
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 1682–1691

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.063

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.063 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

 

samples as only a handful of related experts are qualified for this work [4]. As a result, the labeled 
samples for model training are usually insufficient in many cases, yielding that the detection models are 
imperfect. Secondly, the generalization ability of malware detection models learned by supervised 
methods is poor. With malicious code increasing rapidly, new variants appears frequently [5][6][7]. But 
supervised learning is to train a constant classifier with labeled data, and the classifier is not always 
suitable for detecting new variants in anther dataset, which also affect the result of detection [8][9]. 
Therefore, we study how to fulfill malware detection in more effective ways. 

Thanks to the rapid development of machine learning [10][11][12][13], new methods appear such 
as active learning [14][15][16] and semi-supervised [17][18][19] learning. These methods combine the 
advantages of supervised learning and unsupervised learning, as they not only train model with labeled 
samples like supervised learning but also make full use of unlabeled samples like unsupervised learning 
[20][21]. In this paper, we bring out a new algorithm, ColSVM, with collaborative training, a method 
belonging to semi-supervised learning, to detect malware.  

The key contributions of ColSVM are--reduces the restricted condition of collaborative training, 
making it possible to design malware detection model with the same two supervised learning methods; 
reduces the dependence on labeled samples while the detection result keeps in a high level.  

Generally, collaborative training needs to train two different classifiers, so if the feature of samples 
is multi-views, we could train classifiers from different views. But if the feature is single-view, different 
supervised learning methods should be applied to guarantee the difference of classifiers. However, when 
detecting malware, the performance of SVM outperforms competitors’ evidently while the feature of 
malware is single-view. Therefore, how to fulfill malware detection with two same SVM classifiers is 
a key issue. In this paper, ColSVM preprocesses dataset with ICA(independent components analysis) 
and dived the feature into two unrelated parts, in which way two SVM classifiers could be applied later. 
With our model, only a small amount of labeled samples is needed to achieve the family classification 
of malicious code. Experiments prove the efficiency of ColSVM. Besides, we also discuss about the 
effect of recommended samples’ number towards malware detection in the experiment.  

The rest of this paper is organized as follow: In section 2, we introduce the preliminary knowledge. 
In section 3, we explain the method for designing ColSVM. The experiment is described in section 4, 
and we make the conclusion in section 5 finally. 

2 Preliminary 
In this section, we will introduce the theories contributing to design ColSVM. 

2.1 Collaborative training 
Collaborative training is put forward by Blum and Mitchell in 1998 [22]. It runs in the following 

steps. Firstly, train two separate classifiers with two sub-feature sets respectively. Secondly, each 
classifier classifies the unlabeled data and extract recommended samples. Next, add the recommended 
samples to the train set of each other, and train classifiers for the second time. Then we would obtain 
two better classifiers and obtain the ultimate result with the two new classifiers finally. Collaborative 
training is highly effective in reducing the dependence on labeled samples. However, the theory is 
restricted to use in certain conditions which are list below. 

 (i) Feature can be split into two sets;  
 (ii) Each sub-feature set is sufficient to train a classifier;  
 (iii) The two sets are conditionally independent given the class. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.063&domain=pdf


 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 1683

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

Collaborative Support Vector Machine for Malware 
Detection 

 
Kai Zhang1,2, Chao Li3*, Yong Wang1,2*, Xiaobin Zhu4*, Haiping Wang2 

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China  
2The Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

3 National Computer Network Emergency Response Technical Team/Coordination Center of China 
4 Beijing Technology and Business University, Beijing, China 

lichao@cert.org.cn, brucezhucas@gmail.com 
 

 
Abstract 

Malware has been the primary threat to computer and network for years. Traditionally, supervised 
learning methods are applied to detect malware. But supervised learning models need a great number of 
labeled samples to train models beforehand, and it is impractical to label enough malicious code 
manually. Insufficient training samples yields imperfect detection models and satisfactory detection 
result could not be obtained as a result.  In this paper, we bring out a new algorithm call ColSVM 
(Collaborative Support Vector Machine) based on semi-supervised learning and independent component 
analysis. With ColSVM, only a few labeled samples is needed while the detection result keeps in a high 
level. Besides, we propose a general framework with independent components analysis, with which to 
reduce the restricted condition of collaborative train. Experiments prove the efficiency of our model 
finally. 
 
Keywords: malware detection; independent component analysis; semi-supervised learning 

1 Introduction 
Malware is defined as any type of computer software harmful to computers or networks, which has 

been posing a serious threat to the global security [1]. What’s more, the amount of malware is increasing 
rapidly in recent years [2][3]. Therefore, detecting malicious code is of great significance and draws 
attention of experts worldwide in the field of information security.  

Traditionally, researchers use supervised learning methods to fulfill the detection of malware, but 
the disadvantages are obvious. Firstly, it is hard to obtain an excellent model for malware detection in 
many cases. When supervised learning methods are applied to detect malware, labeled samples are 
necessary for training a detection model. However, it is impractical to label a large scale of unlabeled 

                                                           
* Corresponding authors. 

 

 

samples as only a handful of related experts are qualified for this work [4]. As a result, the labeled 
samples for model training are usually insufficient in many cases, yielding that the detection models are 
imperfect. Secondly, the generalization ability of malware detection models learned by supervised 
methods is poor. With malicious code increasing rapidly, new variants appears frequently [5][6][7]. But 
supervised learning is to train a constant classifier with labeled data, and the classifier is not always 
suitable for detecting new variants in anther dataset, which also affect the result of detection [8][9]. 
Therefore, we study how to fulfill malware detection in more effective ways. 

