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Due to its damage to Internet security, malware (e.g., virus, worm, trojan) and its detection has caught the

attention of both anti-malware industry and researchers for decades. To protect legitimate users from the

attacks, the most significant line of defense against malware is anti-malware software products, which

mainly use signature-based method for detection. However, this method fails to recognize new, unseen

malicious executables. To solve this problem, in this paper, based on the instruction sequences extracted

from the file sample set, we propose an effective sequence mining algorithm to discover malicious se-

quential patterns, and then All-Nearest-Neighbor (ANN) classifier is constructed for malware detection

based on the discovered patterns. The developed data mining framework composed of the proposed se-

quential pattern mining method and ANN classifier can well characterize the malicious patterns from

the collected file sample set to effectively detect newly unseen malware samples. A comprehensive ex-

perimental study on a real data collection is performed to evaluate our detection framework. Promising

experimental results show that our framework outperforms other alternate data mining based detection

methods in identifying new malicious executables.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Malware, short for malicious software, is software that de-

sign to damage or destruct computers without owners’ permis-

sion (Schultz, Eskin, Zadok, & Stolfo, 2001). Due to the rapid de-

velopment of information technology, malware has posed a seri-

ous threat to networks as well as computer systems. For instance,

worm has increasingly threaten the hosts and services by exploit-

ing the vulnerabilities of the largely homogeneous deployed soft-

ware base (Sun & Chen, 2009). In addition, in the application of the

online transaction, trojan horses often steal sensitive information

from online users through website phishing (Abdelhamid, Ayesh, &

Thabtah, 2014). Due to the enormous loss and adverse effect cause

by malware, malware detection is one of the cyber security topics

that are of great interests.

To protect legitimate users from the attacks, the most signif-

icant line of defense against malware is anti-malware software

products, which mainly use signature-based method for detection

(Griffin, Schneider, Hu, & Chiueh, 2009; Kephart & Arnold, 1994). In

these scanning tools, unique signatures (a set of short and unique
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trings) are extracted from already known malicious files. Then,

n executable file is identified as a malicious code if its signature

atches with the list of available signatures. Such simple approach

s fast to identify known malware with small error rate. However,

xtracting signature is a tough work which requires a great deal of

ime, funds and more importantly, the expertise. This is the main

isadvantage of this method. The second issue is that signature-

ased method is restricted to recognize already known malware,

nd thus it is unreliable and ineffective against the new, unseen

alicious codes. In fact, simple obfuscation techniques can eas-

ly bypass such signatures-based detection. Besides, driven by the

conomic benefits, today’s malware samples are created at a high

peed (thousands per day). For example, Symantec reported that

1.7 million new pieces of malware were created in October 2015

Symantec, 2015); according to McAfee Labs threat report, there

ere more than 400 million total malware samples in the first

uarter of 2015 (McAfee Labs, 2015).

In order to solve the above-mentioned problems, heuristic-

ased detection method, which utilizes data mining as well as

achine learning techniques, is developed to conduct intelligent

alware detection. This approach aims to learn special patterns

hat capture the characteristics of malware. Generally, its detec-

ion process can be divided into two phases: feature extraction

nd classification. In the first phase, various features are extracted

rom malware samples via static analysis or dynamic analysis to

http://dx.doi.org/10.1016/j.eswa.2016.01.002
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http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.01.002&domain=pdf
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epresent the file; based on the extracted features, classification

echniques are applied to identify the malware automatically. For

nstance, Schultz et al. (2001) extracted three different types of

eatures (i.e., system resource information, printable strings and

yte sequences) from the files, then used as inputs for Ripper,

aive Bayes and Multi-Naive Bayes to classify malware and benign

les.

Since Application Programming Interface (API) calls can well

epresent the actions of an executable, it is one of the most ef-

ective features used by the heuristic-based methods. Many re-

earches have been done based on API calls, including Hofmeyr,

orrest, and Somayaji (1998), Ye, Wang, Li, Ye, and Jiang (2008) and

o forth. There are some other researchers applying another mean-

ngful feature (i.e., the machine instructions) to detect malware,

uch as Santos et al. (2010), Shabtai, Moskovitch, Feher, Dolev, and

lovici (2012) and Runwal, Low, and Stamp (2012). Although these

orks demonstrate desirable detection results, they did not take

he order of the features into consideration and thus fail to mine

atterns with notable difference between malicious files and be-

ign files.

In this paper, we propose a new sequence mining algorithm

o discover malicious sequential patterns based on the machine

nstruction sequences extracted from the Windows Portable Exe-

utable (PE) files, then use it to construct a data mining frame-

ork, called MSPMD (short for Malicious Sequential Pattern based

alware Detection), to detect new malware samples. The main

ontributions of this paper can be summarized as follows:

• Well represented feature for malware detection: Instruction se-

quences are extracted from the PE (Portable Executable) files

as the preliminary features, based on which the malicious se-

quential patterns are mined in the next step. The extracted in-

struction sequences can well indicate the potential malicious

patterns at the micro level. In addition, such kind of features

can be easily extracted and used to generate signatures for the

traditional malware detection systems.
• Effective malicious sequential pattern mining algorithm: We pro-

pose an effective sequential pattern mining algorithm, called

MSPE (Malicious Sequential Pattern Extraction), to discover ma-

licious sequential patterns from instruction sequence. MSPE in-

troduces the concept of objective-oriented to learn patterns

with strong abilities to distinguish malware from benign files.

