
Surface and Contour-Preserving Origamic
Architecture Paper Pop-Ups

Sang N. Le, Su-Jun Leow, Tuong-Vu Le-Nguyen, Conrado Ruiz Jr., and Kok-Lim Low

Abstract—Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce a 3D

pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints, OA design

requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that closely depicts

an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability and stability of the

generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures that are previously not

accounted for by other algorithms. Our method takes a novel image-domain approach to convert the input model to an OA design. It

performs surface segmentation of the input model in the image domain, and carefully represents each surface with a set of parallel

patches. Patches are then modified to make the entire structure foldable and stable. Visual and quantitative comparisons of results

have shown our algorithm to be significantly better than the existing methods in the preservation of contours, surfaces, and volume.

The designs have also been shown to more closely resemble those created by real artists.

Index Terms—computer art, papercraft, paper architecture, surface segmentation, shape abstraction, pop-up foldability, pop-up

stability

Ç

1 INTRODUCTION

PAPER pop-up books have long fascinated people of all
ages. Historically, “movable books” had been created

for scientific and historical illustration. Recently, pop-ups
have employed creative mechanisms to convey stories or
even portray art. Some notable works include Carter’s series
of Dot books [1], Alice’s Adventures in Wonderland [2], and
ABC3D [3]. In addition, pop-ups also have practical
scientific applications. In microelectromechanics, pop-up
techniques could be used to transform 2D patterns into 3D
surfaces for fabricating microstructures [4], [5].

Origamic Architecture (OA) is an intriguing type of paper
pop-ups developed by Masahiro Chatani in the early 1980s.
Each OA pop-up uses only a single piece of paper, and is
constructed by only cutting and folding without the need
for gluing. These strict geometric constraints make it highly
challenging for ones to manually design paper layouts for
nontrivial OA pop-ups. However, artists have been able to
create interesting and intricate 3D structures, such as the
two examples shown in the leftmost column of Fig. 2.

Essentially, a “valid” OA pop-up must be stable and
foldable. This means that the structure must not only pop up
when opened, but also fold completely flat when closed,
and all this would require only holding and moving the
outermost area on each half of the paper.

Unlike other types of papercraft, such as origami,
studies of the mathematical and computational aspects of

OA pop-ups are relatively scarce. There is considerable
literature on how to manually design OA pop-ups [8], [9],
[10], [11], and there have also been a number of works that
developed computer-aided tools to assist users in the
design process [12], [13], [14], [15]. Nonetheless, these tools
require the user to manually position the individual
patches, which can still be very labor-intensive and skill-
demanding. Recently, Li et al. [7] proposed a completely
automatic method for generating OA designs from 3D
models. However, the class of pop-up geometry allowed
by their algorithm is quite limited, which we have
observed to be clearly insufficient to approximate some
common shapes. Their algorithm also produces inaccurate
patch contours due to the voxel discretization. Using a
higher resolution 3D grid may mitigate the problem, but it
incurs large memory requirement, and often results in
pop-ups with an excessive amount of cuts and folds. This
makes the OA designs impractical for construction into
real pop-ups.

In this paper, we present a method to automatically
generate an OA design that closely depicts an input 3D
model. We propose a new set of geometric conditions for
the foldability and stability of OA designs. The generality of
the conditions allows valid pop-up structures that are
previously not accounted for by other algorithms. This
formulation serves as the foundation of our automatic
algorithm for producing valid OA pop-ups. Our algorithm
takes a novel image-domain approach to convert the input
model to an OA design. The result is a 2D layout (called an
OA plan) that is marked with lines and curves to indicate
where to cut and fold to construct the pop-up. The steps of
our algorithm are summarized in Fig. 3.

Some of our results are shown in Figs. 1 and 2 (middle
column). In particular, in the OA plans in Fig. 2, the red
and green lines indicate folds, and black lines indicate cuts.
Also in Fig. 2, one can compare our results with the
designs from artists [6], and with the results from the OA

276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

. The authors are with the National University of Singapore, School of
Computing, Computing 1, 13 Computing Drive, Singapore 117417.
E-mail: lnsang@comp.nus.edu.sg, {sujun1984, tuongvu}@gmail.com,
{conrado, lowkl}@comp.nus.edu.sg.

Manuscript received 2 Aug. 2012; revised 11 May 2013; accepted 4 July 2013;
published online 2 Aug. 2013.
Recommended for acceptance by S. Takahashi.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-08-0151.
Digital Object Identifier no. 10.1109/TVCG.2013.108.

1077-2626/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

tool by Li et al. [7]. Note that all results (including the
artists’ designs) are based on the same input 3D models
shown in the left column of Fig. 1. In general, our method
is better than [7] in preserving the contours, surfaces, and
volume of the input models, and the resulting pop-ups
often require significantly fewer cuts and folds.

The main contributions of this work are as follows:

1. We present a set of more general geometric condi-
tions for the foldability and stability of OA designs.
These conditions cover a wide range of pop-
up geometry, allowing our automatic OA design

algorithm to closely approximate more shapes than
the existing methods.

2. We propose a novel algorithm for creating OA
designs using an image-domain approach that is
better in preserving the contours, surfaces, and
volume of the input models.

3. We propose an effective algorithm for checking and
fixing the stability of any arbitrary foldable OA. This
stabilization algorithm can be easily embedded in
other OA design systems.

2 RELATED WORK

Besides paper pop-ups, other types of papercraft have also
been studied in the fields of mathematics and computing.
For example, kirigami, the Japanese art of cutting and
fastening pieces of paper, has been the subject of a number
of studies. Several interactive methods for designing 3D
objects from pieces of paper have been proposed by [16],
[17], [18]. Similarly, algorithms for Chinese paper-cutting, an
art form that is often used for designing decorative patterns
and figures, have been presented by [19], [20].

Origami, the Japanese art of folding, is another well-
studied papercraft technique. Notable recent books on the
mathematical formulations of origami are [21] and [22].
Recently, an interactive system for origami design from
polyhedral surfaces has been presented in [23]. The
formulations in origami and OA differ significantly and
cannot be easily ported to each other. In particular, OA
allows cutting and its folding mechanisms are much more
restricted than those in origami.

On paper pop-ups, Glassner [13], [24] described the use
of simple geometry to create various pop-up mechanisms.
Hendrix and Eisenberg [14] designed a computer applica-
tion called “Pop-up Workshop” to introduce children to the

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 277

Fig. 1. Hand-made paper pop-ups (right) constructed from the OA
designs produced by our algorithm given the input 3D models (left).

Fig. 2. (Left) OA pop-ups of the Colosseum and the Rialto bridge designed by artists [6], (middle) by our system, and (right) by the method of
Li et al. [7].

crafting and engineering discipline of paper pop-ups.
Iizuka et al. [25] presented an interactive system that
detects collisions and protrusions for v-folds and parallel
folds. Lee et al. [12] also developed a model for simulating
the opening and closing of parallel v-folds. Recently, Abel
et al. [26] proposed a polynomial-time algorithm that
creates pop-ups by subdividing a polygon into single-
degree-of-freedom linkage structures.