Thanks to the rapid development of machine learning [10][11][12][13], new methods appear such 
as active learning [14][15][16] and semi-supervised [17][18][19] learning. These methods combine the 
advantages of supervised learning and unsupervised learning, as they not only train model with labeled 
samples like supervised learning but also make full use of unlabeled samples like unsupervised learning 
[20][21]. In this paper, we bring out a new algorithm, ColSVM, with collaborative training, a method 
belonging to semi-supervised learning, to detect malware.  

The key contributions of ColSVM are--reduces the restricted condition of collaborative training, 
making it possible to design malware detection model with the same two supervised learning methods; 
reduces the dependence on labeled samples while the detection result keeps in a high level.  

Generally, collaborative training needs to train two different classifiers, so if the feature of samples 
is multi-views, we could train classifiers from different views. But if the feature is single-view, different 
supervised learning methods should be applied to guarantee the difference of classifiers. However, when 
detecting malware, the performance of SVM outperforms competitors’ evidently while the feature of 
malware is single-view. Therefore, how to fulfill malware detection with two same SVM classifiers is 
a key issue. In this paper, ColSVM preprocesses dataset with ICA(independent components analysis) 
and dived the feature into two unrelated parts, in which way two SVM classifiers could be applied later. 
With our model, only a small amount of labeled samples is needed to achieve the family classification 
of malicious code. Experiments prove the efficiency of ColSVM. Besides, we also discuss about the 
effect of recommended samples’ number towards malware detection in the experiment.  

The rest of this paper is organized as follow: In section 2, we introduce the preliminary knowledge. 
In section 3, we explain the method for designing ColSVM. The experiment is described in section 4, 
and we make the conclusion in section 5 finally. 

2 Preliminary 
In this section, we will introduce the theories contributing to design ColSVM. 

2.1 Collaborative training 
Collaborative training is put forward by Blum and Mitchell in 1998 [22]. It runs in the following 

steps. Firstly, train two separate classifiers with two sub-feature sets respectively. Secondly, each 
classifier classifies the unlabeled data and extract recommended samples. Next, add the recommended 
samples to the train set of each other, and train classifiers for the second time. Then we would obtain 
two better classifiers and obtain the ultimate result with the two new classifiers finally. Collaborative 
training is highly effective in reducing the dependence on labeled samples. However, the theory is 
restricted to use in certain conditions which are list below. 

 (i) Feature can be split into two sets;  
 (ii) Each sub-feature set is sufficient to train a classifier;  
 (iii) The two sets are conditionally independent given the class. 



1684 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 

 

For malware detection in this paper, condition (i) and condition (ii) are satisfied, but the feature does 
not meet condition(iii) due to the mutual relationship among vectors of feature set. However, it is 
necessary to solve the case and the necessity is presented in figure 1.   

 

 
        (a) view 1                                    (b) view 2 

Fig 1: The two views of Collaborative training 
 

As shown in Figure 1, figure 1(a) shows the distribution of samples in view 1, while figure 1(b) 
shows in view 2. The red dots, blue dots, circles and squares in the figure are all unlabeled samples to 
be detected, and we use red dots to represent negative samples while red dots to represent positive ones. 
Besides, for the convenience of description, we mark the samples in high degrees of confidence in 
obvious way, where the circles represent negative samples whose confidence are in high degree and 
squares represent positive ones. If the two views are independent mutually, the distribution of samples 
are different in the two views. As we can see in the figure, samples in high degrees in view 1 are 
distributed randomly in view 2. If the two views are not independent, on the contrary, the random 
distribution could not be guaranteed. In order to describe the necessity clearly, take the extreme case as 
example—supposing the distributions of samples in two views are completely consistent, we will obtain 
two same classifiers. The two classifiers’ recommended samples are also same in the case and the 
collaborative train makes no sense. Therefore, two unrelated views are of great importance for 
collaborative train, and we proposed to preprocess samples with ICA, in which way to meet the 
condition (iii) and make collaborative train feasible.  

2.2 Independent Component Analysis 
ICA is a method to find out the hidden factors or components from multidimensional statistical data 

[23]. It attempts to decompose a multivariate signal into independent non-gaussian signals. From the 
perspective of linear transformation and linear space, the source signals are non-gaussian and 
independent from each other, while the observation signal is a linear combination of source signals. The 
function of ICA is to estimate source signals without knowing both source signals and linear 
transformation. The basic idea of ICA theory is to extract signals which are as independent as possible 
from a set of mixed observation signals, and then characterize the other signals with the independent 
signals [24]. ICA can be described mathematically as follows: 

The data are represented by the random vector 𝑿𝑿 = (𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑚𝑚)𝑇𝑇  and the components as the 
random vector 𝑺𝑺 = (𝑠𝑠1, 𝑠𝑠2 … 𝑠𝑠𝑚𝑚)𝑇𝑇. ICA can be expressed as the liner relationship between X and S--
 𝑿𝑿 = 𝑨𝑨𝑺𝑺 = ∑ 𝑎𝑎𝒊𝒊𝑠𝑠𝒊𝒊 . Here 𝐴𝐴 = (𝑎𝑎1, 𝑎𝑎2 … 𝑎𝑎𝑚𝑚) is the mixing matrix in the formula. Then we could get 
signal Y with formula 𝒀𝒀 = 𝑾𝑾𝑿𝑿 = 𝑾𝑾𝑨𝑨𝑺𝑺, where  𝑨𝑨 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑾𝑾). 

 

 

The task of ICA is to obtain a separation matrix W through X, making signal Y the most optimal 
approximation to S. 

