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Abstract—Dissemination of malicious code, also known as 
malware, poses severe challenges to cyber security. Malware 

authors embed software in seemingly innocuous executables, 

unknown to a user. The malware subsequently interacts with 

security-critical OS resources on the host system or network, in 

order to destroy their information or to gather sensitive 
information such as passwords and credit card numbers. 

Malware authors typically use Application Programming 

Interface (API) calls to perpetrate these crimes. We present a 

model that uses text mining and topic modeling to detect 

malware, based on the types of API call sequences. We 
evaluated our technique on  two publicly available datasets . 

We observed that Decision Tree and Support Vector Machine 

yielded significant results. We performed t- test with respect to 

sensitivity for the two models and found that statistically there 

is no significant difference between these models. We 
recommend Decision Tree as it yields ‘if-then’ rules, which 

could be used as an early warning expert system. 

 

I. INTRODUCTION 

Cyber security is a significant economic and national 
security challenge affecting all areas of government and the 

private sector in today's world. Cybersecurity thus involves 
the different measures taken to protect computer systems and 

networks against unauthorized access or attack. Malware 
takes a primary vehicle to attack the resources. Alazab et al. 

[1], defined malware as code added, changed or deleted from 

a program or system, in order to intentionally cause harm or 
subvert the intended function of the program or system [1]. 

Every two years, it is estimated that the financial loss to an 
organization is doubled due to the breach of cyber security 

and malware specifically is the most common method of this 
breach [2].   

Malware, in general attempts to hide itself from the 

defensive mechanisms in a system, in order to perform its 
malicious tasks. Vital protective mechanisms include 

deploying signature-based antivirus programs. [3]. But, it is 
becoming more challenging for signature-based malware 

detection to detect variants of a family of malware [4]. In 
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order to address these challenges, efficient machine learning 
algorithms are employed to recognize the new, unseen 

instances of malware , by extracting the efficient features 

either in a static or dynamic manner from the binary 
executables [5,6]. The orig inal malicious executables were 

disassembled into a series of the API calls , they make to the 
system, which could be handled as text files, rather than 

executables. We therefore propose a model that takes 
advantage of the fact that malware can now be analyzed at 

the text level. We employed topic model (Latent Dirchlet 
Analysis) as feature selection method. The rest of the paper is 

organized as follows: In Section II, we present literature 

review and section III describes the importance of malware 
API in malware detection. Section IV exp lains our proposed 

methodology. The experimental setup and dataset are 
described in Section V. Section VI presents results and 

discussion, followed by conclusions in section VI. 

 

II. RELATED WORK 

Since 1996, research on API calls has been carried out. 

One of the significant contributions is that of Forrest et al., 
[7], where they leveraged n- grams approach for anomaly 

detection. Similarly, Reddy & Pujari [8] proposed that byte 

sequence and byte n-gram could be considered for feature 
extraction. As the number of resulting features would be very 

large, they used various methods of feature selection and 
reported the use of information gain based selection methods 

as the best in the malware classification.  

O'Kane et al., [9] and Chandramohan et al., [10] argue 

that a major issue with malware classification based on n-

gram analysis is that it is performed on an extremely large 
exp losion of features that occurs when n is increased.  and 

hence, they presented a scheme based on "subspace analysis 
using eigenvector", and claim that this produces a suitable 

filter for malware detection [9].   Zhuang et al., [4] ext racted 
instructions from API calls and used a hybrid method 

comprising hierarchical clustering and K-medoids algorithm 

for malware classification. Shankarapani et al., [12] showed 
that the calling sequence of Windows APIs reflected the 

behavior of a particular piece of code and could help identify 
malware. Kasama et al., [13] developed the notion of 

observing suspicious behavior based on system calls in a 
dynamic environment. Bai et al., [14] proposed critical API 

calling graph (CAG) and extracted CAG from the control 
flow graph for detecting the malware. Sheen et al., [15] 

proposed to prune the ensemble which detects the malware 

using harmony search and most recently, Nissim et al., [16] 
proposed a novel active learning method to detect new 

Malware files. Ahmed et al., [17] had used spatio- temporal 
information in API calls as feature selection for classifying 

the malware samples. In this paper, we propose a model 
where LDA and data min ing algorithms are employed in 

tandem.  
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III. OVERVIEW OF API CALLS IN MALWARE DETECTION 

API level information within the byte code is a 

convenient method of analyzing software malevolence 
tendencies, since it conveys substantial semantics about the 

behavior of the executable from which the API call sequence 

was generated. More specifically, we focus on critical API 
calls, their package level information, as well as their 

parameters. Majority of the Windows-based applications 
make use of API calls to execute tasks [18, 19] Hence, 

malware authors readily use API calls as a way to perform 
malicious actions. Malcode has the ability to use API 

functions provided under the Win32 environment to execute 

malicious tasks [20] on the file management system, console, 
process and thread, or registry (the primary vulnerable 

targets) [24]. Table I presents a few typical API calls and 
their behavior. 

