



Abstract—Dissemination of malicious code, also known as
malware, poses severe challenges to cyber security. Malware

authors embed software in seemingly innocuous executables,

unknown to a user. The malware subsequently interacts with

security-critical OS resources on the host system or network, in

order to destroy their information or to gather sensitive
information such as passwords and credit card numbers.

Malware authors typically use Application Programming

Interface (API) calls to perpetrate these crimes. We present a

model that uses text mining and topic modeling to detect

malware, based on the types of API call sequences. We
evaluated our technique on two publicly available datasets .

We observed that Decision Tree and Support Vector Machine

yielded significant results. We performed t- test with respect to

sensitivity for the two models and found that statistically there

is no significant difference between these models. We
recommend Decision Tree as it yields ‘if-then’ rules, which

could be used as an early warning expert system.

I. INTRODUCTION

Cyber security is a significant economic and national
security challenge affecting all areas of government and the

private sector in today's world. Cybersecurity thus involves
the different measures taken to protect computer systems and

networks against unauthorized access or attack. Malware
takes a primary vehicle to attack the resources. Alazab et al.

[1], defined malware as code added, changed or deleted from

a program or system, in order to intentionally cause harm or
subvert the intended function of the program or system [1].

Every two years, it is estimated that the financial loss to an
organization is doubled due to the breach of cyber security

and malware specifically is the most common method of this
breach [2].

Malware, in general attempts to hide itself from the

defensive mechanisms in a system, in order to perform its
malicious tasks. Vital protective mechanisms include

deploying signature-based antivirus programs. [3]. But, it is
becoming more challenging for signature-based malware

detection to detect variants of a family of malware [4]. In

G. Ganesh Sundarkumar was M. Tech., student at Institute for

Development and Research in Banking Technology and University of
Hyderabad, Hyderabad-500046 (AP),India (e-mail:

govindaraju.gsk@gmail.com).
* Vadlamani Ravi is Professor and Head, Center of Excellence in CRM

and Analytics, Institute for Development and Research in Banking
Technology, Castle Hills Road No. 1, Masab Tank, Hyderabad – 500057

(AP), India (Corresponding Author’s Phone: +914023294042 and email:
rav_padma@yahoo.com).

Ifeoma Nwogu is Research Assistant Professor in Center for Unified
Biometrics and Sensors at State University of NewYork (SUNY), Buffalo

(email:inwogu@buffalo.edu).
Venu Govindaraju is Distinguished Professor and Director, Center for

Unified Biometrics and Sensors at State University of NewYork, Buffalo
(email: venu@cubs.buffalo.edu) .

order to address these challenges, efficient machine learning
algorithms are employed to recognize the new, unseen

instances of malware , by extracting the efficient features

either in a static or dynamic manner from the binary
executables [5,6]. The orig inal malicious executables were

disassembled into a series of the API calls , they make to the
system, which could be handled as text files, rather than

executables. We therefore propose a model that takes
advantage of the fact that malware can now be analyzed at

the text level. We employed topic model (Latent Dirchlet
Analysis) as feature selection method. The rest of the paper is

organized as follows: In Section II, we present literature

review and section III describes the importance of malware
API in malware detection. Section IV exp lains our proposed

methodology. The experimental setup and dataset are
described in Section V. Section VI presents results and

discussion, followed by conclusions in section VI.

II. RELATED WORK

Since 1996, research on API calls has been carried out.

One of the significant contributions is that of Forrest et al.,
[7], where they leveraged n- grams approach for anomaly

detection. Similarly, Reddy & Pujari [8] proposed that byte

sequence and byte n-gram could be considered for feature
extraction. As the number of resulting features would be very

large, they used various methods of feature selection and
reported the use of information gain based selection methods

as the best in the malware classification.

O'Kane et al., [9] and Chandramohan et al., [10] argue

that a major issue with malware classification based on n-

gram analysis is that it is performed on an extremely large
exp losion of features that occurs when n is increased. and

hence, they presented a scheme based on "subspace analysis
using eigenvector", and claim that this produces a suitable

filter for malware detection [9]. Zhuang et al., [4] ext racted
instructions from API calls and used a hybrid method

comprising hierarchical clustering and K-medoids algorithm

for malware classification. Shankarapani et al., [12] showed
that the calling sequence of Windows APIs reflected the

behavior of a particular piece of code and could help identify
malware. Kasama et al., [13] developed the notion of

observing suspicious behavior based on system calls in a
dynamic environment. Bai et al., [14] proposed critical API

calling graph (CAG) and extracted CAG from the control
flow graph for detecting the malware. Sheen et al., [15]

proposed to prune the ensemble which detects the malware

using harmony search and most recently, Nissim et al., [16]
proposed a novel active learning method to detect new

Malware files. Ahmed et al., [17] had used spatio- temporal
information in API calls as feature selection for classifying

the malware samples. In this paper, we propose a model
where LDA and data min ing algorithms are employed in

tandem.