2.3 Support Vector Machine 
In this paper, we design model with SVM (support vector machine) to detect malicious code. SVM 

is an excellent machine learning method based on supervised learning [25][26]. It includes two cases--
linear separable problem and nonlinear separable problem. In the case of linear separable problem, the 
train set is define as   𝛺𝛺 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1,2…𝑁𝑁} ⊂ 𝑅𝑅𝑚𝑚 × {−1,1} , ,where  𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚 , 𝑦𝑦𝑖𝑖 ∈ {−1,1} . 
Supposing the set is linear separable, then we’ll obtain a hyperplane 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0(𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚), and the 
formula can be expressed as 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 + b) ≥ 1,i=1,2…N. In the case of nonlinear separable problem, 
the problem is more complicated and we can’t fulfill the classification just by hyper-plane, therefore we 
do it by hyper-surface instead. The main idea of hyper-surface is to express the training samples in a 
higher feature space H , where the training samples will be linear separable. 

Here a nonlinear mapping 𝛷𝛷:𝑅𝑅𝑚𝑚 ← 𝑯𝑯  is needed in order to make Ω linear separable. Next we could 
do classification like processing linear separable problem. The only problem is we need to replace x 
with  Φ(x) and the final function is (𝑥𝑥) = sign{∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝑥𝑥𝑖𝑖)𝑇𝑇𝑁𝑁

𝑖𝑖−1 𝜙𝜙(𝑥𝑥) + 𝑏𝑏} . 

3 Design of malware detection model 
In this section, we will formally describe our design of ColSVM. Before description, we would 

express the notation in the first place. 

3.1 Notation  
There are mainly three kinds of set, i.e. training set Tr, testing set Te and recommended set R. Each 

set is composed of two parts, i.e. feature property set and class property set. Then notations in detail are 
listed in table1. 

Symbol Meaning 
Tr Training set 
Te Testing set 
L Labeled Sample 
U Unlabeled Sample 
R Recommended Sample 
Rp Positive Fake Sample 
Pn Negative Fake Sample 
X Feature Property 
Y Class Property 
Xr Feature Property of Training Dataset 
Yr Class Property of Training Dataset 
Xe Feature Property of Testing Dataset 
Ye Class Property of Testing Dataset 
vd Vector Dimension 

Table 1: Main symbols used in the paper 
 



 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 1685 

 

For malware detection in this paper, condition (i) and condition (ii) are satisfied, but the feature does 
not meet condition(iii) due to the mutual relationship among vectors of feature set. However, it is 
necessary to solve the case and the necessity is presented in figure 1.   

 

 
        (a) view 1                                    (b) view 2 

Fig 1: The two views of Collaborative training 
 

As shown in Figure 1, figure 1(a) shows the distribution of samples in view 1, while figure 1(b) 
shows in view 2. The red dots, blue dots, circles and squares in the figure are all unlabeled samples to 
be detected, and we use red dots to represent negative samples while red dots to represent positive ones. 
Besides, for the convenience of description, we mark the samples in high degrees of confidence in 
obvious way, where the circles represent negative samples whose confidence are in high degree and 
squares represent positive ones. If the two views are independent mutually, the distribution of samples 
are different in the two views. As we can see in the figure, samples in high degrees in view 1 are 
distributed randomly in view 2. If the two views are not independent, on the contrary, the random 
distribution could not be guaranteed. In order to describe the necessity clearly, take the extreme case as 
example—supposing the distributions of samples in two views are completely consistent, we will obtain 
two same classifiers. The two classifiers’ recommended samples are also same in the case and the 
collaborative train makes no sense. Therefore, two unrelated views are of great importance for 
collaborative train, and we proposed to preprocess samples with ICA, in which way to meet the 
condition (iii) and make collaborative train feasible.  

2.2 Independent Component Analysis 
ICA is a method to find out the hidden factors or components from multidimensional statistical data 

[23]. It attempts to decompose a multivariate signal into independent non-gaussian signals. From the 
perspective of linear transformation and linear space, the source signals are non-gaussian and 
independent from each other, while the observation signal is a linear combination of source signals. The 
function of ICA is to estimate source signals without knowing both source signals and linear 
transformation. The basic idea of ICA theory is to extract signals which are as independent as possible 
from a set of mixed observation signals, and then characterize the other signals with the independent 
signals [24]. ICA can be described mathematically as follows: 

The data are represented by the random vector 𝑿𝑿 = (𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑚𝑚)𝑇𝑇  and the components as the 
random vector 𝑺𝑺 = (𝑠𝑠1, 𝑠𝑠2 … 𝑠𝑠𝑚𝑚)𝑇𝑇. ICA can be expressed as the liner relationship between X and S--
 𝑿𝑿 = 𝑨𝑨𝑺𝑺 = ∑ 𝑎𝑎𝒊𝒊𝑠𝑠𝒊𝒊 . Here 𝐴𝐴 = (𝑎𝑎1, 𝑎𝑎2 … 𝑎𝑎𝑚𝑚) is the mixing matrix in the formula. Then we could get 
signal Y with formula 𝒀𝒀 = 𝑾𝑾𝑿𝑿 = 𝑾𝑾𝑨𝑨𝑺𝑺, where  𝑨𝑨 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑾𝑾). 

 

 

The task of ICA is to obtain a separation matrix W through X, making signal Y the most optimal 
approximation to S. 

2.3 Support Vector Machine 
In this paper, we design model with SVM (support vector machine) to detect malicious code. SVM 

is an excellent machine learning method based on supervised learning [25][26]. It includes two cases--
linear separable problem and nonlinear separable problem. In the case of linear separable problem, the 
train set is define as   𝛺𝛺 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1,2…𝑁𝑁} ⊂ 𝑅𝑅𝑚𝑚 × {−1,1} , ,where  𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚 , 𝑦𝑦𝑖𝑖 ∈ {−1,1} . 
Supposing the set is linear separable, then we’ll obtain a hyperplane 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0(𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚), and the 
formula can be expressed as 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 + b) ≥ 1,i=1,2…N. In the case of nonlinear separable problem, 
the problem is more complicated and we can’t fulfill the classification just by hyper-plane, therefore we 
do it by hyper-surface instead. The main idea of hyper-surface is to express the training samples in a 
higher feature space H , where the training samples will be linear separable. 

