
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Hybrids of support vector machine wrapper and filter based
framework for malware detection
Shamsul Huda a,∗, Jemal Abawajy b, Mamoun Alazab c, Mali Abdollalihian d,
Rafiqul Islam e, John Yearwood a

a School of SITE, Federation University, Australia
b School of Information Technology, Deakin University, Australia
c Australian National University, Australia
d Mathematical and Geospatial Sciences Department, RMIT University, Australia
e Charles Sturt university, Australia

h i g h l i g h t s

• A signature-free malware detection approach has been proposed.
• A hybrid wrapper–Filter based malware feature selection has been proposed.
• Proposed hybrid approach can take advantages from both filter and wrapper.
• Models have also been validated by statistical model selection criteria such as Chi Square and Akaike information criterion (AIC).

a r t i c l e i n f o

Article history:
Received 19 November 2013
Received in revised form
28 April 2014
Accepted 1 June 2014
Available online xxxx

Keywords:
Malware detection
API call statistics
Hybrid wrapper–filter heuristics

a b s t r a c t

Malware replicates itself and produces offspring with the same characteristics but different signatures
by using code obfuscation techniques. Current generation Anti-Virus (AV) engines employ a signature-
template type detection approach where malware can easily evade existing signatures in the database.
This reduces the capability of current AV engines in detecting malware. In this paper we propose a hybrid
framework for malware detection by using the hybrids of Support Vector MachinesWrapper, Maximum-
Relevance–Minimum-Redundancy Filter heuristics where Application Program Interface (API) call statis-
tics are used as a malware features. The novelty of our hybrid framework is that it injects the filter’s
ranking score in the wrapper selection process and combines the properties of both wrapper and filters
and API call statistics which can detectmalware based on the nature of infectious actions instead of signa-
ture. To the best of our knowledge, this kind of hybrid approach has not been explored yet in the literature
in the context of feature selection andmalware detection. Knowledge about the intrinsic characteristics of
malicious activities is determined by the API call statistics which is injected as a filter score into the wrap-
per’s backward elimination process in order to find themost significant APIs. While using themost signif-
icant APIs in thewrapper classification on both obfuscated and benign typesmalware datasets, the results
show that the proposed hybrid framework clearly surpasses the existing models including the indepen-
dent filters and wrappers using only a very compact set of significant APIs. The performances of the pro-
posed and existingmodels have further been compared using binary logistic regression. Various goodness
of fit comparison criteria such as Chi Square, Akaike’s Information Criterion (AIC) and Receiver Operating
Characteristic Curve ROC are deployed to identify the best performing models. Experimental outcomes
based on the above criteria also show that the proposed hybrid framework outperforms other existing
models of signature types including independent wrapper and filter approaches to identify malware.

© 2014 Elsevier B.V. All rights reserved.

∗ Corresponding author. Tel.: +61 353276217.
E-mail addresses: s.huda@ballarat.edu.au (S. Huda),

jemal.abawajy@deakin.edu.au (J. Abawajy), mamoun.alazab@anu.edu.au
(M. Alazab), mali.abdollahian@rmit.edu.au (M. Abdollalihian), mislam@csu.edu.au
(R. Islam), j.yearwood@federation.edu.au (J. Yearwood).

http://dx.doi.org/10.1016/j.future.2014.06.001
0167-739X/© 2014 Elsevier B.V. All rights reserved.

Downloaded from http://iranpaper.ir
http://translate68.ir

http://dx.doi.org/10.1016/j.future.2014.06.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:s.huda@ballarat.edu.au
mailto:jemal.abawajy@deakin.edu.au
mailto:mamoun.alazab@anu.edu.au
mailto:mali.abdollahian@rmit.edu.au
mailto:mislam@csu.edu.au
mailto:j.yearwood@federation.edu.au
http://dx.doi.org/10.1016/j.future.2014.06.001

2 S. Huda et al. / Future Generation Computer Systems () –

1. Introduction

Malicious software (Malware) affects the secrecy and integrity
of data as well as the control flow and functionality of a computer
system which we combat every day [1]. There is no single tech-
nique [2–5], but most Anti-Virus (AV) engines use two main ap-
proaches: (1) signature-based and (2) anomaly-based approaches
for malware detection. The signature-based detection [6,7] meth-
ods are very efficient to detect known malware [7]. However, the
signature generation process for construction of the database for
the AV engine involves manual processing and requires strict code
analysis. Most of the malwares [5] have in-built process that can
generate new variants each time it is executed and a new signa-
ture is generated. Therefore, signature based approaches fail to
detect unknown malwares [5] which are not in the database. In
contrast, anomaly-based detection approaches [7,8] use API call
sequences instead of byte sequence matching through optimal se-
quence alignment. Although anomaly-based detection approaches
use the knowledge of normal behavior patterns and perform better
than the signature based approach. But these approaches [7,8] ig-
nore the frequency of API calls in the sequences and suffer from the
same problem as normal signature approaches and become simi-
lar to signature based approach resulting in a more false positives
outcome [9]. Windows Application Program Interface (API) func-
tion calls [10–12,10] have been used in statistical N-gram mod-
eling techniques [11,12] for detection. However these approaches
[11,12] use simple wrapper classification methods [13] which did
not explore the ways of selecting the best set of APIs from a large
set of APIs. To find an optimal subset of API that can discrimi-
nate malware from benign is essential and difficult which also can
be transformed into a feature selection problem. Usually given an
m-dimensional API based malware dataset, a detection algorithm
needs to find an optimal API subset from the 2m subsets of the APIs.
Therefore finding an optimal API subset is computationally expen-
sive [14] feature selection problem. The performance of a detec-
tion algorithm depends on its evaluation criterion aswell as search
strategies.

The filter based models for best subset selection [15] are com-
putationally cheap due to its evaluation criteria. However, feature
subsets selected by filter may result in poor prediction accura-
cies, since they are independent from the induction algorithm. In
contrast, the wrapper models [16] face huge computational over-
head due to the use of the induction algorithm’s performance crite-
ria as its evaluation criteria. Some researchers have proposed [17]
hybrid of genetic algorithm (GA) and filter heuristic where GA
framework works as a subset generation process and filter heuris-
tic improves local search. Despite significant researches on eval-
uation criteria and search strategies, current generation feature
selection approaches lack the work that can combine the merits of
wrapper and filter approaches. To the best of our knowledge, there
is no complete malware literature that reveals with a suitable ap-
proach to find themost significant set of APIs from enormous num-
ber of API sets and can exploit themerits of bothwrapper and filter
approaches. This shows a clear and strongmotivation for this work
in the context of API feature selection for malware detection.

In this paper, we propose a framework that attempts to iden-
tify malware by using its malicious activities characterized by the
Application Program Interface (API) calls and a novel hybrid wrap-
per–Filter feature selections techniques. At first, a large number
of malware datasets with obfuscated and unknown malware are
collected from many sources including the honeynet project, VX
heavens [18]. The hybrid frame work proposes a novel automated
method to extract the API call behaviors from malware dataset
using sophisticated unpacking, disassembling and mapping anal-
ysis techniques. Then we propose two hybrid approaches using
the hybrids of Support Vector Machines Wrapper heuristic and

Maximum-Relevance–Minimum-Redundancy Filter heuristics for
malware detection from the API call statistics. The novelty of our
proposed malware detection approaches is that these techniques
combine the knowledge about the intrinsic nature of malicious ac-
tivities of themalwarewith thewrapper score in order to select the
most significant set of API features. This is achieved by injecting the
filter’s ranking score (computed using the intrinsic characteristics
from API call statistics) in the wrapper selection process and dif-
ferent search strategies. We have also used binary logistic regres-
sion to compare and assess the efficacy of the proposed approaches
based on different goodness of fit criteria. Our contribution also in-
cludes the following hitherto unreported in the literature:

(1) Development of a fully automated framework for malware
detection to compute API call statistics from malware and
benign programs.

(2) Development of two novel hybrid API feature selection
approaches based on the hybrid of Support Vector machine
wrapper heuristics and maximum-relevance–minimum-re-
dundancy filter heuristics that can find an optimal set of APIs
in order to detect the malware from their malicious behavior.

The rest of the paper is organized as follows. The next section
introduces some related background literature and limitations of
current malware detection techniques. Section 3 discusses Filter
and wrapper approaches and a mathematical derivation for wrap-
per heuristic based on Support Vector Machine (SVM). The pro-
posed framework for malware detection using hybrids of Support
Vector Machine wrapper heuristics and Maximum-Relevance–
Minimum-Redundancy filter heuristics with API Call statistics has
been described in Section 4. Section 5 describes the malware
datasets. Section 6 presents experimental results, statistical vali-
dation and discussion about the results. Conclusions of this study
are presented in the last section.

2. Related work

2.1. Code obfuscations and current malware detection approaches

Code obfuscation modifies the program code to produce off-
spring copies which have the same functionality with different
byte sequence so that the new code is not recognized by antivirus
scanner. Obfuscation techniques such as, packing [19] is used by
malware authors as well as legitimate software developers in or-
der to compress and encrypt the Portable Executable (PE) or Dy-
namic Link Library (DLL) in secondary memory for changing the
byte sequence in the PE. This results different byte sequences in
the newly produced packed PE. A second technique, polymorphism
[19] uses encryption and data appending/data pre-pending in or-
der to change the body of the malware. It also changes decryp-
tion routines from one infection to another as the encryption keys
change. Finally, metamorphism [20] is used to transform the code
without encryption in order to evade detection by static signature-
based virus scanners. Several works [21] propose to use program
graph mining techniques for combating (polymorphic) malwares.
However, theseworks either employ subgraphmatching or vector-
space modeling to learn classifiers for malware detection. These
methods are either not scalable (e.g., subgraph matching) or not
adaptable to dynamic feature space such as API. Sung et al. [8]
present a signature-based malware detection technique, with em-
phasis on detecting obfuscated (or polymorphic)malware andmu-
tated (or metamorphic) malware. Tian et al. [22] present a method
for classifying Trojans based on function lengths, and show that
function length plays an important role in classifying malware and
if combined with other features may result in a better method of
malware classification. Signatures matching techniques in [21,22,
8,20] to detect malware requires that signatures to be generated

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 3

by human experts by disassembling the file and selecting pieces
of unique code. Therefore, Anti-malware scanners will not be able
to detect the malware created by code obfuscation techniques as
they generate new signatures each time they are executed which
may not exist in AV engine database. Hence, there is a need to build
signature-free methods.

