
Malware Detection System Based on API Log Data
Mining

Chun-I Fan
Department of

Computer Science and
Engineering

National Sun Yat-sen University
Kaohsiung 804, Taiwan

Email: cifan@faculty.nsysu.edu.tw

Han-Wei Hsiao
Department of

Information Management
National University of Kaohsiung

Kaohsiung, Taiwan
Email: hanwei@nuk.edu.tw

Chun-Han Chou and Yi-Fan Tseng
Department of

Computer Science and
Engineering

National Sun Yat-sen University
Kaohsiung 804, Taiwan
Email: gx1394@gmail.com

Email: yftseng1989@gmail.com

Abstract—As information technology improves, the Internet is
involved in every area in our daily life. When the mobile devices
and cloud computing technology start to play important parts of
our life, they have become more susceptible to attacks. In recent
years, phishing and malicious websites have increasingly become
serious problems in the field of network security. Attackers use
many approaches to implant malware into target hosts in order to
steal significant data and cause substantial damage. The growth
of malware has been very rapid, and the purpose has changed
from destruction to penetration. The signatures of malware have
become more difficult to detect. In addition to static signatures,
malware also tries to conceal dynamic signatures from anti-virus
inspection. In this research, we use hooking techniques to trace
the dynamic signatures that malware tries to hide. We then
compare the behavioural differences between malware and benign
programs by using data mining techniques in order to identify
the malware. The experimental results show that our detection
rate reaches 95% with only 80 attributes. This means that our
method can achieve a high detection rate with low complexity.

I. INTRODUCTION

In modern society, the rapid development of information
technology is closely combined with everyday life. Due to the
popularity of mobile devices and cloud computing, there are
numerous resources available on the Internet including com-
puting power and sensitive data. These resources have become
targets of attackers, and malware is the primary tool used in
the attacks. Attackers adopt multiple approaches to phishing
and penetration, and detecting these customized attacks is
difficult for users. A security report [1] from Trend Micro:
TrendLabs2012 ANNUAL SECURITY ROUNDUP Evolved
Threats in a ”Post-PC” World points out that targeted attacks
have become more popular and that attackers are experts in
customizing such attacks. The Spear-phishing mails are still
the main approach in the delivery of targeted attacks.

Malware no longer aims to only destroy systems but also
focuses on penetration and stealth. Owing to the growing
amount of malware and counter-analysis techniques, the tradi-
tional signature-based detection is inadequate for the analysis
of such malware. Statistics from AV-TEST [2] show that the
total number of malwares exceeded 130 million in 2013 and
continues growing.

There are two types of malware analysis: static analysis and
dynamic analysis. Static analysis disassembles malware binary

files and analyzes the assembly codes. Dynamic analysis exe-
cutes the malware binary files and analyzes the behaviors that
malware performs. Static analysis can achieve high analysis
speed, but automatic static analysis is easy to be thwarted by
packing and encryption techniques. Although there are also
many stealth techniques for countering dynamic analysis, we
believe that dynamic analysis can quarry more features than
static analysis. We think that we can distinguish the differences
between malwares and benign programs by analyzing features
of dynamic behaviors.

Some reports [3] [4] point out that APT attacks widely
use RATs (Remote Access Tool or Remote Access Trojan)
to remotely control victims after breaching. An example of
this kind of tools is Poison IVY. In our analysis of Poison
IVY, it performs remote control and also tries to conceal its
behaviors in order to become stealth in victims. Malwares
not only perform malicious behaviors but also attempt to
conceal behaviors. We believe that dynamic feature analysis
and behavior tracing of malwares is an important issue, and
also an effective method in malware detection.

In this research, we take API call (System Call) as dynamic
features for analysis. First we build a virtual environment to
monitor behaviors. In addition to the API monitoring agent, we
also develop a tracing module in virtual environment in order
to trace the behaviors that malware attempts to conceal. For
these behavior records, we adopt data mining tools to analyze
and build a description model. This description model can be
used to identify malwares and benign programs. Since there are
thousands of features in the analysis procedure, we apply an
attribute selection technique to reduce the number of features
and also reduce the complexity. In our experiment, we collect
773 malwares and 253 benign programs as the dataset. The
detection module can identify 95% of malwares and benign
programs by using only 80 attributes. Our method can achieve
high detection rate with high efficiency.

