
Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

MAAR: Robust features to detect malicious activity based on API calls, their
arguments and return values

Zahra Salehi, Ashkan Sami⁎, Mahboobe Ghiasi

CSE & IT Department, Shiraz University, Shiraz, Iran

A R T I C L E I N F O

Keywords:
Dynamic malware analysis
Behavior malware analysis
Malware detection
Return value API calls arguments
Feature generation

A B S T R A C T

Basically malware detection techniques are either: static analysis or dynamic analysis. Static analysis explores
malware code without executing it while dynamic analysis relies on run-time values. Static analysis suffers from
obfuscation but dynamic analysis is less sensitive to code obfuscation. In this paper, a new dynamic malware
feature selection method is proposed that mainly is based on novel feature generation. Similar to other dynamic
methods, each binary is run in a controlled environment. The arguments and return values of each respective
API call are recorded. Features are constructed based on the name of API calls and each argument and/or return
value recorded during runtime. A selected set of features have such a discriminative capability that can be used
to classify with an accuracy of 99.4% and a false positive rate less than one percent on a 1211 malware and
benign PEs dataset. Features are so robust that even on much larger datasets containing new families of
malware accuracy of 96.3% on a 3175 new samples with the selected features of the first experiment is obtained.
This setting proves the features can present malicious activity irrespective of dataset families. List of
executables, source code and execution traces can be found at: http://home.shirazu.ac.ir/~sami/malware

1. Introduction

Malware is software that designed to infect, infiltrate or intrude a
computer system without the owner's authentication. Malware comes
from two words: "malicious" and "software". Unfortunately new
malware types are emerging annually. Symantec (2011) reported an
increase of more than 81% from 2010 in malware attacks. According to
McAfee (2015), more than 400 million types of malware have been
detected during the second half of 2015. Nowadays a new family of
malwares has derived from highly engineered pieces of software that
are able to carry out advanced, large-scale attacks (Sood and Enbody,
2013). High-profile attacks such as Stuxnet, discovered in 2010 targets
critical industrial infrastructure (Hu, 2011), DuQu (2011), Flame
(2012), Gauss (2014) and the rise of Anonymous-centric hacktivism
made recent years a truly challenging for the security professionals.

Wide spread use of computer networks facilitates the growth of
malware. Connectivity increases the visibility of vulnerable systems and
paves the path to the exploitations of these vulnerabilities. Bugs or
vulnerabilities are used to penetrate networks and systems for financial
benefits. This motivates cyber-criminals to exploit vulnerabilities to
reach private and secret information, take down network servers, send
spams and steal bank accounts. Intel Security estimates the annual cost
to the global economy from cybercrime was more than $400 billion

(McAfee Labs, 2015). To cope with the thousands of new malware
samples that are discovered every day, security companies and analysts
use different techniques.

In general, two common approaches to analyze malware samples
are: static and dynamic. Static methods are the most popular approach
to identify files. The approach statically traces executable files to obtain
the sequence of bytes or instructions which are similar within a family
of malware samples (Szor, 2005). Static analysis presents information
about programs control, data flow, data dependency and other
statistical specifications without actually executing the binary.

Static approaches can observe the entire execution path of the
binary code and thus they characterize malware capabilities more
accurately. Another advantage is lack of execution overhead. In
contrast, they are unable to detect the malwares which utilize anti-
antivirus detection techniques like: run-time packing, anti-reversing
and anti-disassembly techniques (Yason, 2007). Polymorphic or meta-
morphic malware commonly use these techniques to evade detection.
Evading techniques such as encryption, compression, garbage code
insertion and code permutation cannot be easily detected with regular
static methods (Hu, 2011).

Modern antivirus products use different static analyses heuristics
such as: unpacks and statistical analyzers to counter obfuscations
techniques. Definitely these heuristics are competitive with dynamic

http://dx.doi.org/10.1016/j.engappai.2016.12.016
Received 3 April 2015; Received in revised form 30 November 2015; Accepted 15 December 2016

⁎ Corresponding author. Tel.: +98 7136133569; fax: +98 7136474605.
E-mail addresses: zsalehi@cse.shirazu.ac.ir (Z. Salehi), sami@shirazu.ac.ir (A. Sami), ghiasi@cse.shirazu.ac.ir (M. Ghiasi).

Engineering Applications of Artificial Intelligence 59 (2017) 93–102

0952-1976/ © 2016 Elsevier Ltd. All rights reserved.

MARK

Downloaded from http://iranpaper.ir
http://translate68.ir

http://www.sciencedirect.com/science/journal/09521976
http://www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://home.shirazu.ac.ir/~sami/malware
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.12.016&domain=pdf

analysis for common and known malware families. However some of
the heuristics that deal with obfuscations are NP hard (Moser et al.,
2007). Thus, dynamic analysis also is used as a complement to improve
malware detection (Cesare et al., 2013).

In dynamic method, a binary is run on a controlled or virtual
environment and the run-time behavior of the binary is monitored. The
behaviors are collected to analyze and detect malware samples.
Behavioral methods are resource-intensive and are only able to detect
behaviors which are observed at the run-time; so it may require
stimulation inputs to explore all code segments (which could be the
reason that some samples produced insufficient trace data). The task of
program running in a controlled environment for a determined time is
very resource/time consuming. Additionally, some of the malware
detect environment and so do not execute or postpone their malicious
intent (Bayer et al., 2009). The main advantage of dynamic approaches
is the low-level mutation techniques such as run-time packing or
obfuscation techniques that do not impress the behavioral features.
Also dynamic approaches give the actual information about the control
and data flow. Therefore researchers have used dynamic techniques to
complete static analysis in malware detection.

Our mentality is based on the hypothesis that Application
Programming Interface (API) alone may not represent intend of the
operations that the function does. In other words, members of the same
family of malware when they call the same APIs with similar arguments
and return values they perform the same task. In previous work (Salehi
et al., 2014), arguments and/or API name are used as feature to detect
malicious from non-malicious applications. In this work, we are
looking to introduce some features that could detect zero day attacks
automatically and show extracted features on a dataset have discrimi-
nating capability. To justify the idea, we used a test set that contains
new variant and new families of malware, not present in the training
set. Feature sets are generated on combination of API names, their
respective return values and/or input arguments in the run-time. The
results show the proposed features of this work outperform the
previous work and using the return value along with API call could
be effective to identify new behaviors.

The rest of the paper is as follows: The related work and a
background of other researches are discussed in Section 2. Section 3
presents the proposed malware detection system, payload executable
(PE)’s behavioral monitoring, feature generation based on APIs and
their dependencies and the learning phase. Datasets and the empirical
evaluation of the method are given in Section 4. Finally, Section 5
concludes this paper.

2. Related works

Malware detection is a hot research topic only approaches present-
ing feature extraction techniques are introduced here. First some
methods that deployed static features are described and then dynamic
features are explained.

Walenstein et al. (2010) used a static method which extracted 4-
grams features from PE header and body information to distinguish
benign from malicious files. Shankarapani et al. (2011) extracted API
sequences that appear frequently in a number of malware and applied
similarity measure for the sequence. Tahan et al. (2012) removed the
function libraries constructed by benign files from those which appear
in malware as segment threats. They calculated segment entropy and
extracted 3-grams Opcode for each segment. Baldangombo et al.
(2013) selected subset of static features by calculating frequencies of
Dynamic Link Libraries (DLLs), APIs and PE header feature.
Information gain feature selection and classifiers techniques were
applied to detect malicious files. Alazab et al. (2014) calculated
Opcode frequency statistics of inspected PE files. They applied pro-
posed hybrid wrapper-filter based feature selection.