Here a nonlinear mapping 𝛷𝛷:𝑅𝑅𝑚𝑚 ← 𝑯𝑯  is needed in order to make Ω linear separable. Next we could 
do classification like processing linear separable problem. The only problem is we need to replace x 
with  Φ(x) and the final function is (𝑥𝑥) = sign{∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝑥𝑥𝑖𝑖)𝑇𝑇𝑁𝑁

𝑖𝑖−1 𝜙𝜙(𝑥𝑥) + 𝑏𝑏} . 

3 Design of malware detection model 
In this section, we will formally describe our design of ColSVM. Before description, we would 

express the notation in the first place. 

3.1 Notation  
There are mainly three kinds of set, i.e. training set Tr, testing set Te and recommended set R. Each 

set is composed of two parts, i.e. feature property set and class property set. Then notations in detail are 
listed in table1. 

Symbol Meaning 
Tr Training set 
Te Testing set 
L Labeled Sample 
U Unlabeled Sample 
R Recommended Sample 
Rp Positive Fake Sample 
Pn Negative Fake Sample 
X Feature Property 
Y Class Property 
Xr Feature Property of Training Dataset 
Yr Class Property of Training Dataset 
Xe Feature Property of Testing Dataset 
Ye Class Property of Testing Dataset 
vd Vector Dimension 

Table 1: Main symbols used in the paper 
 



1686 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 

 

3.2 Description of algorithm ColSVM 
In this part we’ll express algorithm ColSVM in detail including the method to design algorithm and 

its execution process.  
 

 
Fig 2: Execution of ColSVM 

 
The realization steps of ColSVM are as follow: 

Step1 Independent feature set partition 
In order to get two mutually independent sub-feature set of malware, we firstly preprocess labeled 

dataset L with ICA and get dataset Tr, and then split Tr into two sets Tr1 and Tr2. With the help of ICA, 
the independence of Tr1 and Tr2 is guaranteed. We also handle unlabeled dataset U with ICA and get 
testing set Te, and obtain Te1 and Te2 correspondingly; 
Step2 Train individual classifiers 

We train two classifiers, i.e. classifier C1 and classifier C2 by training with Tr1 and Tr2. Although 
the training set is the same one, the two classifiers are absolutely unrelated as the two sub-feature sets 
Tr1 and Tr2 are totally independent. Then we test the testing set Te by using classifier C1 and classifier 
C2 and obtain two different results Ye1 and Ye2; 
Step3 Form new training set  

The next step concerns how to form new training set by recommended samples. Recommended 
samples are selected depending on the distance between sample and hyper-plane. Firstly, we sort the 
results Ye1 and Ye2 based on the distance, and then select the top k to form the recommended dataset 
R1 and R2 respectively. Finally, we combine R1 with L2 and combine R1 with L2 to form new training 
set; 
Step4 train new classifiers and obtain final result 

 

 

we train two classifiers with new training set and get classifier C1’ and classifier C2’. Then we make 
a second test towards testing dataset Te with the two new classifiers and obtain the ultimate results Ye1’ 
and Ye2’, with which we Compute precision, recall rate, F-measure and accuracy rate at last . 

The execution process of algorithm ColSVM is demonstrated clearly in figure 2, and the pseudo-
code of algorithm ColSVM is shown as follows. 

 
 
 

Table 2: Pseudocode of ColSVM 

4 Experiment Results  
In this section, we introduce the malware dataset used in experiments, and then show the 

performance of our model. 

4.1 Dataset 
In this paper, the Malware dataset for experiment contains 2415 samples belonging to 8 classes. 

These malware is the primary threat at present, and we extract them randomly, in which way the number 
of every class could represent its distribution proportion.  

We analyze the executable file of malware and extract key words which are most likely identified as 
abnormality, and obtain feature of malicious codes by CRC64 unified coding. Specially, we choose 162 
key words as the features of malware. Then we use binary variables to form 162-dimensional feature 
set, and each dimension corresponds to each key word. If a sample includes a certain word, the variable 
of this dimension is set as 1, otherwise set as 0. The information in detail is listed in table 2. 

   form feature set Tr by handling L with ICA; 
 split the Tr into two sets Tr1 and Tr2； 
For 1:N 
Obtain classifier C1 by training with SVM and Tr1; 
Obtain classifier  C2 by training with SVM and Tr2; 
Obtain result Ye1 by testing Te with C1; 
Obtain result Ye2 by testing Te with C2; 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ← 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ← 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑹𝑹𝑻𝑻 ← 𝑇𝑇𝑄𝑄𝑇𝑇(𝑘𝑘1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑹𝑹𝑻𝑻 ← 𝑇𝑇𝑄𝑄𝑇𝑇(𝑘𝑘2, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻)； 

𝑻𝑻𝑻𝑻𝑻𝑻 = (𝑳𝑳𝑻𝑻, 𝑹𝑹𝑻𝑻)； 

𝑻𝑻𝑻𝑻𝑻𝑻 = (𝑳𝑳𝑻𝑻, 𝑹𝑹𝑻𝑻)； 
END       
Obtain result Ye1’ by testing Te with C1; 
Obtain result Ye2’ by testing Te with C2; 
Compute pre,recall,F1,auc with Ye1’ and Ye2’; 



 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 1687 

 

3.2 Description of algorithm ColSVM 
In this part we’ll express algorithm ColSVM in detail including the method to design algorithm and 

its execution process.  
 

