, the classifier detects 96.73%

of them. This is because the combination with a random

chosen benign program is usually unnatural and the unnatural

combination pattern is learned by the malware detection model

so that the model can use this pattern to detect such malware.

While the max pretense approach is able to significantly

weaken the combination pattern, which results in a detection

rate of 40.92%. Most pretended malware of the max pretense

approach still cannot be detected even after the model learns

their characteristics.

Therefore, the widely used N-Gram feature is very vulner-

able to the well-designed pretended approach and anti-virus

software must be cautious enough to use this feature.

VI. CONCLUSION AND DISCUSSION

In this paper we proposed two approaches to analyze

the robustness of machine learning based malware detection

algorithms. It is shown that the most used feature extraction

algorithms, i.e. DLL, API, string, PE-Miner and N-Gram,

have poor detection performance under the proposed pretense

approaches. These malware detection algorithms cannot be

applied in real world applications unless effective mechanism

is proposed to deal with pretense.

When the max pretense approach is only applied to the test

set, the detection rate of these feature extraction algorithms

range from 0% to 3%, which means that the malware detection

algorithms do not work at all on the new pretended malware.

Even though the detection rate will increase after antivirus

vendor collects enough pretended malware and adds them to

the training set, the collection will take time and when the

detection rate increases malware authors may have already

turn to other pretense approaches. When the malware detection

algorithm learns to deal with these new pretense approaches,

malware authors will develop other new pretense approaches

again. Adding pretended malware to the training set is not

a solution to the detection of pretended malware because the

patterns of pretended malware keep changing and the classifier

cannot generalize to new pattern. Malware detection algorithm

should learn the inherent malicious characteristics of malware

and drop the benign patterns to avoid that malware samples

use the benign patterns to bypass detection. This will make

the malware detection algorithm more robust against pretense.
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