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Abstract—Worms are self-contained programs that spread over
the Internet. Worms cause problems such as lost of information,
information theft and denial-of-service attacks. The first part of
the paper evaluates the detection of worms based on content
classification by using all machine learning techniques available
in WEKA data mining tools. Four most accurate and quite fast
classifiers are identified for further analysis–Naive Bayes, J48,
SMO and Winnow. Results show that classification using machine
learning techniques could classify worms to 99% accuracy.
From the accuracy perspective, J48 performs better than other
algorithms meanwhile Naive Bayes and Winnow show the best
performances in terms of speed. The second part of the paper
analyzes the accuracy these four classifiers under the presence of
class noise in learning corpora. By injecting class noise ranging
between 0% and 50% into positive and negative corpora, results
from the simulation show gradual decrease in accuracy and
increase in false positive and false negative for all analyzed
techniques. The presence of the classes noise affects false positive
more significantly compared to false negative. The results show
that worm detection with classification algorithms could not
tolerate the presence of classes noise in learning corpora.

Index Terms—data-mining techniques, worm detection, class
noise

I. INTRODUCTION

Worms are self-contained programs that spread over the
Internet, usually by exploiting vulnerabilities in heterogeneous
software running on networked computers [1]. Worms cause
loss of information, discontinuity access, unauthorized change
of data, systems, networks or services [2], information theft [3]
and denial-of-service attacks [4]. For example, Sapphire worm
creates so much network traffic in a short time that it over-
whelms routers and other network nodes [4].

Each worm has a different way to spread. For instance,
internet worms spread through copying themselves to net-
worked resources, exploiting operating system vulnerabilities,
and penetrating public networks [5]. On the other hand, email
worms spread via infected email messages in the form of
an attachment or links to infected websites. These worms
harvest email addresses from victim machines in order to
spread further. Instant Messaging worms spread using instant
messaging applications by sending links to infected websites
to everyone on the local contact list [6]. Peer–to–peer worms
copy themselves into a shared folder by placing a copy of
itself under a harmless name.

An important characteristic of these worms is their active
propagation through networks. Although vulnerability being
exploited may vary between worms, this characteristic exists
in all worm types and should be considered when attempting
to detect any such activity. Because of this characteristic, this
paper attempts to show that content prevalent of worms could
be detected by data–mining techniques on worms content
by using machine learning techniques. We also investigate
the detection performance in terms of pruning features in
the dataset to improve the detection performance. From our
investigation, four most accurate and quite fast classifiers are
Naive Bayes, J48, SMO and Winnow. These classifiers could
classify worms with 99% accuracy.

Generating large and timely training set is a complex task,
especially due to the needs for recent and the comprehensive
corpora. The samples of worm sometimes do not reflect current
attacks, often do not include of all types of worms. Another
possible approach is using classified files (either worm or
normal) as training data set. However, since no worm detectors
ever achieve 100% accuracy, noisy learning corpora (termed
class noise, where worm trace files are present in normal
corpus and likewise, normal trace files in worm corpus)
may affect worm detection accuracy. This paper analyzes the
effects of contaminated learning corpora on the accuracy of
worm detection using Naive Bayes, J48, SMO, and Winnow
classifiers. Our simulation results in WEKA [7] show gradual
decrease in detection accuracy with increases in classes noise.
This shows that worm detection using these four classifiers
could not tolerate the presence of classes noise in the learning
corpora.

The rest of the paper is organized as follows. Section II
discusses related works in detecting worm using data mining
techniques. This section also discusses the classification with
class noises. Section III discusses the structure of worms.
Section IV shows the work flows for supervised learning worm
classification. The experiments are elaborated in Section V.
Section VI discusses the learning models for classification
under presence of class noise and their analyse in Section VII.
Conclusion and future work are in Section VIII.
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II. RELATED WORKS

There have been few attempts to use data mining techniques
for the purpose of identifying new or unknown malicious code
including worm. These techniques learn the distinctions among
different positive and negative classes. Once trained with
examples to form a generative model, a supervised-learning
technique could recognize the exact or similar patterns ob-
served during learning. Payload features could be extracted
from the content of a trace file, which could be characters,
byte strings, words, phrases or n-grams. Worm detection using
content classification techniques have shown to achieve 99%
accuracy, but none has achieved 100% detection accuracy [8]–
[10]. The learning corpora are usually labeled manually by
human (experts) and are considered correctly labeled (i.e.,
without classes noise in learning corpora).