Only a few studies have focused on origamic architecture
in particular. The pioneering work in OA came from Mitani
and Suzuki [15], who created a computer application that
allows users to construct OA models by positioning and
designing the horizontal and vertical faces. Although it can
check for the validity of the pop-up designs in a number of
cases, it does not work with cases that have dangling parts.
Other similar systems include [27] and [28]. All these
approaches for OA design require heavy user interactions
and the users need to have adequate knowledge of the OA
geometric constraints.

The most notable recent work on OA was from Li et al.
[7]. They are the first to have an algorithm that fully
automates the design of OA pop-ups to resemble the input
3D models. However, as mentioned previously in this
paper, their method has some major shortcomings, which
we aim to address in our current work. In their later work
[29], Li et al. extended the same notion of validity to a more
general class of v-style pop-ups.

Our formulation of the new OA geometric conditions is
very much inspired by that of Li et al. [7]. However, our
algorithm is inspired by the work of slice-based shape
abstraction [30]. Perception and vision research has strongly
emphasized the impact of contours created by slicing
smooth surfaces in the visualization of 3D models [31],
[32]. These contours have been shown to be effective in
capturing the important shape information of the objects
[33], [34]. They may even appear more appealing than the
original models, which can be visually cluttered [35]. In the
same spirit, our algorithm explicitly slices each smooth
surface of the input model into a set of parallel patches to
capture the contours.

3 OA FORMULATION

An OA pop-up is created from a single rectangular sheet of
paper by cutting and folding. More specifically, the sheet of

paper is divided into a number of nonoverlapping regions
called patches, whose boundaries are marked with cut lines
and straight fold lines. Among these patches, the back patch
pB and the floor patch pF are two special outermost patches
that share a central fold line (see Fig. 4a). We call this paper
layout an OA plan.

To aid our subsequent presentation, we position the OA
pop-up in a right-handed orthogonal coordinate system, as
shown in Figs. 4c and 4d, in which the x-axis is parallel
to the central fold line, and the z-axis is perpendicular to
the x-axis and parallel to the floor patch. We also call the
angle between pF and pB the opening angle �. When � ¼ 180�,
the OA is said to be fully opened; when 180� > � > � for an
arbitrary small positive angle �, the OA is in a pop-up state;
and when � � �, the OA is said to be fully closed or folded flat.
Note that the opening angle cannot be exactly 0� because
the patches are not allowed to overlap.

In this work, we focus only on the design of a common
type of OA called parallel OA, in which all the fold lines
must be parallel to the central fold line. This is also the type
of OA addressed by Li et al. in [7].

3.1 OA Plans

To formally define an OA plan, we first define the
followings:

Definition 1. Two patches pa 6¼ pb are said to be adjacent if and
only if they share a common fold line.

278 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 3. Steps in our automatic OA design algorithm.

Fig. 4. (a) An OA plan with cuts (solid lines) and folds (dashed lines),
(c) which can pop up at any arbitrary angle. (b) A nonfoldable OA
plan, (d) which is stuck during folding.

Definition 2. Let IP ¼ fp0 ¼ pa; p1; . . . ; pn�2; pn�1 ¼ pbg be an
ordered set of n distinct patches. If pi; piþ1 are adjacent for all
0 � i � n� 2, we say that pa and pb are connected and IP is
an n-path from pa to pb.

We now define an OA plan as

Definition 3. An OA plan is a set of patches, where

1. all patches are coplanar and form a rectangular domain
with possible holes.

2. they are nonintersecting, except at their boundaries.
3. for every patch p, there exists a path from pB to pF that

contains p.

The first two properties are universal for general
origamic architecture layouts [7], [15]. However, such
general layouts may contain “floating” patches, which are
not adjacent to any other patch, or “dangling” patches,
which are not connected to pB and pF . Hence, Property 3 is
defined to keep all the patches connected to both pB and pF .

3.2 Foldable OA Plans

For our OA formulation, we make the assumption that the
paper has zero thickness, and each patch is rigid. A fold line
between two adjacent patches acts like a hinge that allows
the patches to freely rotate about each other.

An OA plan, as defined above does not guarantee that
the OA can be folded from a fully opened state to a fully
closed state without violating the patch rigidity assumption.
Figs. 4b and 4d show such an OA plan, which is stuck
during its folding process. A valid OA plan should be
foldable from � ¼ 180� to � ¼ � without bending the patches
and affecting the pairwise adjacency and nonintersection of
the patches. If so, we say the OA plan is foldable.

At each opening angle, a possible set of relative positions
of the patches, with respect to pF and pB, is called a
configuration. When all the patches are parallel to pF or pB,
we have a parallel configuration. By considering this special
configuration, we have the condition for a foldable OA plan
as follows:

Proposition 1. An OA plan is foldable if and only if this plan is
the projection of a parallel configuration along vector w onto
the xz-plane, where w is perpendicular to the x-axis and
bisecting the corresponding opening angle.

The proof of the sufficiency of Proposition 1 can follow the
one given in [7]. Its necessity can be proved trivially: as no
patch is floating or dangling, the opening of an OA from the
considered parallel configuration to 180� is equivalent to
projecting the patches along w onto the OA plan.

Proposition 1 is used in our automatic OA design
algorithm to guarantee that when the representative
patches are modified, the resulting OA is foldable (see
Section 4.3). In addition, its necessity condition provides an
easy way to detect a nonfoldable OA.

3.3 Stable OA Plans

In practice, an OA can be fully opened, popped up, and
fully closed simply by turning only the back and floor
patches, without the need to apply any external forces to the
other patches. If the back and floor patches are held
stationary, other patches must also remain stationary. In

other words, the OA needs to be stable. In this section, we
present a new stability condition for parallel OAs. We first
define the following:

Definition 4. A fold line is said to be stable if it is not movable
at each opening angle of the OA. A patch is said to be stable if
at least two noncollinear fold lines on it are stable. An OA
plan is said to be stable if all of its patches are stable.

Existing studies have only defined a narrow set of
conditions for the stability of parallel OA. Specifically, a
patch is considered stable if it is the back or floor patch,
or it lies in a 3-path or 4-path that connects two stable
patches [7], [26]. These conditions limit the set of possible
valid patch arrangements and could seriously handicap
the preservation of shapes and volume, as demonstrated
in Section 5.

To facilitate our discussion, we specifically define the
parallel configuration at � ¼ 90� the orthogonal configuration,
because every pair of adjacent patches are orthogonal to each
other. The orthogonal configuration is significant because
the input model is approximated at this opening angle.

We consider an OA plan initially constructed from the
projection of an orthogonal configuration in the ð0;�1;�1Þ
direction onto the xz-plane. This OA plan is foldable (by
Proposition 1), and we further formulate the conditions that
make it stable.