Moreover, we design a filtering criterion in MSPE to filter the

redundant patterns in the mining process in order to reduce the

costs of processing time and search space. This strategy greatly

enhances the efficiency of our algorithm.
• All-Nearest-Neighbor (ANN) classifier for malware detection: We

propose ANN classifier as detection module to identify mal-

ware. Different from the traditional k-nearest-neighbor method,

ANN chooses k automatically during the algorithm process.

More importantly, the ANN classifier is well-matched with the

discovered sequential patterns, and is able to obtain better re-

sults than other classifiers in malware detection.
• Comprehensive experimental studies: We conduct a series of ex-

periments to evaluate each part of our framework and the

whole system based on real sample collection, containing both

malicious and benign PE files. The results show that MSPMD

is an effective and efficient solution in detecting new malware

samples.

The remainder of this paper is organized as follows: Section 2

ntroduces the related work. In Section 3, an overview of MSPMD is

resented. Section 4 describes the method for instruction sequence

eature extraction. Section 5 presents the proposed algorithm for

alicious sequential pattern mining. Section 6 describes the ANN

lassifier for malware prediction based on the mined malicious se-
uential patterns. Experimental results are presented in Section 7.

inally, Section 8 concludes.

. Related work

Signature-based method is widely used in anti-malware indus-

ry for malware detection (Griffin et al., 2009). However, this clas-

ic method always fails to detect variants of known malware or

reviously unseen malware. The problem lies in the signature ex-

raction and generation process, and in fact these signatures can be

asily bypassed (Ye et al., 2008). For example, to evade the widely-

sed signature-based detection, malware developers can employ

echniques such as polymorphism and metamorphism (Jain & Bajaj,

014). Not only the diversity and sophistication of malware have

ignificantly increased in recent years, driven by economic bene-

ts, today’s malware samples are also created at a rate of thou-

ands per day (McAfee Labs, 2015; Symantec, 2015). In order to re-

ain effective, anti-malware industry calls for intelligent malware

ystems which can automatically detect newly unseen malware

rom the collected file samples. Many research efforts have already

een conducted on developing intelligent malware detection sys-

ems applying data mining techniques. Such data-mining-based de-

ection methods require a feature extraction process to mine some

eatures. Actually, the performance of the detection method mainly

epends on what the features are extracted from the executables.

ore specifically, if the extracted features are well representative,

t is expected to obtain better result when using these features to

etect malware. Over the past few years, API calls and machine in-

tructions are two of the most widely used features (Bazrafshan,

ashemi, Fard, & Hamzeh, 2013). Besides these, there also exists

any researches relying on other features for malware detection,

uch as byte code (Nissim, Moskovitch, Rokach, & Elovici, 2014),

ata flow graph (Wchner, Ochoa, & Pretschner, 2014), Dynamic Link

ibraries (DLLs) (Narouei, Ahmadi, Giacinto, Takabi, & Sami, 2015).

API calls represent the requests of windows executables on op-

rate system. Due to their effectiveness to reflect the actions of

xecutable, API calls are considered to be one of the most attrac-

ive features for detecting malware. The first attempt to use API

s a feature of program was Hofmeyr et al. (1998). They presented

method for anomaly intrusion detection based on sequences of

ystem calls. In their work, normal behavior was defined in short

equences of system calls executed by program. Then, three mea-

ures were used to detect abnormal behavior as deviations from

he normal behavior. The representative research on API calls has

een done by Ye et al. (2008). They developed an intelligence mal-

are detection system (IMDS): it first extracted the API calls from

ach sample; then an objective-oriented association (OOA) min-

ng algorithm was employed to generate OOA rules; finally it ap-

lied Classification Based on Association (CBA) (Bing, Wynne, &

a, 1998) to build the classifier for malware detection. The ex-

erimental results showed that IMDS outperformed the signature-

ased methods and other data-mining-based methods in terms

f detection rate and classification accuracy. Another interesting

ork using API calls for malware detection was Ahmadi, Sami,

ahimi, and Yadegari (2013), which was a dynamic malware detec-

ion system. They employed the iterative pattern mining method

Lo, Cheng, Han, Khoo, & Sun, 2009) to extract frequent itera-

ive patterns and used Fisher score to conduct feature selection.

he experiment results showed that high detection rate with low

alse alarm can be achieved when applying an iterative pattern

ining approach. In very recent, Uppal, Sinha, Mehra, and Jain

2014) utilized the call grams and odds ratio selection to extract

he distinct API sequences, then used as inputs to the classifiers

o categorize malware and benign samples. Qiao, Yang, He, Tang,

nd Liu (2014) created a new representation method to trans-

orm API call sequences into byte-based sequential data for further
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Fig. 1. System architecture of the proposed malware detection framework.
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detection. Sundarkumar, Ravi, Nwogu, and Govindaraju (2015) pre-

sented an approach to detect malware, which used text mining and

topic modeling for feature extraction and feature selection based

on the API call sequences.

However, collecting API calls is typically a time-consuming and

resource-consuming process, which requires a virtual machine or

an emulator (Egele, Scholte, Kirda, & Kruegel, 2012) to analyze the

code behaviors during the execution time. On the contrary, the ma-

chine instructions can be easily extracted and used to generate sig-

natures for the traditional malware detection systems (Ye, Li, Chen,

& Jiang, 2010). Moreover, the subdivision of a machine instruction

(i.e., the opcode) implies the operation executed by the executable.

These facts make the instructions become an effective feature for

malware detection. Our work also focuses on using machine in-

structions as the preliminary feature for further analyze.

To detect the variants of known malware families, Santos et al.

