
A Survey on Data Mining approaches for Dynamic

Analysis of Malwares
Kshitij Shah', Dushyant Kumar Singh2,

I Student, 2 Assistant Professor, Department of CSE,

MNNIT Allahabad, Allahabad (UP)

Abstract--The number of samples being analyzed by the security

vendors is continuously increasing on daily basis. Therefore generic

automated mal ware detection tools are needed, to detect zero day

threats. Using machine learning techniques, the exploitation of

behavioral patterns obtained, can be done for classifYing malwares

(unknown samples) to their families. Variable length instructions of

Intel x86 placed at any arbitrary addresses makes it affected by

obfuscation techniques. Padding bytes insertion at locations that are

unreachable during runtime tends static analyzers being confused to

misinterpret binaries of program. Often the code that is actually running

may not necessarily be the code which static analyzer analyzed. Such

programs use polymorphism, metamorphism techniques and are self

modifying. In this paper, using dynamic analysis of executable and

based on mining techniques. Application Programming Interface (API)

calls invoked by samples during execution are used as parameter of

experimentation.

Keywords: Dynamic Analysis, API Calls, Classifiers, AdaBoost

1. INTRODUCTION

Malwares are referred as the software that attackers use

deliberately to fulfill their harmful intentions. Their intent is to

have control of resources as system CPU, network etc, and

collecting personal data without taking consent of systems

owner, and interrupting computer operations thus creating havoc

to the privacy of its users and the availability of internet.

Malwares are of different types including Worm's, Viruses,

Backdoor, Trojan-horse, Spyware, Adware and Root-kits etc.

These classes of malwares overlap in their characteristics,

meaning that a particular malware could show behavior of

multiple classes at any time i.e. they have something in

common. The malware are increasing rapidly in quantity

(growing great landscape), variety (new malice techniques) and

velocity (rate of threats arrival). These are utilizing new

methods to target computing devices, and are evolving,

becoming more and more sophisticated.

Around 100,000 new malware samples are cataloged everyday

by McAfee which means about sixty-nine novel threats per

minute and approx I per second [I].

Various obfuscation techniques like insertion of dead code,

register re-assignment, subroutine rearrangement, instruction

replacement, code substitution, and code integration are used by

mal ware writers to bypass the defense methods like firewalls,

antivirus. Antivirus, firewalls generally use signature based

978-1-4673-7910-6/15/$31.00 ©20 15 IEEE 495

techniques which makes them unable to detect the new kind of

mal wares [2]. Commercial vendors of anti-mal wares tools needs

to analyze zero day mal wares to create their signatures and

therefore are unable to provide instant security.

Various soft computing techniques for mal ware analysis are

being followed to get over the constraints of signature based

methods, whether static or dynamic, as different malware

families typically have same behavioral patterns [I, 2]. The

analysts can then well understand the associated risks with any

malicious code sample, with the help of above techniques. To

overcome the threats that could arise in future, some preventive

measures in-line with new trends of malware creation can be

exploited. The features which are derived from mal ware can be

used for classifYing unknown samples of malwares into their

tagged families.

This paper investigates the problem of detecting mal wares using

soft computing techniques and section II is discussion on related

work done in the area by various researchers. Section III gives a

review of dynamic analysis techniques that can be used for

analyzing and classifYing the mal ware executables. It also

specifies the feature selection technique (mRMR) used, and the

boosting technique for classification. Section IV shows the

results and performance characteristics recorded during the

experiments. Finally, section V concludes the paper and gives

direction to work that can be carried out in future.

2. LITERATURE SURVEY

The authors in [I] discuss the CWSandbox tool as a malware

analyzer that fulfills the design criteria's of automation,

effectiveness, and correctness. Tool better supports the Win32

families of operating systems. Zolkipliet. al. proposed a

framework based on dynamic approach for behavior modeling

and classification of mal wares [3]. The authors in [2] presented

a binary obfuscation technique and then using that proved that

mal ware analyzers based on advanced semantics can be evaded.

Therefore they demonstrated that static malware analysis

couldn't be used as longer time solution to malware detection.

[4] Gives a new classification approach called binary texture

analysis which uses some new type of feature extraction. They

demonstrated that image texture analysis based static

classification can better complement the classification

techniques based on dynamic behavioral analysis. The authors in

Downloaded from http://iranpaper.ir
http://translate68.ir

[5] constructed a classification model incorporating both static

as well as dynamic views in single unified framework. In [6] the

authors proposed a hybrid detection technique for unknown

mal wares, which combines the frequency of occurrence of

unknown code (statically obtained) with the information of the

execution trace of an executable (dynamically obtained). The

authors in [7] introduced a feature selection technique mRMR

(minimal-redundancy-maximum-relevance) based on mutual

information. Authors in [9] gave an overview of dynamic

analysis techniques. Bayer et. al. [10] gave an efficient method

for dynamic mal ware analysis which reduced the overall

analysis time.