Malware Detection via API calls, Topic Models and Machine

Learning
G. Ganesh Sundarkumar, Vadlamani Ravi

*
, Ifeoma Nwogu, Venu Govindaraju

2015 IEEE International Conference on
Automation Science and Engineering (CASE)
Aug 24-28, 2015. Gothenburg, Sweden

978-1-4673-8183-3/15/$31.00 ©2015 IEEE 1212

Downloaded from http://iranpaper.ir
http://translate68.ir

III. OVERVIEW OF API CALLS IN MALWARE DETECTION

API level information within the byte code is a

convenient method of analyzing software malevolence
tendencies, since it conveys substantial semantics about the

behavior of the executable from which the API call sequence

was generated. More specifically, we focus on critical API
calls, their package level information, as well as their

parameters. Majority of the Windows-based applications
make use of API calls to execute tasks [18, 19] Hence,

malware authors readily use API calls as a way to perform
malicious actions. Malcode has the ability to use API

functions provided under the Win32 environment to execute

malicious tasks [20] on the file management system, console,
process and thread, or registry (the primary vulnerable

targets) [24]. Table I presents a few typical API calls and
their behavior.

TABLE I SOME API CALLS AND RESPECTIVE BEHAVIOR [21]

API function calls Suspicious behavior

description

GetWindowsDirectory,

GetSystemDirectory

Obtain the system

directory

FindFirstFile, FindNextFile Search files to infect

CreateFile, OpenFile,

WriteFile, CloseHandle.
File write

GetFileAttributes,

etFileAttributes
Modify file attributes

GetFileTime, SetFileTime Modify time of file

GlobalAlloc, GlobalFree Distribute global memory

VirtualAlloc, VirtualFree Distribute virtual memory

RegCreateKey, RegSetValue,

RegCloseKey
Load register

IV. PROPOSED METHODOLOGY

A. Preprocessing

Text Mining is the process of finding correct, potentially
useful and ultimately understandable knowledge from a large

text dataset [22]. It includes tokenization, removal of stop
words and stemming [23], then ext racting a large number of

features, followed by feature selection. Term Frequency-
Inverse Document Frequency (TF-IDF) is a common feature

extraction method in information retrieval and text mining

([23, 24] .

 TF-IDF can be computed as follows:


















1:

||
ln**

jditjd

D

k kj
n

ijn
idftf

 where ni.j is the number of occurrences of term ti in
document dj, and the denominator is the number of

occurrences of all terms in document; dj and |D| is the total
number of documents in a data set, and {d j: ti  dj+1} is

document frequency, i.e. the number of documents where

term ti appears. With the selected features, a document-term
matrix is built.

B. Feature Selection

 To discover the structural properties in the data,

various models have been proposed. Of them, the most

popular model includes ―Topic Model‖ [26].

 A challenging aspect of text document classification

problem is the choice of features [27]. Treat ing indiv idual

words as features yields a rich but very large feature set.

Therefore, we used Latent Dirichlet Allocation (LDA) to

select the features and build a vector space model. LDA is a

generative Bayesian graphical model which represents each

document as a collection of topics from a mixture model,

where each mixture component is a topic [28]. Each topic

consists of words that co-appear in a document regularly and

is the representation of the document. The input to LDA is

the standard bag of words representation of a collection of

documents, where a sparse vector of |W| represents

document collection D, where W is the unique list of words

[26]. It models each document d as a mixture θ d over T

Latent topics, where each topic Øt is drawn from a Dirichlet

distribution with parameter β , and θd is drawn from

symmetric Dirich let distribution with parameter α. In

general, a document can deal with multip le topics and the

words in the document indicate the particular set of topics it

addresses [26]. LDA can therefore help to uncover the

hidden structure of the document. Given a matrix o f order m

× n where a row represents a document and each column

represents the words, LDA generates a word-topic matrix ,

in which ϕ
(j)

 = p(w| z=j)) is the multinomial distribution of

words over the topic j.