Faruki et al. (2012) disassembled instructions of a binary program
and captured the sequence of API calls to generate Control Flow Graph

(CFG) statically. Macedo and Touili (2013) constructed malicious trees
statically based on system functions or parameter values. Edge-label
characterized the data flow between functions. Alam et al. (2014)
divided an assembly program into smaller functions and generated a
set of CFGs corresponding to separate functions of a program. Mehra
et al. (2015) disassembled the dataset and generated CFGs that
illustrate the flow of code segments. The selected feature set is used
to create the feature vector and calculated Cosine similarity measure.

As mentioned, static methods cannot easily detect malware that
uses evasion techniques; furthermore adding some fake API calls in the
header of executable can make static malware detection ineffective.
Therefore, dynamic analysis is needed as a complement for static
techniques (Comparetti et al., 2010).

Plenty of dynamic works represent the behavior as a graph.
Christodorescu et al. (2008) modeled system calls and their input/
output arguments using the dependency graphs. They used the
difference of the malware and benign sub-graphs to detect malware.
Park et al. (2013) extracted behavioral graph of kernel objects and their
dependencies for a group of instances in each family instead of finding
a pattern for each sample. Zeng et al. (2013) collected program's
control flow graph and information such as control structures, memory
addresses and accesses, and safety information. Wüchner et al. (2014)
translated communication between different systems entities such as
processes, sockets, files or system registries as graphs to introduce a
detection system based on quantitative data flow model. Generally,
graph mining is complicated (Skaletsky et al., 2010; Macedo and Touili,
2013) and could not represent the samples which invoke a small set of
system call.

Some dynamic approaches used API calls and their related proper-
ties to model behavior of samples. Ahmed et al. (2009) classified
malwares by combining both the spatial (argument) and the temporal
(API sequence) features. API calls that related to memory management
actions and files I/O categories are monitored. This approach is
computationally intensive. Tian et al. (2010) considered each API
Call and other extracted features as string information. Ghiasi et al.
(2013) assume that behavior of each binary can be represented by the
values of register contents in its run-time. Ahmadi et al. (2013) used
iterative system call pattern mining. They believed that repetitive
actions on data sequences are often used by malware writers, especially
some well-known loops performing decryption or encryption and
infection.

Rieck et al. (2011) model sample behavior based on 2-gram
features through system calls and their arguments by using prioritizing
arguments. They identify novel classes of malware with similar
behavior and assigning unknown malware to these discovered classes.
Ravi and Manoharan (2012) used 4-grams to model API call se-
quences. By comparison of the average confidence of all 4-grams;
samples are classified as malware or benign class. Cheng et al. (2013)
used Windows API function call, its parameter and the corresponding
value as a behavior feature sequence to classify malicious binaries by
using information retrieval theory. Van Nhuong et al. (2014) focused
on register and memory values as a semantic set. Then semantic set are
used as a 3-gram input of Naïve Bayes classification. Piyanuntcharatsr
et al. (2015) transformed reference dataset into the hexadecimal code
to calculate the statistical features. Each statistical values were
considered as 1, 2, 3 g features and counted feature frequency to
model in Weka. Table 1 presents results from some various researches.

All mentioned related research, presented their works using API
calls, their arguments and return-values in different ways. Some of
them either used graph flows to present data/control between invoked
API calls or used n-gram features or used string information to
characterize the behaviors of binaries. Each method could have
advantages and disadvantage. For example, some of methods that
use graph matching to find the existing similarities between graphs, is
time and space consuming because graph mining methods are NP-
complete. Some works use small dataset or the extracted features are

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

94

Downloaded from http://iranpaper.ir
http://translate68.ir

fitted to their dataset. Thus these features are not extendable to use to
others. In contrast to the problems of related works, MAAR method
introduces a new method to generate features that is independent of
dataset. MAAR generates a small set of robust features based on the
combination of arguments and return values.

3. MAAR system

The overview of proposed system is shown in Fig. 1. This system
has three components: in the first component, PE binaries are run and
their behaviors are monitored under an in-house developed tool. API
calls, input and output arguments and return values are monitored by
the tool. Monitoring results are preprocessed and feature sets are
generated based on combinations of API calls, and the corresponding
arguments and/or return values of the APIs. Since a large set of
features are generated, the set is reduced by feature selection techni-
ques. Finally models are constructed to classify malware from benign
samples. In the third phase, the discriminative ability of the con-
structed model will be tested using binaries that are not seen in the
training phase. The mentioned phases are described as follows.

3.1. PE'S behavioral monitoring

In this section PE's behavioral monitoring is described. Our
developed tool, environment configuration, the file execution process
and log collection are explained in Section 3.1.1. The preprocessing
procedure explains the reason of some binaries not to execute in
controlled environment (Section 3.1.2). These files do not show their
activities, so removed in the preprocessing. The importance of API calls
and their dependent parameter are explained briefly in Section 3.1.3.
In Section 3.1.4, feature generation phase, explains the combination of
APIs and their arguments or return value and also defines our idea that
is behind it.

3.1.1. Developed in-house tool
The “in-house” developed tool consists of a virtual machine, a

hooking tool and a logging system. This tool analyzes the binary files
and monitors their behaviors. In-house tool monitors API calls, input
and output arguments, return values, register values and etc. (Ghiasi
et al., 2013). The whole process is illustrated in Fig. 2 and a trace report
is demonstrated in Fig. 3.

Table 1
Comparison of several malware detection methods.

Study Analysis Type FP Detection Rate Feature Representation

Mehra et al., 2015 Static – 99.1% flow of code segments through API call graphs CFG
Baldangombo et al., 2013 Static 2.7% 99.6% PE header information, DLL names and API names String information
Tahan et al., 2012 Static 0.6% 98.6% common segments (libraries and resources that originated from

the development platform)
N-gram

Walenstein et al., 2010 Static 1.1% 99.2% PE header and body information N-gram
Wüchner et al., 2014 Dynamic 1.6% 96% communication between different system entities (processes,

sockets, files or system registries)
Data Flow Graph

Park et al., 2013 Dynamic 0 > 80% kernel objects and their dependencies Graph
Ahmadi et al., 2013 Dynamic 11.9 98.1(AUC) executables’ API call API sequences and iterative

patterns
Ghiasi et al., 2013 Dynamic 4.5% 96% register values Binary vector of Features
Ravi and Manoharan, 2012 Dynamic – 90% API call sequences N-gram
Rieck et al., 2011 Dynamic – 99.7% system calls and their arguments N-gram, Binary vector of Features
Anderson et al., 2011 Dynamic – 96.41% instruction traces N-gram, CFG
Tian et al., 2010 Dynamic 2% 97.3% API calls and their parameters Binary vector of Features

Fig. 1. MAAR system.

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

95

Downloaded from http://iranpaper.ir
http://translate68.ir

Every monitoring technique such as hooking that is used in this
research has its own advantages and disadvantages. For instance,
CWSandbocx and Norman use inline hooking and kernel level methods
respectively. Even though they are more advanced, they suffer from a
series of disadvantages that can be evaded (Harbour, 2009; Chiu and
Huang, 2010); a large number of malware could be created with
polymorphic or metamorphic techniques that escapes detection by
mentioned sandboxes. For instance, Norman does not monitor
“GetSecurityDescriptorDacl, DeviceIoControl, WriteProcessMemory,
CreateRemoteThread, NtQueryValueKey, RegOpenCurrentUser” API's.