(2010) presented an approach using the frequency of appearance

of opcode-sequences to build an information retrieval representa-

tion of executables. Shabtai et al. (2012) used the opcodes to de-

tect unknown malicious codes. After extracting the opcode n-gram

patterns, they calculated the normalized term frequency (TF) and

TF Inverse Document Frequency (TF-IDF) for each opcode patterns

in each file. Then, eight classical classification techniques were

used to evaluate the proposed feature selection method. The tech-

nique presented in Runwal et al. (2012) used the similarity of ex-

ecutables based on opcode graphs for metamorphic malware de-

tection. They extracted the opcode sequences from files and gen-

erated a weighted directed graph for each file. After that, a new

executable can be predicted as malware or benign file by calculat-

ing the similarity of opcode graph obtained from the executable

and both file types. Recently, many other techniques have been

used for malware detection based on machine instructions. Rad,

Masrom, and Ibrahim (2012) used a histogram of instruction op-

code frequencies to detect metamorphic malware. They built a his-

togram for each file and compared against the already built his-

tograms of malware samples to classify the file as malware or be-

nign. Austin, Filiol, Josse, and Stamp (2013) built hidden Markov

models (HMMs) for both benign and malware programs. For each

program, the probability of the opcode sequence was determined

for each of the HMMs. Then, the program was flagged as malware

if the HMM with highest probability belonged to malware. Ahmadi,

Giacinto, Ulyanov, Semenov, and Trofimov (2015) applied feature

fusion technique to combine opcodes with other features as inputs

for classifiers to detect malware.

Despite the favorable detection results obtained by the above

mentioned works, few methods attempt to mine patterns with a

strong ability to distinguish malware from benign files. In this pa-

per, we propose an effective sequential pattern mining algorithm

to discover discriminative malicious patterns on the extracted in-

struction sequences. Based on which, a data mining framework

MSPMD is developed for detecting new malware.

3. System architecture

Fig. 1 shows the system architecture of the proposed malware

detection framework MSPMD, which consists of three major com-

ponents: instruction sequence extractor, malicious sequential pat-

tern miner, and ANN (All-Nearest-Neighbor) classifier for malware

prediction. We briefly describe each component below.

1. Instruction sequence extractor: MSPMD first extracts instruc-

tions from training samples and transforms them into a group

of 32-bit global IDs based on their lexicographical order. Then,

a subset of instructions is selected using the newly proposed al-

gorithm MIE (Malicious Instruction Extraction), followed by the
guiding match method used to generate instruction sequence

for each training sample.

2. Malicious sequential pattern miner: In this component, MSPE

(Malicious Sequential Pattern Extraction) algorithm is applied

to mine discriminating malicious sequential patterns from in-

struction sequences.

3. ANN classifier: In this module, the input executables (including

the training samples and the testing samples) are transformed

into vectors based on the mined malicious sequential patterns.

Then, the proposed classifier ANN is used to conduct malware

prediction.

The detail processes and the new methods proposed for the

hree components will be presented in the following three sec-

ions, respectively.

. Instruction sequence feature extraction

In the first step of MSPMD, each PE file will be transformed into

n instruction sequence. These instructions are carefully chosen in

rder to distinguish malware from benign samples as much as pos-

ible; therefore, they can be viewed as the low-level (instruction-

evel) features representing the executables. In this section, we de-

cribe the method used to extract such features from the training

ample set, which is implemented in two sub-steps.

.1. Instruction sequence feature representation

The first sub-step is designed to represent each PE file in a long

ymbol sequence, where each symbol corresponds to a machine

nstruction appearing in the executable. This is achieved by disas-

embling the PE files followed by parsing the operation codes of

ach instruction, as follows:

Disassembling: A third party disassembler C32Asm (2011) is

sed to disassemble each sample, creating an assembly repre-

entation for the sample. Fig. 2 shows an example, which is

fragment of the disassembly for the Worm PE file named
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Fig. 2. A fragment of the output of disassembled Worm.Win32.AutoRun.aaeu.
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orm.Win32.AutoRun.aaeu. Each line of the assembly corresponds

o a machine instruction, composed of an operator and the asso-

iated operand. For example, the operator of the first instruction

n Fig. 2 is MOV with the CPU register EAX and the hexadecimal

umber 10011F5C being its operands. Note that for Windows PE

les, the number of operators is finite, and for the same operator

ts operands may vary in different instructions.

Parsing: Based on the assembly instructions generated in the

isassembling step, a compact representation is constructed for the

amples, making use of the operators but ignoring the operands.

his is due to the fact that it is the operator that indicates the

ehavior (the operation) of an instruction. Moreover, in typical ob-

uscated malicious codes (Zhang, Chen, & Guo, 2012), the machine

nstructions may change across different malware variants; how-

ver, their operators usually remain the same. For the purpose,

e have developed a parser in JAVA to translate the assembly in-

tructions, by discarding the operands and encoding each operator

ith a unique number (say instruction ID). Fig. 3 gives an exam-

le, where 6 malwares (denoted by M) and 4 benign samples (de-

oted by B) are represented in instruction sequence. For example,

he Worm.Win32.AutoRun.aaeu shown in Fig. 2 now is represented

n 240 → 33 → 386 → 240 → · · ·, with 240, 33 and 386 being the

Ds of MOV, CALL and SUB, respectively. Obviously, the sequences

re in variable-length, and the sequence length is dependent on

he size of the corresponding PE file.

.2. Feature selection

In the second sub-step, we propose the MIE method for fea-

ure selection in order to reduce the useless information caused by

ndiscriminating instructions. Since the selected instructions are

ighly frequent that incline to malicious executables, we introduce
Fig. 3. An example of the sequence rep
he concept “tendency” to measure the extent of an instruction to

e malicious.

efinition 1 (tendency). Letting i be an instruction ID, its tendency

s defined as:

endency(i) =

⎧⎨
⎩

fM(i)

fM(i) + fB(i)
, fM(i) �= 0

0, fM(i) = 0

here fM(i) and fB(i) stand for the weighted frequency of the in-

truction in the malicious and benign samples, respectively.