Let IP ¼ fp0 ¼ pB; p1; . . . ; pn; pnþ1 ¼ pFg be a path con-
necting the back and floor patches. Along IP, we mark p2k as
even and p2kþ1 as odd patches, where 0 � k � bn=2c. In a
parallel configuration, the even and odd patches are,
respectively, parallel to pB and pF . As a result, if a patch is
even (odd) in one path, it is also even (odd) in all other paths
from pB to pF . We further define two special sets of patches.

Definition 5. The B-set (F -set) is the set of patches that are
always parallel to pB (pF) at any opening angle.

It is clear that if an even (odd) patch is stable, it will be in
the B-set (F -set). We aim to make every patch belong to
either of these two sets. To achieve that, we define a new
type of connection.

Definition 6. Two patches p1 and p2 are said to be doubly
connected if there exist noncoplanar patches q1 and q2 such
that pi and qj are adjacent for all i; j 2 f1; 2g. Patches q1 and
q2 are also doubly connected and the structure fp1; q1; p2; q2g
is called a double connection.

Corollary 1. Consider two doubly connected patches p1 and p2. If
p1 is in B-set (F -set), then p2 must also be in the same set.

Proof. Recall that the OA is temporarily in a parallel
configuration. The double connection between p1 and p2

immediately makes them always parallel to each other.
Hence, both belong to B-set (F -set). tu

Corollary 2. In an n-path IP from pB to pF , if

1. one of its even (odd) patches is in B-set (F -set), and
2. bn=2c pairs of even (odd) patches are doubly connected,

then all the even (odd) patches in IP belong to B-set (F -set).
We call IP a B-path (F -path).

Proof. Path IP consists of patches alternately parallel to pB
and pF . Thus, if it contains n patches, the number of even

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 279

patches and the number of odd patches are both at most
bn=2c þ 1. From this observation and Corollary 1, it is
clear that Corollary 2 is also true. tu

Fig. 5 illustrates a B-set and a set of B-paths that are
constructed from double connections. Note that the even
(odd) patches in a B-path (F -path) are always parallel to pB
(pF). Hence, we can easily “stabilize” that path by making
its odd (even) patches also parallel to pF (pB). To do so, we
utilize monotonic paths and near-monotonic paths, which are
defined as follows:

Definition 7. A B-path (F -path) is said to be monotonic if the

perpendicular distances from its even (odd) patches to pB (pF)

form a monotonic sequence.

Fig. 6a illustrates an OA with a monotonic path, which
can be used to approximate staircase-like models.

Definition 8. A B-path IP ¼ fp0; p1; . . . ; p2kþ1g is said to be

near-monotonic if d0; d2; . . . ; d2k, the perpendicular distances

from its even patches to pB, satisfy

1. d0 < d2k < d2k�2 < � � � < d4 < d2, or
2. d0 > d2k > d2k�2 > � � � > d4 > d2.

Similarly, an F -path IP ¼ fp0; p1; . . . ; p2kþ1g is said to
be near-monotonic if d1; d3; . . . ; d2kþ1, the perpendicular

distances from its odd patches to pF , satisfy

1. d1 < d2kþ1 < d2k�1 < � � � < d5 < d3, or
2. d1 > d2kþ1 > d2k�1 > � � � > d5 > d3.

Figs. 6b and 6c illustrate respectively the first and second
cases of near-monotonic B-paths. Near-monotonic paths are
important for preserving concave shapes in the input models.

We now present the conditions for stable patches.

Proposition 2. If a path connects two stable patches and is
monotonic or near-monotonic, then all of its patches are stable.

Proof. Here we prove Proposition 2 for B-paths, as F -paths
can be proved similarly. Fig. 7 illustrates the (a)
monotonic and (b) near-monotonic paths as seen from
the side view. In this view, the patches are represented as
line segments.

Consider a B-path IP ¼ fp0; p1; . . . ; pn; pnþ1g connect-
ing stable patches p0 and pnþ1. Without loss of generality,
we assume that the first and last even patches in IP are p0

and pn. At each opening angle, there exists a parallel
configuration of IP, since the OA plan is created from the
ð0;�1;�1Þ projection of the orthogonal configuration.
We show that this parallel configuration is also the only
possible configuration, which leads to the conclusion
that the patches are stable.

Let lk be pk’s length and Ok be the fold between pk and
pkþ1. We also denote u (v) as the unit vector parallel to
pnþ1 (p0) and pointing away from On (O0). In a general
configuration, let u2iþ1 be the unit vector parallel to p2iþ1,
pointing away from O2i. As IP is a B-path, p2i are always
parallel to v.

We consider the two types of paths.
Monotonic. If IP is monotonic, then d0 < d2 < � � � < dn

(Fig. 7a). For the parallel configuration, we have

On ¼ O0 þ
Xbn=2c�1

i¼0

ðl2iþ1uÞ �
Xbn=2c

i¼1

ðl2ivÞ:

For a general configuration, we have

On ¼ O0 þ
Xbn=2c�1

i¼0

ðl2iþ1u2iþ1Þ �
Xbn=2c

i¼1

ðl2ivÞ:

280 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 5. (Left) An OA containing two double connections, and (right) its
side view.

Fig. 6. (Top) (a) An OA that contains a monotonic path, and (b, c) the
two cases of near-monotonic B-paths. (Bottom) Side views of the OAs.

Fig. 7. (a) Side views of a monotonic and (b) a near-monotonic B-paths
connecting stable patches p0 and pnþ1. At each opening angle, the
parallel configuration (above) is shown to be the only possible
configuration. The nonparallel ones (below) are impossible.

Equating the RHS of the above two equations leads to

Xbn=2c�1

i¼0

ðl2iþ1u2iþ1Þ ¼
Xbn=2c�1

i¼0

ðl2iþ1uÞ:

This equality occurs if and only if u2iþ1 ¼ u for all
0 � i � bn=2c � 1, which means all the odd patches are
parallel to pnþ1. As IP forms a parallel configuration and
p0, pnþ1 are stable, all its other patches are also stable.

Near-Monotonic. If IP is near-monotonic, without loss
of generality, we assume the case where d2 > d4 > � � � >
dn�2 > dn > d0 (Fig. 7b). For the parallel configuration,
we have

O1 ¼ O0 þ l1u

¼ On þ
Xbn=2c�1

i¼1

ðl2iþ1uÞ þ
Xbn=2c

i¼1

ðl2ivÞ:
ð1Þ

In addition,

l1 ¼ l0n þ
Xbn=2c�1

i¼1

l2iþ1; ð2Þ

where l0n is the difference between O0 and Ons
coordinates along the u-axis.