 LDA in general is accomplished of the following process

[27]

a) Choose N words ~ Po isson (ᶓ)

b) Choose θ ~ Dirch let (α)

c) For each of the N words wn :

- Choose a topic Zn ~ Multinomial (θ)

- Choose a word Wn from p(Wn | Zn, β), a

multinomial condition on topic Zn

 A k-dimensional Dirichlet random variab le θ can take

values in the (k−1)-simplex, and has the following

probability density on this simplex:

𝑝(θ|α) =
г(𝛼𝑖

𝑘
𝑖 =1)

𝜋𝑖=1
𝑘 г(∝𝑖)

 𝜃1
∝𝑖−1

… 𝜃𝑘
∝𝑘−1

 where the parameter α is a k-vector with components αi

>0, and where г(x) is the Gamma function. The Dirichlet is a

convenient distribution on the simplex—it is in the

exponential family, has finite dimensional sufficient

statistics, and is conjugate to the multinomial distribution.

 Given the parameters α and β, the jo int distribution of a

topic mixture θ, a set of N topics z, and a set of N words w is

given by:

𝑝(θ, 𝐳, 𝐰|𝛼, β) = 𝑝(θ|α) 𝜋𝑛=1
𝑁 𝑝 𝑧𝑛 𝜃 𝑝(𝑤𝑛 |𝑍𝑛 ,𝛽)

1213

Downloaded from http://iranpaper.ir
http://translate68.ir

 where p(Zn|θ) is simply θ i for the unique i such that z
i
n = 1.

Integrating over θ and summing over z, we obtain the

marginal distribution of a document:

p(w|α, β) = 𝑝 𝜃 𝛼 (𝜋𝑛=1
𝑁 𝑝 𝑍𝑛

 𝜃) 𝑝(𝑤𝑛 |𝑍𝑛 , 𝛽) 𝑑𝜃
𝑧𝑛

 Finally, taking the product of the marginal probabilities of

single documents, we obtain the probability of a corpus:

p D α, β

= 𝜋𝑑=1
𝑀 𝑝 𝜃 𝛼 (𝜋𝑛=1

𝑁𝑑 𝑝 𝑍𝑛
 𝜃𝑑) 𝑝(𝑤𝑑𝑛 |𝑍𝑑𝑛 ,𝛽) 𝑑𝜃

𝑧𝑑𝑛

V. EXPERIMENTAL SETUP

A. Data set description

We analyzed two datasets. In the case of first one, named

Dataset 1, we obtained the malware (320) and benign (68)

API call logs sequences from CSMINING group [30]
available in public domain. It is obviously unbalanced.

Further, we carried out experimentation on another dataset
[17], named Dataset 2, by us. The dataset consists of 416

malware samples and 100 benign executables. Of the 416
malware samples, Trojans are 117, 165 are virus samples and

worms are 134. The corresponding API call logs have been
obtained from [31].

B. Experimental Setup

In order to apply the text mining techniques discussed in

the preceding section for Dataset 1, we computed the TF-
IDF values and obtained 313 unique tokens or variables.

Further, from the 388 text files comprising a series of API

calls, we derived the topic-word matrix as discussed above

using LDA. From the matrix, (i)(j) = p(w = wi | z = j) is

the value of i j
th

 cell of the matrix, defined as the
probability of i

th
 word belonging to the j

th
 topic. We then

sorted the column from each topic and extracted the top
word from each topic and represented it as the efficient

feature set for classification in the Document-Term matrix.
We tested with the number of topics being 5, 8, 11 and 14,

and discovered that 8 topics yielded the best results. We

empirically chose 8 topics as a suitable number, out of
repetitive experiments with varying numbers of topics, for

the given dataset. Furthermore, for the hyper-parameters for
LDA [32], we have set alpha=6 and beta value as 0.1. We

trained our LDA model for 100 iterations. Further, Dataset1
is unbalanced.

 Features extracted by the proposed methodology are

presented in Table V. The document term matrix having 8
features is fed to classifiers. To further validate the proposed

methodology, we carried out the experimentation on another
dataset, originally available in [31] and previously analyzed

by Ahmed et al. [17]. With the proposed methodology of
LDA as feature selection, we selected 7 features. We ran the

LDA for the entire corpus consisting of 516 documents of

the executables with the hyper parameters of alpha as 5, beta
as 0.1, number of topics as 7 and number of iterations set to

100. We have chosen these parameters after a repeated set of
experiments.

 With the thus obtained 7 features from the top most

features from 7 topics, we formed the document term matrix.