2.2. Windows API calls for malware detection

In the Windows operating system, user applications rely on
the API interface within a set of libraries, such as KERNEL32.DLL,
NTDLL.DLL and USER32.DLL in order to access system resources
including files, processes, network information and the registry.
Various features related to the API calls are loaded by the malware
before the actual executions occur. In the literature, Bailey et al.
[23] propose a method for behavioral-patterns (e.g., files written,
processes created) of malwares into groups that reflect similar
classes of behaviors. Ahmed et al. [24] propose a technique byusing
statistical features which are extracted from spatial (arguments)
information available in Windows API calls. Sami et al. [25] also
propose an approach for detecting malwares based on mining API
calls from PE-files. Lu et al. [26] propose a hierarchical framework
to classify the network into different application communities
based onpayload signatures and anewcross-association clustering
algorithm, and then analyze the frequent characteristics of flows to
distinguish malicious channels created by bots from normal traffic
generated by human beings. Tian et al. [27] propose an approach
to distinguish Trojan and virus families based on strings from
library code. Sung et al. [8] propose an anomaly based detection
approach using API call sequences through the similarity measure
techniques between sequences including Euclidian distance,
Sequence alignment. Optimal sequence alignment proposed by
Sung et al. [8] is similar to a signature based approach since it
ignores the frequency of API call whichmay fail to detect unknown
malware as other approaches. Kolter andMaloof [28] tested several
classifiers including, IBk, naive Bayes, decision trees, boosted naive
Bayes with API call sequence. Monitoring a large number of APIs
for detecting malware is one of the most crucial problems in the
antivirus engines. Therefore, it is essential to develop an approach
in order to find a compact and significant set of APIs from a set of
the large number of APIs.

3. Filter and wrapper approaches for malware detection

Filter approaches [15,3] use API statistics as the training data.
A subset generation process with empty or full API set is used to
generate the subsets. The generated subsets are evaluated using
filter heuristics such as co-relation measure, Principal Component
Analysis andMutual Information [15,3]. The final subset is justified
using a wrapper classification algorithm. In the wrapper approach,
subsets are evaluated by the predictive accuracies of a trained clas-
sifier. Therefore wrapper approaches such as Support Vector Ma-
chine (SVM) [29,28,8], Artificial Neural Networks (ANN) [30,28] are
more significant than the filter approaches. Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) [31,32] also can be used for wrapper.
However SVM performs better than ANFIS [32] and ANFIS does
not provide any feature reduction heuristics [31]. Different search
strategies [33] such as sequential backward elimination (SBE), se-
quential forward elimination (SFE) [33] or bidirectional search ap-
proaches are used in the subset generation process. In the worst
cases, growth of subset generation in the wrapper may increase
in the order O(2m) as the dimension of dataset m increases. In
most cases, the algorithm is trained repeatedly with the training
data for each subset of APIs. This makes the algorithms computa-
tionally very expensive. Comparisons of different search strategies

have been made in [33]. However, the subsets in the wrapper ap-
proaches are evaluated by the predictive accuracies of the trained
wrapper and therefore are more significant than those in the filter
approaches which only depend on APIs redundancy or relevance.
To the best of our knowledge, none of the above approaches [30,28,
8,27,21,22,20] used either thewrapper heuristics or hybrid heuris-
tics in order to determine the most suitable set of APIs from a very
large set of APIs formalware detection. This shows a clear literature
gap in the context of API selection for malware detection.

3.1. Support vector machine (SVM) based wrapper heuristics

Support VectorMachine (SVM) is proposed by Vapnik et al. [29]
and known as a popular wrapper classifier. Let us denote the train-
ing examples and its corresponding class label pair as (xi, yi)where
yi ∈ C and the set of discrete values for classes: C = {c1, c2,
c3 . . . cm}. Consider a binary classification problem where a pos-
itive training example is denoted as +1 and a negative example
is denoted as a −1. If the set of positive examples is P+ and the
set of negative examples is P−, for a linearly separable case we can
find a linear discriminant plane asmentioned in Fig. 1 which is fur-
thest from both positive and negative example sets {P+ and P−}.
The planes in Fig. 1 which are on the border lines of both sets are
called supporting planes and can be defined as below.

⟨W · xi⟩ + b ≈ (constant). (1)

The points which are on these supporting planes can be defined
as the support vectors. The aim is to find W and b such that ⟨W ·
xi⟩ + b ≥ k for positive examples where k = mini |xi + b| and
⟨W · xi⟩ + b ≤ k for negative examples for ∀xi. Then for positive
examples, the supporting plane is

⟨W · xi⟩ + b ≥ k (2)

for negative examples, the supporting plane is

⟨W · xi⟩ + b ≤ −k. (3)

After normalizing and re-scaling, these can be written as

⟨W · xi⟩ + b ≥ +1; ∀yi ∈ P+
⟨W · xi⟩ + b ≤ −1; ∀yi ∈ P−.

(4)

The above equations can be simplified as

yi(⟨W · xi⟩ + b) ≥ +1. (5)

The geometric distance between these two planes is: 2/∥W∥2.
For better discrimination we want to maximize the distance be-
tween these two planes, therefore this can be transformed into a
constraint-based maximization problem as below:

max
w,b

2/∥W∥2 (6)

which is bounded by the constraints: yi(⟨W · xi⟩ + b) ≥ 1. For lin-
early inseparable cases, a penalty based objective function is con-
sidered with an error variable which is also added to each con-
straint and then the optimization problem is transformed into a
minimization problem

min
w,b

(1/2)∥W∥2 +ϖ

D
i=1

ξi (7)

which is bounded by the constraints: yi(⟨W·xi⟩+b)+ξi ≥ 1, ξi ≥ 0
and ϖ is a constant. By using lagrangian Multipliers γi we get the
primal lagrangian function for optimization as below:

(1/2)⟨W ·W⟩ −
D

i=1

γi[yi(⟨W · xi⟩ + b)− 1]. (8)

Downloaded from http://iranpaper.ir
http://translate68.ir

4 S. Huda et al. / Future Generation Computer Systems () –

Fig. 1. Support Vector machine based wrapper heuristics.

Taking partial derivative of (8) with respect to W, b, γi and equat-
ing the results to zero, we get

W =
D

i=1

yiγixi and
D

i=1

yiγi = 0. (9)

The above results can be used in primal lagrangian function (8)
which gives corresponding optimization function for a dual prob-
lem as below:

D
i=1

γi − (1/2)
D

i,j=1

yiyjγiγj⟨xi · xj⟩ (10)

subject to the constraints:
D

i=1 yiγi = 0 and γi ≥ 0. The partial
derivatives with respect to the lagrange multipliers will be zero at
the extreme. The resulting decision hyperplane is obtained by us-
ing lagrange Multipliers based solution of (10) and is described as
below:

W =
D

i=1

yiγixi. (11)

This shows thatW is a function of the training vectorsx1, x2, . . . , xD
where xD = x1D, x2D . . . , xmD and m = Total number of features.
The influence of a feature on the resulting hyperplane can be eval-
uated by taking the partial derivatives of (6) or (7) with respect to
xji where i = 1, 2, . . . ,D and j = 1, 2, . . . ,m as below:

i

∂∥W∥2∂xji

 = τ |wj| (12)

where τ is a constant. The above derivation (12) shows that feature
with higher |wj| has more influence in determining the width of
the margin of the resulting hyperplane. However wider margin of
the resulting hyperplane ensures less number of training examples
falling on the wrong side of the hyperplane. This reduces the mis-
classification rate. It concludes that a significant feature for better
discrimination will have a higher |wj|.

4. Proposedmethodology: ahybridwrapper–filter based frame-
work for malware detection

4.1. Motivation for hybridization

Filter approaches can extract knowledge of the intrinsic pattern
from real data. However filter approaches [15,3] do not use any
performance criteria based on predictive accuracies. Subsequently,
there is no guarantee that the final subset of API features makes
a better prediction and would be the most informative subset for

Fig. 2. Venn diagram for combined heuristics.

malware detection. In contrast, the wrapper approaches [16] use
a predetermined induction algorithm to find the most informative
set of API features. Use of the predictive-accuracy based evalua-
tion criteria in the wrapper ensures optimal performance from the
selected API subset. However repeated execution of the induction
algorithm (in the worst case an exponential search space) in the
search process incurs a high computational cost in thewrapper ap-
proach. In this paper, we propose two hybrid approaches using the
Support VectorMachinesWrapper (SVM) heuristic andMaximum-
Relevance–Minimum-Redundancy Filter heuristics. The proposed
hybrid approaches introduce a filter heuristic in the wrapper
stage that combine the complementary properties from both
approaches. The knowledge about the intrinsic characteristics of
malicious activities of the malware is computed by the filter ap-
proaches using the API call statistics. This filter heuristic score is
injected into the wrapper backward elimination process and hy-
bridized with the wrapper heuristics which can take advantages
from both approaches. Therefore the hybrids can find more sig-
nificant API features than either wrapper or filter alone. The idea
behind these approaches can be explained by the Venn-diagram
(Fig. 2). If the two subsets (ACBF and ADBE) of the APIs are sepa-
rately ordered/ranked according to their score, then the common
higher ranked subset (ACBD) is the most significant subset rec-
ommended by both algorithms. If the scores of both algorithms
are normalized on the same scale and combined, then the sub-
sets with the higher combined scores provide the common higher
ranked subsets. A Backward Elimination (BE) search strategy based
on the combined score along with the wrapper evaluation criteria
can determine the most significant API features. The performance
of the combined score can be affected by the performance of the
incorporated filter for a particular wrapper approach in the hy-
brid. However, different filter approaches can be combined to
find a suitable hybrid for a particular wrapper heuristic and vice-
versa. In theproposedmethod,wehave combinedmutual informa-
tion based Maximum Relevance and Minimum Redundancy filter
heuristics with SVM based wrapper heuristics. We will use other
wrapper approaches in future work. The following sub-sections
describe the different heuristics and steps of the proposed hybrid
framework.