Intuitively, the frequency of an instruction is similar to that of

keyword in a document collection. Inspired by the term weight-

ng techniques developed in the text mining community (Soucy

Mineau, 2005), we assign each instruction a class-dependent

eight according to its coverage in the class (Malware or Benign).

herefore, an instruction will receive a high weight if it widely dis-

ributes across the malicious or benign samples. Formally, we cal-

ulate the weights for the ith instruction with regard to the mali-

ious and the benign category by

M(i) = |NM(i)|
|NM| ,

B(i) = |NB(i)|
|NB| ,

ith |NM(i)| and |NB(i)| being the number of malicious and benign

amples involving the ith instruction, respectively; |NM| and |NB|

re the total number of malicious and benign samples. Further-

ore, the weighted frequencies of the instruction are formulated

s follows:

fM(i) = wM(i) × |UM(i)|
|UM| ,

fB(i) = wB(i) × |UB(i)|
|UB| ,

here |UM(i)| and |UB(i)| denote the number of times instruction

appearing in the entire malicious and benign samples, |UM| and

UB| are the total number of the instructions in the malicious and

enign samples.

Based on the definition, the tendency of each instruction can

e computed. An instruction i is selected only if tendency(i) > t,

here t is a user-specified threshold. Then, all selected features

re collected to produce variable-length instruction sequences for

ach sample using the simple guiding match method (Zhang et al.,

012). We can see that each resulting sequence is composed of or-

ered instructions that have significant tendency to be malicious

odes, thus they are able to indicate the potential malicious pat-

ern at the micro level.

. Malicious sequential pattern mining

In this section, we describe the MSPE algorithm for malicious

equential pattern mining. MSPE aims at discovering the discrim-

native malicious sequential patterns, which can be viewed as

acro-level features to represent the executables.
resentation for Windows PE files.
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5.1. Notation and basic definitions

Before mining malicious sequential patterns, we first introduce

the related definitions of instruction sequence as follows: let I =
{I1, I2, . . ., Im} be the set of instruction items, and m the number of

items. An instruction sequence s is an ordered list of the items and

is denoted by s1s2. . .sl where each sj(1 ≤ j ≤ l) ∈ I.

Definition 2 (subsequence). A sequence α = a1a2. . .an is called a

subsequence of another sequence β = b1b2. . .bm, denoted as α�β ,

if there exists integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆
b j1

, a2 ⊆ b j2
, . . ., an ⊆ b jn .

Definition 3 (support and confident). Letting α be a subsequence

of the sequence in SM or SB, the support and confidence of α de-

fined as:

supα% = |{β|(β ∈ SM) ∧ (α � β)}|
|SM| × 100%, (1)

con fα% = |{β|(β ∈ SM) ∧ (α � β)}|∑
t∈{M,B} |{s|(β ∈ St ) ∧ (α � β)}| × 100%, (2)

where |SM| and |SB| denote the number of sequences in malicious

executables and benign executables set (recall that each executable

is represented as an instruction sequence).

Definition 4 (sequential pattern). Let ms% be a user-specified min-

imum support. A subsequence α is called a sequential pattern with

regard to SM if supα% ≥ ms%.

Definition 5 (malicious sequential pattern). Let mc% be user-

specified minimum confidence. A sequential pattern α is called a

malicious sequential pattern if confα% ≥ mc%.

5.2. MSPE algorithm

In general, Generalized Sequential Pattern (GSP) algorithm

(Srikant & Agrawal, 1996) is a simple and effective method to

mine sequential patterns. However, when the minimum support

decreases, GSP generates a huge number of candidates, which is

time-consuming and resource-consuming. Additionally, when ap-

plying GSP to our case directly, it tends to search for the common

sequential patterns in both malware and benign samples, that is,

it is unable to discover the discriminative sequential patterns that

have a strong ability to distinguish malware from benign executa-

bles. Therefore, in our work, we extend a modified GSP algorithm

to mine malicious sequential patterns. This algorithm addresses

the above-mentioned shortcomings, and we call it MSPE algorithm.

Similar to GSP algorithm, MSPE algorithm is also an Apriori-like

method. But the type of generated patterns and the filtering crite-

rion used to generate them are different from GSP algorithm in the

following ways: (1) we introduce the concept of objective-oriented

(Shen, Zhang, & Yang, 2002) into MSPE to discover sequential pat-

terns with malicious nature; (2) we also use a kind of “confidence”

to filter the sequential patterns such that the costs of processing

time and search space will decrease sharply. MSPE contains seven

major steps and works as follows:

tep 1. Scans SM and compute the support and confidence for each

item using Eqs. (1) and (2), to generate length-1 sequential

patterns, denote as L1, according to Definition 4.

tep 2. Set the length of pattern n = 2.

tep 3. Generate new set of candidates Cn by self-join and prune

operation of the sequential patterns found in the (n − 1)th

pass:

1. Self-join operation: Join Ln−1 with itself to generate Cn

based on the following criterion: l1 and l2 are sequen-

tial patterns in Ln−1, if l1 with removal of the first item
equals to l2 with removal of the last item, we join l2 to

l1, by adding the last item of l2 to l1.