 
Fig 2: Execution of ColSVM 

 
The realization steps of ColSVM are as follow: 

Step1 Independent feature set partition 
In order to get two mutually independent sub-feature set of malware, we firstly preprocess labeled 

dataset L with ICA and get dataset Tr, and then split Tr into two sets Tr1 and Tr2. With the help of ICA, 
the independence of Tr1 and Tr2 is guaranteed. We also handle unlabeled dataset U with ICA and get 
testing set Te, and obtain Te1 and Te2 correspondingly; 
Step2 Train individual classifiers 

We train two classifiers, i.e. classifier C1 and classifier C2 by training with Tr1 and Tr2. Although 
the training set is the same one, the two classifiers are absolutely unrelated as the two sub-feature sets 
Tr1 and Tr2 are totally independent. Then we test the testing set Te by using classifier C1 and classifier 
C2 and obtain two different results Ye1 and Ye2; 
Step3 Form new training set  

The next step concerns how to form new training set by recommended samples. Recommended 
samples are selected depending on the distance between sample and hyper-plane. Firstly, we sort the 
results Ye1 and Ye2 based on the distance, and then select the top k to form the recommended dataset 
R1 and R2 respectively. Finally, we combine R1 with L2 and combine R1 with L2 to form new training 
set; 
Step4 train new classifiers and obtain final result 

 

 

we train two classifiers with new training set and get classifier C1’ and classifier C2’. Then we make 
a second test towards testing dataset Te with the two new classifiers and obtain the ultimate results Ye1’ 
and Ye2’, with which we Compute precision, recall rate, F-measure and accuracy rate at last . 

The execution process of algorithm ColSVM is demonstrated clearly in figure 2, and the pseudo-
code of algorithm ColSVM is shown as follows. 

 
 
 

Table 2: Pseudocode of ColSVM 

4 Experiment Results  
In this section, we introduce the malware dataset used in experiments, and then show the 

performance of our model. 

4.1 Dataset 
In this paper, the Malware dataset for experiment contains 2415 samples belonging to 8 classes. 

These malware is the primary threat at present, and we extract them randomly, in which way the number 
of every class could represent its distribution proportion.  

We analyze the executable file of malware and extract key words which are most likely identified as 
abnormality, and obtain feature of malicious codes by CRC64 unified coding. Specially, we choose 162 
key words as the features of malware. Then we use binary variables to form 162-dimensional feature 
set, and each dimension corresponds to each key word. If a sample includes a certain word, the variable 
of this dimension is set as 1, otherwise set as 0. The information in detail is listed in table 2. 

   form feature set Tr by handling L with ICA; 
 split the Tr into two sets Tr1 and Tr2； 
For 1:N 
Obtain classifier C1 by training with SVM and Tr1; 
Obtain classifier  C2 by training with SVM and Tr2; 
Obtain result Ye1 by testing Te with C1; 
Obtain result Ye2 by testing Te with C2; 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ← 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ← 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑹𝑹𝑻𝑻 ← 𝑇𝑇𝑄𝑄𝑇𝑇(𝑘𝑘1, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻); 
𝑹𝑹𝑻𝑻 ← 𝑇𝑇𝑄𝑄𝑇𝑇(𝑘𝑘2, 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻)； 

𝑻𝑻𝑻𝑻𝑻𝑻 = (𝑳𝑳𝑻𝑻, 𝑹𝑹𝑻𝑻)； 

𝑻𝑻𝑻𝑻𝑻𝑻 = (𝑳𝑳𝑻𝑻, 𝑹𝑹𝑻𝑻)； 
END       
Obtain result Ye1’ by testing Te with C1; 
Obtain result Ye2’ by testing Te with C2; 
Compute pre,recall,F1,auc with Ye1’ and Ye2’; 



1688 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 

 

C_ID C_NAME C_NUM 
C1 killAV 1047 
C2 Trojan/Win32.Agent.dbvl[Downloader] 366 
C3 Worm.Win32.Palevo.ayal 462 
C4 "\u7279\u5f817" 108 
C5 tp2 69 
C6 Worm.Win32.Palevo.ayal29 282 
C7 "\u7279\u5f8117" 33 
C8 gh0st 48 

Table 3: Malware Dataset 
 

4.2 Performance evaluation 
The performance of a classifier can be quantified with precision, recall, F-measure and accuracy. 

We use TP, TN, FP, FN to represent the number of true positives, true negatives, false positives and 
false negatives respectively, then we can obtain the four performance indexes precision P, recall R, F-
measure F, accuracy A as follows. 

 𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

  𝑅𝑅 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 

𝐹𝐹 = 2 𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 

                       𝐴𝐴 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

4.3 Experiment for comparison with  traditional method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
In this experiment, we would compare our model with traditional method. As introduced in section 

2, when detecting malware, SVM could achieve the most satisfactory result among supervised learning 
methods, so we compare our model with SVM. We use RBF kernel function to design the classification 
model and set penalty factor as 100 while kernel parameter is set as 0.01. The number of recommended 
samples is 8, and the number of training samples is the variable in the experiment. As F-measure is the 
fusion of the two indexes precision and recall, so we use F-measure and accuracy to evaluate the 
algorithm. The performance of SVM and ColSVM are shown in figure 3~6, and we can see ColSVM’s 
is better than SVM’s when the number of recommended samples in training set varies from 20 to 60. 
The average values of F-measure and accuracy of ColSVM are lifted by 21.06% and 16.71% 
respectively. The enhancement is especially remarkable when the training set is small, and we can draw 
conclusion that our model is particularly efficient when labeled samples are insufficient. 