4.2. Extraction of application program interface (API) statistics

To extract the API call lists from Portable Executables (PE), a
Python language based automated system has been developed
with the three main steps as: (1) Unpack and Disassemble the
binary executable, (2) Extract API calls and important machine-
code features from the disassembly program and (3) Map the API
calls with MSDN library and analyze the malicious behavior and
prepare the API call list statistics. These steps have been presented
in part-1:feature extraction of Fig. 3.

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 5

Fig. 3. A hybrid Wrapper–Filter based framework for Malware detection.

4.2.1. Unpack and disassemble the binary executable
Researchers have been trying to build semi-automated tools for

automatically unpacking malware, such as PolyUnpack [34], Ren-
ovo [35], OmniUnpack [36] and Eureka [37]. PolyUnpack extracts
the hidden code through process execution and uses theWindows
debugging API to single-step. Renovo supports multiple layers of
unpacking. However, OmniUnpack [36] uses a coarse-grained exe-
cution tracking approach at the page-level protection mechanism
available in hardware. Eureka, is similar to OmniUnpack except
that Eureka tracks execution at the system call level. By study-
ing these semi-automated tools, we observe that none of them are
completely meeting the purpose of analyzing the behavior of mal-
ware by extracting API call features. All dataset files collected are
pre-processed for anomaly testing. In order to translate a program
into an equivalent high-level-language program based on the bi-
nary content, a disassembly tool is used in this paper for static anal-
ysis including interactive Disassembler Pro (IDA Pro) [38] since it
can disassemble all types of non-executable and executable files
(such as ELF, EXE, and PE). Also, we have selected the IDA Pro as
a component of the automation process that automatically recog-
nizes API calls for various compilers and can be further extended
with our Python programs and compiled plugins, resulting in in-
credibly powerful implementation with flexible levels of analysis
and control. IDA Pro loads the selected file into memory to ana-
lyze the relevant program portion to create an IDA database whose
components are stored in four files:.id0 that contains the content
of a B-tree-style database,.id1 that contains flags describing each
program byte,.nam that contains index information related to pro-
gram locations, and.til that is used to store information concerning

local type definitions to a given database. IDA Pro generates the
IDA database files into a single IDB file (.idb) by disassembling and
analyzing the binary of the file. Our fully-automated system using
Python programming language generates.idb automatically from
the set of malware samples.

4.2.2. Extraction of API calls
IDA Pro [38] provides access to its internal resources via an API

that allows users to create plug-ins to be executed by IDA Pro [38].
We have used SQLite [39], a software library that implements a
self-contained transactional SQL database engine. Our Python sys-
tem automatically runs and creates the plugin to use SQLite [39]
with IDA Pro for generating the database (.db). We have devel-
oped an interface for accessing the database file (.db) so that the re-
sults from the assembly code of themalware stored in the database
can be used for better binary analysis as in Fig. 3. IDASQLitplugin
[38] generates eight tables (Blocks, Functions, Instructions, Names,
Maps, Stacks, Segments, Target Binaries), each of them contains
different information about the binary content. Function table con-
tains all the recognizable API system calls and non-recognizable
function names and the length (start and the end location of each
function). Instructions table contains all the operation code (OP)
and their addresses and block addresses. Maps table contains the
function address and source of block address and the destination
of the function address. Names table contains function addresses,
the name of the function and the type of the function. Stacks table
contains function address, the stack name, and the start and the
end address. Segments table contains information that describes

Downloaded from http://iranpaper.ir
http://translate68.ir

6 S. Huda et al. / Future Generation Computer Systems () –

each segment in an executable file, segment name (Code, Data, BSS,
_idata, _tls, _rdata, _reloc , and _rsrc) and the segment length. Fi-
nally, target binaries contain the file name, path name, MD5, and
start and the end of analyses.

4.2.3. API call mapping and feature analysis
We downloaded the Windows APIs from the Microsoft

Developer Network (MSDN) [40] and implemented in Python the
required processes to match the API from MSDN and the API calls
generated in the database (.db) for the malware sample sets. In
addition, to list all the API calls that are associated with malcode
and to analyze the features, we have considered the machine
opcodes such as Jump and Call operations as well as the function
type (import or function). For the analysis ofmalware behavior, we
have considered features such as frequency of call, call sequence
pattern and actions immediately preceding or after call. Some
actions that lead to invalidmemory reference or undefined register
or invalid jump target help in refining the extracted features for
analysis. This develops a fully-automated system that integrates
well with IDA Pro and SQlite [39] using Python programming to
perform all the three steps described and presented in Fig. 3.

4.3. Maximum relevance and minimum redundancy (MRMR)

Relevant features can provide more information about the
class variable than irrelevant features [15,3]. Therefore mutual
information based maximum relevance (MR) [15,3] is a suitable
heuristic for selecting the most relevant APIs. If S is a set of APIs;
{Fi|Fi ∈ S : i = 1, 2, 3 . . .} and Malware class variable is c , the
maximum relevance (MR) can be defined as (13). Here c denotes
class values of a particular sample.

Maximum Relevance (Fi, c) =
1
|S|


Fi∈S

I(Fi; c) (13)

I(Fi; c) is the mutual information between Fi and class c which is
defined as

I(Fi; c) = H(Fi)− H(Fi|c) (14)

H(Fi) is the entropy of Fi with the probability density function p.
If Fi takes discrete values from set of values V = v1, v2, v3 . . . vl,
then,

H(Fi) = −

vl∈V

p(vl) log(p(vl)). (15)

Let H(Fi|c) be the conditional entropy between Fi and c then,

H(Fi|c) = −

vl∈V


cm∈C

p(vl, cm) log(p(cm|vl)) (16)

where class variable c takes the discrete values from the setC .Max-
imum relevance (MR) [15] can select features that are highly rel-
evant to class. However MR may contribute to redundancy. When
two features are highly dependent on each other, the correspond-
ing class discriminative ability of the two features would not be
affected much if one of them were removed. Therefore, to avoid
the redundancy in MR, a redundancy function is incorporated as:

Minimum Redundancy (Fi, c) =
1
|S|2


Fi,Fj∈S

I(Fi; Fj), (17)

where I(Fi; Fj) is the mutual information between the features: Fi
and Fj.

4.4. Hybrid of maximum relevance (MR) and SVM score (MR–SVMS)

The proposed MR–SVMS uses Support Vector Machine as the
classification algorithm in the wrapper stage. The detail steps of

computing hybrid score has been described in part-2:Training and
model development of Fig. 3 and Algorithm 1. An n-fold cross-
validation approach has been used in MR–SVMS to train the wrap-
per. In each fold, we compute the SVM score for every API by
(11). Then after training of all folds, the SVM score is averaged as
(18):

SVMS(Fi)average =
1
n
(SVMS(Fi)1 + SVMS(Fi)2

+ · · · + SVMS(Fi)n). (18)

While computing the combined score in the proposed MR–SVMS,
the relevance of APIs in the current subset is computed from the
individual score which is scaled to the maximum individual rel-
evance of the subset. Thus relevance of an API in a subset in the
hybrid approach is defined by

Relevance (Fi) =
I(Fi; c)

max
Fi∈S

I(Fi; c)
. (19)

The combined score of the filter’s and wrapper’s heuristic in the
proposed MR–SVMS is computed by

Combined Score : MR_SVMS(Fi)

=
I(Fi; c)

max
Fi∈S

I(Fi; c)
+ SVMS(Fi)average. (20)

Algorithm 1 Hybrid Wrapper–Filter MR–SVMS or MRMR–SVMS
approach for Malware detection
input← D(F1, F2, ...Fm) Training data with m APIs
output← SBEST an optimal subset of APIs
begin
1. Let S ←whole set of m APIs F1, F2, ...Fm
2. Let S0 ←Initial set of APIs which records all
generated subsets with corresponding accuracies
of subset
//Apply a backward elimination (BE) search
strategy
for N = 1 to m− 1 do
4. Current set of APIs Scurrent ← S
5. Compute filter score by (19) or (21)
for fold = 1 to n do
7. Train the SVM with feature set Scurrent
8. Compute SVM score of all APIs
9. Compute Accuracy

end for
10. Compute average accuracy of all folds for
Scurrent
11. Compute average SVM score of Scurrent by (18)

12. Compute combined score for every API in
Scurrent by (20) to (22) for hybrid MR--SVMS
13. Rank the APIs in Scurrent using combined score
in descending order
14. S0 ← S0 ∪ Scurrent
16. Update the current API set Scurrent by
removing the API with lowest score

end for
17. SBEST ←Find the subset from S0 withe highest
accuracy
18. Return SBEST
end

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 7

4.5. Hybrid of maximum relevance–minimum redundancy (MRMR)
and SVM score (MRMR–SVMS)

Similar to MR–SVMS, MRMR–SVMS uses SVM as the classifi-
cation algorithm in the wrapper stage. An n-fold cross-validation
approach has been used in MRMR–SVMS to train the wrapper. In
each fold, we compute the SVM score for every API by (11). Then
after training of all folds, the SVM score is averaged as (18). The de-
tail steps of computing MRMR–SVMS score has been described in
part-2:Training and model development of Fig. 3 and Algorithm 1.
An incremental search method [41] is used to compute the Maxi-
mum Relevance and Minimum Redundancy (MRMR) score as be-
low. Maximum Relevance and Minimum Redundancy score is the
difference of maximum relevance score of a candidate features in
the candidate set and redundancy score between the correspond-
ing feature with a feature in the goal set.