2. Prune operation: Remove candidate from Cn if one of its

length-(n − 1) subsequence is not a sequential pattern

found at Ln−1.

tep 4. Scan Cn and collect the support and confidence for each c

∈ Cn to find the new set of sequential patterns Ln according

to Definition 4 and Eq. (3). In Eq. (3), c′ are all length-(n −
1) subsequences of c ∈ Cn.

con fc% ≥ con fc′ % (3)

tep 5. n = n + 1.

tep 6. Repeat Steps 3–5 until no sequential pattern is found in a

pass, or no candidate sequence is generated.

Step 7. Collect malicious sequential patterns from the resulting se-

quential patterns based on Definition 5.

In our detection framework, the objective is to find out which

amples belong to malware, thus the MSPE algorithm is proposed

o determine which sequential patterns support this specific objec-

ive. This is the reason why MSPE is called of objective-oriented. It

s necessary to remark that unlike the existing works, such as Rad

t al. (2012) and Ahmadi et al. (2015) which use instruction solely,

SPE takes the order of the instructions into consideration. This

lso differs from the work in Ye et al. (2008) where the desired

temset patterns were mined based on the unordered Windows

PI calls. Moreover, since MSPE is objective-oriented, the gener-

ted sequential patterns are able to reflect malicious behaviors of

alware, and are more discriminative than the iterative patterns

n Ahmadi et al. (2013) and the n-gram patterns in Shabtai et al.

2012). In addition, in Step 4, we consider Eq. (3) as a filtering cri-

erion and the minimum support to reduce the number of candi-

ates. More specifically, in Eq. (3), the confidence of length-n se-

uential pattern must greater than or equal to that of its length-

(n − 1) subsequence, this is because in our case, the longer the

ength is, the more discriminative the pattern becomes. In other

ords, the sequential patterns generated in each iteration should

nhance the capacity of malware prediction when comparing with

he patterns generated in the last iteration, i.e. p(M|I) ≥ p(M|I′),
here I′ is the subsequence of I. Using such new strategy, the cost

f running time and memory space can be significantly reduced

uring the mining process. This makes our algorithm more effi-

ient than the well-known GSP algorithm.

.3. Illustrating examples

To explain the MSPE algorithm, we illustrate an example us-

ng the data shown in Tables 1 and 2, where each row contains

hree fields: file ID, instruction sequence and file type. Letting
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Table 3

An example of the feature representation for testing sample

set.

File name Malicous sequential pattern

p1 p2 p3 p4 p5

Worm.Win32.AutoRun.aap 1 1 1 1 1

Worm.Win32.AutoRun.bhr 1 0 1 0 0

Worm.Win32.AutoRun.byt 1 1 1 1 0

Worm.Win32.AutoRun.cob 0 1 1 1 0

Worm.Win32.AutoRun.zwz 1 1 1 1 1

1KG_su.exe 0 0 0 0 0

360rpt.exe 0 0 0 0 0

ctfmon.exe 0 0 0 0 1

eclipsec.exe 0 1 0 1 0

zoomin.exe 0 0 1 0 0
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s% = 40%, by applying MSPE algorithm the sequential patterns

an be obtained as: < I1 >, <I2 >, <I3 >, <I4 >, <I1 → I2 >, <I2 →
3 >, <I4 → I1 >, <I4 → I1 → I2 > . Note that, although the sup-

ort of pattern < I1 → I1 > and < I4 → I2 > meet the condition

n Definition 4. However, they still cannot be regarded as sequen-

ial pattern, since Eq. (3) is not satisfied. Take < I1 → I1 > as an

xample, its confidence 66.7% is less than 75%-the confidence of

ts subsequence < I1 > . Then, given mc% = 80%, these sequential

atterns are used to mine malicious sequential patterns, and the

esults are given as:

1. < I2 → I3 > ⇒M(40%, 100%)

2. < I4 → I1 > ⇒M(40%, 100%)

3. < I4 → I1 → I2 > ⇒M(40%, 100%).

Examining the instruction sequences in Tables 1 and 2, one can

ee that these three malicious sequential patterns reveal the mali-

ious behaviors hidden in the malware samples set SM.

In order to demonstrate the effectiveness of the malicious se-

uential patterns, we show a real example generated by MSPE on

he real-world data collection (see Section 7.1 for details). One of

he malicious sequential patterns we generated with the condition

= 0.90 is:

182 → 351 → 351 → 184 → 184 → 184 → 184 >

⇒ M(sup% = 93.00%, con f % = 97.13%),

here sup% and conf% denote the support and confidence of this

attern, respectively. The sequence can be rewritten as

idiv → scas → scas → in → in → in → in >

⇒ M(sup% = 93.00%, con f % = 97.13%),

y converting the IDs to the corresponding machine instructions.

By analyzing the value of sup% and conf%, we know that this

alicious sequential pattern appears in 1116 malware, while only

n 33 benign files. There is a clear difference between malicious

nd benign executables with regard to this pattern, as it appears

n the overwhelm majority of malware but just in few benign

xecutables. It is one of the underlying patterns for determining

hether a sample is malware or not.

. ANN classifier for malware prediction

In this section, we propose ANN classifier for malware de-

ection based on the mined malicious sequential patterns. Differ-

nt from the traditional k-nearest-neighbor method (Han, Kamber,

Pei, 2006), ANN chooses k automatically during the algorithm

rocess.

.1. Feature representation for testing sample set

Given a new PE sample, before prediction, it will first be trans-

ormed into a Boolean vector, where each element indicates the

resence of the corresponding sequential pattern. Formally, let

[x] =< x1, x2, . . ., xd > be a sample described by d numeric at-

ributes, where each x j ∈ {0, 1}, ( j = 1, . . ., d). For intuitive under-

tanding, we present an example in the following, as Table 3

hows.