In order to compare our results with that of Ahmed et al.

[17], we followed the same methodology followed by them.

We segregated the samples into four classes and developed 3

binary classification tasks viz., Benign vs. Trojan, Benign

vs. Virus and Benign vs. Worm. We fo llowed 10 fold cross

validation throughout the process similar to [17].

VI. RESULTS AND DISCUSSION

We employed Neuroshell 2.0 [33] and RapidMiner [35]

for conducting the experiments. As regards the Dataset 1,
Table II presents a comparison of our results with that of the

most recent work [34], where they employed oversampling

and mutual information for malware identification. , From
Table II, we noticed that the proposed approach significantly

improved results despite the data being imbalanced.

 They achieved the sensitivity of 100 % using SVM with

specificity being 0. In the proposed approach, we observed
MLP, SVM, GMDH, DT and RF yielded a sensitivity of

98.61%, 96.87%, 94.12% 92.95% and 91.5% respectively.

With respect to Area Under ROC Curve (AUC-computed as
50* (sensitivity + Sensitivity)), DT and GMDH turned out to

be strongest performers. However, we preferred DT as it
yielded rules while build ing the model. Rules extracted from

DT are presented in Table VI. Further, in the Dataset 2 too
(see Tables III and IV), the proposed methodology yielded

excellent results in identifying various flavors of the
malware when classified against the benign samples. When

compared to [17] the proposed methodology performed well

with significantly high results without any combinatorial
feature selection performed in [17]. DT and SVM

outperformed the results of [17] in identify ing the Trojan,
Virus, and Worm versus Benign Samples. Rules extracted

from DT for dataset 2, are presented in Table VII.

 Finally, we performed t- test (with respect to sensitivity)

between DT and SVM at 18 degrees of freedom and 1%

level of significance. We found statistically there is no

significant difference between DT and SVM. However,, we

prefer DT as it yielded rules for classification whereas SVM

is a black box. Rules extracted for 3 b inary classification

problems are presented in Table VI. In [17], while Naïve

Bayes performed well compared to the rest of the classifiers,

it is also a black box. We finally conclude that LDA as

feature selection in combination with data min ing algorithms

is a viable option for the malware detection.

VII. CONCLUSION

We propose a novel approach to detect malware that uses

text mining for feature extraction; topic modeling for feature

selection using Latent Dirichlet Allocation to detect malware

based on the types of API call sequences and machine

learning for classification. We evaluated the effectiveness of

our technique on a two publicly available datasets For the

Dataset 1, despite the imbalance, LDA as a feature selection

method yielded significant results when compared with the

1214

Downloaded from http://iranpaper.ir
http://translate68.ir

earlier approaches including Sundarkumar and Ravi [34].

Further in the Dataset 2 too, the proposed methodology

performed well. As DT and SVM are found to be statistically

significantly not different, we prefer DT as it yields rules for

constructing the model.

TABLE II AVERAGE RESULTS OF 10 FOLDS ON DATASET 1

 Method of [34] with 10 features Proposed Methodology with 8 features

Model Accuracy Sensitivity Specificity

Area

Under
Curve

Accuracy Sensitivity Specificity

Area

Under
Curve

SVM 70.27 100 0 5000 88.15 96.87 41.66 6926.5

PNN 66.13 78.43 41.57 6000 82.68 67.9 87.07 7748.5

D.T 73.43 80.54 59.09 6981.5 88.67 92.95 54.99 7397

GMDH 70.47 94.37 27.93 6115 89.46 94.12 50.462 7229.1

MLP 70.05 90.01 23.45 5673 87.64 98.61 29 6380.5

RF - - - - 85 91.5 50 7078

TABLE III DETECTION ACCURACY ON DATASET 2 BY [17]