MRMR(Fi, c)

= max
Fi∈S−Sl−1

 1
|S|


Fi∈S

I(Fi c)−
1

l− 1


Fj∈Sl−1

I(Fi Fj)

 . (21)

Since the Maximum Relevance–Minimum Redundancy (MRMR)
score is a difference of feature score which is relative to the search
iteration, while computing the combined score in the hybrid, an
equivalent weighted score of MRMR score is computed for each
feature. The features are ordered according to their ranks in the
MRMR incremental searchmethod [41]. Then equivalent weighted
score is computed from their ranking on a unity scale. Orders of the
feature ranking are incremental integers starting from one to total
number of features in the dataset (see Table 1) where top-ranked
has amaximum score of one. The combined score of the filter’s and
wrapper’s heuristic in the proposed MRMR–SVMS is computed as:

Combined Score : MRMR_SVMS(Fi)
= Scaled MRMR(Fi, c)+ SVMS(Fi)average. (22)

4.6. Search strategies and subset generation in MR–SVMS/MRMR–
SVMS

The hybrid approach uses a Backward Elimination (BE) search
strategy to generate a subset of APIs. The detail steps of BE process
has been presented in Algorithm 1. Initially hybrid starts with the
full set. Subset generation in BE is guided by the wrapper–filter
hybrid heuristic score. The combined score computation follows
the steps of Sections 4.3 and 4.4. When the number of APIs in BE
process is significantly reduced compared to the total, the filter
score component is weighted less than the wrapper score as:

MR_SVMS(Fi)_final

=

u ∗
I(Fi; c)

max
Fi∈S

I(Fi; c)

+ 
v ∗ SVMS(Fi)average


(23)

MRMR_SVMS(Fi)_final

=

u ∗MRMR_SVMS(Fi))+ (v ∗ SVMS(Fi)average


(24)

where 1 ≤ u, v ≥ 0.

4.7. Wrapper step in MR–SVMS

The proposed hybrids (MRMR–SVMS andMR–SVMS) use a sup-
port vector machine in the wrapper stage. An n-fold cross vali-
dation approach has been applied in the training. The evaluation

Table 1
Dataset description.

Type Qty Max. Size (KB) Min. Size (KB) Avg. Size (KB)

Benign 15,480 109,850 0.8 32,039
Virus 17,509 546 1.9 142
Worm 10,403 13,688 1.6 860
Rootkit 270 570 2.8 380
Backdoor 6,689 1,299 2.4 685
Constructor 1,039 77,662 0.9 1,193
Exploit 1,207 22,746 0.5 375
Flooder 905 16,709 1 1,397
Trojan 13,201 17,810 0.7 1,819

criterion of API subset is based on the average prediction accu-
racy over n-fold of the wrapper. In Algorithm 1, steps-(1–10) com-
pute the average accuracy over n-folds for the current subset of
APIs. Steps-(11–13) compute the hybrid score and ranks the APIs
based on their combined score. Steps-(14–16) generate new sub-
set based on the APIs ranking and keep the records of evaluated
API subsets and their respective accuracy. The BE processes in both
MRMR–SVMS and MR–SVMS update the scores of MRMR, MR and
SVM as well as the combined score in every iteration. The com-
bined score guides the subset generation. The BE continues until
the number of APIs in the current subset is reduced to one. The
subset with highest accuracies or close to the highest accuracies
with a fewer APIs is chosen as the final subset.

4.8. Evaluating goodness of fit of the model

The final models have been verified using statistical binary
logistic regression techniques [42], chi-square [43] and Akaike’s
Information Criterion (AIC) [44]. In logistic regression analysis,
deviance is used in lieu of sum of squares calculations [42].
Deviance (D) is a measure of the lack of fit to the data and is
calculated by comparing a given model with the saturated model
— a model with a theoretically perfect fit [43]. This computation is
called the likelihood-ratio test and is defined by

D = −2 ln
likelihood of fitted model

likelihood of the saturated model
. (25)

The results of the likelihood ratio (the ratio of the fitted model
to the saturated model) will produce a negative value, so the
product is multiplied by negative two times its natural logarithm
to produce aD valuewith an approximate chi-squared distribution
[43]. Smaller D value (leading to a smaller chi-square statistics)
indicate a better fit as the fitted model deviates less from the
saturated model. When assessed upon a chi-square distribution,
non significant chi-square values indicate very little unexplained
variance and thus, good model fit. Conversely, a significant chi-
square value indicates that a significant amount of the variance is
unexplained.

The Akaike’s Information Criterion (AIC) [44] was first intro-
duced by [44] to measure a model fitting accuracy. For the logistic
regression model, it is defined by:

AIC = −2 ∗ log (likelihood)+ 2 ∗ k (26)

where k is the number of estimated parameters. In itself, the
value of the AIC for a given dataset has no meaning. It becomes
interesting when it is compared to the AIC of a series of models
specified a priori, the model with the lowest AIC being the ‘best’
model among all models specified for the data as they reflect a
trade-off between the lack of fit and the number of parameters in
the model.

Downloaded from http://iranpaper.ir
http://translate68.ir

8 S. Huda et al. / Future Generation Computer Systems () –

Fig. 4. Accuracies in (%) at different iterations of BE process for SVM, MRMR, MR, MR with SVM and MRMR with SVM.

Fig. 5. API selection procedure in the hybrid using the score of API set with 50 API.

5. Dataset

We have gathered 66,703 executable files in total consisting of
51,223 recent Malware datasets and the remaining being benign
datasets as shown in Table 1. Such large malware datasets with
obfuscated and unknown malware used in this paper have been
collected from honeynet project and VX heavens [18]. The API call
statistics was prepared by following feature generation procedure
described in Fig. 3. The 15,480 benign datasets include: application
software such as Databases, educational software, mathematical
software, image editing, spreadsheet, word processing, decision
making software, internet Browser, email and system related
software and programming language software. Both (Malware and
Benign) have been uniquely named according to their MD5 hash
value.

6. Experimental results and discussion

The proposed approaches (MR–SVMS and MRMR–SVMS) are
tested using a 10-fold cross validation and are executed for 10-
trials. Then the results are compared with independent filters
(MR and MRMR) and wrapper (SVM) which are also executed for
10-fold cross validation and are executed for 10-trials. In the BE
process, 2/3 of the iterations uses (u = u′ = 1) and the last 1/3 of

the iterations uses (u = 0.3, u′ = 0.7). The average accuracies
from 10 trials were considered for the assessment of the final
accuracies which are summarized in Fig. 4. The detail are given in
the Appendix in Table 4. As shown in the Appendix in Table 4, the
wrapper approach, SVM, achieves an accuracy of (96.84%) based
on all APIs, the filter approaches (MRMR andMR) achieve accuracy
(96.13% and 95.98%) accordingly. The hybrids of wrapper and
filter (MRMR–SVMS and MR–SVMS) start with 972 APIs where the
accuracies (96.5% and 96.8%) are achieved. Table 4 in the Appendix
provides accuracies for successive BE iterations for all algorithms.
At each iteration, the scores of APIs for filter and wrapper are
computed and thenhybrid score is computed. BE process generates
a total of 972 subsets only instead of 2972 for the worst case. Some
of the sample comparative score graphs for subsets are presented
here to demonstrate the selection process of API subset in the
BE of the proposed hybrid approaches. In Fig. 5, a score chart for
the set with 50 APIs is presented. Fig. 5 shows that wrapper-SVM
provides lowest score for API-252, whereas Filter-MRMR provides
lowest score for API-800. However hybridMRMR–SVMS computes
lowest score for API-286. Therefore, the hybrid eliminates the API-
286 at the 50th iteration. In the next iteration of BE process for
MRMR–SVMS, Fig. 6, the hybrid re-computes all scores and shows
that the API-950 attains the lowest score for SVM, the API-800
attains the lowest score for MRMR. The API-757 has the lowest

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 9

W
ei

g
h

t

API set

Weight of API set of 49 API

SVM MRMR HYBRID

757 509 950 252 123 277 154 505 466 199 366 913 438 525 970 585 76 158 372 428 969 254 272 692 800 563 710 707 698 339 273 932 427 304 324 363 931 957 958 57 330 360 480 477 94 484 404 580 376
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 6. API selection procedure in the hybrid using the score of API set with 49 API.

(a) 15 API. (b) 14 API.

(c) 13 API.

Fig. 7. API selection procedure in the hybrid using the score of API set with different number of APIs.

combined score. Therefore the MRMR–SVMS eliminates API-757
in this iteration. The BE process in the hybrid (MRMR–SVMS)
continues. The subset generation for APIs at different stages have
been more presented in (Fig. 7(a)–(c)). The accuracies for different
subset of APIs for (MRMR–SVMS) have been presented in the
Appendix in Table 4 and also in Fig. 4 and the receiver operating
characteristics (ROC) curves have been presented in Figs. 8 and
9. Since the total number of APIs is very large and our intention
is to find a smaller subset of APIs, we consider a set of 50 APIs
for comparison. Therefore the final subset is considered from the

last 50 iterations of BE process for all algorithms. From Appendix,
Table 4 and Fig. 4, it is seen that MR–SVMS achieves 92.944% for
30 APIs which is higher than both MRMR, MR and the wrapper
SVM.MRMR achieves 91.614% for 33 APIs,MR achieves 91.833% for
40 APIs and SVM achieves 91.953% for 39 APIs. The MRMR–SVMS
achieves the highest accuracy (94.362%) with 14 APIs which is
higher than others. The APIs includes in the set 14 APIs have been
listed in Table 2 which lists the 14 set APIs for SVM, MR, MRMR
MR–SVMS as well. Both hybrid approaches (MRMR–SVMS and
MR–SVMS) perform better than the independent filters (MRMR

Downloaded from http://iranpaper.ir
http://translate68.ir

10 S. Huda et al. / Future Generation Computer Systems () –

Fig. 8. Receiver operating characteristics curve (ROC) for MRMR–SVMS.