In Table 3, 10 samples (5 malwares and 5 benign files) are con-

idered, with 5 malicious sequential patterns (p1 to p5):

p1 :< idiv → scas → scas → in → in → in → in >

p2 :< idiv → xchg → xchg → scas → scas → in >

p3 :< idiv → scas → scas → in → in → in >

p4 :< idiv → xchg → scas → scas → in >

p5 :< std → xchg → scas → scas → in → a > .
rom Table 3, we can see that the first row of the table is

he Boolean vector of a sample named Worm.Win32.AutoRun.aap,

hich is an Internet worm that contains all of the five malicious

equential patterns, whereas the sixth row shows that none of

hese patterns belong to the benign sample 1KG_su.exe.

.2. Malware prediction

After the feature representation, we can easily measure the

imilarity of different samples according to their containing mali-

ious sequential patterns. Here, similarity is measured by Euclidean

istance.

The traditional k-nearest-neighbor (kNN) (Guo, Wang, Bell, Bi, &

reer, 2003; Han et al., 2006; Zeng, Yang, & Zhao, 2009) is a non-

arametric classification method, which is simple but effective in

any cases. It first searches for k training samples that are closest

o the testing sample. These k training samples are the k “near-

st neighbors” of the testing sample. Then, the testing sample is

ssigned the most common class among its k-nearest neighbors.

owever, in a sense, the kNN method is biased by k, that is, the

uccess of classification is very much dependent on this value.

The proposed detection module ANN is based on kNN, but over-

omes the issue of “k” inherited in the traditional kNN method. It

ontains three major steps and is outlined in the following.

tep 1. Calculate the Euclidean distance between testing sample

y and each training samples t according to dist(y, t) =
||V [y] − V [t]||2.

tep 2. Use ts = argmint dist(y, t) to select training sample ts

whose distance is shortest to y.

tep 3. Assign y to the class (malicious or benign) among ts using

majority vote.

Obviously, the proposed ANN classifier does not need to choose

specific k for final classification: the number of selected train-

ng samples (i.e., |ts| ) can be seen as an optimal k, which means

he k is generated automatically during the algorithm. A real ex-

mple is illustrated to better understand the difference between

raditional kNN and ANN classifier. Consider the malicious sample

amed Worm.Win32.AutoRun.dmv as a testing sample, if we apply

NN classifier to recognize the testing sample, different k will gen-

rate different classification result, that is when k = 1, kNN classify

t to malware while k = 9 it is classified to benign file. However, if

e regard ANN classifier as detection module, 997 training sam-

les whose distance to testing sample is shortest are selected, in

hich 970 training samples belong to malware and the remain-

ng are benign executables. Finally, the testing sample is assigned

o malware according to majority voting. Using ANN classifier, the

imilarity between different samples can be easily computed and

he testing sample could be recognized correctly.
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Table 4

Coverage of malicious instruction se-

quence on different t.

t cov(M) cov(B)

0.80 100% 95.13%

0.85 100% 89.75%

0.90 100% 87.50%

0.95 99.25% 79.25%

Table 5

The number of patterns on different ms% and mc%.

ms% mc% Number of patterns

94% 96% 0

95% 75

93% 96% 659

95% 2753

92% 96% 9161

95% 19,815

Table 6

Running time of different sequential pattern mining algo-

rithms (min).

Experiment 1 2 3 4 5

ms% 94% 93% 92% 91% 90%

MIE+GSP 1.85 3.97 19.55 185.9 2368.6

MIE+MSPE 1.77 3.81 16.06 80.39 370.72
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7. Experimental results and analysis

In this section, we evaluate each part of our framework and the

whole detection system MSPMD through a series of experiment

with comparing to a few existing methods. All the experimental

studies are conducted under the environment of Windows XP op-

erating system plus Intel T6600 2.20 GHz CPU and 2GB of RAM.

7.1. Data description

Our system is directly suitable for Windows PE file, as PE mal-

ware occupy the majority of today’s malicious codes. We collect

10,307 Windows PE samples, which consist of 8847 malicious in-

stances and 1460 benign instances. There are no duplicate samples

in our dataset. Malware are downloaded from http://vxheaven.org/

, while the benign programs are system files coming from a newly

installed Windows XP system. However, if a PE file is previously

compressed or encrypted by a compress tool such as ASPack and

PECompact, we first use unpack tools to decompress the PE code.

In each experiment, we sample 2000 records from our dataset,

which includes 1200 records of malicious executables and 800

records of benign executables.

7.2. Parameter selection and evaluate criteria

Currently, the principal method to conduct parameter selection

is based on experiment results. However, this method is only suit-

able for specific dataset to some extent, and it may not be general-

izable. In our work, we analyze the object influenced by parameter

directly to determine the best choice, which reduces the depen-

dency of parameter on dataset.

Different t’s correspond to different malicious instructions,

which lead to generate different length of malicious instruction

sequence for each executable. As malicious instructions indicat-

ing the potential malicious patterns at the micro level, the best

t should let malicious instruction sequence have full coverage in

malicious codes and low coverage in benign codes. Thus, we use

cov(M) and cov(B) to denote the coverage of these sequences in

malicious and benign codes, respectively, i.e.,

cov(M) = |SM|
|NM| ,

cov(B) = |SB|
|NB| .

As shown in Table 4, when choose t = 0.90, all malware but

only 700 benign executables in dataset can be represent as ma-

licious instruction sequence (other 100 benign executables are

transformed into empty sequences). This indicates t = 0.90 is the

best choice.