Machine learning

The work proposed in [8] proposes a data mining framework
to detect new, previously unseen malicious executables by
finding patterns in observed dataset. These patterns are used to
detect a set of new malicious binaries. In [8], the authors com-
pare the detection accuracy between signature-based method
and three data mining algorithms: RIPPER, naive Bayes and
multi-classifier to detect unknown malicious executables. Their
results showed that detection accuracy of the data mining
algorithms could achieve more than 97%, which is over two
times the detection accuracy of signature-based methods.

A similar work in [9], applies several learning methods:
Instance-Based k (IBk), Term Frequency-Inverted Document
Frequency (TFIDF), naive Bayes, Support Vector Machine
(SVM), and J48. They also applied boosted classifier for naive
Bayes, SVM, and J48 classifiers. Their experimental results
suggest that methods of text classification are appropriate for
detecting malicious executables. Their experiment results show
that the boosted J48 give the best worm detection accuracy.
They suggest that boosting improves the performance of
unstable classifiers, such as J48, by reducing their bias and
variance.

Work in [11] proposes a worm attack model called OS-
JUMP to detect polymorphic worm. Their method detected
the worm through recognized JUMP address using signature-
based method and data mining algoritms; Bayes and Artificial
Neural Network (ANN). Their work shows that signature-
based method failed to detect polymorphic worm because
the JUMP address changed but Bayes and ANN can still
detect this type of worms. Work in [12] presented a new
approach based on ANN for detecting the presence of worm
based on the computers behavioral measures. They suggest
that the ANN approach has computational advantages when
real-time computation is needed, and has the potential to detect
previously unknown worm.

Research in [1] focuses in classifying structural and be-
havioural data by using data mining algorithms. Using WEKA,
their experiment results show that decision tree classifier offers
better classification than naive Bayes classifier for all structural
data. Moreover, their experiments show that the classification

accuracy for behavioural data is much less than the struc-
tural data. Work in [10] uses variable length of instruction
sequences that extracted from the disassembly of worms and
clean programs as the features to be classified by data-mining
techniques- Decision tree, Random Forest and Bagging. They
show their simulation result could achieve to 96% of detection
accuracy.

Machine learning with presence of class noise

There are two types of classification noise - class noise [13]
and attribute noise [14]. Class noise is mislabeled examples,
where worm trace files are labeled as normal (i.e., false nega-
tive) and likewise, normal trace files as worm (i.e., false pos-
itive). The likelihood of the presence of mislabeled examples
in learning corpora is high. There are two ways to cushioning
the impacts of class noise. First is to remove class noise by
filtering the mislabeled examples [13] and second is to develop
classifiers that are tolerant to class noise [13], [15], [16]. In the
latter approach, multi-classifier ensemble is generally used to
avoid class noise influence on the decision [17]. A variation of
naı̈ve Bayes classifier has been proposed in [13] that models
the learning under the presence of attribute noise, class noise,
or both.

Based on these researches, machine learning algorithms are
effective enough to be applied as worm detection method. Our
work extends the use of supervised-learning techniques under
the present of class noise. In this paper, we attempt to in-
vestigate the availability of all machine learning techniques in
WEKA for worm content–based detection. Our work considers
the time of processing and accuracy factors of the classification
techniques. The classifiers that could detect the worm content
faster and give higher accuracy are listed for more in-depth
analysis. We observe the detection accuracy, false positive and
false negative for each classification techniques investigated.

III. WORM STRUCTURE AND CHARACTERISTICS

Network-oriented infection strategy is the primary charac-
teristic of computer worms. The generic structures of computer
worms include essential components such as target locator
and infection propagator modules, and other nonessential
modules such as the remote control, update interface, life-
cycle manager, payload routines, and self–tracking [18] (See
Fig. 1).