Table 2
APIs for final subset (14 set) for MRMR–SVMS and also APIs for (14 set) for other
algorithms.

MRMR–SVMS MR–SVMS MR MRMR SVM

57 57 57 65 57
94 94 94 203 94

330 232 304 330 232
339 304 323 360 304
360 323 324 387 323
376 375 363 480 339
404 376 404 482 363
477 404 427 516 375
480 427 428 580 404
484 477 477 638 427
563 484 580 641 477
580 580 710 689 563
957 931 878 752 580
958 958 958 957 958

Table 3
Statistical validation (14 set) for MRMR–SVMS, MR–SVMS, MRMR, SVM and MR.

Model
criteria

MRMR–SVMS MR–SVMS MR MRMR SVM

AIC 819.588 965.451 1068.684 845.527 981.114
Chi Square 789.588 935.451 1038.684 815.527 951.114

and MR) and the wrapper SVM and find smaller subset of APIs.
However MRMR–SVMS achieves the highest accuracy (94.362%)
with a compact set of 14 APIs. MRMR–SVMS also shows an
accuracy of 96.042% with 291 APIs. But this is a set of very high
number of APIs compared to 14 APIs.

6.1. Statistical validation of models

Binary logistic regression is deployed to assess the goodness of
fit of the final models of the proposed approaches in terms of their
APIs selection and accuracies. The statistical selection criteria for
the best approach are the values of Chi Square and AIC. The logistic
regression model is fitted to the individual 14 predictors (APIs)
selected by different approaches. Table 3 presents the summary
output under the different techniques. Based on the criteria listed
in Section 4.8, we can conclude that the best performing APIs are
the one selected by MRMR–SVMS. This set of APIs has led to the
minimum AIC and Chi Square values. The ROC curve also confirm
this statement as the area under the ROC curve for MRMR–SVMS
is much closer to the upper left corner of the graph indicating that

the hybrid has the best prediction ability. The logistic regression
results in Table 3 also confirm that the proposed approaches
outperform the existing models including independent filter and
wrapper approaches.

6.2. Computational performances and search space complexity

The hybrid algorithms run a backward elimination (BE) process
where each iteration involves the computational time in training
the SVM, the computation of MR, MRMR, SVM and hybrid scores.
At the beginning, when all APIs are used, the time for training
and computing scores (MR, MRMR, SVM and hybrids) will be
the highest. Subsequent computation for aforementioned scores
will take less time. Considering the initial computational cost as
a constant-maximum value including the cost for n-fold cross-
validation, the rest of thewrapper searchprocess in theBE iteration
for MR, MRMR, SVM, MRMR–SVMS and MR–SVMS depends on the
total number of BE iterations. For our proposed hybrid approaches,
the total number of BE iterations is equal to the dimensions
of the API set as mentioned in Algorithm 1. Therefore hybrids
(MRMR–SVMS andMR–SVMS) generate (m−1) subsets of features
which demonstrate a search space complexity of a linear-function
of the dimensions of the set of APIs. Thus hybrid approaches
reduce the search space complexity. This also shows that the
hybrid approaches have linear computational time complexity
which is a function of the dimensions of the set of API set. The
experimental platform was 3.2 GHz Intel Core Duo CPU with 2 GB
of RAM. The computational time for MR, MRMR, SVM and hybrids
is 2.98, 3.08, 2.43 h.MR–SVMS andMRMR–SVMS take longer time
(3.38, 3.68 h) than either MR or MRMR or SVM.

7. Conclusion

With obfuscation techniques such as packer, polymorphism
and metamorphism, recent malwares are able to evade from cur-
rent detection methods. Consequently, security researchers and
the anti-virus industries are facing a herculean task in extracting
payloads hidden within packed executable. There is an anticipa-
tion that API statistics could be extracted as features and can be
used to identify malware. To the best of our knowledge, in this
paper, we have proposed for the first time in the malware de-
tection domain, a hybrid framework for Malware detection using
the hybrid of filter and wrapper approaches. The filter approaches
MR and MRMR face drawback in evaluating the best subset and

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 11

Fig. 9. Receiver operating characteristics curve (ROC) for MR–SVMS.

Table 4
Accuracies for different approaches: MRMR–SVMS, MR–SVMS, MRMR, MR, SVM in different iterations of backward elimination process.

No of API MRMR+ SVM MR+ SVM MR MRMR SVM No of API MRMR+ SVM MR+ SVM MR MRMR SVM

972 96.506 96.815 96.135 95.98 96.846 157 93.537 92.053 91.991 94.249 89.425
971 96.846 96.722 95.949 96.042 96.289 156 93.878 92.084 92.177 93.135 89.703
970 96.877 96.908 96.011 96.135 96.382 155 93.506 92.641 92.022 93.754 89.703
969 96.815 96.228 96.135 96.166 96.289 154 94.434 92.146 91.991 93.723 88.126
968 96.475 96.475 96.073 96.135 95.547 153 93.383 91.775 91.651 94.465 88.776
967 96.444 96.691 96.289 96.599 96.104 152 93.754 91.96 91.528 94.001 88.033
966 96.691 96.939 96.259 96.599 96.104 151 93.785 92.301 92.022 93.939 89.796
965 96.877 96.444 96.259 96.413 96.568 150 94.218 92.331 91.991 94.125 89.054
964 96.413 96.197 96.197 96.073 96.382 149 93.908 92.177 91.837 94.465 89.054
963 96.63 96.66 96.166 96.32 97.31 148 93.878 92.579 91.528 93.939 88.683
962 96.289 96.259 96.011 96.444 96.197 147 94.28 92.331 92.022 93.816 90.816
961 96.568 96.444 96.66 96.166 96.197 146 93.692 92.486 92.115 93.97 89.332
300 95.826 95.949 91.218 95.671 90.631 145 93.537 92.393 91.775 93.135 88.683
299 95.547 95.733 91.342 95.795 90.353 144 93.692 91.96 91.682 93.692 89.981
298 95.887 95.516 92.239 95.176 89.796 143 93.816 92.115 91.682 93.259 88.776
297 95.733 95.362 91.558 95.207 88.312 142 93.908 92.424 92.022 93.321 90.631
296 95.949 95.516 91.806 96.011 88.126 141 94.156 91.991 91.342 93.723 88.59
295 95.455 95.455 91.929 95.795 90.074 140 93.785 91.899 91.651 93.785 90.074
294 95.3 95.64 91.466 95.887 90.909 139 93.723 92.362 91.033 93.939 87.941
293 95.733 95.887 91.589 96.011 89.796 138 93.476 91.868 90.909 93.63 87.941
292 95.826 95.269 91.435 95.702 88.033 137 93.105 92.424 91.28 93.445 89.518
291 96.042 95.578 91.249 95.114 90.724 136 93.908 92.764 91.033 93.939 90.909
290 95.485 95.764 92.084 95.949 90.909 135 93.97 92.177 91.249 93.63 88.961
289 95.671 95.764 91.373 95.578 90.353 134 93.568 92.795 90.878 93.197 88.312
288 95.485 95.795 91.095 95.609 90.724 133 92.672 92.641 90.693 93.908 90.26
287 95.64 95.733 92.115 95.764 89.425 132 93.105 92.331 91.064 93.414 89.981
286 95.671 95.887 92.239 95.145 90.26 131 93.476 92.486 91.744 93.506 88.683
285 95.733 95.485 91.249 95.826 90.074 130 93.383 92.641 91.682 92.919 90.631
284 95.702 95.671 91.342 95.3 90.167 129 92.857 92.424 91.249 93.074 90.353
283 95.702 96.011 91.713 95.609 90.26 128 92.95 92.764 90.538 92.764 90.445
282 95.702 95.764 91.713 95.98 90.538 127 92.95 93.383 90.878 93.135 90.631
281 95.516 95.424 91.156 95.857 89.518 126 92.95 93.135 91.342 93.352 89.332
280 95.64 95.331 92.27 95.485 89.703 125 92.733 92.95 90.971 92.795 88.776
279 95.671 95.609 91.651 95.362 90.445 124 92.641 92.641 91.033 92.672 89.61
278 95.269 95.516 91.929 95.671 90.353 123 93.043 92.95 91.558 92.764 89.703
277 95.702 95.578 91.744 95.393 89.889 122 93.012 92.208 91.126 93.445 87.848
276 95.455 95.455 91.929 95.702 89.796 121 93.352 92.115 91.404 92.795 89.054
275 95.485 95.578 91.589 95.609 90.631 120 92.61 91.991 90.847 93.166 89.239
274 94.96 95.578 91.497 96.011 91.095 119 93.105 92.053 90.878 93.043 89.796
273 95.485 95.578 91.899 95.671 90.538 118 93.105 91.62 91.342 93.383 89.796
272 95.053 95.083 91.466 96.073 90.353 117 92.795 91.528 91.373 92.795 88.033
271 95.145 94.774 91.187 95.733 90.631 116 92.27 91.466 90.847 92.95 89.332
270 95.331 95.547 91.837 95.918 90.167 115 92.424 91.62 90.476 92.826 89.239
269 95.949 95.516 91.064 95.331 90.26 114 92.733 91.249 91.435 92.579 88.683
268 96.135 95.114 92.022 95.795 90.631 113 92.826 91.62 91.435 92.826 89.703
267 95.887 94.682 91.806 95.238 90.074 112 93.043 91.435 91.187 92.795 88.59
266 95.857 94.898 91.528 95.949 90.724 111 93.259 90.6 91.497 92.672 88.776
265 95.207 95.083 91.991 95.516 90.538 110 92.888 90.971 91.96 93.29 89.239