Alg IBK J48 NB RIPPER SMO Avg

Trojan

Spatial (S) 92.6 91.0 77.7 87.1 76.0 84.9

Temporal (T) 95.8 90.3 94.5 93.2 97.0 94.2

S&T 96.3 90.8 96.6 95.9 97.0 95.3

 Virus

Spatial (S) 91.5 94.0 85.9 94.9 91.5 91.6

Temporal (T) 93.7 95.6 97.4 94.5 97.1 95.7

S&T 95.4 96.3 99 95.4 96.8 96.6

 Worm

Spatial (S) 97.3 96.1 94.6 96.3 80.6 93.6

Temporal (T) 94.2 96.8 96.2 95.3 96.3 95.8

S&T 95.8 96.6 98.4 97.5 96.3 96.9

Avg 96.3 94.7 98.0 96.0 96.8 96.3

TABLE IV. DETECTION ACCURACY OF PROPOSED METHODOLOGY ON DATASET 2

Category D.T SVM MLP GMDH PNN RF

Trojan 98.182 98.462 93.63 93.05 92.8 85

Virus 98.75 98.75 89.35 96.712 88.23 95

Worm 98.46 98.7 89.5 93.72 87.98 92.5

Average 98.46 98.63 90.8 94.49 89.67 90.3

 TABLE V FEATURES EXTRACTED FOR THE MALWARE DATASETS

10 Features obtained using MIFS

for Dataset 1[34]

8 Features obtained using LDA

for Dataset 1

7 Features obtained using

LDA for Dataset 2

GetCurrentProcess,
GetCurrentProcessId,
GlobalMemoryStatus,
IsBadReadPtr, IsBadStringPtrW,

IsBadWritePtr, LocalAlloc,
LocalFree, RegOpenKeyW and
RegSetValueExW

GetProcAddress,
GetCurrentThreadId, GlobalAlloc,
IsBadReadPtr,
 Sleep, HeapFree,

HeapSize, HeapAlloc

HeapSize, HeapFree,
IsBadReadPtr, HeapAlloc,
GetCurrentThreadId,
GetCurrentProcessId,

LocalAlloc

1215

Downloaded from http://iranpaper.ir
http://translate68.ir

TABLE VI RULES OBTAINED BY DT FOR BEST FOLD IN DATASET 1

Antecedent Consequent
1. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and

GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027
Malware

2. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and
GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId >0.027

and sleep =0.001

Benign

3. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and
GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027

and sleep =0.003

Malware

4. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and

GetProcAddress = 0.068 and IsBadReadPtr=0.369 and GetCurrentThreadId =0.027
and sleep >0.003

Benign

5. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and

GetProcAddress = 0.068 and IsBadReadPtr>0.369

Malware

6. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc = 0.008 and

GetProcAddress > 0.068

Malware

7. If HeapSize >0.07 and HeapAlloc = 0.536 and GlobalAlloc > 0.008 Benign

8. If HeapSize >0.07 and HeapAlloc > 0.536 and sleep=0.000 Malware
9. If HeapSize >0.07 and HeapAlloc > 0.536 and sleep>0.000 Benign

10. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and
GetProcAddress = 0.001

Malware

11. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and
GetProcAddress > 0.001

Benign

12. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and
GetProcAddress > 0.063

Malware

13. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and
GetProcAddress = 0.147

Malware

14. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and

GetProcAddress > 0.147

Benign

15. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetCurrentThreadId = 0.000 and

GetProcAddress > 0.174

Malware

16. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and
GetCurrentThreadId > 0.000

Benign

17. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and
GetCurrentThreadId = 0.072

Benign

18. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress = 0.027 and
GetCurrentThreadId > 0.072

Malware

19. if HeapSize = 0.007 and GlobalAlloc = 0.003 and GetProcAddress > 0.027 and
GetCurrentThreadId > 0.044

Malware

20. if HeapSize = 0.007 and GlobalAlloc > 0.003 and GetProcAddress > 0.578 Malware
21. if HeapSize = 0.007 and GetProcAddress = 0.631 Malware

22. if HeapSize = 0.007 and GetProcAddress > 0.631 Benign
23. if HeapSize = 0.007 amd GetProcAddress > 0.674 Malware

TABLE VII RULES OBTAINED BY DT FOR BEST FOLD IN DATASET 2

DT Rules extracted for Benign vs Virus

Antecedent Consequent

1. If(HeapSize<= 0.004), Virus

2. If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and

GetCurrentThreadId <= 0.001)