II. RELATED WORKS

There are many kinds of researches for detecting malwares.
Some systems use network-based detection to detect bot or
spyware by analyzing the network traffic. In this research, we
utilize the system behavior for analysis. Therefore, we will
focus on the host-based detection.

2015 IEEE 39th Annual International Computers, Software & Applications Conference

0730-3157/15 $31.00 © 2015 IEEE

DOI 10.1109/COMPSAC.2015.241

255

Downloaded from http://iranpaper.ir
http://translate68.ir

Host Based Detection
The host based detection has three ways to detect malware:
malware signature, malware binary code, and malware
dynamic behavior. Malware signature detection is employed
by the tradition anti-virus systems but it is easy to be evaded.

Some researches analyzed the malware binary codes by
static analysis [5] [6] [7] [8] [9]. They extracted the API
names and strings from malicious PE executables and then
analyzed these information with algorithms in order to find
out the differences between malicious and benign programs.
Analyzing malware by static analysis can achieve very high
detection speed but the packing technique makes automatic
static analysis more difficult.

In Wang et al. [10], they employed static analysis to extract
the API names from the PE executables and build an API
call sequence. They compared the API call sequence with a
suspicious behavior database which they have defined and the
Bayesian algorithm was applied to compare the differences
and then identify malwares. Except for the API information,
Islam et al. [11] also utilized the printable string as a feature.
They analyzed the function length frequency and printable
string information by classification engines and their solution
achieves very high detection rate.

The dynamic behavior detection [12] [13] [14] [15] [16]
analyzes the behavior differences between malware and benign
programs. This method needs to construct a secure environ-
ment for malware execution. After execution, these behavior
records of each malware will be analyzed so as to compare
benign and malicious programs. Behavior analysis can extract
more features about malwares than static analysis, but it spends
more time than automatic static analysis because static analysis
does not need to execute malwares.

Kolbitsch et al. [17] proposed a method to monitor API and
find the relationship of API calls by analyzing the memory
addresses of API parameters. They constructed a behavior
graph of API records for malwares and detect malwares by
comparing the behavior graph. Tian et al. [18] and Salehi
et al. [19] also monitored the API calls, but they applied
data mining tools to classify API records in order to compare
malicious and benign programs. Trinius et al. [20] proposed
the concept of MIST. They divided API functions into different
categories and encoded each function with a number. Each
code represents an API function. Then they calculated the
similarity of malwares and benign programs by applying data
mining engine to analyze these functions and parameters.

III. THE PROPOSED METHOD

In this research, we identify benign and malicious programs
by tracing and analyzing their behaviors. We believe that API
calls (System Calls) reflect the behavior of a program the most,
so we regard them as features for analysis. However, malwares
would attempt to obscure from inspection. Therefore, we also
trace some stealth techniques that malwares regularly adopt in
order to trace the behaviors that malwares attempt to conceal.

Figure 1 shows the architecture of our detection system.
In our system, sample programs will be launched in virtual
machines and their behaviors (API calls) will be recorded.

Fig. 1. System Architecture

After acquiring records, we extract important features from
these records so as to reduce the analysis complexity and
improve accuracy. Then these features will be analyzed by
classification tools in order to compare the differences between
malware and benign programs.

A. API Record Collection

We construct a virtual environment for monitoring API and
deploy API Monitor v2 and Malpimp as our monitoring agents.
These two monitoring tools are able to monitor not only regular
APIs but also Native APIs i.e. undocumented APIs or low-level
APIs. Instead of using regular APIs, many malwares utilize
native API so as to evade from inspection.

There are thousands of APIs that programs might use,
but we do not monitor all the APIs due to the accuracy and
complexity. Most of APIs are less important, so we only
select 6 DLLs to monitor. They are user32.dll, kernel32.dll,
advapi32.dll, ntdll.dll, ws2 32.dll, and wininet.dll. These
DLLs provide many important functionalities such as process
management, network access, and graphic interface.