Hooking technique has four main advantages that are used in this
research. First, logs containing direct access to hardware can be
monitored by monitoring DeviceIoControl API (DeviceIoControl func-
tion, 2015) which is not monitored in other techniques. Secondly, the
selected hooking method monitors returned-values of the function calls
which is a main topic of this paper. Thirdly, GetSecurityDescriptorDacl
API, which is used in Duqu, Flame, Stuxnet (Chien et al., 2012) can be
monitored by our tools which is not monitored in Norman. Finally, we
have greatly benefited from WinAPIOverride32 that is freely available
(Potier, 2015).

3.1.2. Preprocessing phase
After monitoring of PEs behaviors, some log files are removed from

the analysis. These files which their logs are less than 70 KB, are not
successfully executed so they are not considered in this phase either.

Several reasons exist that a file is not executed properly. The main
reason is that some files have unrecognizable formats. Secondly, some
files are dependent on other files or system services which are not
provided. Also, it is possible that some files evade the dynamic
techniques, if they detected the configured environment and self-
terminated before executing their payload. Sophisticated malwares
use several techniques to detect whether file is executed under a

controlled environment. These techniques are: checking the files,
registry keys, or processes that are specific to individual analysis tools;
or examining existing variations in the semantics of CPU instructions
or timing properties (Balzarotti et al., 2010).

3.1.3. Importance of system calls
Our model construction mentality is based on the hypothesis that

API names alone may not represent intent of the operations that the
function does. Same family members of malware when they perform
the same task call same APIs with similar arguments. Basically, the
main hypothesis of this research is the arguments and the return values
of the same family members are the same for the same API and are
different for different families. For exploring the mentality, several
examples are given below.

Malware binaries invoke many system calls to execute their
malicious payloads; they might try to create registry keys in the
windows registry, modify certain parts of the system registry or rewrite
the specific files and folders. Some malware files can propagate
themselves or seek application files to reproduce themselves by
infecting and merging into files of the application by calling specific
APIs like: FindFirstFileA, CopyFileA, GetFileType and SetFilePointer
(Belaoued and Mazouzi, 2014). For example the data flow between
GetModuleFileName and CopyFileA API could establish the malicious
behavior in the self-replication operation: The GetModuleFileName
function is called with NULL as first parameter thus it will return the
malware file path. The file path is used as input in the first parameter of
a subsequent call to CopyFile. Also malware can copy itself to the
Windows system directory rather than creating its own program
directory in Program Files.

Some malware can gain non authorized user data level by cross
exchanging data with running applications. Malware can also gain user
privileges, auto run the malware when the system is starting up or insert an

Fig. 2. Running the sample files under in-house tool.

Fig. 3. A trace report of executable file.

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

96

Downloaded from http://iranpaper.ir
http://translate68.ir

entry in registries using related APIs such as: RegOpenKeyExA,
RegQueryValueExA, RegSetValueExA, RegCreateKey and RegSetValue
(Belaoued and Mazouzi, 2014). In other example, files can be protected
from being read or scanned by a variety of means. A program can simply
call CreateFile on itself with the share permissions set to NULL. This
prevents other applications from opening the file until it is closed by the
program (Chien, 2005).

Therefore the trace of API functions and their parameters is a
remarkable source for modeling malicious behavior. For example,
RegCreateKey and RegReplaceKey may appear in several variations.
The use of a registry is very common in windows applications and does
not mark a malicious intent by itself, but in combination with certain
parameter values an invoking process can produce a malicious
behavior. If an executable attempts to replace the content of a registry
entry that determines the programs executed during the boot process
or is equipped by a parameter that contains a known malicious
program name or URL, it can be classified as malicious (Zamir et al.,
2004).

3.1.4. Feature generation phase
API calls, input arguments and return values are used to construct a

feature set modeling malicious and benign behaviors. Features of these
datasets are considered to be binary valued features. The first feature
set is a representation of called APIs along with their return values
called “API-RET” from this point on in this paper. The second feature
set is called “API-ARG” that represents API name alongside with their
arguments. Finally, the third dataset is a combination of API-RET and
API-ARG therefore we named it “API-ARG-RET”.

Let us consider the CopyFileA (2015), GetModuleFileName (2015)
API call. Table 2 expresses the CopyFileA and GetModuleFileName
parameters.

BOOL WINAPI CopyFileA (lpExistingFileName, lpNewFileName,
bFailIfExists).

DWORD WINAPI GetModuleFileName (hModule, lpFilename,
nSize).

In CopyFileA, if “bFailIfExists” is TRUE and the new file specified
by “lpNewFileName” already exists, the function will fail. In contrast if
the argument is FALSE and the new file already exists, the function
will overwrite the existing file and will succeed. Malware that exploits
this API, overwrites pre-defined files.

The below example explains a scenario of a malicious behavior to
establish the self-replication process. A typical instance of such behavior is
a program that copies its own binary representation into another file. The
attacker program discovers and stores its file path into a memory address
by calling the GetModuleFileName function with NULL as first para-
meter. The second parameter of the GetModuleFileName is defined as an
output (If the first parameter isNULL, GetModuleFileName retrieves the
path of the executable file of the current process). The parameter is
outputted by GetModuleFileName call and is used as input of CopyFile to

infect another file as first parameter.
GetModuleFileNameA(hModule: NULL, lpFilename:
"Trojan.Win32.CrazyCD.exe", nSize: “0×18″): Return-Val:

Trojan.Win32.CrazyCD.exe "
CopyFileA (lpExistingFileName: "Trojan.Win32.CrazyCD.exe",

lpNewFileName: "C:/Windows/system32/dwwin.exe“, bFailIfExists:
0×0): Return-Val: 0×1.

When a malicious binary calls the above APIs, “dwwin.exe” which is
placed in “C:/Windows/system32/” with its file will overwrite
“Pacman.exe”. Let us to consider CopyFileA to extract mentioned
feature sets as follows; the feature “CopyFileA.RetVal.0×1” is con-
structed as an API-RET feature where API name is the first element,
“RetVal” is the indicator of returned value and finally “ 0×1” is its
returned value. API-ARG features include the following features for the
three parameters of CopyFileA API:

1. CopyFileA.1.Trojan.Win32.CrazyCD.exe
2. CopyFileA.2.C:/WINDOWS/system32/dwwin.exe
3. CopyFileA.3.0×0

In API-ARG feature set, API name is the first element, the order of
input argument is the second element and the corresponding argument
value is the third element of the feature. Third feature set (API-ARG-
RET) is regarded as the combination of first and second feature sets. In
this example, this feature set has three members. Each member
consists of 5 elements.

1. CopyFileA.1.Trojan.Win32.CrazyCD.exe.RetVal.0×1
2. CopyFileA.2.C:/WINDOWS/system32/dwwin.exe.RetVal.0×1
3. CopyFileA.3.0×0.RetVal.0×1

By proposing these three feature sets we try to cover all possible
malicious activities in the modeling phase; considering CopyFileA, API
name alone does not seem to be discriminative in the term of
recognizing malicious activity. Regarding the API-RET, knowing that
whether a copy operation is successful or not, may be part of factors to
distinguish malicious from benign activities. Our hypothesis is that the
API-ARG feature set provides more accurate models by having the
knowledge about the source and destination of a copy operation.
Regarding the third feature set, using API name seems to be important
while knowing the location of files that has been copied and the return
value. For example, if a file is copied in a path other than “C:/
Windows”, it is possible that this API did not harm the system, but
overwriting a system file (for example like those that are located in “C:/
Windows”) can be important. The feature “CopyFileA.2.C:/ Windows/
system32/dwwin.exe.RetVal.0×1” indicates that overwriting operation
is done successfully according to the return value ‘0×1′. The issue also
reveals the importance of third feature set API-RET-ARG. It seems
introduced three feature sets in this paper could provide higher

Table 2
Description of CopyFileA and GetModuleFileName parameter.