Benign

3. If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and

GetCurrentThreadId > 0.001 and HeapSize >0.313),

Virus

4. If(HeapSize>0.004 and GetCurrentProcessId <= 0.001 and

GetCurrentThreadId > 0.001 and HeapSize <= 0.313),

Benign

5. If(HeapSize<=0.044 and GetCurrentProcessId <= 0.004) Benign

6. If(HeapSize<=0.044 and GetCurrentProcessId > 0.004) Virus

7. If(HeapSize>0.044 and GetCurrentthreadId <= 0.007) Benign

8. If(HeapSize>0.044 and GetCurrentthreadId > 0.008) Benign

9. If(HeapSize>0.044 and GetCurrentthreadId <= 0.008) Virus

DT Rules extracted for Benign vs Trojan

1. If(HeapSize<= 0.001 and GetCurrentThreadId > 0.006 and HeapAlloc

>0.001)

Benign

2. If(HeapSize<= 0.001 and GetCurrentThreadId > 0.006 and HeapAlloc

<=0.001)

Trojan

3. If(HeapSize<= 0.001 and GetCurrentThreadId > 0.004 and

GetCurrentThreadId < 0.006 and HeapAlloc >0.001)

Trojan

1216

Downloaded from http://iranpaper.ir
http://translate68.ir

4. If(HeapSize<= 0.001 and GetCurrentThreadId > 0.004 and

GetCurrentThreadId < 0.006 and HeapAlloc <=0.001)

Benign

5. If(HeapSize<= 0.001 and GetCurrentThreadId <= 0.003) Trojan

6. If(HeapSize>0.001 and HeapFree <= 0.003) Trojan

7. If(HeapSize>0.001 and HeapFree > 0.003) Benign

DT Rules extracted for Benign vs Worm

1. If(HeapSize <= 0.001) Worm

2. If(GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and

HeapSize <=0.138)

Worm

3. If(GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and

HeapSize <=0.451)

worm

4 If(GetCurrentProcessId<= 0.001 and GetCurrentThreadId >0.016 and

HeapSize >0.451)

Worm

REFERENCES

[1] A. Altaher, S. Ramadass, and A. Ali, ― Computer virus detection using
features ranking and machine learning‖, Journal of Applied Sciences

Research, 7(9), 2011.
[2] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A.

Hamze, ―Malware detection based on mining api calls‖, ACM
Symposium on Applied Computing, 2010, pp. 1020-1025.

[3] Y. Ye, T. Li, Q. Jiang, and Y. Wang, ―Cimds: adapting post
processing techniques of associative classification for malware
detection‖, Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 40(3), 2010, pp.298-307.
[4] W. Zhuang, Y. Ye, Y. Chen, and T. Li, ―Ensemble clustering for internet

security applications‖, Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 42(6), 2012, pp. 1784-1796.

[5] B. Anderson, C. Storlie, and T. Lane, ―Improving malware classification:
bridging the static/dynamic gap‖, In 5th ACM workshop on Security and
artificial intelligence, 2012, pp. 3-14.

[6] M. Siddiqui, M. C. Wang, and J. Lee, ―Data mining methods for malware

detection using instruction sequences‖, Proceedings of Artificial Intelligence and
Applications, 2008.

[7] S. Forrest, S. A. Hofmeyr, A. Somyaji, T . A. Longstaff, ― A sense of
self for unix process‖, IEEE Symposium on Security and Privacy,

1996, pp:120-128.
[8] D. K. S. Reddy, and A. K. Pujari, ―N-gram analysis for computer virus

detection‖, Journal in Computer Virology, 2(3), 2006, pp. 231-239.
[9] P. O'Kane, S. Sezer, K. McLaughlin, and Eul Gyu Im, ―Svm training

phase reduction using dataset feature filtering for malware detection‖,
Information Forensics and Security, IEEE Transactions on, 8(3),
2013, pp. 500-509.

[10] M. Chandramohan, H. B. K. Tan, L.C. Briand, L. K. Shar, and B. M.
Padmanabhuni, ―A scalable approach for malware detection through bounded
feature space behavior modeling‖, In: Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, pp. 312-322.

[11] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
―Estimating the support of a high- dimensional distribution‖, Neural Computation,
13(7), 2001, pp. 1443- 1471.

[12] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and S.

Mukkamala, ―Kernal Machines for malware classification and
similarity analysis‖, In: International joint conference on Neural
Networks , 2010, pp: 1-6.

[13] T. Kasama, K. Yoshioka, D. Inoue, and T. Matsumoto, ―Malware detection

method by catching their random behavior in multiple executions‖, In:
Applications and the Internet (SAINT), 2012 IEEE/IPSJ 12th International
Symposium on, 2012, pp. 262- 266.