Stealth Techniques
Recently, malwares often employ stealth techniques to obscure
from users and antivirus. According to our observation,
malawres often hijack system processes to make itself
undetectable. Here are two approaches we want to trace in
the monitoring procedure: 1) New process creation. Malwares
often create a new process to perform malicious behaviors. It

256

Downloaded from http://iranpaper.ir
http://translate68.ir

Fig. 2. Monitor Procedure

is hard to find malicious behaviors from the original process
because malicious behaviors are performed by the new created
process. 2) Code injection. Malwares apply this technique to
inject malicious codes into existing processes (usually system
processes) and force these (injected) processes to perform
malicious behaviors.

Monitor and Trace Module
We have to monitor not only sample processes but also deriva-
tive processes and injected processes because malwares might
behave with stealth techniques. For each sample program, we
will test if it is on code injection behavior before monitoring
its APIs. We develop a tracing program TraceHook to detect
code injection behaviors by hooking techniques.

First of all, we run TraceHook to launch a sample and de-
tect the code injection. TraceHook intercepts the CreateThread
function and identifies the injected process by the parameters
of this function. The injection information will be returned
to the monitoring procedure. Then the procedure begins to
monitor API with three aspects simultaneously: 1) The API
monitor launches the sample and monitors its process. 2) Any
new process which is created by the sample process will also
be monitored. 3) According to the previous test, the monitoring
procedure will monitor the processes that the sample process
injects codes into. Figure 2 shows the monitoring procedure.

B. Feature Extraction

For each sample, we extract the calling frequency of
each API as features. The following displays our extraction
procedure. If we have three sample records:

• sample1 = {API1, API2, API3, API2, API3}

• sample2 = {API4, API3, API6, API3}

• sample3 = {API2, API4, API5, API4, API4}

An array APlist stores APIs that all malicious/benign pro-
grams have called:

APlist = {API1, API2, API3, API4, API5, API6}

We count the frequency of each API that each sample has
called:

• count1 = {API1: 1, API2: 2, API3: 2} for sample1

• count2 = {API3: 2, API4: 1, API6: 1} for sample2

• count3 = {API2: 1, API4: 3, API5: 1} for sample3

Then we cross-refer the APlist and API frequency to
construct a new table. This table will be used for classification:

API1 API2 API3 API4 API5 API6

sample1 1 2 2 0 0 0
sample2 0 0 2 1 0 1
sample3 0 1 0 3 1 0

C. Classification Module

Data mining is a technique for analyzing numerous data
and digging out some useful but unknown information. Classi-
fication is one of the techniques in data mining and it uses a set
of correct data for training and then builds a description model
for the training data. Once new data come, the description
model can be applied to identify if the new data are similar
to the training data. Our research collects API records of
malicious and benign programs and then takes the records
as training data to build a description model. We can make
use of this model to identify malicious and benign programs.
We select Naive Bayesian, Decision Tree (J48), and Support
Vector Machine algorithms as our classification module.
These three algorithms all belong to supervised learning. In the
supervised learning, the training data must be labelled before
training.

IV. EXPERIMENT AND EVALUATION

In this section we evaluate our detection module. We
discuss the detection accuracy under different numbers of
attributes and different algorithms. There are three algorithms
selected for comparing malicious and benign programs: Naive
Bayesian, J48 (Decision Tree), and Support Vector Machine.

A. Sample Program Collection

For the experiment, we collect about 7000 malicious pro-
grams from the Internet. These malicious samples are all PE
executables and have been confirmed by VirusTotal. We also
collect 251 benign programs as our benign samples. These
benign samples are composed by Windows System programs
and other widely-used applications.