CopyFileA API

Description Parameter

Name of an existing file LpExistingFileName First Parameter
Name of the new file LpNewFileName Second Parameter
Corresponding arguments have Boolean range which means they can be set to true or false (1 or 0) bFailIfExists Third Parameter
If the function succeeds, the return value is nonzero. If the function fails, the return value is zero Return Value

GetModuleFileName API
A handle to the loaded module, if NULL, GetModuleFileName retrieves the path of the executable file of the current process hModule First Parameter
A pointer to a buffer that receives the fully qualified path of the module lpFilename Second Parameter
size of the lpFilename buffer nSize Third Parameter
If the function succeeds, the return value is the length of the string that is copied to the buffer. If the function fails, the return
value is zero

Return Value

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

97

Downloaded from http://iranpaper.ir
http://translate68.ir

accuracy than earlier datasets that only consist of API name.
It may seem that the generated dataset API-RET-ARG is a super set

of the first two generated feature sets. However, the former only
contains a certain combinations of the latter two. Thus it is not a
superset of the API-RET and API-ARG. Continuing with the above
example, CopyFileA can have a certain return value when the destina-
tion is “C:/WINDOWS”. Even if the API returns both 0 and 1,
conceptually the meaning of these values are different based on the
destination indicated as a parameter.

For all system calls, the values of input parameters and the return
value can be extracted and three categories of features are constructed.
After constructing features, presence of each feature in every binary file
is checked and shown in a vector. If the selected feature is available in
the log file, the value of this binary feature is set to “1” otherwise it is
set to “0”.

3.2. Learning phase

Any classification process contains two phases: feature selection
and model construction. In feature selection the search space is
reduced while preserving the discriminative and useful features. In
the model construction, classifiers are built.

A lot of parameters are monitored in behavior monitoring.
Preprocessing reduces generalization error of the learned models
because irrelevant and redundant features are removed. Too many
features are generated in the monitoring stage. For instance a poly-
morphism technique called junk code insertion creates a lot of
unnecessary features that are not discriminative for malware detection.
Moreover, several misleading features may be inserted into malicious
binaries to make their detection difficult.

To show the effectiveness of our generated features, no major
attempt is used to find the optimal or best set of features. By investing
more attention on the feature selection techniques definitely better
results will be obtained. In the first stage, Fisher score is used just for
its speed. Fisher score (Duda et al., 2000) selects the most discrimi-
native features. This score is defined as:

Fr
n μ μ

n σ
=

∑ (−)
∑

i i

i i

i=1
c 2

i=1
c 2 (1)

Where ni is the number of data samples in class i, μi is the average
feature value in class i, the standard deviation of the feature values in
class i is shown by σi, and is the average feature value in the whole
dataset.

In the next stage, the well-known feature selection algorithm called
Support Vector Machine based on Recursive Feature Elimination
(SVM-RFE) with 10-fold cross validation is utilized to select a smaller
set of features (Guyon et al., 2002). Selected features are considered to
be much more discriminative, and lead to the largest margin of class
separation based on SVM-RFE. This provides an efficient method
which decreases the processing time of classification algorithms and

removes the irrelevant features.
If the number of features becomes more than samples the classi-

fication algorithm may trap into a phenomenon called over-fitting. To
avoid over-fitting, we try to reduce features. So two rounds of feature
selection along with 10-fold cross validation are utilized. When the
features are selected, presence of each feature in every binary file will
be checked.

Classification algorithms help to discover discriminative patterns in
the datasets. Discovered patterns are used to classify unseen samples.
The generated binary vectors from the previous stage are used as input
to the classification algorithms. Several well-known classifiers such as
Random forest (RF), J48 Decision Trees, Sequential minimal optimi-
zation (SMO), Bayesian logistic regression (BLR) implemented in Weka
3.6.6 are used in this study. Classifiers are evaluated using 10-fold
cross validation procedure for all experiments to avoid over-fitting. The
F-measure of each run is calculated. Finally the average of this measure
is reported as evaluation criteria.

4. Evaluation phase

Datasets and distribution of malicious and benign samples that are
used in this study, the process of API and DLLs selection and the
monitored APIs and DLLs that are used to model the PEs behavior are
explained in Section 4.1. The experimental evaluations of the proposed
method and discussion about them are given in Section 4.2.

4.1. Data acquisition and essential API calls for detecting malicious
behavior

Three datasets named “First”, “Second” and “Total” are used in this
paper. Each dataset has malicious and benign samples and is collected
from (Sami et al., 2010). Malicious samples include seven categories of
Constructor, Trojan, Virus, Backdoor, and etc. The benign ones are
windows system files and a wide range of portable benign tools. First
dataset consists of 385 benign and 826 malicious samples. Second
dataset is used to validate that generated features have discriminative
power and are extendible regardless of the dataset. A second dataset
consist of 974 benign and 2183 malicious samples other than First
dataset. “Total” dataset is combination of First and Second dataset.
“Second” dataset has “worm” samples, which is not included in First
dataset and has more variants of the families compare to the First. As a
result, Total dataset contains of 3009 malicious and 1359 benign files.
For an easier comparison, the distributions of First and Total dataset
are presented in Fig. 4. All experiments in this paper are performed on
First, Second and Total datasets. The detailed list of examined
executables and datasets can be found in the following URL: http://
home.shirazu.ac.ir/~sami/malware/.

In this study, all API calls are not monitored; only a subset of 126
API calls from six most important DLLs is logged. The important DLLs
are: advapi32.dll, kernel32.dll, ntdll.dl1, user32.dll, wininet.dll and

Fig. 4. Distribution of sample types in first, second and total dataset.

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

98

Downloaded from http://iranpaper.ir
http://translate68.ir

http://home.shirazu.ac.ir/~sami/malware/
http://home.shirazu.ac.ir/~sami/malware/

ws2_32.dll. These API calls are selected from our previous research,
done by (Karbalaie et al., 2012) that are gathered based on the File
System Access, System Information, Networking, Registry Access and
Processes categories (Wagener, 2006).

4.2. Experimental and discussion

In this section to investigate the robustness and efficiency of
generated feature, three set of experiments are performed. In the first
experiment, malware detection accuracy, F-Measure, Recall, Precision,
False Positive (FP) and Root Mean Square Error (RMSE) are measured
based on First and Total dataset. Then these results are compared with
several antiviruses. Since threats are increasing at an enormous rate,
generating the features that are useful to detect different new set of
malware is important. To inspect this issue in the second experiment,
Section 4.2.2, the features of the “FIRST” dataset are used to create
models on “Second” dataset. The detection results of the mentioned
features are investigated to show whether features are dataset inde-
pendent and discriminative enough on the “Second” dataset to classify
malicious activity from benign on unseen data.