4.4 Experiment for discussion of recommended samples’ number  
In this experiment, we will discuss the effect of recommended samples’ number towards malware 

detection. We also use RBF kernel function to design the classification model and the parameters are 
set as experiment 1. The training set is composed of 16 labeled samples, and 8 of them are positive ones 
in order to guarantee every type of malicious code is included. The rest 8 ones are chosen randomly. 
The number of recommended samples are variable and set as 0,2,4,6,8 respectively. Specially, when the 
number of recommended samples is 0, ColSVM is equivalent to SVM. Performance is shown further in 

 

 

figure 7~10, and we depict auxiliary line (solid line) in figures for convenience of comparison, 
representing the case when number is 0.  

         
Fig 3: Comparison of recall                                Fig 4: Comparison of precision 

    
Fig 5: Comparison of F-measure                   Fig 6: Comparison of accuracy 

 

    
Fig 7: Comparison of recall             Fig 8: Comparison of precision 



 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 1689 

 

C_ID C_NAME C_NUM 
C1 killAV 1047 
C2 Trojan/Win32.Agent.dbvl[Downloader] 366 
C3 Worm.Win32.Palevo.ayal 462 
C4 "\u7279\u5f817" 108 
C5 tp2 69 
C6 Worm.Win32.Palevo.ayal29 282 
C7 "\u7279\u5f8117" 33 
C8 gh0st 48 

Table 3: Malware Dataset 
 

4.2 Performance evaluation 
The performance of a classifier can be quantified with precision, recall, F-measure and accuracy. 

We use TP, TN, FP, FN to represent the number of true positives, true negatives, false positives and 
false negatives respectively, then we can obtain the four performance indexes precision P, recall R, F-
measure F, accuracy A as follows. 

 𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

  𝑅𝑅 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 

𝐹𝐹 = 2 𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 

                       𝐴𝐴 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

4.3 Experiment for comparison with  traditional method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
In this experiment, we would compare our model with traditional method. As introduced in section 

2, when detecting malware, SVM could achieve the most satisfactory result among supervised learning 
methods, so we compare our model with SVM. We use RBF kernel function to design the classification 
model and set penalty factor as 100 while kernel parameter is set as 0.01. The number of recommended 
samples is 8, and the number of training samples is the variable in the experiment. As F-measure is the 
fusion of the two indexes precision and recall, so we use F-measure and accuracy to evaluate the 
algorithm. The performance of SVM and ColSVM are shown in figure 3~6, and we can see ColSVM’s 
is better than SVM’s when the number of recommended samples in training set varies from 20 to 60. 
The average values of F-measure and accuracy of ColSVM are lifted by 21.06% and 16.71% 
respectively. The enhancement is especially remarkable when the training set is small, and we can draw 
conclusion that our model is particularly efficient when labeled samples are insufficient. 

4.4 Experiment for discussion of recommended samples’ number  
In this experiment, we will discuss the effect of recommended samples’ number towards malware 

detection. We also use RBF kernel function to design the classification model and the parameters are 
set as experiment 1. The training set is composed of 16 labeled samples, and 8 of them are positive ones 
in order to guarantee every type of malicious code is included. The rest 8 ones are chosen randomly. 
The number of recommended samples are variable and set as 0,2,4,6,8 respectively. Specially, when the 
number of recommended samples is 0, ColSVM is equivalent to SVM. Performance is shown further in 

 

 

figure 7~10, and we depict auxiliary line (solid line) in figures for convenience of comparison, 
representing the case when number is 0.  

         
Fig 3: Comparison of recall                                Fig 4: Comparison of precision 

    
Fig 5: Comparison of F-measure                   Fig 6: Comparison of accuracy 

 

    
Fig 7: Comparison of recall             Fig 8: Comparison of precision 



1690 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 

 

      
       Fig 9: Comparison of F-measure                                  Fig 10: Comparison of accuracy 

· 
We use F-measure and accuracy to evaluate the algorithm. The X axis variable in the figures denotes 

the number of recommended samples. As we can see in the picture, F-measure and accuracy will rise 
with the increasing of recommended sample number. When the number of recommended samples varies 
from 2 to 8, the average of F-measure and accuracy of ColSVM will be lifted by 6.35% and 9.79% 
respectively. The performance of ColSVM  is obvious superior to SVM’s. 

5 Conclusion  
Malware detection has become an important topic of research due to the rapid growth of malicious 

code in recent years. As malicious code detection with supervised learning method requires a large 
number of labeled samples, it is not practical to handle dataset in a large scale. Therefore, collaborative 
train, as a kind of semi-supervised learning method has been applied in this paper, and we propose a 
new algorithm called ColSVM combined with ICA. The validity is proved by experiments lastly.  

Future work will be oriented on two main directions. Firstly, we will test our algorithm on larger 
dataset in order to broaden its’ application. Next, we will research on multiple views instead of two 
views to improve the performance of ColSVM further. 

6 Acknowledgment 
This work was supported by National Natural Science Foundation of China (Grant 61501457 and 

61402023). 

References 
[1] N.Karampatziakis, J.W.Stokes,A.Thomas, and M.Marinescu. Using file relationships in malwareclassification. 

In Proceedings of the Conference on Detection of Intrusions and Malware and Vulnerability Assessment, 
7591:1-20, 2012. 

[2] E. E. Papalexakis, T. Dumitras, D. H. P. Chau, B. A. Prakash, and C. Faloutsos. Spatio-temporal mining of 
software adoption & penetration. In Proceedings of the IEEE/ACM International Conference on Advances in 
Social Networks Analysis and Mining, pages 878-885, 2013. 