TABLE I SOME API CALLS AND RESPECTIVE BEHAVIOR [21] 

 

API function calls  Suspicious behavior 

description 

GetWindowsDirectory, 

GetSystemDirectory 

Obtain the system 

directory 

FindFirstFile, FindNextFile  Search files to infect 

CreateFile, OpenFile, 

WriteFile, CloseHandle.  
File write 

GetFileAttributes, 

etFileAttributes 
Modify file attributes 

GetFileTime, SetFileTime Modify time of file 

GlobalAlloc, GlobalFree Distribute global memory 

VirtualAlloc, VirtualFree Distribute virtual memory 

RegCreateKey, RegSetValue, 

RegCloseKey 
Load register  

 

IV. PROPOSED METHODOLOGY 

A.  Preprocessing 

Text Mining is the process of finding correct, potentially 
useful and ultimately understandable knowledge from a large 

text dataset [22].  It includes tokenization, removal of stop 
words and stemming [23], then ext racting a large number of 

features, followed by feature selection. Term Frequency-
Inverse Document Frequency (TF-IDF) is a common feature 

extraction method in information retrieval and text mining 

([23, 24] . 

 TF-IDF can be computed as follows: 
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 where ni.j is the number of occurrences of term ti in 
document dj, and the denominator is the number of 

occurrences of all terms in document; dj and |D| is the total 
number of documents in a data set, and {d j: ti  dj+1} is 

document frequency, i.e. the number of documents where 

term ti appears. With the selected features, a document-term 
matrix is built.  

B. Feature Selection  

               To discover the structural properties in the data, 

various models have been proposed. Of them, the most 

popular model includes ―Topic Model‖ [26].  

   A challenging aspect of text document classification 

problem is the choice of features [27]. Treat ing indiv idual 

words as features yields a rich but very large feature set. 

Therefore, we used Latent Dirichlet Allocation (LDA) to 

select the features and build a vector space model. LDA is a 

generative Bayesian graphical model which represents each 

document as a collection of topics from a mixture model, 

where each mixture component is a topic [28]. Each topic 

consists of words that co-appear in a document regularly and 

is the representation of the document. The input to LDA is 

the standard bag of words representation of a collection of 

documents, where a sparse vector of |W| represents 

document collection D, where W is the unique list of words 

[26]. It models each document d as a mixture θ d over T 

Latent topics, where each topic Øt is drawn from a Dirichlet 

distribution with parameter β , and θd is drawn from 

symmetric Dirich let distribution with parameter α. In 

general, a document can deal with multip le topics and the 

words in the document indicate the particular set of topics it 

addresses [26]. LDA can therefore help to uncover the 

hidden structure of the document. Given a matrix o f order m 

× n where a row represents a document and each column 

represents the words, LDA generates a word-topic matrix , 

in which ϕ
(j)

 = p( w| z=j)) is the multinomial distribution of 

words over the topic j.  

   LDA in general is accomplished of the following process 

[27] 

a) Choose N words ~ Po isson (ᶓ)  

b) Choose θ ~ Dirch let (α) 

c) For each of the N words wn : 

- Choose a topic Zn ~ Multinomial (θ) 

- Choose a word Wn from p( Wn | Zn, β), a 

multinomial condition on topic Zn 

   A k-dimensional Dirichlet random variab le θ can take 

values in the (k−1)-simplex, and has the following 

probability density on this simplex: 

𝑝(θ|α)  =  
г( 𝛼𝑖

𝑘
𝑖 =1 )

𝜋𝑖=1
𝑘 г(∝𝑖)

 𝜃1
∝𝑖−1

…  𝜃𝑘
∝𝑘−1

   

   where the parameter α is a k-vector with components αi 

>0, and where г(x) is the Gamma function. The Dirichlet is a 

convenient distribution on the simplex—it is in the 

exponential family, has finite dimensional sufficient 

statistics, and is conjugate to the multinomial distribution. 