Equations (1) and (2) lead to

O0 ¼ On þ
Xbn=2c

i¼1

l2ivð Þ � l0nu: ð3Þ

For a general configuration, we have

O1 ¼ O0 þ l1u1

¼ On þ
Xbn=2c�1

i¼1

ðl2iþ1u2kþ1Þ þ
Xbn=2c
i¼1

ðl2ivÞ:
ð4Þ

Substituting (2) and (3) into (4), we obtain

l0nu1 þ
Xbn=2c�1

i¼1

ðl2iþ1u1Þ ¼ l0nuþ
Xbn=2c�1

i¼1

ðl2iþ1u2kþ1Þ:

This equality occurs if and only if u ¼ u2kþ1 ¼ u1 for
all 1 � i � bn=2c � 1, which means all the odd patches,
including p1, are parallel to pnþ1. Similar to the case of
monotonic paths, this condition makes all the patches on
IP stable. tu

Proposition 2 leads to an effective approach for OA
stabilization, as presented in Section 4.4. Unlike [7], in
which the OA is created to simultaneously guarantee
foldability and stability, we can take as input an arbitrary
foldable OA and make it stable. As a result, our stabilization
technique can be embedded into other OA design systems
and allows independent improvements of other steps.

4 AUTOMATIC OA DESIGN

In this section, we present our algorithm for automatic OA
design. The input is a 3D model, represented as a polygonal

mesh, which is positioned by the user between the two

orthogonal planes (the xy- and xz-planes). The output of

our system is a foldable and stable OA plan that can be
popped up into the desired structure at 90� opening angle.

We compute this OA plan by first constructing the
patches in the orthogonal configuration, and then projecting
them in the ð0;�1;�1Þ direction onto the xz-plane. Our
method is carried out in four steps (shown in Fig. 3).

1. Surface Segmentation. We divide the input model into
nonoverlapping, smooth surface segments. The sur-
face segmentation facilitates the creation of patches
in the next step.

2. Generating representative patches. A set of parallel
patches is generated to estimate the curvatures and
details of each surface segment.

3. Constructing a foldable OA plan. We connect the
representative patches so that their projections along
ð0;�1;�1Þ onto the xz-plane is a foldable OA plan,
according to Proposition 1.

4. Stabilizing the OA plan. Utilizing Proposition 2, we
check whether the patches are stable. If they are
not, we stabilize them by constructing extra
supporting patches.

Our algorithm operates on a depth map of the input
model instead of directly on the polygonal mesh. To obtain
the depth map, it sets up a 45� orthographic view, which
looks at the central fold line along the projection vector
ð0;�1;�1Þ. The image plane is placed perpendicular to this
vector so that it intersects with the xz- and xy-planes at
ðt; 0; 1Þ and ðt; 1; 0Þ lines, respectively (see Fig. 8c). We
define i and j as the orthonormal basis of this image plane,
which are parallel to ð0; 1;�1Þ and ð1; 0; 0Þ, respectively.
Our OA plan can be computed completely in the 45�

orthographic view (Figs. 8a and 8b).
From this view, we render the depth map ID and normal

map IN of the visible input surfaces enclosed by the two
orthogonal planes. The normal vectors in IN are all scaled to
unit length. The depth values in ID are measured from the
image plane and range from 0 (points on the image plane)
to

ffiffiffi
2
p

=2 (points on the central fold line). The details of the
four steps are elaborated in the following sections:

4.1 Surface Segmentation

To better preserve the curvatures and boundaries of the
input surfaces, we hope each surface can be represented by
a separate set of parallel patches. To extract the surfaces,
some mesh segmentation algorithms [36], [37] can be used,

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 281

Fig. 8. A house model is being converted to an OA. (a) Its depth map ID
and normal map IN, (b) OA plan, and (c) cross section of the patches
along the purple line.

but our algorithm simply uses image segmentation to

partition the depth map ID into surface segments.
Essentially, the surface segmentation works by locally

fitting a quadratic surface on the segmented pixels in the

neighborhood of a candidate pixel. The candidate pixel is

considered to be in the same segment if it is near this

quadratic surface.
Our algorithm uses the depth map ID and normal map IN

to perform the segmentation. It determines whether each

candidate pixel x should remain in the current segment by

thresholding fðxÞ�qðxÞ, where fðxÞ is a vector consisting of

the depth value and the x-, y-, z-components of the normal

vector at x, and qðxÞ is the quadratic approximation from

the previously segmented pixel x0:

qðxÞ ¼ fðx0Þ þ f 0ðx0Þðx� x0Þ þ
1

2
f 00ðx0Þðx� x0Þ2:

The derivatives of f are estimated from the neighboring

pixels in the current segment. We make pixel x belong to a

new segment if fðxÞ�qðxÞ exceeds the predefined thresh-

olds in ID or IN. Oversegmentation may occur due to noise

and small geometric features. It is, however, tolerable

because the slicing in Section 4.2 will produce patches in the

same orientations if the segments have similar gradients.

4.2 Representative Patches Generation

After the input model is divided into distinct smooth

segments, we want to generate a set of parallel representa-

tive patches to preserve both overall curvature and detailed

contours of each segment.
To achieve that, we first determine whether the patches

should be horizontal or vertical, then create them by

“slicing” each segment using a number of parallel planes

in the selected orientation. Each patch is the union of all the

cross sections of the surface segment between two con-

secutive slices, and is entirely visible in the 45� orthographic

view. The process of generating the representative patches

consists of three main steps.

4.2.1 Determining the Slicing Orientation

We observe that a segment can be represented better by

vertical patches, which are parallel to the xy-plane, if its

gradient changes more significantly along the y-axis than

along the z-axis. Otherwise, it should be represented by
horizontal patches.

From this observation, we determine the slicing orienta-

tion by comparing dz=diðxÞ and dy=diðxÞ, the average z-

and y-gradients along the i-axis (see Fig. 8c) of all pixels

x in depth map ID that belong to the considered segment.

We slice using vertical planes if dz=diðxÞ > dy=diðxÞ,
and horizontal planes otherwise.

4.2.2 Positioning the Slices

Having determined the orientation for the slices, we
proceed to find their positions along the y-axis (horizontal
slices) or z-axis (vertical slices). They are computed
according to three criteria.

Criterion 1: We aim to make the OA plan easy to cut by
preventing the patches bounded by two consecutive slices
from being thinner than wmin, which is a threshold
proportional to the segment’s area. We constrain the width
of a patch in the 45� image space using the dilation
operation in morphological image processing [38]. At each
slicing position s, we estimate the minimum gap gminðsÞ
such that the width of the patch bounded by two slices at s
and sþgminðsÞ is at least wmin (see Fig. 9b).

Criterion 2: Using only Criterion 1 may result in too many
slices, especially on steep surface. To control this, each
slicing gap is kept proportional to the square root of the
average surface gradient perpendicular to the slice. We
observe that maintaining a constant ratio r ¼ gðsÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gradðsÞ

p
over every slice s results in a more pleasant approximation,
where gðsÞ and gradðsÞ are the slicing gap and the average
surface gradient perpendicular to s.