(continued on next page)

Downloaded from http://iranpaper.ir
http://translate68.ir

12 S. Huda et al. / Future Generation Computer Systems () –

Table 4 (continued)

No of API MRMR+ SVM MR+ SVM MR MRMR SVM No of API MRMR+ SVM MR+ SVM MR MRMR SVM

264 95.826 95.393 91.744 95.455 88.961 109 93.043 91.404 91.96 93.197 89.981
263 95.887 95.053 91.899 96.104 90.167 108 92.486 91.713 91.218 92.826 89.518
262 95.795 95.083 91.218 95.455 90.631 107 92.641 91.466 91.156 93.197 90.26
261 94.867 94.867 91.528 95.764 90.26 106 92.919 91.218 91.095 92.795 88.497
260 95.176 95.114 91.589 95.609 88.868 105 92.919 91.218 91.064 92.764 88.776
259 95.516 94.774 91.187 95.3 89.796 104 92.95 91.187 90.909 93.012 88.961
258 96.073 94.774 91.682 95.826 90.353 103 92.857 90.785 90.167 92.826 91.002
257 95.207 95.053 91.651 95.702 88.683 102 92.764 90.847 91.497 92.424 89.981
256 95.393 95.053 91.899 95.547 90.26 101 92.579 90.847 90.909 93.074 88.033
255 95.918 94.774 91.744 95.887 89.796 100 92.888 91.064 90.94 92.95 90.074
254 95.671 94.836 91.651 95.795 89.425 99 92.764 91.156 93.166 91.095 89.796
253 95.671 94.187 91.837 95.3 89.796 98 92.641 91.404 92.239 90.94 89.518
252 95.485 94.836 91.929 95.485 89.889 97 92.641 91.095 92.424 91.373 90.167
251 95.516 95.022 91.837 95.547 90.538 96 92.486 91.929 91.96 90.94 90.816
250 95.393 95.207 90.94 95.547 90.816 95 92.177 90.785 92.455 90.538 90.074
249 95.516 94.651 91.002 95.733 90.631 94 92.424 90.631 92.239 91.033 92.022
248 96.011 94.62 91.466 95.393 89.703 93 92.548 91.311 91.713 91.156 89.796
247 95.331 94.527 91.528 95.918 91.187 92 92.641 90.693 92.239 91.466 90.538
246 95.238 94.341 91.497 95.393 89.703 91 91.991 91.806 91.991 92.084 89.981
245 95.609 94.218 91.373 95.455 89.703 90 92.053 91.218 92.517 91.435 90.816
244 95.362 94.496 91.775 95.609 89.703 89 92.177 91.528 92.826 92.208 90.445
243 95.485 94.156 92.208 95.269 89.518 88 92.146 91.558 92.084 91.929 91.558
242 95.826 94.465 91.899 95.671 90.816 87 92.362 91.528 91.868 90.909 90.445
241 95.64 94.898 91.713 95.238 89.518 86 92.826 91.466 92.177 90.94 91.744
240 95.485 94.465 91.651 96.011 89.518 85 91.868 91.806 92.486 91.466 90.724
239 95.702 94.249 91.651 95.455 89.518 84 92.084 92.301 91.899 92.177 91.651
238 95.176 94.125 91.868 95.671 90.074 83 92.053 91.311 92.177 91.62 91.558
237 95.022 94.125 91.991 95.331 91.837 82 92.115 91.929 92.239 91.62 90.724
236 95.609 93.785 92.641 95.331 90.26 81 91.929 91.991 92.331 91.466 90.538
235 95.547 94.094 92.208 95.764 90.538 80 91.806 92.331 91.528 91.373 91.28
234 95.702 94.341 91.558 95.393 91.002 79 91.126 92.424 91.342 91.837 91.466
233 95.3 93.723 91.96 95.918 89.054 78 91.064 92.981 91.404 92.053 91.558
232 95.547 94.187 92.208 95.64 89.889 77 90.785 93.074 91.373 91.837 90.724
231 95.485 94.125 91.991 95.114 90.167 76 91.589 92.733 91.064 91.806 90.538
230 95.3 93.939 91.775 95.609 89.796 75 90.291 92.331 90.724 92.084 91.558
229 95.362 94.682 92.424 95.857 88.961 74 91.064 92.084 91.033 91.558 90.816
228 95.64 94.28 91.713 95.393 90.26 73 90.012 92.301 90.662 92.053 90.631
227 95.393 93.878 91.837 95.764 90.074 72 91.806 92.888 90.569 91.373 91.187
226 94.991 93.939 91.899 95.3 88.961 71 90.816 92.517 90.94 92.301 90.816
225 95.516 93.908 92.053 95.455 89.796 70 91.837 92.331 91.651 91.96 90.074
224 95.547 94.094 92.146 95.578 89.981 69 92.084 92.455 91.466 91.187 92.301
223 95.176 93.939 91.837 95.516 89.61 68 92.517 92.517 91.806 91.651 90.167
222 95.207 94.341 91.806 95.702 89.889 67 92.548 92.579 91.991 92.239 91.651
221 94.991 93.939 91.373 95.269 90.724 66 92.733 92.517 91.837 92.084 90.167
220 95.516 94.372 92.022 95.424 90.724 65 91.899 91.558 91.929 91.466 91.002
219 95.022 93.847 91.589 95.331 90.353 64 92.95 91.806 91.528 91.435 91.095
218 94.836 93.939 91.744 95.207 89.796 63 91.62 92.239 92.486 91.806 90.538
217 95.053 93.754 92.393 95.671 89.054 62 92.733 92.424 92.084 91.589 89.332
216 94.774 94.341 91.929 95.238 89.518 61 91.156 92.27 92.115 91.62 89.332
215 94.743 93.847 91.775 95.516 89.889 60 91.868 92.888 92.084 91.837 90.909
214 94.991 93.63 91.991 95.145 88.961 59 92.239 92.61 92.331 92.084 91.558
213 94.991 93.63 92.331 94.62 88.868 58 92.115 91.929 91.806 91.558 89.703
212 95.269 94.372 92.084 95.083 90.074 57 91.713 92.362 91.435 91.311 91.002
211 94.898 93.847 91.218 95.053 89.518 56 91.62 92.455 90.847 92.27 91.095
210 95.3 93.847 91.744 95.331 90.074 55 91.435 91.435 90.353 91.806 91.466
209 94.929 93.414 91.929 95.238 88.59 54 91.435 91.744 90.816 91.96 91.002
208 94.712 93.29 91.899 95.362 89.796 53 91.156 91.929 91.002 91.095 90.167
207 95.022 93.445 91.806 94.96 89.425 52 91.342 91.033 90.878 91.899 91.187
206 94.929 93.414 92.27 95.114 89.61 51 91.62 91.713 91.651 91.589 89.889
205 94.589 93.352 92.022 95.362 90.353 50 91.404 92.022 90.909 91.28 91.002
204 94.96 93.228 91.713 95.485 88.868 49 91.187 91.589 91.249 91.837 92.301
203 94.743 93.816 92.888 94.434 89.518 48 91.682 91.373 91.497 91.033 91.095
202 95.053 93.29 91.373 95.022 90.445 47 90.724 92.579 90.909 91.713 91.837
201 95.207 93.074 91.868 94.743 89.332 46 91.311 91.218 91.373 92.022 90.167
200 95.022 93.383 92.424 95.022 88.961 45 90.754 91.342 91.218 91.929 91.651
199 94.589 93.506 91.435 94.403 90.074 44 90.785 91.868 90.631 91.806 90.909
198 94.589 93.537 91.929 95.176 89.703 43 91.156 91.682 90.878 91.868 91.744
197 94.991 93.383 91.528 94.867 90.631 42 91.589 91.713 91.311 90.971 91.651
196 94.465 93.692 92.672 94.898 90.538 41 91.28 91.651 90.724 91.156 91.744
195 93.816 93.785 92.455 94.187 88.59 40 91.62 91.713 91.833 90.909 89.889
194 94.156 93.043 92.331 94.62 88.312 39 91.002 91.528 91.002 90.878 91.953
193 94.991 93.908 91.96 94.249 90.538 38 91.404 91.744 91.126 91.033 90.909
192 94.527 93.321 91.899 94.558 89.054 37 91.558 91.435 90.751 90.754 91.466
191 94.712 93.63 92.362 94.434 88.683 36 91.033 91.837 90.445 90.847 90.538
190 94.651 93.506 91.868 94.496 90.445 35 90.816 91.311 90.569 90.65 91.373
189 94.743 93.847 92.208 94.682 90.816 34 91.589 91.156 90.631 90.538 91.187

(continued on next page)

Downloaded from http://iranpaper.ir
http://translate68.ir

S. Huda et al. / Future Generation Computer Systems () – 13

Table 4 (continued)