   Given the parameters α and β, the jo int distribution of a 

topic mixture θ, a  set of N topics z, and a set of N words w is 

given by: 

𝑝(θ, 𝐳, 𝐰|𝛼, β)  =  𝑝(θ|α) 𝜋𝑛=1
𝑁 𝑝 𝑧𝑛  𝜃 𝑝(𝑤𝑛 |𝑍𝑛 ,𝛽) 
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   where p(Zn|θ) is simply θ i for the unique i such that z
i
n = 1. 

Integrating over θ and summing over z, we obtain the 

marginal distribution of a document: 

p(w|α, β)   =  𝑝 𝜃 𝛼 ( 𝜋𝑛=1
𝑁  𝑝 𝑍𝑛

 𝜃) 𝑝(𝑤𝑛 |𝑍𝑛 , 𝛽) 𝑑𝜃
𝑧𝑛

 

   Finally, taking the product of the marginal probabilities of 

single documents, we obtain the probability of a corpus:  

p D α, β 

=  𝜋𝑑=1
𝑀  𝑝 𝜃 𝛼 ( 𝜋𝑛=1

𝑁𝑑  𝑝 𝑍𝑛
 𝜃𝑑 ) 𝑝(𝑤𝑑𝑛 |𝑍𝑑𝑛 ,𝛽) 𝑑𝜃

𝑧𝑑𝑛

 

V. EXPERIMENTAL SETUP 

A. Data set description  

We analyzed two datasets. In the case of first one, named 

Dataset 1, we obtained the malware  (320) and benign (68) 

API call logs sequences from CSMINING group [30] 
available in public domain. It is obviously unbalanced. 

Further, we carried out experimentation on another dataset 
[17], named Dataset 2, by us.  The dataset consists of 416 

malware samples and 100 benign executables. Of the 416 
malware samples, Trojans are 117, 165 are virus samples and 

worms are 134. The corresponding API call logs have been 
obtained from [31].  

B. Experimental Setup 

In order to apply the text mining techniques discussed in 

the preceding section for Dataset 1, we computed the TF-
IDF values and obtained 313 unique tokens or variables. 

Further, from the 388 text files comprising a series of API 

calls, we derived the topic-word matrix as discussed above 

using LDA. From the matrix, (i)(j) = p(w = wi | z = j) is 

the value of i j
th

 cell of the matrix, defined as the 
probability of i

th
 word belonging to the j

th
 topic. We then 

sorted the column from each topic and extracted the top 
word from each topic and represented it as the efficient 

feature set for classification in the Document-Term matrix. 
We tested with the number of topics being 5, 8, 11 and 14, 

and discovered that 8 topics yielded the best results. We 

empirically chose 8 topics as a suitable number, out of 
repetitive experiments with varying numbers of topics, for 

the given dataset. Furthermore, for the hyper-parameters for 
LDA [32], we have set alpha=6 and beta value as 0.1. We 

trained our LDA model for 100 iterations. Further, Dataset1 
is unbalanced. 

   Features extracted by the proposed methodology are 

presented in Table V.  The document term matrix having 8 
features is fed to classifiers. To further validate the proposed 

methodology, we carried out the experimentation on another 
dataset, originally available in [31] and previously analyzed 

by Ahmed et al. [17]. With the proposed methodology of 
LDA as feature selection, we selected 7 features. We ran the 

LDA for the entire corpus consisting of 516 documents of 

the executables with the hyper parameters of alpha as 5, beta 
as 0.1, number of topics as 7 and number of iterations set to 

100. We have chosen these parameters after a repeated set of 
experiments.  

   With the thus obtained 7 features  from the top most 

features from 7 topics, we formed the document term matrix. 

In order to compare our results with that of Ahmed et al. 

[17], we followed the same methodology followed by them. 

We segregated the samples into four classes and developed 3 

binary classification tasks viz., Benign vs. Trojan, Benign 

vs. Virus and Benign vs. Worm. We fo llowed 10 fold cross 

validation throughout the process similar to [17].  

 

VI. RESULTS AND DISCUSSION 

We employed Neuroshell 2.0 [33] and RapidMiner [35] 

for conducting the experiments. As regards  the Dataset 1, 
Table II presents a comparison of our results with that of the 

most recent work [34], where they employed oversampling 

and mutual information for malware identification. , From 
Table II, we noticed that the proposed approach significantly 

improved results despite the data being imbalanced.  

   They achieved the sensitivity of 100 % using SVM with 

specificity being 0. In the proposed approach,   we observed 
MLP, SVM, GMDH, DT and RF yielded a sensitivity of 

98.61%, 96.87%, 94.12%  92.95% and 91.5% respectively. 