Criterion 3: We want to avoid slicing through holes by
minimizing the total discontinuity along the slice contours.
We measure contour discontinuity as the maximum
distance between two contour pixels that are both adjacent
to another surface segment. We denote this as disðsÞ for
each slice s.

To achieve Criteria 1 and 2, we start from the position s�

where the surface gradient is greatest. We place two slices
at s� and s� þ gminðs�Þ, and compute the desired gap-
gradient ratio, r ¼ gminðs�Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gradðs�Þ

p
. We then estimate the

positions of other slices such that the corresponding ratio at
every slice is equal to r. These initial positions guarantee

282 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 9. (a) An input surface is to be represented by a set of vertical slices, which are (b) first positioned to satisfy the minimum patch width threshold
and constant gap-gradient ratio. (c) The slice positions are then optimized to minimize the contour discontinuity, while maintaining the gap-gradient
ratio. (d) Finally, the contour of the original hole is projected onto the corresponding patch. The bottom row shows the side view for each step.

that all the patches’ widths are not smaller than wmin, and a
constant ratio r is maintained over the segment (see Fig. 9b).

To optimize the slice positions for Criterion 3, we use
dynamic programming to minimize the discontinuity on the
slices. Let s1, s2; . . . ; sn be the initial slice positions that
satisfy Criteria 1 and 2, and ½s1�, ½s2�; . . . ; ½sn� be small ranges
around them, which allow flexibility in slicing. We define
Disðk; sÞ as the total contour discontinuity up to slice k at
position s 2 ½sk�.

We compute the minimum total discontinuity as

Disðk; sÞ ¼ Disðk�1; sprevðk; sÞÞ þ disðsÞ;

where sprevðk; sÞ is the position of slice k� 1 that produces
the minimum discontinuity up to that slice:

sprevðk; sÞ ¼ arg min
s0
ðDisðk� 1; s0ÞÞ:

To maintain the gap-gradient ratio, s0 can only lie within
the intersection ½sk�1� \ ½s� r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gradðsÞ

p
�. The latter range is

computed from ½s� so that the slicing gap satisfies the
desired ratio r.

Eventually, after obtaining the minimum Disðn; sÞ, we
use sprev to find the optimal positions for all the slices
(see Fig. 9c).

In our slice positioning algorithm, the slices may still cut
through holes in the input surfaces if they are big. In our
system, the user can handle such case by using an
appropriate wmin and interactively adjusting the affected
slices based on their computed positions.

4.2.3 Projecting Surface Contours

After slicing the surface segment to create the representa-
tive patches, we reconstruct the holes and sharp corners by
projecting their contours onto the patches (see Fig. 9d). In
the 45� orthographic view, we project pixel ðix; jxÞ on the
original surface to pixel ði0x; j0xÞ on the corresponding patch
p using the transformation

i0x ¼ ix þ ð�1ÞkðdðpÞ � dðxÞÞ=
ffiffiffi
2
p

j0x ¼ jx

�

where d is the distance measured from the xy (xz) plane and
k ¼ 1 (k ¼ 0) if p is vertical (horizontal). Note that we only
need to reconstruct the parts that are visible in the 45�

orthographic view.

4.3 Foldable OA Plan Construction

The representative patches have been created as nonover-
lapping continuous regions in the 45� view. Their projections

along the ð0;�1;�1Þ direction onto the xz-plane satisfy
Properties 1 and 2 of an OA plan. We connect the patches to
fulfill Property 3.

Consider pa and pb, two patches sharing a nonvertical
boundary in the 45� image space. Without loss of generality,
we assume that pa and pb lie, respectively, above and below
their shared boundary in this space. These two patches are
adjacent if they also touch each other at their actual
boundary in 3D space. If they are not adjacent, we may
need to connect them to form a path from pB to pF .
However, because all the patches need to be visible in the
45 degree view, pa and pb are only connectable if they satisfy

mðyðpbÞÞ þ �
ffiffiffi
2
p
� mðyðpaÞÞ

mðzðpaÞÞ þ �
ffiffiffi
2
p
� mðzðpbÞÞ;

�

where � is the minimal width allowed for each patch in the
45� view. If pb is vertical and pa is horizontal, then m is the
min function (Figs. 10a and 10b, otherwise m is the max
function (Figs. 10c, 10d, 10e, and 10f).

If two connectable patches are not parallel, we create a
new connection by extending one of them in the plane of
the patch (Figs. 10a, 10b, 10c, and 10d). If they are both
vertical (Fig. 10f), their orthogonal connecting patch is
created to replace the bottom portion of pa. We make the
connecting patch as wide as possible such that the new fold
line that replaces the top boundary of pb is still a good
approximation (within a predefined gap threshold) of the
original boundary. The case when both pa and pb are
horizontal (Fig. 10e) are handled analogously.

We also define the connecting cost between pa and pb as
the total length of the parts added and removed when
connecting pa and pb. This cost is zero if they are adjacent.

Given the connectability of patches, we keep construct-
ing the least-cost paths from pB to pF until no more patch
can be added. Each path is evaluated based on the total
connecting cost. If a patch cannot be added to any path from
pB to pF , we merge it into the nearest parallel patch that
shares with it a nonvertical boundary in the 45� view. If it
cannot be merged, we simply discard it.

The connecting-merging process may not preserve
the input surfaces well. In Fig. 11, Patch 1 is merged into
Patch 2, which fills up the original alcove. However, the
resulting patches now satisfy both Definition 3 and
Proposition 1, hence, their projection along ð0;�1;�1Þ on
the xz-plane forms a foldable OA plan.

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 283

Fig. 10. All possible relative positions of pa and pb. The first row shows connectable patches. Red segments represent the parts on existing patches
that need to be removed. Black and dashed blue segments represent the remaining parts and the new connections to be added, respectively. The
second row shows nonconnectable patches. The rightmost diagram illustrates the connecting result for Case (f) in the 45� view.

4.4 OA Plan Stabilization

To make the OA plan stable, we repeatedly stabilize the
paths of patches in three steps: 1) sorting the paths,
2) stabilizing the best one, and 3) updating them. We
divide the paths so that each of them starts and ends with
stable patches, but does not visit any other stable ones.

4.4.1 Sorting the Paths

First, we need to determine a metric for path comparison. If
an n-path IP contains nB pairs of doubly connected even
patches that belong to the B-set, we can make the other
n�B ¼ bn=2c � nB even pairs doubly connected by adding n�B
odd patches to them. According to Corollary 2, IP will then
become a B-path. Similarly, we denote n�F as the number of
even patches we can add to make IP an F -path.