We perform two experiments with different ratios of benign
and malicious samples because the proportion of samples
might affect the result. In the first experiment, we take the
equal amount of malicious and benign samples for classifica-
tion since this proportion is most reasonable. Therefore, we
randomly select 263 malicious samples from the sample set
and use all 251 benign programs for Experiment 1. In order
to compare with other researches, we also choose the similar
proportion of samples for Experiment 2. We use all 251 benign
samples and randomly choose 773 malicious samples from
the sample set. All of these benign and malicious samples
have been verified to be launched successfully in our virtual
environment. Table 1 lists the datasets of the two experiments.

257

Downloaded from http://iranpaper.ir
http://translate68.ir

TABLE I. TWO DATASETS FOR CLASSIFICATION

Malicious samples Benign samples
Experiment 1 263 251
Experiment 2 773 251

Fig. 3. Detailed Monitor Steps

B. API Monitoring

In monitoring samples, we construct a virtual environment
by VirtualBox. We install Windows XP operating system and
the tools that are used in monitoring. Then we save the
status of the virtual machine with the snapshot function after
construction.

For each sample, we first utilize our tracing tool TraceHook
to launch it and detect the injection. The TraceHook returns the
information of the injected process for later monitoring. Then
the virtual machine will be restarted to monitor the API calling
of the sample with three aspects: the sample process itself,
derivative processes, and injected processes. Each sample will
be executed for 2 minutes. Figure 3 displays the detailed steps.

C. Evaluation

We extract the features from the API records and form the
features in the ARFF format for WEKA classification. WEKA
is a data-mining tool and contains many algorithms. It provides
functionalities of classification, clustering, and attribute selec-
tion. We choose Naive Bayesian, Support Vector Machine, and
J48 (Decision Tree) as our classification algorithms.

We adopt K-fold Cross-Validation to evaluate the results.
This validation randomly splits the input data into k parts, and
then chooses one part of data as the experiment data and the
other (k− 1) parts are the training data. These k parts of data
would take turns becoming the experiment data and training
data. As a result, there are k calculations and these k results
will be averaged. We can get more reasonable result by cross-
validation and we choose the standard 10-fold cross-validation
for our experiment. The following measurements evaluate the
experimental results and Table 2 is the Confusion Matrix:

• True Positive: The number of positive files that are
identified as positive files.

• False Positive: The number of negative files that are
identified as positive files.

• True Negative: The number of negative files that are
identified as negative files.

• False Negative: The number of positive files that are
identified as negative files.

• True Positive Rate: The probability that a positive
file is identified as a positive file in an identification.
TPrate =

TP

TP + FN

TABLE II. CONFUSION MATRIX

Predict
Positive Negative

Actual Positive True Positive False Negative
Negative False Positive True Negative

TABLE III. RESULT OF EXPERIMENT 1

Algorithm Type TP rate FP rate Precision Recall F-Measure Accuracy

J48
Malicious 0.962 0.055 0.948 0.962 0.955
Benign 0.962 0.055 0.948 0.962 0.955

Average 0.954 0.047 0.954 0.954 0.954 0.954

NaiveBayes
Malicious 0.962 0.043 0.958 0.962 0.96
Benign 0.957 0.038 0.961 0.957 0.959

Average 0.959 0.041 0.959 0.959 0.959 0.959

SVM
Malicious 0.76 0.125 0.862 0.76 0.808
Benign 0.875 0.24 0.78 0.875 0.824

Average 0.817 0.182 0.822 0.817 0.816 0.816

• False Positive Rate: The probability that a negative
file is identified as a positive file in an identification.
FPrate =

FP

FP + TN

• Precision: The probability that an identified positive
file is really a positive file
Precision =

TP

TP + FP

• Recall: This is the same as the TP rate
Recall =

TP

TP + FN

• F-Measure: The harmonic mean of Precision and
Recall. This measure weights Precision and Recall
performance evenly.
F −Measure = 2 ·

Precision ·Recall

Precision+Recall

• Accuracy: The probability that a file is correctly
identified.
Accuracy =

TP + TN

TP + TN + FP + FN

D. Experimental Result

Experiment 1
In Experiment 1, we use 251 benign and 263 malicious
samples for training. The experimental result is listed in Table
3. This table shows that J48 and Naive Bayesian perform
better. The accuracy of these two algorithms is up to 95%
and the FP rate is about 4%. There are 10 malicious and 14
benign samples are misidentified in the J48 classification.
Also, there are 10 malicious and 11 benign samples are
misidentified in Naive Bayesian classification. Support Vector
Machine performs worse: the accuracy has only 81% and it
misidentifies 95 samples.