Target 
Locator

Infection 
Propagator

Essential Modules Non-Essential 
Modules

Payload
Life

Cycle
Manager

Update
Interface

Remote
Control

Self--
tracking

Fig. 1. Worm Generic Structure [18]

Worm must have a target locator segment in order to spread.
Most email worms search for e-mail addresses and simply send
copies of themselves to such addresses. This could be an easy
way for worm to spread further. On the other hand, most of IP
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scanning worm variants have scanning mechanisms to scan the
network for nodes on the IP level and to check for vulnerable
systems.

Another very important component of the worm is an
infection propagator, which is used to transfer itself to a new
node. Typically, the attacker tricks the recipient into executing
the worm based on social engineering techniques [19]. Some
worms are equipped to remotely control infected systems. This
remote control module allows the authors to issue commands
to the worm such as for triggering DDoS (distributed denial
of service) tool against several unknown targets [4]. Without
such a module, the worms author cannot control the worm ever
when sending control messages to the worm copies. However,
more and more worms deploy several exploit modules to
execute the worm automatically on the vulnerable remote
system without users intervention.

Some worms variants include a life-cycle manager to control
the ability of the worm to remain active in network [18]. Many
worms have bugs in their life-cycle manager which results
in worms that run without ever stopping. Some advanced
worms have an update or plug-in interface feature to update the
worms code on already-compromised systems. The attacker is
interested in changing any detectable structure and behavior
of the worm and even sending new infection strategies to as
many compromised nodes as possible [18].

Another optional, but common component of a computer
worm is its payload. In many cases, computer worms do not
contain any payload. Examples of such payloads include data
destruction, messages with insulting text or spurious e-mail
messages sent to a large number computer victims [20]. Some
worm authors are interested in seeing how many machines
have been infected. To do this, they include in worm self-
tracking modules. Computer worms typically send the authors
an e-mail message with information about the infected com-
puter such as computer name, IP address, user information and
user e-mail address [19] to allow the author track the worms’
spread.

These essential worm modules, although sometimes
encrypted or mutating, could show prevalent content that
could be detected by looking at fixed substrings. By utilizing
these prevalence behaviour, worm may be detected based
on this information. Since fixed signatures may vary from a
worm variant to the other, the use of n–gram has been used
in few proposals [9], [21].

IV. SUPERVISED-LEARNING WORM CLASSIFICATION

Several works have proposed detetion of worm using ma-
chine learning [8]–[10]. Fig. 2 shows worm detection using
data mining techniques. These techniques require steps as
described below.

Feature Extraction

Packet trace files can be extracted to different features
such as characters, words, phrases, byte–strings and n-grams.

Fig. 2. Worm classification by using data mining techniques

In this research, we extract the executables to n-gram fea-
tures by combining each n–bytes slice into a longer string.
For instance, a byte sequence is 40 65 63 68 6F 20,
the corresponding n-grams are 40656368, 6563686F and
63686F20, respectively, for n=4. Features can be selected
(pruned) to reduce the vocabulary size to improve the classi-
fication accuracy and time. The feature selection uses certain
selection criteria to choose the most informative features. In
this work, we use information gain technique from [7] to rank
the attributes (features). Information gain (IG) is measured as
the amount of the entropy (H) difference when an attribute
contributes the additional information about the class. The
following is the information gain of attribute Xi for the class
C:
IGi = H(C) − H(C|Xi)
H(C) = −∑

p(c)logp(c) , c ∈ C
H(C|Xi) = −∑

p(x)
∑

p(c|x)logp(c|x) , x ∈ Xi, c ∈ C
In training set, we compute the IG for each unique attribute

and then remove the attributes whose IG less than predeter-
mined threshold.

Generative Model Formation

Generative model is a model that is generated based on
observable data. In machine learning, the classifiers model are
built based on observation of labeled features. Using a model
that was trained with pre-defined labeled features, a set of
features could be estimated to belong to the worms class or
otherwise.