 

 

[3] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin.Mutantx-s: Scalable malware clustering based onstatic features. 
In Proceedings of USENIX AnnualTechnical Conference, pages 187-198, 2013. 

[4] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian, Jose Nazario. Automated 
classification and analysis of internet malware. International Workshop on Recent Advances in Intrusion 
Detection, pages 178-197, 2007. 

[5] X.Y. Zhang, Z. Hou, X. Zhu, G. Wu, S. Wang: Robust malware detection with dual-lane AdaBoost. In Proc. 
IEEE International Conference on Computer Communications (INFOCOM), pp. 1051-1052, 2016. 

[6] J.Z.Kolter, and M.A.Maloof. Learning to detect Learning to detect malicious executables in the wild. In 
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 
Pages 470-478, 2004. 

[7] Santos, I.,Laorden, C, and Bringas, P.G. Collective Classification for Unknown Malware Detection. In 
Proceedings of the International Conference on Security and Cryptography, pp. 251-256,  2011. 

[8] X. Zhang, J. Cheng, H. Lu, and S. Ma. Selective sampling based on dynamic certainty propagation for image 
retrieval. In Proc. International Multimedia Modeling Conference (MMM), pp. 425-435, 2008. 

[9] X. Zhang, J. Cheng, H. Lu, and S. Ma. Weighted co-SVM for image retrieval with MVB strategy. In Proce. 
IEEE International Conference on Image Processing (ICIP), pp. 517-520, 2007 

[10] X. Zhang: Preference modeling for personalized retrieval based on browsing history analysis. IEEJ 
Transactions on Electrical and Electronic Engineering, 8(S1), pp. 81-87, 2013. 

[11] X.B. Zhu, X. Jin, X.Y. Zhang, C.S. Li, F.G. He, L. Wang: Context-aware local abnormality detection in 
crowded scene. Science China Information Sciences (SCIS), 58(5), pp. 1-11, 2015. 

[12] X. Zhang: Effective search with saliency-based matching and cluster-based browsing. High Technology 
Letters, 19(1):105-109, 2013. 

[13] X. Y. Zhang, “Simultaneous Optimization for robust correlation estimation in partially observed social 
network,” Neurocomputing, 205, pp. 455–462, 2016. 

[14] X. Y. Zhang, S. Wang, and X. Yun, “Bidirectional active learning: a two-way exploration into unlabeled and 
labeled data set,” IEEE Transactions on Neural Networks and Learning Systems, 26(12), pp. 3034–3044, 2015. 

[15] X. Zhang, “Interactive Patent classification based on multi-classifier fusion and active learning,” 
Neurocomputing, 127, pp. 200–205, 2014. 

[16] X. Y. Zhang, S. Wang, X. Zhu, X. Yun, G. Wu, and Y. Wang, “Update vs. upgrade: modeling with 
indeterminate multi-class active learning,” Neurocomputing, 162, pp. 163–170, 2015. 

[17] X. Zhang, C. Xu, J. Cheng, H. Lu, and S. Ma, “Effective annotation and search for video blogs with integration 
of context and content analysis,” IEEE Transactions on Multimedia, 11(2), pp. 272–285, 2009. 

[18] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. Semi-supervised learning with very few labeled training 
examples. In Proceeding of Twenty-Second AAAI Conference on Artificial Intelligence (AAAI), pages 675-680, 
2007. 

[19] K. Zhang, X. Yun, X. Y. Zhang, X. Zhu, C. Li, S. Wang: Weighted hierarchical geographic information 
description model for social relation estimation. Neurocomputing, 216: 554-560, 2016. 

[20] X. Zhang, C. Xu, J. Cheng, H. Lu, and S. Ma. Automatic semantic annotation for video blogs. In Proceedings 
of IEEE International Conference on Multimedia and Expo, pages 121-124, 2008. 

[21] X. Zhang, J. Cheng, C. Xu, H. Lu, and S. Ma. Multi-view multi-label active learning for image classification. 
In Proc. IEEE International Conference on Multimedia and Expo, pp. 258-261, 2009. 

[22] Blum A, and Mitchell T. Combining labeled and unlabeled data with co-training. In Proceedings of the 
eleventh annual conference on Computational learning theory, pages 92-100, 1998. 

[23] A. Hyvärinen, and E Oja. Independent Component Analysis. Algorithms and Applications Neural Networks, 
13(4-5):411-430, 2000. 

[24] F. Bach, and M. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 
3:1-48, 2002. 

[25] X. Zhang: Dynamic batch selective sampling based on version space analysis. High Technology Letters, 18(2): 
208-213, 2012 

[26] https://en.wikipedia.org/wiki/Support_vector_machine 



 Kai Zhang et al. / Procedia Computer Science 108C (2017) 1682–1691 1691 

 

      
       Fig 9: Comparison of F-measure                                  Fig 10: Comparison of accuracy 

· 
We use F-measure and accuracy to evaluate the algorithm. The X axis variable in the figures denotes 

the number of recommended samples. As we can see in the picture, F-measure and accuracy will rise 
with the increasing of recommended sample number. When the number of recommended samples varies 
from 2 to 8, the average of F-measure and accuracy of ColSVM will be lifted by 6.35% and 9.79% 
respectively. The performance of ColSVM  is obvious superior to SVM’s. 

5 Conclusion  
Malware detection has become an important topic of research due to the rapid growth of malicious 

code in recent years. As malicious code detection with supervised learning method requires a large 
number of labeled samples, it is not practical to handle dataset in a large scale. Therefore, collaborative 
train, as a kind of semi-supervised learning method has been applied in this paper, and we propose a 
new algorithm called ColSVM combined with ICA. The validity is proved by experiments lastly.  