Experiment 2
Experiment 2 uses 251 benign and 773 malicious samples
for classification. The performance is listed in Table 4. In
Experiment 2, the performance is slightly increased in J48 and
reduced in Naive Bayesian. There are 42 and 60 samples that
are misidentified in two classifications. Also, SVM can identify
89% of samples with 109 misidentified samples.

258

Downloaded from http://iranpaper.ir
http://translate68.ir

TABLE IV. RESULT OF EXPERIMENT 2

Algorithm Type TP rate FP rate Precision Recall F-Measure Accuracy

J48
Malicious 0.975 0.09 0.97 0.975 0.973
Benign 0.91 0.025 0.924 0.91 0.917

Average 0.959 0.074 0.959 0.959 0.959 0.959

NaiveBayes
Malicious 0.937 0.043 0.985 0.937 0.96
Benign 0.957 0.063 0.833 0.957 0.891

Average 0.942 0.048 0.947 0.942 0.943 0.941

SVM
Malicious 0.99 0.396 0.883 0.99 0.933
Benign 0.604 0.01 0.951 0.604 0.739

Average 0.894 0.3 0.9 0.894 0.885 0.893

E. Attribute Reduction

The amount of attributes reaches 1800 in the training proce-
dure. Most of the attributes are less important so we attempt to
minimize the attributes in order to increase performance. The
characteristic of J48 is suitable for this experiment because J48
usually needs only tens of attributes for tree construction. We
apply InfoGainAttributeEval to calculate the InfoGain value of
each attribute and select different numbers of the attributes for
J48 training.

TABLE V. ATTRIBUTE REDUCTION FOR EXPERIMENT 1

Attributes TP
rate

FP
rate Precision Recall F-

Measure Accuracy

1769 0.954 0.047 0.954 0.954 0.954 0.954
800 0.954 0.047 0.954 0.954 0.954 0.954
250 0.952 0.048 0.952 0.952 0.952 0.952
120 0.932 0.068 0.933 0.932 0.932 0.932
80 0.938 0.062 0.938 0.938 0.938 0.938
40 0.907 0.091 0.91 0.907 0.907 0.907
20 0.89 0.109 0.892 0.89 0.89 0.889

According to the InfoGain value, we choose the top 20,
40, 80, 250, and 800 attributes for training and then compare
the results with those of the original 1800 attributes. Table 5
and Table 6 list the performance under different numbers of
attributes. The results of the two experiments show that our
detection system needs only about one hundred attributes to
detect malwares and achieve high accuracy. Also, Table 7 lists
the most important attributes in the training of Experiment 1.

TABLE VI. ATTRIBUTE REDUCTION FOR EXPERIMENT 2

Attributes TP
rate

FP
rate Precision Recall F-

Measure Accuracy

1889 0.959 0.074 0.959 0.959 0.959 0.959
800 0.958 0.072 0.958 0.958 0.958 0.958
250 0.952 0.048 0.952 0.952 0.952 0.952
120 0.95 0.085 0.95 0.95 0.95 0.95
80 0.953 0.073 0.954 0.953 0.953 0.953
40 0.923 0.018 0.922 0.923 0.921 0.923
20 0.912 0.231 0.914 0.912 0.908 0.912

F. Comparison

In this section we compare our method with other works.
The comparison is summarized in Table 8. Wang et al. [10]
built and analyzed API sequences with static analysis. They
used 461 benign and 451 malicious programs as the dataset
and obtained 93.9% detection rate. Islam et al. [11] utilized
the function length and printable information as features for
classification. They used 3996 malwares in experiments and
they can identify 83.3% malwares. Tian et al. [18] monitored