Classification

Classification process is a procedure in which individual
features are placed into groups based on quantitative
information on one or more characteristics inherent in the
features. It is based on a training set of previously labeled
features (generative model). In this work, we use all machine
learning techniques that are provided in WEKA [7]. It
contains a collection of machine learning algorithms for data
mining tasks, more specifically, data preprocessing, clustering,
classification, regression, visualization, and feature selection.

V. EXPERIMENTING WITH WORM TRACE FILES

This section describes the experimental work to evaluate
the accuracy of worm detection through content classification
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using data mining techniques that available in WEKA (version
3.6) [7].

A. Simulation setup

Experiments conducted for this work are applied for collec-
tion of trace files that contain the payload. The trace files used
for the experiments consist of 1194 normal and 1746 worm
(malicious) packet trace files. The sources of these trace files
are from [22]–[24]. Using Wireshark [25], we convert the pcap
trace files format to the text format. We extract the packet
byte part only. Then, we separate each packet to individual
file. The byte sequences are extracted to n-gram features for
n = 4. References [9], [21] show that n = 4 produced the best
result for the classification performance.

All of the files are separated to two folders named ac-
cording to their classes. These folders are then uploaded to
WEKA in the forms of <relation, attribute, data> where we
applied filtering algorithms to convert the data format for
training and testing WEKA’s classification algorithms. Using
StringToWordVector option, the number of attributes is set to
1000. We use the nominal attributes since not all classification
algorithms can perform well for different types of attributes.

These <relation, attribute, data> sets are classified with all
available classifiers in WEKA. The classifiers that could give
the best performance in terms of accuracy and processing time
are chosen as shortlisted candidates.

For future selection, we use information gain method as the
selection algorithm. We parameterized 0.0001 ≤ IG ≤ 0.5.
For each threshold value, we remove the attributes whose IG
is less than the IG value and produce a new file with pruned
attributes. Then, we re-apply the chosen classifiers for all
pruned data set and examined the accuracy.

B. Evaluation Criterion

For the purpose of evaluating the results, we use confusion
matrices that were created for each classifier. The following
four define the members of the matrix:
nw→w: Number of correctly identified worm payload.
nl→w: Number of wrongly identified normal payload.
nl→l: Number of correctly identified normal payload.
nw→l: Number of wrongly identified worm payload.

• True Positive is defined as the ratio of worm payload
correctly classified as worm payload. It is given by

TP =
nw→w

nw→w + nw→l
(1)

• False Positive is defined as the ratio of normal payload
that were incorrectly classified as worm payload. It is
given by

FP =
nl→w

nl→w + nl→l
(2)

• True Negative is defined as the ratio of normal payload
that were correctly classified as normal payload. It is
given by

TN =
nl→l

nl→l + nl→w
(3)

• False Negative is defined as the ratio of worm payload
that were incorrectly classified as normal payload. It is
given by

FN =
nw→l

nw→l + nw→w
(4)

• Accuracy is defined as ratio of total number of predic-
tions that are correct. It is given by

Ac =
nw→w + nl→l

nw→w + nl→l + nl→w + nw→l
(5)

C. Results and Discussion

In this subsection, the performance of each of the available
data mining algorithm based on classification techniques in
WEKA are discussed. The experiments for these are carried
out with full data set for training and 10-fold cross validation
for testing purposes. The results presented in the following
were acquired on a Intel(R) Core(TM)2 Duo CPU, 2.0 GHz
and 3GB of RAM.

The four best classification algorithms in terms of accuracy
and processing time are chosen–Naive Bayes, J48, SMO,
and Winnow. We fixed the result for features that have IG
values equal to or more than 0.1 since this data gave the
better performance in terms of accuracy and processing time
for all classifiers. Table I shows best four classifiers with
their corresponding accuracy for ten-fold cross-validation and
training set. Comparative duration taken for each technique to
classify data are also shown. The detection speed depends to
the complexity of these classifiers algorithms.