No of API MRMR+ SVM MR+ SVM MR MRMR SVM No of API MRMR+ SVM MR+ SVM MR MRMR SVM

188 94.743 93.105 92.424 95.114 90.167 33 91.28 92.022 90.445 91.614 90.909
187 94.465 93.135 92.27 94.712 90.631 32 90.291 92.713 90.631 90.074 90.631
186 94.465 93.135 91.806 95.114 89.332 31 91.002 92.218 90.012 90.043 90.353
185 94.558 93.352 92.301 94.589 89.703 30 90.693 92.944 89.734 90.136 89.889
184 93.723 92.733 92.177 94.31 89.518 29 91.002 92.187 89.858 89.858 89.61
183 94.434 92.981 92.177 94.434 89.239 28 90.383 90.94 90.507 90.569 90.631
182 94.867 92.579 92.301 94.28 88.219 27 91.744 90.064 90.383 88.899 89.61
181 94.682 92.888 91.744 94.434 89.425 26 91.249 91.28 89.951 90.012 90.167
180 93.506 93.135 92.084 94.187 88.59 25 91.6 91.929 89.641 89.487 90.167
179 94.712 92.95 92.517 94.805 89.332 24 91.847 91.806 89.641 89.61 89.332
178 94.31 93.352 91.806 94.651 89.703 23 92.28 91.62 90.012 90.229 90.538
177 94.465 92.703 92.301 94.589 90.26 22 92.93 91.187 90.198 90.847 91.28
176 94.372 92.826 92.022 94.187 88.683 21 93.27 92.022 90.353 90.476 91.28
175 94.187 92.857 92.672 94.434 89.332 20 93.455 91.744 90.105 90.291 91.466
174 94.372 92.888 92.27 94.31 89.054 19 93.651 91.991 89.796 90.136 90.538
173 94.249 93.043 92.517 94.063 89.332 18 93.806 91.96 89.672 89.27 90.187
172 94.125 92.301 91.868 93.754 89.332 17 92.455 91.486 89.487 89.487 90.187
171 94.527 92.084 92.424 93.908 90.631 16 93.96 91.486 88.497 88.281 90.002
170 93.878 92.239 92.022 94.032 89.61 15 93.86 91.27 87.508 87.539 90.022
169 94.28 92.301 92.27 94.403 89.61 14 94.362 91.022 87.415 87.168 90.538
168 94.372 91.96 92.053 94.28 89.147 13 93.62 91.651 86.735 87.322 90.909
167 94.156 92.362 92.27 94.31 88.219 12 92.28 91.744 85.962 86.611 90.558
166 93.754 92.301 92.331 94.558 89.425 11 91.497 91.837 85.591 85.56 90.208
165 94.063 91.775 92.331 93.908 87.662 10 90.569 91.806 86.24 85.9 90.558
164 93.723 91.868 92.331 93.506 89.981 9 90.724 91.342 86.209 85.9 90.724
163 94.249 92.084 92.084 93.878 89.61 8 89.827 90.724 84.756 84.91 90.167
162 94.249 93.074 92.424 94.063 89.981 7 88.961 89.765 84.632 84.168 87.239
161 94.001 92.331 92.022 93.878 89.054 6 87.477 87.755 80.365 80.087 83.054
160 94.125 91.682 92.61 94.063 89.703 5 87.106 88.002 80.21 79.994 83.126
159 94.001 91.929 91.713 93.878 88.219 4 86.549 87.353 77.087 76.747 81.384
158 93.599 91.991 91.744 93.568 89.054 3 84.972 85.683 76.592 76.562 81.106

wrapper suffers from computational overhead for repeated induc-
tion process. The goal of this paper is to exploit the strengths of
each of these two approaches towards the development of a hy-
brid framework for efficient malware detection. Several important
performance measures including accuracy, compact feature set,
Chi Square and Akaike information criterion (AIC) and area under
ROC curve were employed to assess the efficacy of our proposed
models and to compare with the independent filters and wrap-
pers. The experimental results show that the hybrid approaches
MRMR–SVMS andMR–SVMS provide higher accuracies than other
approaches. The novelty of proposed hybrid wrapper–filter mod-
els (MRMR–SVMS and MR–SVMS) lies on the fact that the pro-
posed MRMR–SVMS/MR–SVMS achieve the highest accuracy with
a very compact subset of significant APIs through a signature-free
approach with a comparatively lower computational and search
space complexities. The proposed signature-free approaches are
also able to detect the malware variants which evade detection
from signature-based approaches. The statistical goodness of fit
criteria also confirm this conclusion.

One of the major contributions of this paper is the develop-
ment of a fully-automated signature-free method to unpack, de-
obfuscate and reverse engineer the binary executable without any
need for manual inspection of assembly codes. Thus proposed ap-
proaches are able to find the API statistics without any manual in-
tervention. The novelty of the proposed hybrid framework is that it
integrates the knowledge (from the intrinsic characteristics ofMal-
wares) obtained by the filter into the wrapper approach and com-
bines the wrapper’s heuristic score with the filter’s ranking score
in the wrapper stage of the hybrid. To the best of our knowledge,
the approach is new and has not been explored yet in the context of
feature selection and malware detection. The combined heuristics
in the hybrid take the advantages of the complementary properties
of the both filter and wrapper heuristics and efficiently guide the
wrapper to find an optimal and compact API subsets. In this paper,
we consider maximum-relevance and minimum-redundancy fil-
terswith a SVMwrapper. However, choice of filtermay affect over-
all performances of the hybrid. Therefore, a suitable filter can be

Table 5
Acronyms and their meaning.

Acronyms Meaning

AV Anti-Virus
API Application Program Interface
AIC Akaike’s Information Criterion
ROC Receiver Operating Characteristic Curve
SVM Support Vector Machine
PE Portable Executable
DLL Dynamic Link Library
ANN Artificial Neural Networks
ANFIS Adaptive Neuro-Fuzzy Inference Systems
SBE Sequential backward elimination
SFE Sequential forward elimination
MRMR Maximum Relevance and Minimum Redundancy
MR Maximum relevance
MR–SVMS Maximum Relevance and SVM score
MRMR–SVMS Maximum Relevance–Minimum Redundancy and SVM score
BE Backward Elimination

selected by using different filters with the wrapper and then eval-
uating them using the wrapper evaluation criteria. We consider
these approaches of model selection for filters as a future work.

Appendix

See Tables 4 and 5.

References

[1] S. Ghosh, E. Turrini, Cybercrimes: A Multidisciplinary Analysis, Springer
Verlag, 2010.

[2] I. You, K. Kim, Malware obfuscation techniques: a brief survey, in:
International Conference on Broadband,Wireless Computing, Communication
and Applications, 2010, pp. 297–300.

[3] P. Singhal, N. Raul, Malware detection module using machine learning algo-
rithms to assist in centralized security in enterprise networks, International
Journal of Network Security & Its Applications (IJNSA) 4 (2012).

[4] A. Stabek, P. Watters, R. Layton, The seven scam types: Mapping the terrain of
cybercrime, in: Cybercrime and Trustworthy Computing Workshop, Ballarat,
Victorial, Australia, 2010, pp. 41–51.

Downloaded from http://iranpaper.ir
http://translate68.ir

http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref1
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref3

14 S. Huda et al. / Future Generation Computer Systems () –

[5] S. Treadwell, M. Zhou, A heuristic approach for detection of obfuscated
malware, in: Proceedings of the IEEE International Conference on Intelligence
and Security Informatics, IEEE Press Piscataway, NJ, USA, 2009, pp. 291–299.

[6] K. Tang, M.T. Zhou, Z. Z -H, An enhanced automated signature generation
algorithm for polymorphic malware detection, Journal of Electronic Science
and Technology of China (JESTC) 8 (2010) 114–121.

[7] P. Desai, A highly metamorphic virus generator, International Journal of
Multimedia Intelligence and Security (IJMIS) 1 (2010) 402–427.

[8] A.H. Sung, J. Xu, P. Chavez, S.Mukkamala, Static analyzer of vicious executables
(save), in: 20th Annual Computer Security Applications Conference, Tucson,
Arizona. USA, 2004, pp. 326–334.

[9] B. Birrer, R. Raines, R. Baldwin, M. Oxley, S. Rogers, Using qualia and
hierarchical models in malware detection, J. Inf. Assur. Secur. 4 (2009)
247–255.

[10] S. Choi, H. Park, H.i. Lim, T. Han, A static api birthmark for windows binary
executables, J. Syst. Softw. 82 (2009) 862–873.

[11] C. Wang, J. Pang, R. Zhao, W. Fu, X. Liu, Malware detection based on suspicious
behavior identification, in: In proceedings of First International Workshop
on Education Technology and Computer Science, Wuhan, Hubei, China, 2009,
pp. 198–202.

[12] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, L. W, Eureka: a framework for
enabling static malware analysis, in: Jajodia, S., Lopez, J. (Eds.), Computer
Security - ESORICS 2008. Springer Berlin / Heidelberg. volume 5283, 2008,
pp. 481–500.

[13] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, Y. Elovici, Detecting unknown
malicious code by applying classification techniques on opcode patterns,
Security Informatics 1 (2012) 1–22.

[14] R. Kohavi, G. John,Wrappers for feature subset selection, Artificial Intelligence
97, 273–324.

[15] H., B.D. Wang, F. Murtagh, Axiomatic approach to feature subset selection
based on relevance, IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999).

[16] C.N. Hsu, H.J. Huang, S. Dietrich, The annigma-wrapper approach to fast feature
selection for neural nets, IEEE Trans. Syst. Man Cybern. B 32 (2002) 207–212.

[17] J.S.L. II-Seok Oh, B.R. Moon, Hybrid genetic algorithms for feature selection,
IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004).

[18] VX-Heavens-Online-Resource, Vx heavens. (2011, 2/3). Available at
http://vx.netlux.org/.

[19] E. Eilam, Reversing: Secrets of Reverse Engineering, first ed., Wiley Publishing,
2005.

[20] M, R. Chouchane, A. Lakhotia, Using engine signature to detect metamorphic
malware, in: 2006 Proceedings of the 4th ACM Workshop on Recurring
Malcode, ACM, 2006, pp. 73–78.

[21] M. Eskandari, S. Hashemi, A graph mining approach for detecting unknown
malwares, J. Vis. Lang. Comput. 23 (2012).

[22] R. Tian, L. Batten, S. Versteeg, Function length as a tool for malware
classification, in: Proceedings of the 3rd International Conference onMalicious
and Unwanted Software : MALWARE, 2008, pp. 69–76.