TABLE VII. IMPORTANT APIS IN EXPERIMENT 1

API Function Name Explanation
LdrLockLoaderLock Enter to a load lock.
GetModuleHandleA Get the handle of specific

module.
NtProtectVirutalMemory Modify the protection of

blocks of memory.
RtlNtStatusToDosError Convert NTSTATUS code

to system error.
RtlAnsiStringToUnicodeString Convert ANSI string to

Unicode string.
NtAllocateVirtualMemory Allocate virtual memory in

a process.
RtlAcquirePebLock
wcsrchr Locate the last occurrence

of wide character.
RtlFreeUnicodeString Clear a string buffer.
RtlReleasePebLock

TABLE VIII. COMPARISON

Experiment
Data Analysis Attributes Accuracy

[10] 461(B)/451(M) Static not provided 93.9%

[11] 3396(M) Static not provided 83.3%

[18] 454(B)/1369(M) Dynamic not provided 97.3%

[19] 385(B)/826(M) Dynamic 410/166 98.1%/93%

Ours 251(B)/263(M) Dynamic 80 93.8%

251(B)/773(M) Dynamic 80 95.3%

B: Benign

M: Malicious

the behaviors of malwares and then analyzed the API call
records by classification tools. They extracted features by
the existence of each API call. They tested 454 benign and
1369 malicious programs but they executed benign samples
three times. Hence, they have equal amount of benign and
malicious records. Their detection rate reaches 97.3%. Salehi
et al. [19] also analyzed the API records, but they analyzed
not only the API names but also the API parameters. Their
detection rate reaches 98.1% with 410 attributes in total and
385 benign and 826 malicious programs. Our method can
achieve high accuracy but more efficiency according to the
number of attributes. Some researches did not specify how
much attributes they used in the experiments, so we assume
that they took all attributes for training.

V. CONCLUSION AND FUTURE WORKS

Techniques for network attacks and anti-detection are up-
graded continuously. Malwares have widely taken encryption
techniques to counter static analysis and signature-based de-
tection. Except static signatures, malware can also conceal its
dynamic signatures in order to escape inspection. Malwares
attempt to keep stealth in the target hosts because network
attacks have gradually changed into penetration attacks. Hence,
we believe that new malwares will continue to adopt these anti-
detection techniques (stealth techniques).

In this research, we utilize hooking techniques to trace and
monitor the behaviors that samples perform. Behavior records

259

Downloaded from http://iranpaper.ir
http://translate68.ir

are used for classification training and building a description
model. After that, our system can identify malwares by this
model. We select Naive Bayesian, J48 (Decision Tree), and
Support Vector Machine as our classification algorithms. We
also apply attribute selection technique to reduce the amount
of attributes for training so as to improve efficiency.

Our experimental result shows that, the detection rates are
up to 95% for the J48 and Naive Bayesian algorithms. The
Support Vector Machine algorithm has the worse performance,
with a detection rate of up to 89%. Since the J48 algorithm
usually needs only tens of attributes for building a tree, we use
J48 for further experiment. We reduce the amount of attributes
with InfoGainAttributeEval selection and the result shows that
we can achieve a high detection rate with fewer attributes and
significantly reduce complexity.

We propose an integral fashion in monitoring behaviors but
our method has some limits. We believe that there are some
ways to improve our work in the future: 1) All of our tracing
techniques are under Userspace. The monitoring overhead and
stability can be improved by Kernelspace hooking. 2) In our
method, we monitor the injected process by monitoring the
entire process. The tracing can be more accurate if we only
trace the tainted threads, not the entire process.

ACKNOWLEDGMENT

This work was supported in part by the Taiwanese Ministry
of Science and Technology under Grant MOST 103-2221-E-
110-057 and by the NSYSU and the Taiwanese Ministry of
Education through the Aim for the Top University Plan.

REFERENCES
[1] TrendMicro, “Trendlabs2012 annual security roundup evolved threats

in a post-pc world,” TrendMicro, http://www.trendmicro.com/cloud-
content/us/pdfs/security-intelligence/reports/rpt-evolved-threats-in-a-
post-pc-world.pdf, Tech. Rep., 2012.