With respect to Area Under ROC Curve (AUC-computed as 
50* (sensitivity + Sensitivity)), DT and GMDH turned out to 

be strongest performers. However, we preferred DT as it 
yielded rules while build ing the model. Rules extracted from 

DT are presented in Table VI. Further, in the Dataset 2 too 
(see Tables III and IV), the proposed methodology yielded 

excellent results in identifying various flavors of the 
malware when classified against the benign samples. When 

compared to [17] the proposed methodology performed well 

with significantly high results without any combinatorial 
feature selection performed in [17].  DT and SVM 

outperformed the results of [17] in identify ing the Trojan, 
Virus, and Worm versus Benign Samples. Rules extracted 

from DT for dataset 2, are presented in Table VII. 

   Finally, we performed t- test (with respect to sensitivity) 

between DT and SVM at 18 degrees of freedom and 1% 

level of significance. We found statistically there is no 

significant difference between DT and SVM. However,, we 

prefer DT as it yielded rules for classification whereas SVM 

is a black box. Rules extracted for 3 b inary classification 

problems are presented in Table VI. In [17], while Naïve 

Bayes performed well compared to the rest of the classifiers, 

it is also a black box. We finally conclude that LDA as 

feature selection in combination with data min ing algorithms 

is a viable option for the malware detection. 

VII. CONCLUSION 

We propose a novel approach to detect malware that uses 

text mining for feature extraction; topic modeling for feature 

selection using Latent Dirichlet Allocation to detect malware 

based on the types of API call sequences  and machine 

learning for classification. We evaluated the effectiveness of 

our technique on a two publicly available datasets For the 

Dataset 1, despite the imbalance, LDA as a feature selection 

method yielded significant results when compared with the 
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earlier approaches including Sundarkumar and Ravi [34]. 

Further in the Dataset 2 too, the proposed methodology 

performed well. As DT and SVM are found to be statistically 

significantly not different, we prefer DT as it yields rules for 

constructing the model. 

 
 
 

 
 
 
 

TABLE II AVERAGE RESULTS OF 10 FOLDS ON DATASET 1 

 

 Method of [34] with 10 features Proposed Methodology with 8 features 

Model Accuracy Sensitivity Specificity 

Area 

Under 
Curve 

Accuracy Sensitivity Specificity 

Area 

Under 
Curve 

SVM 70.27 100 0 5000 88.15 96.87 41.66 6926.5 

PNN 66.13 78.43 41.57 6000 82.68 67.9 87.07 7748.5 

D.T 73.43 80.54 59.09 6981.5 88.67 92.95 54.99 7397 

GMDH 70.47 94.37 27.93 6115 89.46 94.12 50.462 7229.1 

MLP 70.05 90.01 23.45 5673 87.64 98.61 29 6380.5 

RF - - - - 85 91.5 50 7078 

TABLE III DETECTION ACCURACY ON DATASET 2 BY [17] 

Alg IBK J48 NB RIPPER SMO Avg 

Trojan 

Spatial (S) 92.6 91.0 77.7 87.1 76.0 84.9 

Temporal (T) 95.8 90.3 94.5 93.2 97.0 94.2 

S&T 96.3 90.8 96.6 95.9 97.0 95.3 

  Virus 

Spatial (S) 91.5 94.0 85.9 94.9 91.5 91.6 

Temporal (T) 93.7 95.6 97.4 94.5 97.1 95.7 

S&T 95.4 96.3 99 95.4 96.8 96.6 

  Worm 

Spatial (S) 97.3 96.1 94.6 96.3 80.6 93.6 

Temporal (T) 94.2 96.8 96.2 95.3 96.3 95.8 

S&T 95.8 96.6 98.4 97.5 96.3 96.9 

Avg 96.3 94.7 98.0 96.0 96.8 96.3 

TABLE IV. DETECTION ACCURACY OF PROPOSED METHODOLOGY ON DATASET 2  

Category D.T SVM MLP GMDH PNN RF 

Trojan 98.182 98.462 93.63 93.05 92.8 85 

Virus 98.75 98.75 89.35 96.712 88.23 95 

Worm 98.46 98.7 89.5 93.72 87.98 92.5 

Average 98.46 98.63 90.8 94.49 89.67 90.3 

 TABLE V FEATURES EXTRACTED FOR THE MALWARE DATASETS 

10 Features obtained using MIFS 

for Dataset 1[34] 

8 Features obtained using LDA 

for Dataset 1 

7 Features obtained using 

LDA for Dataset 2 

GetCurrentProcess, 
GetCurrentProcessId, 
GlobalMemoryStatus, 
IsBadReadPtr, IsBadStringPtrW, 