TABLE I
CLASSIFICATION ALGORITHMS WITH THEIR CORRESPONDING ACCURACY

AND PROCESSING TIME

Classifiers
Accuracy
(%)

Time

10-fold C-V Training Set
NaiveBayes 94 94 1x
J48 99 99 2x
SMO 99 99 3x
Winnow 99 97 1x

Table I shows the classifiers that could classify dataset
for training and ten-fold cross validation with accuracy of
between 94% and 99%. J48, SMO and Winnow classifiers
produce higher accuracy of classification compared to Naive
Bayes classifier. For the processing time, the classifiers time
are given as comparative time compared to the shortest time.
J48 is two times slower than the Naive Bayes classifier.
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The processing time increases when the numbers of dataset
increase. Naive Bayes and Winnow classifiers, show good
speed performance.

VI. WORM CLASSIFICATION IN THE PRESENCE OF

CLASS NOISE

Simulation results in Section V show that content classifi-
cation techniques using data mining algorithms could be used
to detect worms with high accuracy. However, the generative
models generation assumes learning corpora with zero class
noise. In this section, the robustness of the data mining
approach in the presence of class noise is analyzed.

A. Learning in the Presence of Class Noise

In this subsection, we observe four classification technique-
Naive Bayes, J48, Winnow, and SMO with noisy learning
corpora.

Naive Bayes

Based on the Naive Bayes theorem, the posterior probability
of a document di being in class cj is

P (cj |di) =
P (cj)P (di|cj)∑|all classes|

k=0 P (ck)P (di|ck)
(6)

P (cj) in (6) could be easily estimated from the learning
data set where

P (cj) =
Nj

N
(7)

In (7), N is the total number of documents in the training
set meanwhile Nj is the number of documents labelled with
class cj , for all classes. However, the estimation of likelihood
probability P (di|cj) depends on the Naive Bayes model
used. Based on the multi-variate Bernoulli model [26], the
probability of di occurring in trained class cj , P (di|cj) is
defined as

P (di|cj) =
|V |∏
k=1

[BikP (xk|cj)

+(1 − Bik)(1 − P (xk|cj))] (8)

where Bik ∈ {0, 1} indicates whether feature xk (e.g., a
character, a word, or a phrase) occurs at least once in document
di and |V | is the number of features learned from learning
corpora. P (xk|cj) can be estimated as

P (xk|cj) =
1 +

∑|D|
i=1 BikP (cj |di)

|all classes| + ∑|D|
i=1 P (cj |di)

(9)

where |D| represents the number of documents in the learning
corpora. Meanwhile, P (cj |di) ∈ {0, 1} gives a binary value
that indicates whether di belongs to class cj or not. The
1 in the numerator and |all classes| in the denominator
is to prevent P (xk|cj) from equaling zero or unity [27].
Since mislabeled examples (class noise) may exist in learning
corpora, the estimation of P (xk|cj) in (9) is affected. Hence,

affected P (xk|cj) estimation affects the posterior probability
P (cj |di) in (6).

J48

J48 is an enhanced version of C4.5 [28] where in practice,
C4.5 uses one successful method for finding high accuracy
hypotheses, based on pruning the rules issued from the tree
constructed during the learning phase. Given a set S of cases,
J48 first grows an initial tree using the divide-and-conquer
algorithm as follows:

• If all the cases in S belong to the same class or S is small,
the tree is leaf labeled with the most frequent class in S.

• Otherwise, choose a test based on a single attribute with
two or more outcomes. Make this test as the root of the
tree with one branch for each outcome of the test, par-
tition S into corresponding subsets S1, S2, according to
the outcome for each case, and apply the same procedure
recursively to each subset.

J48 uses two heuristic criteria to rank possible tests: infor-
mation gain and the default gain ratio. After the building
process, each attribute test along the path from the root to
the leaf becomes a rule antecedent (pre-condition) and the
classification at the leaf node becomes the rule consequence
(post condition).