For ms% and mc%, malicious sequential pattern with high sup-

port and confidence indicates it exists in most malicious codes

but appears in few benign codes. It is to say ms% and mc% must

be set as high as possible in case of there are enough sequen-

tial patterns to make sure malicious sequential patterns can dis-

tinguish malware from benign executables as much as possible.
rom Table 5, as ms% and mc% decrease, the number of patterns

ncreases. When choose ms% = 94%, the number of generated ma-

icious sequential patterns is too less to express malicious instruc-

ion sequences whatever the value of mc%. Therefore, we set ms%

o 93% and mc% to 96%, as 659 malicious sequential patterns are

ust enough.

To evaluate MSPMD, the standard tenfold cross validation is

sed in the experiments: the original dataset is randomly divided

nto 10 equal size subsets, where a single subset is retained as test-

ng data, and the remaining 9 subsets are used as training data.

his process is repeated 10 times, make sure that each subset used

nly once as testing data. The 10 results then are averaged to gen-

rate estimation. Moreover, the following evaluate measures are

sed in the results:

• True positive (TP): the number of malicious executables cor-

rectly classified
• True negative (TN): the number of benign executables correctly

classified
• False positive (FP): the number of benign executables classified

as malicious code
• False negative (FN): the number of malicious executables classi-

fied as benign code
• Detection rate (DR): TP

TP+FN

• False positive rate (FPR): FP
FP+TN

• Accuracy (ACC): TP+TN
TP+TN+FP+FN

.3. Evaluation of malicious sequential pattern mining process

The first set of experiments is to evaluate the feature extraction

hase in our framework, i.e., the process of mining malicious se-

uential patterns. We conduct two experiments in this subsection,

hat is, examining the effectiveness of the proposed sequential pat-

ern mining algorithm MSPE and the mined malicious sequential

atterns through the comparison with other methods.

.3.1. Evaluation of MSPE

We implement MIE, GSP, and MSPE algorithms under Java De-

elopment Kit environment. By using different support thresholds,

e compare the efficiency of the two sequential pattern mining

lgorithms. The results are shown in Table 6, where we observe

hat the running time increases sharply as the minimum support

hreshold decreases. However, it shows obviously that the MSPE al-

orithm get much less time with each threshold and it even get 7

imes faster than GSP algorithm when set ms% to 90%. It is also

mportant to say that an Out Of Memory Error will arises if we

http://vxheaven.org/
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Table 7

The comparison of expression ability of different kinds of features.

Feature Algorithm Classifier DR (%) FPR (%) ACY (%)

Instruction

feature

IG NB 83.58 4.88 88.20

SVM 94.33 6.75 93.90

J4.8 95.00 7.25 94.10

MR NB 83.58 4.88 88.20

SVM 94.25 6.75 93.85

J4.8 95.67 7.25 94.50

Chi-square NB 83.58 4.88 88.20

SVM 94.25 6.75 93.85

J4.8 95.67 7.25 94.50

Malicious

sequential

pattern

MSPE NB 92.75 4.38 93.90

SVM 94.75 5.75 94.55

J4.8 95.67 6.25 94.90

Fig. 4. Detection rate performance of different kinds of features.
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Fig. 5. Accuracy performance of different kinds of features.

Table 8

The comparison of detection results of different classifiers.

Feature Classifier DR (%) FPR (%) ACY (%)

Malicious sequential pattern kNN 95.18 5.75 94.81

NB 92.75 4.38 93.90

SVM 94.75 5.75 94.55

J4.8 95.67 6.25 94.90

ANN 96.17 6.13 95.25

Fig. 6. Detection results of different classifiers.
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se GSP or MSPE to mine sequential patterns directly instead of

pplying MIE to preprocess instruction first.

Experiment results indicate that MIE is a requisite step in our

ramework to select a small amount of instruction features which

re more inclined to malware, as it reduces the useless information

aused by undiscriminating instructions. More importantly, our

roposed MSPE algorithm performs much more efficient than tra-

itional sequence mining algorithm. In general, the running time

f a sequence mining algorithm mainly depends on the process of

eeking patterns that meet some constraints, we improve this in

SPE by using a kind of filtering criterion to reduce the searching

pace in each iteration. As a result, this strategy greatly enhances

he efficiency of MSPE.

.3.2. Evaluation of malicious sequential pattern

The expression ability of features measures their capability to

epresent executable. Therefore, in order to evaluate the malicious

equential patterns, we examine their expression ability in com-

arison with some instruction features among different classifiers.

n contrast, we choose three common used algorithms: information

ain (IG), max-relevance (MR) and chi-square test (Yang & Peder-

en, 1997) to conduct instruction feature selection.

First, we rank each instruction using these three algorithms,

nd then choose top 100 instructions as the instruction features

or classification. For malicious sequential patterns, we use MSPE

lgorithm to select 10 highest confidence features with the limi-

ation of sup% ≥ ms% and conf% ≥ mc%. Finally, we apply Naive

ayes (NB), SVM and J4.8 version of Decision Tree these three dif-

erent classifiers to examine the expression ability of each kind of

eature. The results are shown in Table 7, Fig. 4 and Fig. 5. From

able 7, we observe that when using the same classifier, the ma-

icious sequential patterns outperform instruction features in de-

ection rate, false positive rate and accuracy. Particularly on Naive

ayes classifier, they improve detection rate by almost 9% and ac-

uracy by 5.7%. Figs. 4 and 5 present a clearer graphical view of

etection rate and accuracy of different features.
The good performance achieved by malicious sequential pat-

erns owes to their strong ability to represent malicious executa-

les. As discussed previously, malicious sequential patterns are

enerated by MSPE algorithm which integrates the concept of

bjective-oriented. In our case, the objective is to detect malware,

hus the MSPE algorithm is tend to find patterns to support this

pecific objective. Different from other instruction features used in

he experiment above, these discriminative patterns capture the

otable difference between malware and benign executables and

re essential for malware detection whatever the classifiers.