3. MALWARE ANALYSIS

We need to develop systems capable of analyzing malwares

automatically in order to deal with the huge volume of

malwares. Either by checking the code of program executable or

by running that in an isolated environment, the malicious

program and its associated risks and intentions can be observed.

Analyses done for malicious software is static if analyzed

without executing the executable. Static analysis make use of

some patterns that are to be detected in unknown samples, as

signature string, n-grams, operational code frequency

distribution, mnemonic n-grams etc. Malware code dis

assembled by dis-assemblers as OllyDbg / IDAPro, are

sequence of assembly instructions (Intel x86 for win32). The

mnemonics of these instructions in some patterns gives

characteristics to identify mal wares. The code obfuscation

techniques transform the mal wares in such a way that it resists

reverse engineering and makes static analysis expensive and

unreliable.

3. 1 Dynamic Analysis:

Dynamic analysis as reverse of static analysis involve running

of executable in a controlled environment, for analyzing the

behavior of the malicious code. Several online automated tools

are available for dynamic analysis of malwares, e.g. Norman

Sandbox, CWSandbox, Anubis, Hook Analyser, ThreatExpert,

TT Analyzer. The report of analysis given by these tools

provides detailed conception and deep insight of the malware

behavior and actions being performed. Behavior based dynamic

analysis suffers less from evasion and obfuscation techniques, in

contrast to code analysis. However, dynamic analysis takes

more time with more resource for, to be done.

3. 1. 1 Approaches and Techniques to perform Dynamic

analysis

1. Function Call Monitoring

The APIs in many are provided by operating systems that are

actually being used by applications to perform task. On

windows system, the term Windows API means an APIs

which grant access to different functionalities as networking,

system services, security and management. Malware executes

in user space while code of kernel mode has direct access of

system state. Therefore by invoking the respective system

callsmalware needs to communicate with its environment.

Since the interaction of user processes with the environment,

is only possible with system calls, so, API's are of special

interest for dynamic mal ware analysis.

2. Function Parameter Analysis

The correlation of individual function calls that operate on

the same object is enabled by tracing of function parameters

and return values. Logically coherent sets of grouped

function calls provide detailed insight into the programs

behavior.

3. Information Flow Tracking

It basically involves tracking data flow throughout the system

during program execution. This propagation infonnation of

data of interest is an attribute for analysis. Taint source

introduces new labels (taint) into the system, this means

tainting the data that is found legible to the analysis. A

component of the system which gives warning when

stimulated with tainted data is the taint sink. Eg.

(a). Direct Data Dependencies (b). Address Dependencies (c).
Control Flow Dependencies

4. Instruction Trace

The instruction sequence of the program executable during

execution used while analyzing can contain important

information that can be used to classify mal wares.

3.2 Machine Learning for Malwares Detection

Techniques based machine learning is found to be playing a

needed role in almost all classification problems so are in

malware analysis [12]. A feature set is extracted from malwares

and then some supervised learning is applied to label new

unknown malwares. In a sandbox environment, the behavior of

each malware is analyzed automatically and corresponding

behavioral reports are generated in case of dynamic analysis.

Reports generated are then processed for further machine

classification. The executable is disassembled and then the code

is analyzed and features like mnemonic n-grams, opcode

sequences, etc are extracted, using machine learning techniques,

vector models are formed for further classification in case of

static analysis. The classifiers used are like Naive Bayes,

Decision Tree, Multilayer Perceptron Neural Network (MLP),

148, Random Forest (RF), AdaBoost, Support Vector Machine

(SVM), Sequential Minimal Optimization (SMO) etc.

3. 3 Boosted Classifiers

Boosting is a technique to improvise classification by

combining a number of classifiers in some topology.

Researchers have proved that the performance is often improved

by using ensemble methods over single classifier. Boosting

consists of learning weak classifiers iteratively with respect to a

distribution and adding them to a final strong classifier. They

are weighted according to the weak classifier's accuracy when

496 2015 International Conference on Green Computing and Internet of Things (ICGCloT)

Downloaded from http://iranpaper.ir
http://translate68.ir

they are added. After that the data is reweighted such that the

instances that were misclassified gain weight and those that

were correctly classified lose weight. This is done so that the

future weak classifiers do put more focus on the instances which

the previous weak classifier misclassified. In our experiments

we used AdaBoost algorithm to boost NaIve Bayes, Instance

based Leamer, and Linear Support Vector Machines.

Naive Bayes - is a probabilistic method. Describing the

concept, P(Ci) denotes prior probability of ith class, and P(vjICi)

is the conditional probability of jth attribute in the class. The

estimates are done by counting in training data, the class

frequency and the attribute values frequency for every class.