SMO

Support Vector Machine (SVM) performs classification by
constructing an N -dimensional hyperplane that optimally sep-
arates the data into two categories. In a linear case, the output
of SVM can be defined as

u = �w.�x − b, (10)

where �w is the normal vector to the hyperplane, �x is the input
vector and b is the threshold. Linear SVM also can be extended
to non-linear SVM as derived below by using a kernel function

u =
N∑

i=1

yiαiK(�xi, �x) − b, (11)

where N is the number of training examples, y is ±1 value
(refer to positive or negative examples), α is Lagrange mul-
tipliers, and K is a kernel function (include polynomial or
Gaussion kernels [29]) that measures the similarity or distance
the input vector �x and the stored training vector �xi. The SMO
classifier [7] is an improved training algorithm for SVM. This
algorithm implements sequential minimal optimization algo-
rithm that solve the smallest possible optimization problem
analytically at every step, therefore, it offers a faster technique
compare to SVM.

Winnow

Winnow algorithm [30], [31] only updates the weight vector
(w1, w2, ..wn) when a misclassified instance is encountered.
For a given instance (x1, x2, ..xn) the algorithm predicts the
output y as
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y =

⎧⎨
⎩

1 if
∑n

i=1 wixi > θ,

0 otherwise

where good bounds are obtained if θ is set to n
2 . The

algorithm updates the weights only when a mistake is made
as follows:

• if the algorithm predicts 0 and the correct label is 1
(positive example) then the weights of all active xi (non-
zero) is multipled by α (default α is set to 2)

• if the algorithm predicts 1 and the correct label is 0
(negative example) then the weights of all active xi (non-
zero) is divided by α.

In both cases, the weights of inactive xi (zero value) remain
unchanged. The key feature of Winnow is being mistake
driven. This makes the algorithm more sensitive to the
relationships among the features where its mistake bound
grows linearly with the number of relevant features.

VII. EXPERIMENTING WITH WORM TRACE FILES WITH

CLASS NOISE

Based on Fig. 3, we observe the worm detection accuracy
using data mining techniques in presence of class noise
(normal and worm) by injecting them to the learning corpora.

Feature 
Extraction

Classifier
Generative

Model

Worm Corpus

Normal Corpus

Learning 
Corpora

ResultsClassification

Learning phase

Classification phase
Inject normal 
class noise

Inject worm 
class noise

Feature 
Extraction

Fig. 3. Worm classification by using data mining techniques in presence of
class noise

We used Naive Bayes, J48, SMO and Winnow classifiers
from WEKA [7] for this evaluation. We did not modify the
classifier and used its full pre-processing functionality in our
work since we focus on worm detection accuracy due to the
presence of class noise rather than evaluating the effects of
classification and learning pre-processing. We use same trace
files in the previous work as our learning corpora. Fig. 3 shows
the setup similar to Fig. 2. This time we inject the class noise
(normal and worm) to the learning corpora. We range both
of the class noise injected to the corpus from 0% to 50%.
For each level percentage of class noise, we use these four
classifiers to classify the data. We evaluate the classification
process using ten-fold cross-validation technique.

Table II shows the accuracy of four different classifiers for
worm detection in the presence of learning classes noise. The
detection accuracy gradually decreases for varying worm class
noise and normal class noise between 0% and 50%. For all
classifiers, the accuracy drops to about 50% for class noise

of 50% for both classes. Beyond the 50% class noise level,
we can safely assume that the accuracy will gradually drop
to 0%. This trend shows that the presence of classes noise in
the learning corpora could not be accepted because it greatly
affect the worm detection accuracy.

TABLE II
ACCURACY FOR FOUR DIFFERENT CLASSIFIERS UNDER PRESENCE OF

CLASSES NOISE

Classifiers
Classes Noise������Attack

Normal
0% 10% 20% 30% 40% 50%

J48

0% 0.99 0.96 0.92 0.88 0.84 0.80
10% 0.94 0.90 0.86 0.81 0.77 0.73
20% 0.88 0.83 0.78 0.74 0.69 0.66
30% 0.82 0.77 0.71 0.68 0.64 0.60
40% 0.76 0.72 0.66 0.63 0.58 0.57
50% 0.69 0.66 0.60 0.59 0.56 0.57