.4. Evaluation of All-Nearest-Neighbor (ANN) classifier

In the second set of experiments, we consider malicious se-

uential patterns as classification features to evaluate the proposed

NN classifier in comparison with other common used classifica-

ion methods, including the classifiers introduced in Section 7.3.2

nd kNN classifier.

As shown from Table 8, all classification methods take malicious

equential patterns as input and output the detection result. Note

hat the result of kNN in Table 8 is the average accuracies along

ith the number of neighbors k varying from 1 to 9. We can see

hat ANN outperforms other classifiers in both detection rate and

ccuracy. Fig. 6 gives a graphic illustration of the detection results

f different classifiers.

To further examine the suitability of ANN to malicious sequen-

ial patterns, we select different numbers of malicious sequen-

ial patterns according to the descending order of the patterns’
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Fig. 7. The comparison of detection rate and accuracy with different number of

malicious sequential patterns.

Table 9

The comparison of malware categorization results of different detection systems.

Detection system TP TN FP FN DR (%) FPR (%) ACY (%)

IMDS 1147 721 79 53 95.58 9.88 93.40

MSPMD 1154 751 49 46 96.17 6.13 95.25

Fig. 8. True positives and true negatives of different malware detection systems.

Fig. 9. Detection rate and accuracy of different malware detection systems.
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confidence as inputs to ANN. As shown from Fig. 7, we can see

that with different number of patterns, all curves in the figure are

stable and both DR and ACC still stay more than 94 percentages.

The better experiment results obtained by ANN demonstrate

that the proposed ANN classifier is much more suitable for ma-

licious sequential patterns than other classifiers. This attribute to

the success of transforming each executable into a Boolean vector

as this representation fits well with the ANN classifier. Moreover,

as a distance-based classifier, ANN not only obtains better results

than another distance-based classifier kNN, but overcomes the is-

sue of “k” inherited in the traditional kNN method.

7.5. Comparison with other malware detection systems

In the third set of experiments, we compare our MSPMD with

IMDS (Ye et al., 2008) which has already been successful used for

malware detection to demonstrate the effectiveness of our frame-

work. In IMDS, OOA mining algorithm was applied for frequent

patterns mining and then CBA classifier is built for malware detec-

tion based on the generated rules. For OOA mining, due to the fact

that the number of frequent patterns is much smaller than that

of malicious sequential patterns, it is unable to generate frequent

patterns satisfied with sup% ≥ 93% and conf% ≥ 96%, thus we de-

crease both ms% and mc% to 90% and 95%, respectively. To ensure

the fairness of the tests, we also select 10 highest confidence pat-

terns with the limitation of sup% ≥ ms% and conf% ≥ mc%.

Results shown in Table 9 indicate that our MSPMD achieves

better results in DR, FPR and ACC when compare with OOA min-

ing and classifier construction method in IMDS, especially for FPR.

Figs. 8 and 9 present a clearer graphical view of the results.
By analyzing, it is the use of sequence mining technique in our

ramework result in the good performance of MSPMD. This dif-

ers greatly from the OOA mining algorithm in Ye et al. (2008),

hich generated unordered patterns for detection. In conclusion,

he MSPE algorithm used in feature extraction phase and the

NN classifier for predicting malware together make our MSPMD

ecome an effectiveness and efficiency solution for malware

etection.

. Conclusion and future work

In this paper, we develop a data-mining-based detection frame-

ork called Malicious Sequential Pattern based Malware Detection

MSPMD), which is composed of the proposed sequential pattern

ining algorithm (MSPE) and All-Nearest-Neighbor (ANN) classi-

er. It first extracts instruction sequences from the PE file samples

nd conducts feature selection before mining; then MSPE is ap-

lied to generate malicious sequential patterns. For the testing file

amples, after feature representation, ANN classifier is constructed

or malware detection. The promising experimental results on real

ata collection demonstrate that our framework outperforms other

lternate data mining based detection methods in identifying new

alicious executables.

Unlike the previous researches which are unable to mine dis-

riminative features, we propose to use sequence mining algo-

ithm on instruction sequence to extract well representative fea-

ures. These features capture the significant difference between

alicious files and benign files. Additionally, our proposed algo-

ithm is much more efficient than traditional sequential pattern

ining algorithm due to the use of a designed filtering crite-

ion. We also construct a new nearest neighbor classifier as de-

ection module. This specially designed classifier is more suitable

han the classic classifiers based on the mined malicious sequential

atterns.

Since the framework proposed in this work only focus on mal-

are detection, i.e. whether a sample is malware or not, it is un-

ble to provide malware classification which requires a prediction

f the exact types of malware. This weakness would restrain the

ethod from being applied to more extensive applications. For in-

tance, in the field of malicious code analysis, malware detection

ay not work well in such application as its main task is to clas-

ify malware into different groups and analyze the common behav-

ors in the same category. Therefore, our future efforts will be to

xtend our framework to predict different types of malware. An-

ther weakness of our method inherits from the traditional kNN

ethod, i.e., the lack of an explicit model. Although the proposed

NN classifier overcomes the issue of “k”, it is still a lazy learn-

ng classifier as no model needs to be built, which requires a high

ost in classifying new instances. This leads us to continue work-

ng on the framework in the future, by combining some strate-

ies such as data reduction in order to enhance the classification

fficiency.
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