Attributes assumed as conditionally independent, Bayes' rule

computes posterior probability for an unknown instance for its

every class, given as:

Instance Based Learner - an unknown instance is classified as

the performance element. Find example in the set with highest

similarity with the unknown example and return the class label

found as its estimation for unknown example. In our

experiments we have used distance as the similarity measure.

The three instances found most similar to the unknown instance,

where returns the class label with maximum as predicted label

for unknown.

Linear Support Vector Machines - It's a linear classifier, with

capacity of classifying even a high dimensionality data. It is

described by a vector of 3 components weights (w), an

interceptor (a), and a threshold (b). Class prediction for

classification is done as positive if (w.x) - b > 0 while negative

other case.

Algorithm

I. Select support vectors to start with. eg S I, S2, S3 Sn

2. Augment the vectors with a "1" as a bias unit to find the threshold.

3. Find parameters ai, a2, . . . based on following equations

(SI.S1)al + (SI.S2)a2 +(SI.S3)a3+ (SI.Sn)an = class to which SI

belongs (I)

(S2. SI)al + (S2.S2)a2 +(S2.S3)a3+ (S2.Sn)an = class to which S2

�oo� W
And so on till

(Sn.S l)a 1 + (Sn.S2)a2 +(Sn.S3)a3+ (Sn.Sn)an = class to which

Sn belongs (n)

4. The hyperplane which separates the mal wares from benign is

given by

AdaBoost Algorithm

1. Select the best classifier i.e. one which has least error.

Ec = L wi, where i belongs to those samples that are

misclassified by the classifier "c" and 'w' is initial weights

assigned to each example

2. Determine ac.

ac= 0.5 * (In ((I-Ec)/Ec)

3. Update weights.

w = {0.5 * (Wi I (I-Ec»} , where "i" belongs to those

instances which are correctly classified by the classifier "c".

w = {0.5 * (Wi I (Ec») }, where "i" belongs to those

instances which are incorrectly classified by the classifier "c".

4. Continue steps 1, 2, 3 till we are left with no classifiers or we

achieve 100 % accurate results.

5. Now prediction for an unknown instance x made by adaboost is

given by

H(x) = sign(a\H\(x) + a2H2Cx) + . . . +anHn(x»)

Where ai is the parameter corresponding to i'h selected classifier and

H;(x) is the prediction made by the i'h selected classifier.

I
Dataset give as input to

AdaBoost danifier (boosted
using Nilivc Bayes, Inslane!;:
eas<!d LeArner(knn), Linear
Support Vector Machine)

Fig 1: Flow of the analysis procedure

3.4 Steps of Methodology

Step 1: Malware samples can be downloaded from VX

Heavens and other agencies. Benign executables can be found

in System32 folder of our operating system (Windows7,

Windows XP etc).

API calls: A PE contain, an array of data structures, one per

imported DLL and points to an array of function pointers. The

function pointers array is called as import address table (IAT).

Each imported API occupies a reserved place in IAT where

the imported function address is written by the windows

2015 International Conference on Green Computing and Internet of Things (ICGCloT) 497

Downloaded from http://iranpaper.ir
http://translate68.ir

loader. In unreachable code, attackers may use irrelevant API

calls. One has to go for runtime API call detection i.e.

executable is to be run in an virtual environment, then all calls

made by executable's are captured, and then these executable

patterns are mine to extract important information about

executables behavior, to overcome this problem. We extracted

API calls invoked by executable samples.

Step 2: Represent each sample as a binary vector of 37 API

calls prominent in benign executables such that attribute Ai =

I if API call 'i' is imported by the executable, else Ai = O.

Step 3: Then the next step is to select the prominent and

relevant features among the extracted features. Those which

play an important role in classifying the executable as benign

or malicious, are prominent features. Minimum Redundancy

and Maximum Relevance (mRMR) [7] is the feature algorithm

that is used. Using mRMR, by identifying highly correlated

features with target class and selecting features dissimilar to

other features but strong enough to identify a target class,

prominent and effective features are selected. Mutual

information (MI) is the measure used for measuring the degree

of correlation amongst different variables, in case of mRMR.

Maximum Relevance is to search features with large

dependency on target class. It is likely that features selected

through maximum relevance could have high redundancy i.e.

the dependency among them is large.

Step 4: Feature vectors obtained after step 3 form our training

set. Steps 1, 2 3 are done for the supplied test set also. Now as

input to classification algorithms Naive Bayes, Instance Based

Leamer (IBK), and Linear Support Vector Machine, the

training and supplied test set are given. The prediction given

by above classifiers is used as inputs to AdaBoost classifier

which predict the final class of the executable.Experiment

results are evaluated using TPR, FPR, TNR, FNR, Accuracy

(ACC), Precision, F-Measure, and ROC Area. TPR is true

positive rate, and so are the true negative, false positive, and

false negative rates.