Comparison of different Malware detection algorithms is difficult.
The researches presented in the related work section used different
datasets (majority not pubic) and used different sandboxes (some did
not even mention how the sandbox); others have recorded behavior of
files in different formats. Thus, comparison would have become biased
even if we would have implemented their algorithms. Stated differently,
the results that we would have obtained by implementing other
researchers work is not justifiable on our dataset and may raise several
other misunderstanding. (Tahan et al., 2012) emphasizes the difficul-
ties in making any comparison in Malware research. To present a
verifiable comparison, we compared our method with some popular
anti-viruses on the same dataset in first experiment. In addition, two
works that used API alone on the same dataset are implemented to
evaluate the MAAR feature sets. In third experiment, Tian et al. (2010)
and (Ravi and Manoharan, 2012) methods are implemented. API and
API sequence (API-SEQ) features are generated respectively based on
these researches. These features detection capability practically com-
pared to MAAR feature sets in Section 4.2.3 to investigate that which
one is more discriminative in malware detection. The experiments
results and discussion are presented in the following.

4.2.1. Malware detection accuracy
The most interesting question in the field of malware detection is

the detection ability and accuracy of a newly generated method. So
some experiments done to determine the detection capability of the
generated feature sets. Also comparison between the results of the
presented system and the results of three noted industrial antiviruses
(McAfee, Avira and Kaspersky) are presented. Because nearly 30% of
the dataset consists of benign files, the dataset is imbalanced; it is
shown that precision, recall and F-Measure are proper measures for
unbalanced datasets (Weng and Josiah, 2008). Accuracy for unba-
lanced dataset may be very misleading. For instance, in a recently
published paper (Langerud and Lillesand, 2008) if all the samples were
naively classified as malware irrespective of type, accuracy of above
90% would have been obtained.

According to the method presented in Section 3, feature sets are
extracted from First dataset and model is constructed on using 10-fold
cross validation. The high precision, recall, F-measure and AUC values
in Table 3 and low false positive rate in Table 4 indicate that all feature
sets can detect malwares with high accuracy. Since “arguments” or
“return value with arguments “can represent the functionality of an API
call better than API_ARG feature sets, it is rational to have the highest
F-measures and lowest false positive with API-ARG and API-ARG-RET
feature set. Also the high values of AUC in Table 3 show that the
models based on generated features have acceptable detection rate. The
RMSE values of the conducted experiments are given in Table 4. The
small RSME values show relativel low level of uncertainty.

Then we expanded our dataset; so all experiments are done on the
Total dataset (using 10-fold cross validation). The following experi-
ments, list new generated feature sets that are updated. The detection
rates are illustrated in Table 5 and the false positives are displayed in
Table 6.

In the experiment that conducted on First dataset (Table 3 and
Table 4), API-ARG and API-ARG-RET feature sets have high detection
rate and obtain approximately same F-Measure. Also the low values of
FP and RMSE show that the error is low in both of them. In the
subsequent experiment that test on Total dataset, the F-Measure of
API-RET and API-ARG-RET feature sets is almost similar and has the
same error rate. Based on the two performed experiment where test
and train are from First and Total, API-ARG-RET performs very well in
either case.

Since the sandbox, tools and dataset used in other researches are
not publically available. It is assumed that commercial antivirus
applications have higher detection capability than previously published
researches, the comparison of our system with commercial AV-
applications is presented. Table 7 shows the comparisons of the
MAAR method with different antivirus application on First and Total
datasets. The system based on API-ARG-RET feature set achieves
higher F-Measure compare to other antivirus applications.

4.2.2. Discriminative ability, irrespective of data
In this experiment investigated whether a few extracted features on

a dataset have discriminating capability, irrespective of the dataset. The
feature sets are not dataset dependent. Based on the features extracted
from a small dataset, the model is constructed on a much larger dataset
with more malware families. The use of cross validation in feature
selection and classification guarantees that, the test data is not used in
training. In addition the features extracted from the First dataset are

Table 3
The Precision, Recall, F-Measure and AUC results on ‘First’ dataset when three feature sets are generated based on 'First' dataset.

API-RET API-ARG API-ARG-RET

Precision Recall F-M AUC Precision Recall F-M AUC Precision Recall F-M AUC

RF 0.985 0.954 0.969 0.990 0.984 0.977 0.981 0.995 0.988 0.973 0.980 0.995
J48 0.954 0.969 0.961 0.940 0.937 0.969 0.952 0.935 0.933 0.969 0.951 0.924
SMO 0.989 0.982 0.985 0.979 0.996 0.985 0.991 0.989 0.995 0.987 0.991 0.988
BLR 0.991 0.983 0.987 0.982 0.999 0.990 0.995 0.994 0.996 0.992 0.994 0.992

Table 4
RMSE and False Positive Rate (feature form First D.S/ Test on First D.s).

API-RET API-ARG API-ARG-RET

RMSE False
Positive

RMSE False
Positive

RMSE False
Positive

RF 0.188 0.031 0.149 0.034 0.153 0.026
J48 0.222 0.101 0.246 0.140 0.255 0.148
SMO 0.141 0.023 0.111 0.008 0.111 0.010
BLR 0.132 0.018 0.086 0.003 0.091 0.008

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

99

Downloaded from http://iranpaper.ir
http://translate68.ir

used to construct models on the Second dataset which is 2.6 times
larger than the former one with completely differnt samples.

In comparison with the First dataset, Second dataset has more
benign and malicious samples; malwares from new categories and
families with new behaviors exist in the Second dataset. In other hand,
some families that do not exist in First dataset are presented in Second
dataset and so new behaviors are observed. As an illustration, worm
category only exists in the Second dataset but not in the First dataset
that features are extracted from. This is a vital indication to investigate
the effectiveness of generated features on unseen families and samples.
Second dataset has different samples with different behaviors to check
whether experiments can show discriminatory ability of extracted
features.

Efficacy of generated features from the First dataset is evaluated as
an indication of robustness on Second dataset. The detection rate of
models built on features extracted from First dataset and tested on
Second is illustrated in Table 8. As observed, these features are robust
and identified unseen samples in Second dataset. The results of Weka

classifiers using 10-fold cross validation showed that in the best case,
Bayesian logistic regression obtains an accuracy of 96% on API-RET
feature set. While the accuracy of the API-ARG-RET feature set is
slightly lower (about 3.3%). The RMSE and false positive rate of these
is shown in Table 9. As you can see in this experiment, API-RET false
positive rate increased about 7% while the RMSE value increased about
10% in comparison with two other feature sets. These results demon-
strate the discriminative power of API-RET feature set.

Empirical results suggests API-RET feature set performs better
when the experiment is extended to a larger datasets, whereas API-
ARG-RET performs better when the model is developed and tested on
the same dataset but we used 10-fold cross validation in all experi-
ments. The phenomena can be explained as follows: the behaviors
could be modeled better based on the combination of the arguments
and return values, but note that input arguments may have many
values and a large span may exist between new families with different
behaviors, whereas return values have a narrower span and are more
stable in extending the dataset. In other words, API-RET feature set
gives a more general model of the behavior in contrast to API-ARG-
RET feature set and models the behavior more specifically. Thus, in
case of incremental learning, API-ARG-RET may provide more robust
results than other features that are built on fewer parameters. Whereas
it would be more reasonable to use API-RET when the feature sets are
not updated. These features could detect some samples of the new
families automatically. Antivirus software usually need a period of time
to detect and analysis the new samples signatures. Along with the great
detection capacity, MAAR method could also avoid the systems to be
contaminated by the new malware types in their zero day attacks.

4.2.3. The best generated feature set among API, API-SEQ, API-RET,
API-ARG and API-ARG-RET

As mentioned before, since sandbox, tools, dataset and behavioral

Table 5
The Precision, Recall, F-Measure and AUC results on ‘Total’ dataset when three feature sets are generated based on 'Total' dataset.