Future work will be oriented on two main directions. Firstly, we will test our algorithm on larger 
dataset in order to broaden its’ application. Next, we will research on multiple views instead of two 
views to improve the performance of ColSVM further. 

6 Acknowledgment 
This work was supported by National Natural Science Foundation of China (Grant 61501457 and 

61402023). 

References 
[1] N.Karampatziakis, J.W.Stokes,A.Thomas, and M.Marinescu. Using file relationships in malwareclassification. 

In Proceedings of the Conference on Detection of Intrusions and Malware and Vulnerability Assessment, 
7591:1-20, 2012. 

[2] E. E. Papalexakis, T. Dumitras, D. H. P. Chau, B. A. Prakash, and C. Faloutsos. Spatio-temporal mining of 
software adoption & penetration. In Proceedings of the IEEE/ACM International Conference on Advances in 
Social Networks Analysis and Mining, pages 878-885, 2013. 

 

 

[3] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin.Mutantx-s: Scalable malware clustering based onstatic features. 
In Proceedings of USENIX AnnualTechnical Conference, pages 187-198, 2013. 

[4] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian, Jose Nazario. Automated 
classification and analysis of internet malware. International Workshop on Recent Advances in Intrusion 
Detection, pages 178-197, 2007. 

[5] X.Y. Zhang, Z. Hou, X. Zhu, G. Wu, S. Wang: Robust malware detection with dual-lane AdaBoost. In Proc. 
IEEE International Conference on Computer Communications (INFOCOM), pp. 1051-1052, 2016. 

[6] J.Z.Kolter, and M.A.Maloof. Learning to detect Learning to detect malicious executables in the wild. In 
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 
Pages 470-478, 2004. 

[7] Santos, I.,Laorden, C, and Bringas, P.G. Collective Classification for Unknown Malware Detection. In 
Proceedings of the International Conference on Security and Cryptography, pp. 251-256,  2011. 

[8] X. Zhang, J. Cheng, H. Lu, and S. Ma. Selective sampling based on dynamic certainty propagation for image 
retrieval. In Proc. International Multimedia Modeling Conference (MMM), pp. 425-435, 2008. 

[9] X. Zhang, J. Cheng, H. Lu, and S. Ma. Weighted co-SVM for image retrieval with MVB strategy. In Proce. 
IEEE International Conference on Image Processing (ICIP), pp. 517-520, 2007 

[10] X. Zhang: Preference modeling for personalized retrieval based on browsing history analysis. IEEJ 
Transactions on Electrical and Electronic Engineering, 8(S1), pp. 81-87, 2013. 

[11] X.B. Zhu, X. Jin, X.Y. Zhang, C.S. Li, F.G. He, L. Wang: Context-aware local abnormality detection in 
crowded scene. Science China Information Sciences (SCIS), 58(5), pp. 1-11, 2015. 

[12] X. Zhang: Effective search with saliency-based matching and cluster-based browsing. High Technology 
Letters, 19(1):105-109, 2013. 

[13] X. Y. Zhang, “Simultaneous Optimization for robust correlation estimation in partially observed social 
network,” Neurocomputing, 205, pp. 455–462, 2016. 

[14] X. Y. Zhang, S. Wang, and X. Yun, “Bidirectional active learning: a two-way exploration into unlabeled and 
labeled data set,” IEEE Transactions on Neural Networks and Learning Systems, 26(12), pp. 3034–3044, 2015. 

[15] X. Zhang, “Interactive Patent classification based on multi-classifier fusion and active learning,” 
Neurocomputing, 127, pp. 200–205, 2014. 

[16] X. Y. Zhang, S. Wang, X. Zhu, X. Yun, G. Wu, and Y. Wang, “Update vs. upgrade: modeling with 
indeterminate multi-class active learning,” Neurocomputing, 162, pp. 163–170, 2015. 

[17] X. Zhang, C. Xu, J. Cheng, H. Lu, and S. Ma, “Effective annotation and search for video blogs with integration 
of context and content analysis,” IEEE Transactions on Multimedia, 11(2), pp. 272–285, 2009. 

[18] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. Semi-supervised learning with very few labeled training 
examples. In Proceeding of Twenty-Second AAAI Conference on Artificial Intelligence (AAAI), pages 675-680, 
2007. 

[19] K. Zhang, X. Yun, X. Y. Zhang, X. Zhu, C. Li, S. Wang: Weighted hierarchical geographic information 
description model for social relation estimation. Neurocomputing, 216: 554-560, 2016. 

[20] X. Zhang, C. Xu, J. Cheng, H. Lu, and S. Ma. Automatic semantic annotation for video blogs. In Proceedings 
of IEEE International Conference on Multimedia and Expo, pages 121-124, 2008. 

[21] X. Zhang, J. Cheng, C. Xu, H. Lu, and S. Ma. Multi-view multi-label active learning for image classification. 
In Proc. IEEE International Conference on Multimedia and Expo, pp. 258-261, 2009. 

[22] Blum A, and Mitchell T. Combining labeled and unlabeled data with co-training. In Proceedings of the 
eleventh annual conference on Computational learning theory, pages 92-100, 1998. 

[23] A. Hyvärinen, and E Oja. Independent Component Analysis. Algorithms and Applications Neural Networks, 
13(4-5):411-430, 2000. 

[24] F. Bach, and M. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 
3:1-48, 2002. 

[25] X. Zhang: Dynamic batch selective sampling based on version space analysis. High Technology Letters, 18(2): 
208-213, 2012 

[26] https://en.wikipedia.org/wiki/Support_vector_machine 