[23] M. Bailey, J. Oberheide, J.e.a. Andersen, Automated classification and analysis
of internet malware, in: Proceedings of the 10th International Symposium on
Recent Advances in Intrusion Detection (RAID ’07), 2007, pp. 178–197.

[24] F. Ahmed,H.Hameed,M. Shafiq,M. Farooq, Using spatio-temporal information
in api calls with machine learning algorithms for malware detection, in:
Proceedings of the 2nd ACM workshop on Security and Artificial Intelligence,
2009, pp. 5–62.

[25] A. Sami, B. Yadegari, H.e.a. Rahimi, Malware detection based on mining api
calls, in: Proceedings of the 2010 ACM Symposium on Applied Computing,
2010, pp. 1020–1025.

[26] W. Lu, M. Tavallaee, A. Ghorbani, Automatic discovery of botnet communities
on large-scale communication networks, in: Proceedings of the 4th Interna-
tional Symposium on Information, Computer, and Communications Security,
2009, pp. 1–10.

[27] R. Tian, L. Batten, R.e.a. Islam, An automated classification system based on
the strings of trojan and virus families, in: Proceedings of the 4rd Interna-
tional Conference on Malicious and Unwanted Software: MALWARE, 2009,
pp. 23–30.

[28] J.Z. Kolter, M.A. Maloof, Learning to detect and classify malicious executables
in the wild, J. Mach. Learn. Res. 7 (2006) 2721–2744.

[29] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

[30] D. Stopel, Z. Boger, R. Moskovitch, Y. Shahar, Y. Elovici, Application of artificial
neural networks techniques to computer worm detection, in: Proceedings of
the International Joint Conference on Neural Networks, Vancouver, 2006.

[31] M. Bhattacharya, A. Das, Genetic algorithm based feature selection in a
recognition scheme using adaptive neuro fuzzy techniques, International
Journal of Computers Communications & Control (IJCCC) V (2010) 458–468.

[32] H. Ankishan, Comparison of svm and anfis for snore related sounds classifica-
tion by using the largest lyapunov exponent and entropy, Computational and
Mathematical Methods in Medicine 2013 (2013).

[33] F.J. Torczon, P. Pudil, M. Hatef, J. Kittler, Comparative study of techniques for
large-scale feature selection, in: Pattern Recognition in Practice IV, Multiple
Paradigms, Comparative Studies and Hybrid Systems, 1994, pp. 403–413.

[34] P. Royal, M. Halpin, D. Dagon, R. Edmonds, Polyunpack: automating the
hidden-code extraction of unpack-executing malware, in: Proc. of 22nd
Annual Computer Security Applications Conference, ACSAC, 2006.

[35] M.G. Kang, P. Poosankam, H. Yin, Renovo: a hidden code extractor for
packed executables, in: Proceedings of the 2007 ACMWorkshop on Recurring
Malcode, 2007.

[36] L. Martignoni, M. Christodorescu, S. Jha, Omniunpack: Fast, generic, and
safe unpacking of malware, in: Twenty-Third Annual Computer Security
Applications Conference, ACSAC 2007, 2007.

[37] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, L. W, Eureka: a framework
for enabling static malware analysis, in: Proceedings of the 13th European
Symposium on Research in Computer Security: Computer Security, 2008.

[38] IDA Pro Disassembler and Debugger, IDA Pro, 2010.
[39] SQLite-Online-Resource, Sqlite. Available at www.sqlite.org.
[40] Microsoft-MSDN, Msdn..
[41] H. Peng, C. Ding, F. Long, Minimum redundancy-maximum relevance feature

selection, IEEE Intelligent Systems 20 (2005) 70–71.
[42] W.N. Greene, Econometric Analysis, Prentice-Hall, 2003.
[43] D.W. Hosmer, S. Lemeshow, Applied Logistic Regression, second ed., Wiley,

ISBN: 0-471-35632-8, 2000.
[44] A. H, Information theory and an extension of the maximum likelihood

principle, in: Proc. of 2nd Int. Symp. on Information Theory, Akademiai Kiado,
1973, pp. 267–281.

Shamsul Huda is a Research fellow/Lecturer in School of
Science, Information Technology and Engineering (SITE),
Federation University, Australia since 2009. He has pub-
lishedmore than 30 journal and conference papers in well
reputed journals including IEEE Transactions and Elsevier
Science. His main research area is Dynamic pattern recog-
nition modeling and estimation, optimization approaches
to data mining information and network security and big
data mining. Earlier to join in the University of Ballarat, he
has worked as an Assistant professor in the Computer Sci-
ence Department in Khulna University of Engineering and

Technology (KUET), Bangladesh.

Jemal Abawajy is a full professor at school of Information
Technology, Faculty of Science, Engineering and Built Envi-
ronment, Deakin University, Australia. He is currently the
Director of the Parallel and Distributing Computing Labo-
ratory. He is a Senior Member of IEEE Computer Society;
IEEE Technical Committee on Scalable Computing (TCSC);
IEEE Technical Committee on Dependable Computing and
Fault Tolerance and IEEE Communication Society. He has
served on the editorial-board of numerous international
journals and currently serving as associate editor of the
International Journal of Big Data Intelligence and Inter-

national Journal of Parallel, Emergent and Distributed Systems. He has also guest
edited many special issues. He is the author/co-author of five books, more than
250 papers in conferences, book chapters and journals such as IEEE Transactions
on Computers and IEEE Transactions on Fuzzy Systems. He also edited 10 confer-
ence volumes.

MamounAlazab is a Research Fellow at the AustralianNa-
tional University and the co-founder of the ANU Cyber-
crime observatory. He comes froman Information Security
(Computer Science) background with previous research
experience in the ‘technology’ aspects of cybercrime re-
search. Some examples include cybercrime/cyber security,
Internet and spam regulation, reverse engineering, mal-
ware analysis, computer forensics, and network intrusion
detection.

Mali Abdollahian is an internationally recognized re-
searcher in the field of Industrial Quality Control, Quality
Assurances and Process Capability Analysis. She has more
than 23 years research experience in monitoring service
and industrial processes. She has more than 90 refereed
international journal and conference publications in the
areas of quality improvement, Quality assurance, process
capability analysis, production control and inventoryman-
agement and failure analysis.

Her researchwork involvesmonitoringmean and vari-
ability of multi-stream processes in areas such as manu-

facturing and automotive industry, clinical area, food industry and water and air
pollution processes which led to a higher level of on-line maintenance and repair
without requiring system shut-down. This would result in a cost effective plant
maintenance strategies. She has been acting as an International Technical Commit-
tee member for a number of World Congresses and International Industrial Confer-
ences.

Downloaded from http://iranpaper.ir
http://translate68.ir

http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref5
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref6
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref7
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref9
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref10
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref13
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref15
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref16
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref17
http://vx.netlux.org/
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref19
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref20
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref21
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref28
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref29
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref31
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref32
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref33
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref38
http://www.sqlite.org
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref41
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref42
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref43
http://refhub.elsevier.com/S0167-739X(14)00122-8/sbref44

S. Huda et al. / Future Generation Computer Systems () – 15

Rafiqul Islam is a Lecturer in the School of Comput-
ing and Mathematics at Charles Sturt University, Aus-
tralia. He has expertise in Network & Information Security,
Cyber-Security, Sensor Network and Machine Learning.
He received his Ph.D. and postdoctoral experience from
Deakin University, Australia. Previously he was a lead re-
searcher for anARC Linkage Project (LP) onMalware analy-
sis and classification, in collaboration with industrial part-
ners Computer Associates (CA) and RMIT University. He
also worked on several ARC funded projects as a lead re-
searcher. Currently he is working on several projects as

Chief Investigator (CI) and is supervising five Ph.D. students. He published more
than 80 refereed research articles, more than 10 book chapters, and he received
‘Best Paper Award’ for his ChinaComm 2010 conference paper. He is also an ed-
itorial board member for an international journal and General Chair and Techni-
cal Program Committee (TPC) member of various international conferences. He is a
member of the IEEE and a founder member of ATT.

John Yearwood is the Executive Dean of the Faculty of
Science and Technology. He was Director of The Centre for
Informatics and Applied Optimization (CIAO). He holds a
Bachelor of Science with first class Honours and Diploma
of Education from Monash University, a Master of Science
from the University of Sydney. He was awarded his Doctor
of Philosophy from RMIT University Australia. He has
a significant publication record, having published two
books and over 200 refereed journal, book chapter and
conference articles and has supervised Masters and many
Ph.D. research students through to completion. He is the

Editor-in-Chief of the Journal of Research and Practice in Information Technology,
and a reviewer for Australian Journal of Information.

Downloaded from http://iranpaper.ir
http://translate68.ir

	Hybrids of support vector machine wrapper and filter based framework for malware detection
	Introduction
	Related work
	Code obfuscations and current malware detection approaches
	Windows API calls for malware detection

	Filter and wrapper approaches for malware detection
	Support vector machine (SVM) based wrapper heuristics

	Proposed methodology: a hybrid wrapper--filter based framework for malware detection
	Motivation for hybridization
	Extraction of application program interface (API) statistics
	Unpack and disassemble the binary executable
	Extraction of API calls
	API call mapping and feature analysis

	Maximum relevance and minimum redundancy (MRMR)
	Hybrid of maximum relevance (MR) and SVM score (MR--SVMS)
	Hybrid of maximum relevance--minimum redundancy (MRMR) and SVM score (MRMR--SVMS)
	Search strategies and subset generation in MR--SVMS/MRMR--SVMS
	Wrapper step in MR--SVMS
	Evaluating goodness of fit of the model

	Dataset
	Experimental results and discussion
	Statistical validation of models
	Computational performances and search space complexity

	Conclusion
	Appendix
	References