API-RET API-ARG API-ARG-RET

Precision Recall F-M AUC Precision Recall F-M AUC Precision Recall F-M AUC

RF 0.968 0.969 0.969 0.984 0.960 0.961 0.961 0.981 0.968 0.975 0.971 0.989
J48 0.958 0.969 0.963 0.954 0.959 0.952 0.955 0.96 0.965 0.969 0.967 0.964
SMO 0.978 0.977 0.978 0.964 0.973 0.969 0.971 0.954 0.981 0.983 0.982 0.970
BLR 0.979 0.98 0.98 0.967 0.974 0.970 0.972 0.957 0.979 0.984 0.981 0.968

Table 6
RMSE and False Positive Rate (Feature from Total D.S / Test on Total D.S).

API-RET API-ARG API-ARG-RET

RMSE False
Positive

RMSE False
Positive

RMSE False
Positive

RF 0.194 0.071 0.205 0.088 0.184 0.072
J48 0.215 0.093 0.232 0.091 0.205 0.079
SMO 0.176 0.049 0.200 0.060 0.159 0.043
BLR 0.167 0.046 0.195 0.057 0.162 0.048

Table 7
F-MEASURE of system in comparison to some of the updated antiviruses.

Antivirus Software MAAR Method

McAfee Kaspersky Avira API-RET API-ARG API-
ARG-
RET

First
Data-
set

0.944 0.896 0.920 0.987 0.995 0.994

Total
Data-
set

0.959 0.905 0.969 0.980 0.972 0.981

Table 8
The Precision, Recall, F-Measure and AUC results on ‘Second’ dataset when three feature sets are generated based on 'First' dataset.

API-RET API-ARG API-ARG-RET

Precision Recall F-M AUC Precision Recall F-M AUC Precision Recall F-M AUC

RF 0.946 0.950 0.948 0.973 0.916 0.935 0.925 0.938 0.937 0.928 0.932 0.951
J48 0.956 0.953 0.955 0.961 0.906 0.939 0.922 0.913 0.922 0.923 0.925 0.909
SMO 0.967 0.958 0.963 0.943 0.930 0.921 0.925 0.882 0.929 0.923 0.926 0.882
BLR 0.960 0.959 0.96 0.935 0.928 0.918 0.923 0.879 0.930 0.923 0.927 0.884

Table 9
RMSE and False Positive Rate (Feature from First D.S / Test on Second D.S).

API-RET API-ARG API-ARG-RET

RMSE False
Positive

RMSE False
Positive

RMSE False
Positive

RF 0.229 0.121 0.285 0.192 0.269 0.141
J48 0.230 0.098 0.302 0.218 0.301 0.176
SMO 0.226 0.073 0.321 0.156 0.319 0.158
BLR 0.236 0.089 0.326 0.159 0.317 0.155

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

100

Downloaded from http://iranpaper.ir
http://translate68.ir

outputs of the related research experiments are not publically available,
it is not possible to compare the results of them and MAAR method
(Tahan et al., 2012). Although the extracted API features from in-house
developed tool are different from other tools, we tried to implement
two methods that use only API call (Tian et al., 2010) and API call
sequence (API-SEQ) based on features (Ravi and Manoharan, 2012).
The method of (Tian et al., 2010) and (Ravi and Manoharan, 2012) are
explained briefly in related works previously. For this comparison the
First dataset are used as training phase and the First and Second
dataset are used to test malware detection system using the method of
these two papers. Since the best classifier results for our dataset
belongs to Bayesian logistic regression using 10 fold cross validation,
the results of BLR are compared with two implemented methods that
mentioned previously. The comparison results are shown in Table 10.

In the Table 10, first group shows the results of the First dataset
and the second group is dedicated to the Second dataset results that
their features extracted from First one. Column labeled “API” stands
for a feature set that only consists of API name alone as the feature set.
Second column labeled “API-SEQ” shows result of method that use API
sequence feature set (Ravi and Manoharan, 2012). Third, fourth and
the last column in each group are dedicated respectively to our newly
proposed features.

Table 10 shows the effectiveness of MAAR method that introduces
API-RET feature set. An appropriate malware recognition approach is
not only expected to be capable of distinguishing almost all unwanted
threats but also envisage with a reasonable false alarm ratio. Regarding
depicted results in the Table 10 the worst feature set is the API-SEQ
and API name in terms of false alarm rate. Also the results show when
the features are not updated API-RET has a better detection capacity
compared to other feature sets. In comparison with the API feature set
MAAR method shows a significant and consistent improvement in F-
measure. The accuracy improves about 15% while the false alarm rate
decreases about 17%.

5. Conclusion

In this paper a method called MAAR to produce robust and scalable
feature sets to perform dynamic malware behavior analysis was
presented. Features were generated based on the name of the API
calls along with each of the argument and/or the return value of the
API call at the execution time. Then, two phases of feature selection
were utilized to reduce the number of features, in order to speed up the
time of processing and increasing the detection rate. The behaviors of
each binary were modeled based on the generated feature. To validate
discriminative ability of proposed feature irrespective of dataset, two
datasets one 2.6 times larger than the other and had new type of
malware and benign with different behaviors had been generated.
Results demonstrated that, the created features were highly discrimi-
native and robust regardless of the dataset which are used. In future,
models that will be able to add new features to itself and easily update
itself will be developed. Those models could detect new variant of
malware without significant reduction in accuracy.

Acknowledgments

Authors would like to thank Mr. Abdullah Khalili, Javad Kamiabi,
Alireza Hoseini, Mansour Ahmadi and Ms. Shabnam Salehi for their
help during all stages of this research. This research was conducted in
the Department of Electrical Engineering and Computer Science of
Shiraz University and the authors would like to express their sincere
thanks to Iran Telecommunication Research Center (ITRC) for
their supports.

References

Ahmadi, M., Sami, A., Rahimi, H.,, Yadegari, B., 2013. Malware detection by behavioural
sequential patterns. Comput. Fraud and Secur. 8, 11–19.

Ahmed, F., Hameed, H., Shafiq, M.Z., Farooq, M., 2009. Using spatio-temporal
information in API calls with machine learning algorithms for malware detection. In:
AISec ’09: Proceedings of the 2nd ACM Workshop on Secur. and Artificial intell.
ACM, Chicago, Illinois, USA, pp. 55–62.

Alam, S., Horspool, R.N., Traore, I., 2014. MARD: a framework for metamorphic
malware analysis and real-time detection. In: 2014 IEEE 28th International
Conference on Advanced Inf. Networking and Appl., pp. 480–489.

Alazab, M., Huda, S., Abawajy, J., Islam, R., Yearwood, J., Venkatraman, S.,, Broadhurst,
R., 2014. 2014. A hybrid wrapper-filter approach for malware detection. J. Netw. 9
(11), 2878–2891.

Anderson, B., Quist, D., Neil, J., Storlie, C.,, Lane, T., 2011. Graph-based malware
detection using dynamic analysis. J. Comput. Virol. 7 (4), 247–258.

Baldangombo, U., Jambaljav, N., Horng, S.J., 2013. A static malware detection system
using data mining methods. arXiv Prepr. arXiv 1308.2831.

Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C., Vigna, G., 2010. Efficient
detection of split personalities in malware. In NDSS 2010: Proceedings of the 17th
Annu. Symp. Netw. Distrib. Syst. Secur. San Diego, CA, USA.

Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E., 2009. Scalable
behavior-based malware clustering. In: NDSS 2009: Proceedings of the 16th Annu.
Symp. Netw. Distrib. Syst. Secur. San Diego, CA, USA, pp. 8–11.