[2] AV-TEST, “2013 malware statics from av-test institute,” AV-TEST
Institute, http://www.av-test.org/en/statics/malware/, Tech. Rep., 2013.

[3] TrendMicro, “Detecting apt activity with network traffic
analysis,” TrendMicro, http://www.trendmicro.com/cloud-
content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-
activity-with-network-traffic-analysis.pdf, Tech. Rep., 2012.

[4] ——, “The heartbeat apt campaign,” TrendMicro,
http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp the-heartbeat-apt-campaign.pdf, Tech.
Rep., 2012.

[5] J. Lee, K. Jeong, and H. Lee, “Detecting metamorphic malwares using
code graphs,” in Proceedings of the 2010 ACM symposium on applied
computing, 2010, pp. 1970–1977.

[6] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining api calls,” in Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, 2010,
pp. 1020–1025.

[7] B. Kang, T. Kim, H. Kwon, Y. Choi, and E. G. Im, “Malware
classification method via binary content comparison,” in Proceedings
of the 2012 ACM Research in Applied Computation Symposium, 2012,
pp. 316–321.

[8] P. Faruki, V. Laxmi, M. Gaur, and P. Vinod, “Mining control flow graph
as api call-grams to detect portable executable malware,” in Proceedings
of the Fifth International Conference on Security of Information and
Networks, 2012, pp. 130–137.

[9] K. Iwamoto and K. Wasaki, “Malware classification based on extracted
api sequences using static analysis,” in Proceedings of the Asian Internet
Engineeering Conference, 2012, pp. 31–38.

[10] C. Wang, J. Pang, R. Zhao, W. Fu, and X. Liu, “Malware detection
based on suspicious behavior identification,” in Proceedins of First In-
ternational Workshop on Education Technology and Computer Science,
2009., 2009, pp. 198–202.

[11] R. Islam, R. Tian, L. Batten, and S. Versteeg, “Classification of malware
based on string and function feature selection,” in Cybercrime and
Trustworthy Computing Workshop (CTC), 2010 Second, 2010, pp. 9–17.

[12] H. Zhao, M. Xu, N. Zheng, J. Yao, and Q. Ho, “Malicious executables
classification based on behavioral factor analysis,” in Proceedings of
International Conference on e-Education, e-Business, e-Management,
and e-Learning, 2010., 2010, pp. 502–506.

[13] S. B. Mehdi, A. K. Tanwani, and M. Farooq, “Imad: in-execution
malware analysis and detection,” in Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, 2009, pp. 1553–
1560.

[14] V. P. Nair, H. Jain, Y. K. Golecha, M. S. Gaur, and V. Laxmi,
“Medusa: Metamorphic malware dynamic analysis usingsignature from
api,” in Proceedings of the 3rd international conference on Security of
information and networks, 2010, pp. 263–269.

[15] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day
malware detection based on supervised learning algorithms of api call
signatures,” in Proceedings of the Ninth Australasian Data Mining
Conference-Volume 121, 2011, pp. 171–182.

[16] K. Tsyganok, E. Tumoyan, L. Babenko, and M. Anikeev, “Classification
of polymorphic and metamorphic malware samples based on their
behavior,” in Proceedings of the Fifth International Conference on
Security of Information and Networks, 2012, pp. 111–116.

[17] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host.”
in USENIX Security Symposium, 2009, pp. 351–366.

[18] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware
from cleanware using behavioural analysis,” inMalicious and Unwanted
Software (MALWARE), 2010 5th International Conference on, 2010, pp.
23–30.

[19] Z. Salehi, M. Ghiasi, and A. Sami, “A miner for malware detection
based on api function calls and their arguments,” in Artificial Intel-
ligence and Signal Processing (AISP), 2012 16th CSI International
Symposium on, 2012, pp. 563–568.

[20] P. Trinius, C. Willems, T. Holz, and K. Rieck, “A malware instruction
set for behavior-based analysis,” University of Mannheim, Tech. Rep.,
2011.

260

Downloaded from http://iranpaper.ir
http://translate68.ir