These values give us n�IP ¼ minðn�B; n�F Þ, a measurement
for path comparison. We say that path IP1 is better than
path IP2 if one of the following conditions is true:

1. n�IP1 < n�IP2;
2. n�IP1 ¼ n�IP2, and IP1 is monotonic but not IP2;
3. n�IP1 ¼ n�IP2, neither IP1 nor IP2 is monotonic, and IP1

is near-monotonic but not IP2;
4. n�IP1 ¼ n�IP2, IP1s and IP2s monotonicity and near-

monotonicity are the same, but IP1 visits more
patches than IP2.

Based on these conditions, we sort the paths from the
best to the worst.

4.4.2 Stabilizing the Best Path

We stabilize the patches along the best path IP by making it
monotonic or near-monotonic. First, we need to ensure that
IP is a B-path or F -path. Assuming n�IP ¼ minðn�B; n�F Þ ¼
n�B > 0, we consider n�B pairs of nondoubly connected even
patches with the smallest pairwise distances. We add a new
connection for each pair to make it doubly connected.

Suppose pa and pb are one of those pairs, in which pb’s
coordinate is greater. Let pc be their existing connection
and pd be the new one to be added. We choose a set of
potential positions for pd along pb’s upper boundary where
the gradients along the boundary are the smallest, so that
the horizontal fold line between pb and pd does not alter
pb’s boundary significantly. From these positions, we
pick the one farthest from pc to avoid a degenerated
double connection.

At the final position of pd, we maximize pd’s width such
that the horizontal fold line between pb and pd is still a
good approximation of pb’s boundary within a given
threshold. However, in staircase-like structures, such as
the one in Fig. 6a, pa, pb, and pc span the same interval in

the j-coordinate, within which pd is also created. In such a
case, we limit pd’s width to 1=6 of pc’s.

After the double connections are created to make IP a B-
path, if it is monotonic or near-monotonic then all of its
patches are stable, according to Proposition 2. Otherwise,
we use merging to transform IP into a monotonic path,
which we describe below.

Similar to the foldable OA construction, merging of a
patch p is done with the nearest patch p0 that is parallel to p.
When zp < zp0 , we have a forward merging. Otherwise, the
merging is backward.

In details, let IP ¼ fp0; p1; . . . ; png be a B-path with p2i in
B-set. We assume that the last even patch has greater z-
coordinate than the first one. For each i starting from 0, we
find the first j > i such that zp2j

> zp2i
. If iþ 1 < j � bn=2c,

along the subpath fp2iþ2; . . . ; p2j�2g, we repeatedly merge
the even patch having the smallest z-coordinate forward
until we reach p2i or a stable patch (see Fig. 12 (top row)). If
j cannot be found, along fp2; . . . ; p2ig, we repeatedly merge
the even patch having the greatest z-coordinate backward
until we reach p2bn=2c or a stable patch (see Fig. 12 (bottom
row)). Note that the merging process may involve patches
not belonging to IP.

As no patch in IP is stable, except the first and the last
ones, and the merging stops when we reach a stable patch,
this process does not break any existing stable paths while
making IP monotonic.

4.4.3 Updating the Paths

After the best path IP is stabilized, we remove it from the
list of sorted paths. For each remaining path that contains
any newly stabilized patch, we break it into smaller paths,
each starting and ending with stable patches, but not
visiting any other stable ones. If no more unstable path is
found, the algorithm ends. Otherwise, we go back to the
first step and sort the remaining paths. As the number of
patches is finite, this process finally stabilizes the whole OA.

During our OA creation, the patches are created in
the 45� image plane, which results in a compression in the
image’s vertical direction. Therefore, we need to scale the
image space by

ffiffiffi
2
p

along its i-axis to obtain the final OA
plan.

5 RESULTS

We show a number of OA designs automatically generated
by our system and compare them with the results from Li

284 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

Fig. 11. A 3D model is approximated by a set of representative patches,
which then go through the connecting-merging process to form a
foldable OA.

Fig. 12. Two B-paths (thick lines) are made monotonic by merging
forward (above) and backward (below). The dotted arrows show the
merging direction. Other patches not in these paths (thin lines) may also
be involved in the merging process.

et al. [7], which is the only other automatic OA design

system. In their implementation, an OA can be generated at

several voxel grid resolutions, from 8� 8� 8 to 256� 256 �
256. For comparison, we choose their results at 256 �
256� 256, the most detailed, and 64� 64� 64, the most

balanced between contour preservation and voxel size, and

the best match to our slicing resolution.
In Fig. 2, the designs from both systems are compared

with artists’ creations [6]. We observe that Li’s method [7] is

unable to preserve the small archways in the Rialto Bridge

model, unlike in our system where we can preserve them

automatically. Furthermore, Li’s method cannot produce a

good approximation of the Colosseum model. This may be

due to their stability formulation, which does not preserve

large concave regions.
Figs. 13 and 14 compare our results with Li’s for more

input models. We smooth the highly bumpy bunny model as

a preprocessing step for both systems. The figures illustrate

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 285

Fig. 14. (Blue) OAs designed by our method, and (green) by the method of Li et al. [7] using 64� 64� 64 grid to match our slicing resolution.

Fig. 13. OAs of the Stanford bunny and a chapel model. (Left) Our results, (middle) Li’s [7] results using 64� 64� 64 grid, (right) Li’s results using
256� 256� 256 grid.

the ability of our algorithm in preserving smooth surfaces

(e.g., the bunny, the sphere, the torus), as well as sharp

contours (e.g., the cross of the chapel) and important creases

(e.g., the edge between two faces of the triangular prism).
Our novel stabilization is best demonstrated on the

Capitol Building model (Fig. 15). Its main staircase is

stabilized as a monotonic path, which minimizes the change

in volume and shape, as compared to the stabilization

technique used in Li’s method [7]. In our implementation,

we construct double connections on both sides of the

staircase to maintain symmetry.
Monotonic paths are also used for the Stanford bunny,

the Rialto Bridge (Fig. 1), and the trefoil knot (Fig. 14)

models, while near-monotonic paths are used for the gate

(Fig. 6) and the elephant (Fig. 14) models.

Besides a qualitative visual comparison, we compare our
results quantitatively by using the volumetric percentage
difference to measure the surface deviation between an OA
and the original input surfaces. This is computed by
accumulating the depth difference at each pixel, and the
sum is then divided by the total volume of the depth map
of the original surfaces. The percentage differences of the
OAs designed by Li’s method [7] and our method are
shown in Table 1. Even though we use considerably fewer
cuts and folds, our volumetric percentage differences are
comparable to Li’s at their highest resolution for most
models. Especially, our results are significantly better for
models with big concave surfaces, since our algorithm can
preserve them well.

To demonstrate the practicality of the OAs designed by
our algorithm, we also measure the time required to
physically construct the real OAs from the 2D designs.
Table 2 shows the approximate time in minutes for a
novice to cut and fold the pop-ups. In addition to
construction time, we count the number of cuts and folds
as another measurement of the complexity of the designs.
Except the Rialto Bridge model (whose archways are not
reconstructed by [7]), the Colosseum, and the complete
sphere models (whose shapes are not preserved by [7]),
other models show that our OAs require significantly fewer
cuts and folds than the corresponding OAs from [7]
(Table 3). All of the results presented were generated in
at most 15 seconds running on a PC with an Intel Pentium
(R) Dual-Core 2 GHz CPU and 4 GB RAM.