IsBadWritePtr, LocalAlloc, 
LocalFree, RegOpenKeyW and 
RegSetValueExW 

GetProcAddress,  
GetCurrentThreadId, GlobalAlloc, 
IsBadReadPtr, 
 Sleep, HeapFree,  

HeapSize, HeapAlloc 

HeapSize, HeapFree, 
IsBadReadPtr, HeapAlloc, 
GetCurrentThreadId, 
GetCurrentProcessId, 

LocalAlloc 
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TABLE VI RULES OBTAINED BY DT FOR BEST FOLD IN DATASET 1 

# Antecedent Consequent 
1. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 

GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027 
Malware 

2. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 
GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId >0.027 

and sleep =0.001 

Benign 

3. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 
GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027 

and sleep =0.003 

Malware 

4. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 

GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027 
and sleep >0.003 

Benign 

5. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 

GetProcAddress = 0.068 and IsBadReadPtr>0.369 

Malware 

6. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and 

GetProcAddress > 0.068 

Malware 

7. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc > 0.008  Benign 

8. If HeapSize >0.07 and HeapAlloc > 0.536 and sleep=0.000 Malware 
9. If HeapSize >0.07 and HeapAlloc > 0.536 and sleep>0.000 Benign 

10. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 
GetProcAddress = 0.001 

Malware 

11. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 
GetProcAddress > 0.001 

Benign 

12. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 
GetProcAddress > 0.063 

Malware 

13. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 
GetProcAddress = 0.147 

Malware 

14. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 

GetProcAddress > 0.147 

Benign 

15. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and 

GetProcAddress > 0.174 

Malware 

16. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and 
GetCurrentThreadId > 0.000 

Benign 

17. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and 
GetCurrentThreadId = 0.072 

Benign 

18. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and 
GetCurrentThreadId > 0.072 

Malware 

19. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress > 0.027 and 
GetCurrentThreadId > 0.044 

Malware 

20. if HeapSize = 0.007 and GlobalAlloc > 0.003 and GetProcAddress > 0.578 Malware 
21. if HeapSize = 0.007 and GetProcAddress = 0.631 Malware 

22. if HeapSize = 0.007 and GetProcAddress > 0.631 Benign 
23. if HeapSize = 0.007 amd GetProcAddress > 0.674 Malware 

 

TABLE VII RULES OBTAINED BY DT FOR BEST FOLD IN DATASET 2 

DT Rules extracted for Benign vs Virus 

# Antecedent Consequent 

1. If(HeapSize<= 0.004),  Virus  

2. If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and 

GetCurrentThreadId <= 0.001)  

Benign 

3.  If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and 

GetCurrentThreadId > 0.001 and HeapSize >0.313),  

Virus  

4. If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and 

GetCurrentThreadId > 0.001 and HeapSize <= 0.313),  

Benign 

5. If(HeapSize<=0.044 and GetCurrentProcessId <= 0.004)  Benign 

6. If(HeapSize<=0.044 and GetCurrentProcessId > 0.004)  Virus  

7. If(HeapSize>0.044 and GetCurrentthreadId <= 0.007)  Benign 

8. If(HeapSize>0.044 and GetCurrentthreadId > 0.008)  Benign 

9. If(HeapSize>0.044 and GetCurrentthreadId <= 0.008)  Virus  

DT Rules extracted for Benign vs Trojan 

1. If( HeapSize<= 0.001 and GetCurrentThreadId > 0.006 and HeapAlloc 

>0.001)  

Benign 

2. If( HeapSize<= 0.001 and GetCurrentThreadId > 0.006 and HeapAlloc 

<=0.001)  

Trojan 

3. If( HeapSize<= 0.001 and GetCurrentThreadId > 0.004 and 

GetCurrentThreadId < 0.006 and HeapAlloc >0.001)  

Trojan 
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4. If( HeapSize<= 0.001 and GetCurrentThreadId > 0.004 and 

GetCurrentThreadId < 0.006 and HeapAlloc <=0.001)  

Benign 

5. If( HeapSize<= 0.001 and GetCurrentThreadId <= 0.003)  Trojan 

6. If( HeapSize>0.001 and HeapFree <= 0.003)  Trojan 

7. If( HeapSize>0.001 and HeapFree > 0.003)  Benign 

DT Rules extracted for Benign vs Worm  

1. If( HeapSize <= 0.001)  Worm 

2. If( GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and 

HeapSize <=0.138)  

Worm 

3. If( GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and 

HeapSize <=0.451) 

worm 

4 If( GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and 

HeapSize >0.451)  

Worm 
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