4. EXPERIMENT RESULTS

Experiment: Using Prominent API calls imported by

Benign Files, as Features

The training dataset included 635 samples (400 malicious and

235 benign) and the test set included 90 malicious samples

and 89 benign. Prominent 37 api calls present in benign files

were taken as features and API calls were extracted from the

samples dynamically. Using samples in training set and

recorded in one file and those using samples in test set in

another, feature vectors were formed. To reduce dimensions,

mRMR feature selection technique was used. As input to

naive bayes, knn, the resultant feature vector files were given

and linear svm classifiers which prepared a model based on

the training set and then predicted the class for the test set.

Then as input to AdaBoost classifier which predicted the class

for the executable, the results obtained by the above three

classifiers were given. A better classification accuracy of

94.9% was obtained using AdaBoost and Linear SVM (refer

Fig. I). By AdaBoost and Linear SVM, a maximum recall of

0.977 was obtained (refer Figure 3).

95.5

9�U

94.5 /
"'- /

'" /
"'- /

'" /

;»..93.5 1 " .•

" V
92.0

91.5

91.0

Fig 2: Accuracy obtained by different classifiers

0'5'5
o.n'
0.945'
0.'40'

0."5
0.'30
0.'25
O,'ilO

. 0,'1'5
:: O.fl' 10.",

0,'00
0.'"
0 . .,0
O.II.S
0 , " 0
0,17'
',no
0."
0.160 .. ,

Fig 3: Precision obtained for different classifiers

Qusifi ..

Fig 4: Recall obtained for different classifiers

498 2015 International Conference on Green Computing and Internet of Things (ICGCloT)

Downloaded from http://iranpaper.ir
http://translate68.ir

Fig 5: Fl Score obtained for different classifiers

5. CONCLUSION

We see that, to classify program executables into malware and

benign, API calls imported by executables while running can

be used. Using AdaBoost and Linear SVM classifiers, a

classification accuracy of 94.9% was achieved. Also it is seen

that boosting technique provides classification accuracy better

than individual classifiers and give comparable results with

Linear SVM.

REFERENCES

[I] Willems, Carsten, Thorsten Holz, and Felix Freiling. "Toward automated

dynamic malware analysis using cwsandbox." IEEE Security & Privacy 2

(2007): 32-39.

[2] Moser, Andreas, Christopher Kruegel, and Engin Kirda. "Limits of static

analysis for malware detection." Computer security applications conference.

2007. ACSAC 2007. Twenty-third annual. [EEE, 2007.

[3] Zolkipli, Mohamad Fadli, and Aman Jantan. "An approach for malware

behavior identification and classification." Computer Research and

Development (ICCRD), 201 I 3rd International Conference on. Vol. I. [EEE,

2011.

[4] Nataraj, Lakshmanan, et al. "A comparative assessment of malware

classification using binary texture analysis and dynamic

analysis." Proceedings of the 4th ACM workshop on Security and artificial

intelligence. ACM, 2011.

[5] Anderson, Blake, Curtis Storlie, and Terran Lane. "Improving malware

classification: bridging the static/dynamic gap." Proceedings of the 5th ACM

workshop on Security and artificial intelligence. ACM, 2012.

[6] Santos, Igor, et al. "Opem: A static-dynamic approach for machine

learning-based malware detection." International Joint Conference CISIS'J2-

ICEUTE' J2-S0CO' 12 Special Sessions. Springer Berlin Heidelberg, 2013.

[7] Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on

mutual information criteria of max-dependency, max-relevance, and min

redundancy." Pattern Analysis and Machine Intelligence, IEEE Transactions

on27.8 (2005): 1226-1238.

[8] Kang, Brent Byung Hoon, and Anurag Srivastava. "Dynamic Malware

Analysis. "Encyclopedia of Cryptography and Security. Springer US, 20 II.

367-368.

[9] Egele, Manuel, et al. "A survey on automated dynamic malware-analysis

techniques and tools." ACM Computing Surveys (CSUR) 44.2 (2012): 6.

[10] Bayer, Ulrich, Engin Kirda, and Christopher Kruegel. "Improving the

efficiency of dynamic malware analysis." Proceedings of the 2010 ACM

Symposium on Applied Computing. ACM, 20 I O.

[II] Bayer, Ulrich, et al. "Dynamic analysis of malicious code." Journal in

Computer Virology 2.1 (2006): 67-77.

[12] Firdausi, Ivan, et al. "Analysis of machine learning techniques used in

behavior-based malware detection." Advances in Computing. Control and

Telecommunication Technologies (ACT). 2010 Second International

Conference on. [EEE, 20 10.

2015 International Conference on Green Computing and Internet of Things (ICGCloT) 499

Downloaded from http://iranpaper.ir
http://translate68.ir