Fig. 16 reveals some of the weaknesses of our algorithm.
It shows the OA of the chapel model rotated by 30� about
the y-axis. Note that the OA is foldable and stable. The
major flat surfaces of the model are now not aligned with
the patch orientations, resulting in unpleasant fragmenta-
tion of the surfaces in the OA. Even though our algorithm

286 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

TABLE 1
Deviations from the Input Surfaces

Smaller value means better approximation. Li’s method [7] is run with
various grid resolutions.

TABLE 2
Time (in mins) to Physically Construct the OAs

Designed by Our Algorithm

TABLE 3
Number of Cuts and Folds in the OAs

Fig. 16. OA of the chapel model rotated by 30� about the y-axis.

Fig. 15. (Left) Our result for the Capitol Building model, and (right) Li’s [7]
results using 64� 64� 64 grid. The bottom row shows close ups of the
staircase structures.

does try to avoid slicing through holes, sometimes this is
inevitable when the holes are large, as highlighted by the
red ellipse “1”. Moreover, the slicing can break small
details, such as the cross highlighted by the red ellipse “2”.
In addition, because we slice each segment locally, the slices
on adjacent segments may not align well. This may cause
undesirable result when two adjacent segments have
multiple slices in different orientations. Such a case is
highlighted in the red ellipse “3” in Fig. 16.

6 CONCLUSION AND DISCUSSION

In this paper, we present a method for automatic OA
generation grounded on a more comprehensive geometric
formulation. Sufficient and necessary conditions for the
foldability of parallel OAs are presented. These support
our novel image-domain approach for creating 2D plans
that can fully pop up into parallel patches, whose
positions and contours closely depict the geometric shapes
of the 3D input models.

We also formulate a set of conditions for stabilizing OA
structures. Our stability conditions are more general than
those in recent studies [7], [15], [26], and are able to include
all the structures we have seen used by pop-up artists [6],
[10], [11]. Utilizing our novel double connections, we can
stabilize OAs without significantly affecting their shapes.

Visual and quantitative analyses show the ability of our
approach to design foldable and stable OAs that both
approximate the desired structures well and are practical
for real construction. Since we carefully compute the slice
positions and contours, our designs can preserve the input
surfaces while creating significantly fewer cuts and folds, as
compared to the automatic OA tool of Li et al. [7].

Limitations and Future Work. Although our algorithm
produces visually pleasing designs, it may not always
resemble some of the designer’s artistic choices. For
instance, in the Rialto Bridge model (Fig. 2), the sharp tip
of the roof is depicted by the artist, but not in our design,
because it is projected to a horizontal fold line. Similarly, in
our implementation, the slicing width thresholds computed
automatically may not be desirable for users. These choices
are subjective and require further user studies. A possible
solution is to wrap our algorithm in an interactive system,
in which users can interactively specify the desired details
and patch width thresholds. Our foldable patches construc-
tion and stabilization technique can also be integrated into
other OA design systems, such as [13], [14], allowing the
user to have more control over the design while keeping the
pop-ups valid.

In addition, due to the OA’s constraint of a single piece
of paper, we are not always able to preserve highly
concave regions, as shown with the floating cube, complete
sphere, and trefoil knot models (Fig. 14).

Our work also offers interesting possibilities for future
research. While the foldability conditions are proved to be
sufficient and necessary, it is still unknown whether
necessary conditions for stability checking are achievable.
Besides, generalizing the current conditions to nonparallel
OA will allow more flexibility in patch creation and shape
approximation.

We can extend our work to allow other types of input
representations, such as drawings and photographs. An
algorithm for OA design from such inputs will be exciting
and may require single-view reconstruction techniques [39].

In our current geometric formulation, we do not take into
account the real physical characteristics of paper. However,
in practice, the thickness, mass, strength, and elasticity of
paper are important considerations for OA design. It will be
useful to estimate the strength of an OA. If it encounters
physical weakness, careful adjustments will be needed to
strengthen the structure, while maintaining its geometric
foldability and stability.

ACKNOWLEDGMENTS

This work was supported by the Singapore MOE Academic
Research Fund (Project No. T1-251RES1104).

REFERENCES

[1] D.A. Carter, One Red Dot: A Pop-Up Book for Children of All Ages.
Little Simon, 2005.

[2] R. Sabuda and L. Carroll, Alice’s Adventures in Wonderland: A Pop-
up Adaptation. Simon & Schuster, 2003.

[3] M. Bataille, ABC3D. Roaring Brook Press, 2008.
[4] E.E. Hui, R.T. Howe, and M.S. Rodgers, “Single-Step Assembly of

Complex 3-D Microstructures,” Proc. IEEE 13th Ann. Int’l Conf.,
Micro Electro Mechanical Systems (MEMS ’00), pp. 602-607, 2000.

[5] J.P. Whitney, P.S. Sreetharan, K.Y. Ma, and R.J. Wood, “Pop-up
Book MEMS,” J. Micromechanics Microeng., vol. 21, no. 11,
pp. 115021-115027, 2011.

[6] M. Bianchini, I. Siliakus, and J. Aysta, The Paper Architect: Fold-It-
Yourself Buildings and Structures. Crown Publishing Group, 2009.

[7] X.-Y. Li, C.-H. Shen, S.-S. Huang, T. Ju, and S.-M. Hu, “Popup:
Automatic Paper Architectures from 3D Models,” ACM Trans.
Graphics, vol. 29, no. 4, pp. 111:1-111:9, 2010.

[8] P. Jackson and P. Forrester, The Pop-Up Book: Step-by-Step
Instructions for Creating over 100 Original Paper Projects. Henry
Holt and Co., 1993.

[9] D.A. Carter and J. Diaz, Elements of Pop-Up. 1999.
[10] C. Barton, The Pocket Paper Engineer: How to Make Pop-Ups Step-by-

Step. Popular Kinetics Press, 2008.
[11] D. Birmingham, Pop-Up Design and Paper Mechanics: How to Make

Folding Paper Sculpture. Guild of Master Craftsman Publications
Ltd., 2011.

[12] Y. Lee, S. Tor, and E. Soo, “Mathematical Modeling and
Simulation of Pop-up Books,” Computers & Graphics, vol. 20,
no. 1, pp. 21-31, 1996.

[13] A. Glassner, “Interactive Pop-up Card Design, Part 1,” IEEE
Computer Graphics and Applications, vol. 22, no. 1, pp. 79-86, Jan.
2002.

[14] S.L. Hendrix and M.A. Eisenberg, “Computer-Assisted Pop-up
Design for Children: Computationally Enriched Paper Engineer-
ing,” Advanced Technology Learning, vol. 3, no. 2, pp. 119-127, Apr.
2006.