Belaoued, M.,, Mazouzi, S., 2014. 2014. Statistical study of imported APIs by PE type
malware. In advanced Netw. Distrib. Syst.s Appl. (INDS). International Conference
on IEEE, 82–86.

Cesare, S., Xiang, Y.,, Zhou, W.L., 2013. Malwise–An effective and efficient classification
system for packed and polymorphic malware. IEEE Trans. Comput. 62 (6),
1193–1206.

Cheng, J.Y.C., Tsai, T.S., Yang, C.S., An information retrieval approach for malware
classification based on windows API calls International Conference on Mach. Learn.
Cyber. (ICMLC 2013), vol. 4, pp. 1678–1683.

Chien, E., 2005. Techniques of adware and spyware. In: Proceedings of the 15th Virus
Bulletin Conference Dublin Ireland.Vol. 47.

Chiu, J.Huang, W., 2010. 0Box Analyzer: after dark runtime forensics for automated
malware analysis and clustering. In: Proceedings of the 18th Annu. DEFCON
Conference Las Vegas, USA.

Christodorescu, M., Jha, S., Kruegel, C., 2008. Mining specifications of malicious
behavior, In: Proceedings of the 1st India Softw. Eng. Conference ACM 2008,
Dubrovnik, Croatia, pp. 5–14.

Comparetti, P.M., Salvaneschit, G., Kirdai, E., Kolbitsch, C., Kruegel, C.,, Zanero, S.,
2010. Identifying dormant functionality in malware programs. Proc. IEEE Symp.
Secur. Priv., 61–76.

CopyFile function, 2016. Microsoft Msdn, [On-line].Available electronically at〈http://
msdn.microsoft.com/en-us/library/windows/desktop/aa363851%28v=vs.85%29.
aspx〉

Chien, E., OMurchu, L., Falliere, N., 2012. W32. Duqu: The precursor to the next
Stuxnet. Presented as Part of the 5th USENIXWorkshop on Large-Scale Exploits and
Emergent Threats (LEET). Version1.4. 2015.

DeviceIoControl function, 2016. Microsoft Msdn, [On-line].Available electronically
at〈http://msdn.microsoft.com/en-us/library/windows/desktop/aa363216%28v=vs.
85%29.aspx〉

Duda, R.O., Hart, P.E., Stork, D.G., 2012. Pattern Classification 2nd ed. John Wiley &
Sons, New York.

Faruki, P., Laxmi, V., Gaur, M.S., Vinod, P., 2012. Mining control flow graph as API call-
grams to detect portable executable malware. In: Proceedings of the 5th International
Conference on Secur. Inf. Netw. SIN 12, ACM, pp. 130–137.

Table 10
Comparison of three feature set with only API name (BLR classification) and API-SEQ method.

First Dataset Second Dataset

API API-SEQ API-RET API-ARG API-ARG-RET API API-SEQ API-RET API-ARG API-ARG-RET

Precision 0.920 0.100 0.991 0.999 0.996 0.872 0.998 0.960 0.928 0.930
Recall 0.937 0.892 0.983 0.990 0.992 0.762 0.591 0.959 0.918 0.923
F-M 0.929 0.943 0.987 0.995 0.994 0.813 0.742 0.960 0.923 0.927
F-P 0.174 0.177 0.018 0.003 0.008 0.251 0.408 0.089 0.159 0.155

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

101

Downloaded from http://iranpaper.ir
http://translate68.ir

http://refhub.elsevier.com/S0952-16)30251-sbref1
http://refhub.elsevier.com/S0952-16)30251-sbref1
http://refhub.elsevier.com/S0952-16)30251-sbref2
http://refhub.elsevier.com/S0952-16)30251-sbref2
http://refhub.elsevier.com/S0952-16)30251-sbref2
http://refhub.elsevier.com/S0952-16)30251-sbref3
http://refhub.elsevier.com/S0952-16)30251-sbref3
http://refhub.elsevier.com/S0952-16)30251-sbref4
http://refhub.elsevier.com/S0952-16)30251-sbref4
http://refhub.elsevier.com/S0952-16)30251-sbref4
http://refhub.elsevier.com/S0952-16)30251-sbref5
http://refhub.elsevier.com/S0952-16)30251-sbref5
http://refhub.elsevier.com/S0952-16)30251-sbref5
http://refhub.elsevier.com/S0952-16)30251-sbref6
http://refhub.elsevier.com/S0952-16)30251-sbref6
http://refhub.elsevier.com/S0952-16)30251-sbref6
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363851%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363851%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363851%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363216%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363216%28v=vs.85%29.aspx
http://refhub.elsevier.com/S0952-16)30251-sbref7
http://refhub.elsevier.com/S0952-16)30251-sbref7

GetModuleFileName function, 2016. Microsoft Msdn, [On-line]. Available electronically
at 〈https://msdn.microsoft.com/en-us/library/windows/desktop/
ms683197%28v=vs.85%29.aspx〉

Ghiasi, M., Sami, A.,, Salehi, Z., 2013. DyVSoR: dynamic malware detection based on
extracting patterns from value sets of registers. ISC Int. J. Inform. Secur. 5 (1),
71–82.

Guyon, I., Weston, J., Barnhill, S.,, Vapnik, V., 2002. Gene selection for cancer
classification using support vector machines. Mach. Learn. 46 (1–3), 389–422.

Harbour, N., 2009. Win at Reversing - API tracing and sandboxing through inline
hooking. In 17th Annu. DEFCON Conference BlackHat, USA.

Hu, X., 2011. Large-scale malware analysis, detection, and signature generation Ph.D.
Dissertation. Univ. of Michigan, , Michigan, United States.

Karbalaie, F., Sami, A.,, Ahmadi, M., 2012. Semantic malware detection by deploying
graph mining. Int. J. Comput. Sci. Issues (IJCSI) 9 (1), 373–379.

Langerud, T.,, Lillesand, J.V.., 2008. PowerScan: A Framework For Dynamic Analysis
And Anti-virus Based Identification Of Malware M.S. thesis). Norwegian Univ. of Sci.
and Technol. Dept. of Telematics, Norway.

Macedo, H.D.,, Touili, T., 2013. Mining Malware Specifications Through Static
Reachability Analysis, Lecture Notes in Comput. Sci. –ESORICS 2013 8134.
Springer Berlin Heidelberg, 517–535.

McAfee Labs, 2016. McAfee Lab Threats Report: August 2015, McAfee Inc., [On-line].
Available electronically at〈http://www.mcafee.com/us/resources/reports/rp-
quarterly-threats-aug-2015.pdf〉.

Mehra, V., Jain, V., Uppal, D., 2015. DaCoMM: Detection and Classification of
Metamorphic Malware. In: 5th International Conference on Commun. Syst. and
Netw. Technol. (CSNT), IEEE, pp. 668–673.

Moser, A., Kruegel, C., Kirda, E., 2007. Limits of static analysis for malware detection. In
ACSAC '07: Proceedings of the 23rd Annu. Comput. Secur. Appl. Conference ACSAC
2007, IEEE. Miami Beach, Miami Beach, FL, USA. pp. 421–430.

Park, Y., Reeves, D.S., Stamp, M., 2013. Deriving common malware behavior through
graph clustering. J. Comput. Secur. 39, 419–430.

Piyanuntcharatsr, S.S.W., Adulkasem, S.,, Chantrapornchai, C., 2015. On the
Comparison of malware detection methods using data mining with two feature sets.
Int. J. Secur. Appl. 9 (3), 293–318.