Naive Bayes

0% 0.94 0.93 0.89 0.86 0.82 0.77
10% 0.88 0.84 0.80 0.76 0.75 0.70
20% 0.83 0.78 0.76 0.72 0.71 0.67
30% 0.81 0.77 0.74 0.69 0.65 0.62
40% 0.73 0.71 0.68 0.64 0.60 0.59
50% 0.69 0.65 0.62 0.58 0.59 0.50

Winnow

0% 0.99 0.92 0.89 0.83 0.79 0.75
10% 0.92 0.85 0.80 0.76 0.72 0.68
20% 0.86 0.79 0.76 0.71 0.67 0.62
30% 0.79 0.72 0.70 0.64 0.61 0.56
40% 0.71 0.63 0.63 0.59 0.55 0.54
50% 0.66 0.61 0.57 0.54 0.56 0.56

SMO

0% 0.99 0.96 0.93 0.88 0.84 0.80
10% 0.90 0.86 0.82 0.78 0.74 0.70
20% 0.81 0.77 0.73 0.69 0.65 0.61
30% 0.73 0.69 0.64 0.61 0.56 0.52
40% 0.65 0.60 0.55 0.51 0.49 0.47
50% 0.55 0.50 0.45 0.46 0.46 0.47

Table III shows the false positive rates of four different
classifiers under the presence of classes noise in the learning
corpora. The FP for J48 remains under 2% when normal class
noise is kept under 10% and worm class noise varies between
0% and 50%. Beyond 10% normal class noise, the FP drops
sharply for all worm class noise levels. Naive Bayes is worse
than J48 where FP is under 2% for 0% normal class noise,
only for worm class noise 30% or less. On the other hand,
Winnow and SMO show the class noise more than 10% for
both classes will result in high FP, which is unacceptable. This
shows that the presence of class noise significantly affects FP.

TABLE III
FALSE POSITIVE FOR FOUR DIFFERENT CLASSIFIERS UNDER PRESENCE OF

CLASSES NOISE

Classifiers
Classes Noise������Attack

Normal
0% 10% 20% 30% 40% 50%

J48

0% 0.003 0.100 0.200 0.300 0.400 0.500
10% 0.017 0.111 0.202 0.314 0.417 0.539
20% 0.004 0.115 0.365 0.484 0.595 0.682
30% 0.000 0.128 0.477 0.575 0.707 0.658
40% 0.003 0.106 0.303 0.343 0.706 0.888
50% 0.046 0.109 0.311 1.000 0.912 0.939

Naive Bayes

0% 0.144 0.178 0.246 0.330 0.400 0.500
10% 0.152 0.260 0.339 0.436 0.430 0.530
20% 0.158 0.372 0.450 0.418 0.430 0.530
30% 0.161 0.406 0.487 0.513 0.491 0.530
40% 0.317 0.399 0.497 0.506 0.537 0.575
50% 0.236 0.369 0.461 0.439 0.627 0.098

Winnow

0% 0.005 0.095 0.184 0.219 0.302 0.325
10% 0.093 0.149 0.255 0.286 0.352 0.388
20% 0.166 0.265 0.337 0.413 0.461 0.461
30% 0.244 0.394 0.441 0.410 0.596 0.564
40% 0.420 0.546 0.533 0.624 0.590 0.607
50% 0.465 0.511 0.597 0.589 0.705 0.592

SMO

0% 0.003 0.100 0.200 0.300 0.400 0.500
10% 0.106 0.211 0.310 0.408 0.511 0.609
20% 0.219 0.317 0.431 0.533 0.629 0.729
30% 0.291 0.410 0.541 0.622 0.734 0.827
40% 0.377 0.509 0.653 0.737 0.793 0.899
50% 0.534 0.626 0.769 0.711 0.882 0.899
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Table IV shows the false negative rates for four different
classifiers under the presence of classes noise in the learning
corpora. The FN for all classifiers increase to about 40% with
the increases of both class noise. The increases in normal class
noise do not significantly affect FN, which has different trend
compared to FP as previously discussed. The result shows that
SMO gives the best FN. In general, all classifiers show the FN
less affected by presence of class noise compared to FP. It can
be concluded that the presence of normal class noise in the
learning corpora is less likely to affect the detection of worm
compared to the presence of worm class noise to the accuracy
of worm detection.