[15] J. Mitani and H. Suzuki, “Computer Aided Design for Origamic
Architecture Models with Polygonal Representation,” Proc.
Computer Graphics Int’l (CGI ’04), pp. 93-99, 2004.

[16] J. Mitani and H. Suzuki, “Making Papercraft Toys from Meshes
Using Strip-Based Approximate Unfolding,” ACM Trans. Graphics,
vol. 23, no. 3, pp. 259-263, Aug. 2004.

[17] I. Shatz, A. Tal, and G. Leifman, “Paper Craft Models from
Meshes,” Visual Computer: Int’l J. Computer Graphics, vol. 22, no. 9,
pp. 825-834, Sept. 2006.

[18] F. Massarwi, C. Gotsman, and G. Elber, “Papercraft Models Using
Generalized Cylinders,” Proc. 15th Pacific Conf. Computer Graphics
and Applications, pp. 148-157, 2007.

[19] J. Xu, C.S. Kaplan, and X. Mi, “Computer-Generated Papercut-
ting,” Proc. 15th Pacific Conf. Computer Graphics and Application,
pp. 343-350, 2007.

[20] Y. Li, J. Yu, K.-l. Ma, and J. Shi, “3D Paper-Cut Modeling and
Animation,” Computer Animation and Virtual Worlds, vol. 18,
nos. 4/5, pp. 395-403, Sept. 2007.

LE ET AL.: SURFACE AND CONTOUR-PRESERVING ORIGAMIC ARCHITECTURE PAPER POP-UPS 287

[21] E. Demaine and J. O’Rourke, Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge Univ. Press, 2007.

[22] J. O’Rourke, How to Fold It: The Mathematics of Linkages, Origami
and Polyhedra. Cambridge Univ. Press, 2011.

[23] T. Tachi, “Origamizing Polyhedral Surfaces,” IEEE Trans. Visua-
lization and Computer Graphics, vol. 16, no. 2, pp. 298-311, Mar.
2010.

[24] A. Glassner, “Interactive Pop-up Card Design, Part 2,” Computer
Graphics and Application, vol. 22, no. 2, pp. 74-85, 2002.

[25] S. Iizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui, “An
Interactive Design System for Pop-up Cards with a Physical
Simulation,” Visual Computer, vol. 27, nos. 6-8, pp. 605-612,
http://dx.doi.org/10.1007/s00371-011-0564-0, June 2011.

[26] Z. Abel, E.D. Demaine, M.L. Demaine, S. Eisenstat, A. Lubiw, A.
Schulz, D.L. Souvaine, G. Viglietta, and A. Winslow, “Universality
Results for Pop-Up Cards,” rapid post, Universita di Pisa. http://
www.di.unipi.it/~vigliett/, 2012.

[27] Tama Software. PePaKuRa Designer, http://www.tamasoft.co.jp/
pepakura-en, 2007.

[28] J.-m. Chen and Y.-z. Zhang, “A Computer-Aided Design System
for Origamic Architecture,” Proc. Int’l Conf. Supercomputing, 2006.

[29] X.-Y. Li, T. Ju, Y. Gu, and S.-M. Hu, “A Geometric Study of V-Style
Pop-ups: Theories and Algorithms,” ACM Trans. Graphics, vol. 30,
no. 4, pp. 98:1-98:10, July 2011.

[30] J. McCrae, K. Singh, and N.J. Mitra, “Slices: A Shape-Proxy Based
on Planar Sections,” ACM Trans. Graphics, vol. 30, no. 6, pp. 168:1-
168:12, Dec. 2011.

[31] K.A. Stevens, “The Visual Interpretation of Surface Contours,”
Artificial Intelligence, vol. 17, no. 13, pp. 47-73, 1981.

[32] J. Todd and F. Reichel, “Visual Perception of Smoothly Curved
Surfaces from Double-Projected Contour Patterns,” J. Experimental
Psychology. Human Perception and Performance, vol. 16, pp. 665-674,
1990.

[33] J. Koenderink, Solid Shape. MIT Press, 1990.
[34] J. Feldman and M. Singh, “Information along Contours and Object

Boundaries,” Psychological Rev., vol. 112, pp. 243-252, 2005.
[35] R. Mehra, Q. Zhou, J. Long, A. Sheffer, A. Gooch, and N.J. Mitra,

“Abstraction of Man-Made Shapes,” ACM Trans. Graphics, vol. 28,
no. 5, pp. 137:1-137:10, Dec. 2009.

[36] E. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and P.
Azariadis, “3D Mesh Segmentation Methodologies for CAD
Applications,” Computer-Aided Design and Application, vol. 4,
no. 6, pp. 827-842, 2007.

[37] A. Shamir, “A Survey on Mesh Segmentation Techniques,”
Computer Graphics Forum, vol. 27, no. 6, pp. 1539-1556, 2008.

[38] R.C. Gonzalez and R.E. Woods, Digital Image Processing, second
ed. Prentice Hall, 2002.

[39] D. Hoiem, A.A. Efros, and M. Hebert, “Automatic Photo Pop-up,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 577-584, July 2005.

Sang N. Le received the BSc degree in
computer science, with a minor in mathematics,
from NUS in 2006. He is working toward the PhD
degree and is a teaching staff at the School
of Computing of the National University of
Singapore (NUS). He has worked in a number
of research areas, ranging from biomechanics
and human motion synthesis to 3D reconstruc-
tion. His current focus is on automatic design of
paper pop-ups.

Su-Jun Leow received the BSc degree in
computer science with a major in communica-
tions and media, and the MSc degree in
computer science from the National University
of Singapore (NUS), in 2007 and 2010, respec-
tively. She is working toward the PhD degree at
the School of Computer Engineering of Nanyang
Technological University (NTU). Her research
interests include automatic speech recognition,
spoken term detection image processing, and

computational photography.

Tuong-Vu Le-Nguyen received the BSc degree
from Vietnam National University in 2005, and
the MSc degree in computer science from the
National University of Singapore in 2012. He has
worked in a number of projects in the areas of
computer graphics and computer vision. He is
running a startup company that provides cloud-
based software solutions.

Conrado Ruiz Jr. received the BSc degree in
computer science from De La Salle University
(DLSU)-Manila, the MSc degree from NUS. He
is working toward the PhD degree at the School
of Computing of the National University of
Singapore (NUS). He is currently on leave from
his faculty position at DLSU. He has coauthored
papers in the areas of computer graphics and
multimedia retrieval.

Kok-Lim Low received the MSc and BSc
(Honors) degrees in computer science from
NUS, the PhD degree in computer science from
the University of North Carolina at Chapel Hill.
He is an assistant professor at the Department
of Computer Science of the National University
of Singapore (NUS). His research interests
include computational art, real-time rendering,
and computational photography.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

288 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