Potier, J., 2016. WinAPIOverride32, [On-line].Available electronically at〈http://
jacquelin.potier.free.fr/winapioverride32/〉

Ravi, C.,, Manoharan, R., 2012. Malware detection using windows API sequence and
machine learning. Int. J. Comput. Appl. 43 (17), 12–16.

Rieck, K., Trinius, P., Willems, C.,, Holz, T., 2011. Automatic analysis of malware
behavior using machine learning. J. Comput. Secur. 19 (4), 639–668.

Salehi, Z., Sami, A.,, Ghiasi, M., 2014. Using feature generation from API calls for

malware detection. J. Comput. Fraud Secur. 9, 9–18.
Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., Hamze, A., 2010. Malware

detection based on mining API calls. In SAC ’10: Proceedings of the 25th ACM Symp.
on Applications Comput. ACM. Switzerland, pp. 1020–1025.

Shankarapani, M.K., Ramamoorthy, S., Movva, R.S.,, Mukkamala, S., 2011. Malware
detection using assembly and API call sequences. J. Comput. Virol. 7 (2), 107–119.

Skaletsky, A., Devor, T., Chachmon, N., Cohn, R., Hazelwood, K., Vladimirov, V.,, Bach,
M., 2010. Dynamic program analysis of Microsoft windows applications. perform.
anal. of Syst. and Softw. (ISPASS). Int. Symp. IEEE. New Y., 2–12.

Sood, A.K., Enbody, R.J., 2013. Targeted cyber-attacks: a superset of advanced persistent
threats. IEEE Secur. Priv. 11 (1), 54–61.

Szor, P., 2005. The Art of Computer Virus Research and DefenseAddison Wesley Prof.
Symantec Press, Upper Saddle River, NJ.

Tahan, G., Rokach V., Shahar, Y., 2012. Mal-ID: Automatic malware detection using
common segment analysis and meta-features. TheJ. Mach. Learn. Res. 13, 949–979.

Tian, R., Islam, R., Batten, L., Versteeg, S., 2010. Differentiating malware from clean
ware using behavioral analysis. In: MALWARE '10: Proceedings of the 5th
International Conference on Malicious and Unwanted Softw. Nancy, France. pp. 23–
30.

Van Nhuong, N., Nhi, V. T. Y., Cam, N. T., Phu, M. X., Tan, C. D., 2014. Semantic set
analysis for malware detection. In: Comput. Inf. Sys. Ind. Manag., Springer, Berlin,
Heidelberg, vol. 8838, pp. 688–700.

Wagener, G., 2006. Development and design of a process and a piece of software to
analyze unknown software. Univ. of Luxembourg, Luxembourg.

Walenstein, V., Hefner, D.J., Wichers, J., 2010. Header information in malware families
and impact on automated classifiers. In: Malware '10: Proceedings of the 5th
International Conference on Malicious and Unwanted Softw., Nancy, France. pp.
15–22.

Weng, C.G., Josiah, P., 2008. A new evaluation measure for imbalanced datasets. In:
Proceedings of the 7th Australasian Data Mining Conference Australian Comput.
Society. Glenelg, Australia, 87, 27–32.

Wüchner, T., Ochoa, M., Pretschner, A., 2014. Malware detection with quantitative data
flow graphs, in Proceedings 9th ACM Symp. Inf. Comput. Commun. Secur. ACM. pp.
271–282.

Yason, M.V., 2007. The Art of Unpacking. MalcodeAnalyst, X-Force Research and
Development IBM Internet Secur. Syst., Black Hat Briefings, USA.

Zamir, S., Margalit, Y., Margalit, D., 2004. Method for detecting unwanted executables.
U.S. Patent Application10/890,170.

Zeng, J., Fu, Y., Miller, K. A., Lin, Z., Zhang, X., Xu, D., 2013. Obfuscation resilient
binary code reuse through trace-oriented programming. In: Proceedings of the 2013
ACM SIGSAC Conf. Comput. Commun. Secur. New Y. ACM, pp. 487–498. 2004.

Z. Salehi et al. Engineering Applications of Artificial Intelligence 59 (2017) 93–102

102

Downloaded from http://iranpaper.ir
http://translate68.ir

http://https://msdn.microsoft.com/en-us/library/windows/desktop/ms683197%28v=vs.85%29.aspx
http://https://msdn.microsoft.com/en-us/library/windows/desktop/ms683197%28v=vs.85%29.aspx
http://refhub.elsevier.com/S0952-16)30251-sbref8
http://refhub.elsevier.com/S0952-16)30251-sbref8
http://refhub.elsevier.com/S0952-16)30251-sbref8
http://refhub.elsevier.com/S0952-16)30251-sbref9
http://refhub.elsevier.com/S0952-16)30251-sbref9
http://refhub.elsevier.com/S0952-16)30251-sbref10
http://refhub.elsevier.com/S0952-16)30251-sbref10
http://refhub.elsevier.com/S0952-16)30251-sbref11
http://refhub.elsevier.com/S0952-16)30251-sbref11
http://refhub.elsevier.com/S0952-16)30251-sbref12
http://refhub.elsevier.com/S0952-16)30251-sbref12
http://refhub.elsevier.com/S0952-16)30251-sbref12
http://refhub.elsevier.com/S0952-16)30251-sbref13
http://refhub.elsevier.com/S0952-16)30251-sbref13
http://refhub.elsevier.com/S0952-16)30251-sbref13
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://refhub.elsevier.com/S0952-16)30251-sbref14
http://refhub.elsevier.com/S0952-16)30251-sbref14
http://refhub.elsevier.com/S0952-16)30251-sbref15
http://refhub.elsevier.com/S0952-16)30251-sbref15
http://refhub.elsevier.com/S0952-16)30251-sbref15
http://jacquelin.potier.free.fr/winapioverride32/
http://jacquelin.potier.free.fr/winapioverride32/
http://refhub.elsevier.com/S0952-16)30251-sbref16
http://refhub.elsevier.com/S0952-16)30251-sbref16
http://refhub.elsevier.com/S0952-16)30251-sbref17
http://refhub.elsevier.com/S0952-16)30251-sbref17
http://refhub.elsevier.com/S0952-16)30251-sbref18
http://refhub.elsevier.com/S0952-16)30251-sbref18
http://refhub.elsevier.com/S0952-16)30251-sbref19
http://refhub.elsevier.com/S0952-16)30251-sbref19
http://refhub.elsevier.com/S0952-16)30251-sbref20
http://refhub.elsevier.com/S0952-16)30251-sbref20
http://refhub.elsevier.com/S0952-16)30251-sbref20
http://refhub.elsevier.com/S0952-16)30251-sbref21
http://refhub.elsevier.com/S0952-16)30251-sbref21
http://refhub.elsevier.com/S0952-16)30251-sbref22
http://refhub.elsevier.com/S0952-16)30251-sbref22
http://refhub.elsevier.com/S0952-16)30251-sbref23
http://refhub.elsevier.com/S0952-16)30251-sbref23

	MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values
	Introduction
	Related works
	MAAR system
	PE'S behavioral monitoring
	Developed in-house tool
	Preprocessing phase
	Importance of system calls
	Feature generation phase

	Learning phase

	Evaluation phase
	Data acquisition and essential API calls for detecting malicious behavior
	Experimental and discussion
	Malware detection accuracy
	Discriminative ability, irrespective of data
	The best generated feature set among API, API-SEQ, API-RET, API-ARG and API-ARG-RET

	Conclusion
	Acknowledgments
	References