[14] L. Bai, J. Pang, Y. Zhang, W. Fu, and J. Zhu, ―Detecting malicious behavior
using critical api-calling graph matching‖, In: Information Science and
Engineering (ICISE), 2009 1st International Conference on, 2009, pp. 1716-1719.

[15] S. Sheen, R. Anitha, and P. Sirisha, ―Malware detection by pruning of

parallel ensembles using harmony search‖, Pattern Recognition Letters, vol.
34(14), 2013, pp.1679-1686.

[16] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, ―Novel active
learning methods for enhanced pc malware detection in windows os‖,

Expert Systems with Applications, 41(13), 2014, pp. 5843-5857.
[17] F. Ahmed, H. Hameed, M. Z. Shafiq, M. Farooq, ―Using spatio -

temporal information in API calls with machine learning algorithms

for malware detection‖, In: Proceedings of the 2nd ACM workshop

on Security and artificial intelligence, 2009, pp: 55- 62.
[18] Z. Salehi, M. Ghiasi, and A. Sami, ―A miner for malware detection based on

api function calls and their arguments‖, In: Artificial Intelligence and Signal

Processing (AISP), 2012 16th CSI International Symposium on, 2012, pp. 563-
568.

[19] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, ―Eureka: A
framework for enabling static malware analysis‖, In: Computer Security-

ESORICS 2008, pp. 481-500.
[20] A. Altaher, S. Ramadass, and A. Ali, ―Computer virus detection using features

ranking and machine learning‖, Journal of Applied Sciences Research, 7(9), 2011.
[21] M. Alazab, S. Venkataraman, and P. Watters, ―Towards understanding

malware behavior by the extraction of api calls‖, In: Cybercrime and
Trustworthy Computing Workshop (CTC), 2010 Second, pp. 52-59.

[22] P. Losiewicz, D. W. Oard, and R. N. Kostoff, ― Textual data mining to support
science and technology management‖, Journal of Intelligent Information

Systems, 15(2), 2000, pp. 99-119.
[23] B. C. M. Fung, K. Wang, and M. Ester, ―Hierarchical document clustering

using frequent itemsets‖, In: SDM, SIAM, volume 3, 2003, pp. 59- 70.
[24] K. Lee, D. Palsetia, R. Narayanan, M. M. A. Patwary, A. Agrawal, and A.

Choudhary, ―Twitter trending topic classification‖, In: Data Mining Workshops
(ICDMW), 2011 IEEE 11th International Conference on, pp. 251-258.

[25] L. Ronghui, Z. Jianguo, and W. Xiang, ―A method for clustering e-

business contents‖, In: Information Engineering (ICIE), 2010 WASE
International Conference on, volume 2, pp. 43- 46.

[26] N. Rasiwasia, N. Vasconcelos, ―Latent Dirichlet Allocation models for
Image classification‖, In: IEEE Tansactions on Pattern analysis and

Machine Intelligence, 2013, pp: 2665-2679.
[27] D. M. Blei, A. Y. Ng, and M. L. Jordan, ―Latent dirichlet allocation‖,

Journal of machine Learning research, 3, 2003, pp. 993-1022.
[28] D. Gujraniya, and M. N. Murty, ―Efficient classification using phrases

generated by topic models‖, In: Pattern Recognition (ICPR), 2012 21st
International Conference on, pp. 2331- 2334.

[29] M. Alazab, S. Venkataraman, and P. Watters, ―Towards understanding
malware behavior by the extraction of api calls‖, In: Cybercrime and

Trustworthy Computing Workshop (CTC), 2010 Second, pp. 52-59.
[30] Malicious datasets csmining group, 2014. URL

http://www.csmining.org/index.php/ malicious-software-datasets-.html.

[31] http://nexginrc.org/Datasets/Default.aspx
[32] T. L. Griffiths, and M. Steyvers, ―Finding scientific topics‖, In:

Proceedings of the National academy of Sciences of the United States of
America, 101(Suppl 1), 2004, pp. 5228-5235.

[33] Neuroshell: http://www.neuroshell.com/
[34] G. G. Sundarkumar, and V. Ravi, ―Malware detection by text and data

mining‖, In: Computational Intelligence and Computing Research
(ICCIC), 2013 IEEE International Conference on, pp. 1-6, Dec (2013).

[35] RapidMiner: http:// www. http://rapidminer.com/

1217

Downloaded from http://iranpaper.ir
http://translate68.ir