TABLE IV
FALSE NEGATIVE FOR FOUR DIFFERENT CLASSIFIERS UNDER PRESENCE

OF CLASSES NOISE

Classifiers
Classes Noise������Normal

Attack
0% 10% 20% 30% 40% 50%

J48

0% 0.002 0.098 0.200 0.300 0.400 0.492
10% 0.001 0.099 0.200 0.297 0.400 0.506
20% 0.000 0.100 0.124 0.154 0.357 0.456
30% 0.000 0.100 0.103 0.144 0.392 0.013
40% 0.000 0.097 0.107 0.117 0.220 0.110
50% 0.000 0.092 0.112 0.223 0.118 0.081

Naive Bayes

0% 0.007 0.099 0.184 0.210 0.238 0.367
10% 0.009 0.096 0.111 0.116 0.219 0.355
20% 0.009 0.097 0.100 0.107 0.205 0.329
30% 0.009 0.099 0.186 0.156 0.260 0.405
40% 0.037 0.125 0.191 0.247 0.306 0.255
50% 0.051 0.136 0.191 0.285 0.302 0.775

Winnow

0% 0.004 0.076 0.120 0.182 0.197 0.257
10% 0.063 0.145 0.172 0.206 0.243 0.314
20% 0.065 0.160 0.170 0.198 0.262 0.318
30% 0.141 0.214 0.207 0.334 0.272 0.374
40% 0.144 0.219 0.235 0.248 0.355 0.253
50% 0.200 0.279 0.319 0.347 0.352 0.338

SMO

0% 0.003 0.092 0.168 0.249 0.339 0.392
10% 0.002 0.092 0.166 0.240 0.321 0.417
20% 0.001 0.092 0.162 0.232 0.308 0.392
30% 0.002 0.092 0.161 0.239 0.316 0.422
40% 0.001 0.091 0.163 0.231 0.312 0.303
50% 0.001 0.090 0.164 0.240 0.270 0.274

Our results show that these four classifiers could not tolerate
class noise (for worm and normal) classes for worm detection,
as presented in Tables II, III, and IV. The presence of class
noise in the learning corpora could not be accepted because
it greatly affect the worm detection accuracy. As shown in
Table III, false positive is more affected by the presence
of class noise in worm corpus, which causes classifiers to
wrongly identified normal payload as worm payload. However,
FN is less affected by presence of normal class noise as shown
in Table IV. A general observation from results presented in
this paper show that content classification for worm detection
must require learning corpora that are free from class noise.
Thus, the presence of class noise is not tolerable, even for less
than 10% class noise for an accurate worm detection.

VIII. CONCLUSION AND FUTURE WORK

In the first part of the paper, we evaluated the ability
of machine learning algorithms to detect worms based on
content-based classification. Initial finding from simulation
of real packet traces on WEKA show that Naive Bayes,
J48, SMO, and Winnow classifiers can detect worms with
accuracy between 94% and 99%. J48 produces the best
performance than the other classifiers. For the processing
time, most classifiers are capable to detect worm with a high
speed with the Naive Bayes and Winnow show the best speed

performances. The second part of the paper, we analyzed
the tolerance of content classification techniques with class
noise. By synthetically injecting class noise to the learning
corpora, the four best classifiers evaluated in the first part
(Naive Bayes, J48, SMO, and Winnow) could not tolerate
the presence of class noise greater than 10% especially for
worm class learning corpus. Simulation results show worm
class noise and normal class noise must be kept below 10%
for accurate worm detection.

For future works, we are planning to include more recent
and more types of worms. We are also looking forward to
implement these algorithms in hardware for real time inline
detection. In terms of noise solution, we are planning to
use three learning classes; positive, negative and unknown
(considered as noise) to analyze the detection accuracy. We
also looking forward the potential techniques to reduce effects
of noise to the accuracy of worm detection using supervised
machine learning techniques.
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