An Expandable Four-Phase Interleaved High Step-Down Converter with Low Switch Voltage Stress and Automatic Uniform Current Sharing

K. I. Hwu, Member, IEEE, W. Z. Jiang, Student Member, IEEE, and P. Y. Wu

Abstract

In this paper, a novel four-phase interleaved high step-down converter is presented. The proposed converter can provide an extremely high step-down voltage conversion ratio within a moderate duty cycle. There are four main advantages of the proposed converter. First, the blocking capacitors can store energy as usual. Therefore, they are used as voltage sources to reduce the input voltage as well as to reduce the switch voltage stresses. Second, due to the charge balance of the dc blocking capacitors, the converter possesses an automatic uniform current sharing characteristic of the interleaved phases without adopting any extra circuitry. Third, due to the phase shift between the interleaved phases, the architecture provides a low output current ripple. Fourth, the number of phases can be expanded or reduced to any even phases; therefore, the converter has a wide range of applications. Finally, the operating principles and analysis of this architecture are given, and an experimental prototype is also provided to verify the effectiveness of the proposed converter.

Index Terms-High step-down converter, Automatic uniform current sharing, Low voltage stress, Interleaved control.

I. INTRODUCTION

RECENTLY, a converter with high step-down voltage gain and large output current is increasingly needed, such as the battery charger, the power electronics used in the car, the distribution power system [2]-[4], and so on. Therefore, a high-performance buck converter is getting more and more attractive in the world. For applications possessing the nonisolated high step-down voltage gain and low output current ripple, the interleaved buck converter (IBC) [5]-[9] is widely used due to its simple structure and easy control.

However, since the traditional IBC has to endure a high input voltage, the high-voltage switch is required, and hence there are many disadvantages, such as high cost, large turn-on resistance, high turn-on driving voltage, large reverse recovery current, etc. For the applications of the high input voltage and extremely low output voltage, the duty cycle of the traditional buck converter will be extremely small, thereby leading to large power losses. Thus, the conversion efficiency of this buck converter would be reduced significantly.

Manuscript received September 10, 2015; revised March 9, 2016; accepted May 4, 2016.
K. I. Hwu, W. Z. Jiang, and P. Y. Wu are with the Institute of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (e-mail: eaglehwu@ntut.edu.tw, newjerusalem333@gmail.com, and boyingwu77@gmail.com).

Consequently, in order to overcome the demerits mentioned above, there are many improved buck converter topologies presented [10]-[19]. The literatures [10] and [11] present high step-down converters based on switching capacitors, which are used as voltage dividers. By doing so, if the voltages across the capacitors are different, the output voltage would be deviated. In addition, too many switches and diodes are used, leading to efficiency reduction and cost increase. The literatures [12] and [13] present three-level stepdown converters, which can reduce the voltage stresses across the switches from the input voltage to half of the input voltage. However, these two converters use too many components. The literature [14] presents a three-level high step-down buck converter with zero voltage switching (ZVS). Although this converter can provide a high step-down voltage gain, it uses two transformers, thereby causing the corresponding cost to increase and the indispensable leakage inductance energy to degrade the circuit efficiency regardless of ZVS operation. In literatures [15] and [16], not only the voltage stresses can be reduced by adjusting the turns ratio of the coupled inductor, but also a high step-down voltage gain can be obtained. In literature [17], an improved multiple-phase IBC is presented. This converter possesses a higher step-down voltage gain and lower voltages stresses on the switches than the traditional IBC. However, for high-input-voltage and low-output-voltage applications, the step-down voltage gain is not high enough. Consequently, an extremely small duty cycle is required to achieve a high step-down voltage gain, and this makes the overall efficiency low.

In order to obtain a reasonable duty cycle so as to upgrade the step-down voltage gain, the literatures [18] and [19] present multiphase IBCs with automatic current sharing and low voltage stresses on switches and diodes. Therefore, the corresponding conduction loss can be reduced and hence the overall efficiency can be improved. However, the input and output grounds are separated by the switches, thereby limiting converter applications as well as complicating control design. Moreover, the phase counts of the converters shown in [18] and [19] cannot be changed.

Based on the mentioned above, a novel four-phase high step-down converter with automatic current sharing and low voltage stresses on switches and diodes is proposed in this paper. Not only this converter can obtain a high step-down voltage gain under a suitable duty cycle, but also the input and output grounds are connected. In addition, the proposed
converter possesses 2 N (N is integer) multiphase extension capability. Furthermore, the output voltage ripple can be reduced by interleaved control.

II. Basic Operating Principles

Fig. 1 shows the four-phase step-down converter, which is constructed by four switches S_{1}, S_{2}, S_{3} and S_{4}, four diodes D_{1}, D_{2}, D_{3} and D_{4}, four inductors L_{1}, L_{2}, L_{3} and L_{4}, three dc blocking capacitors C_{1}, C_{2} and C_{3}, and one output capacitor C_{o}. Besides, the input voltage is represented by $V_{i n}$, the output voltage is signified by V_{o}, and the output resistor is indicated by R_{o}. There are two functions of these dc blocking capacitors. One is that the high step-down voltage gain can be realized and the voltage stresses on switches and diodes can be reduced. The other is that the total output current can be evenly distributed among four phases. Fig. 2 shows the illustrated waveforms of the proposed converter operated in continuous conduction mode (CCM). It is noted that the automatic current sharing occurs under the condition that the duty cycle is smaller than 0.25 and the converter operates in CCM. If the number of phases is 2 N , then the duty cycle is $0.5 / \mathrm{N}$.

Fig. 1. Proposed expandable four-phase interleaved step-down converter.

For analysis convenience, there are some assumptions to be made as follows:
(1) All components used in this converter are ideal.
(2) The values of the capacitors C_{1}, C_{2} and C_{3} are identical and large enough to make the voltages across them kept constant without voltage ripples.
(3) The converter operates in CCM with the duty cycle D smaller than 0.25 . Hence, not only the automatic current sharing among four phases but also the high step-down voltage conversion ratio can be achieved. In the proposed converter, there are eight operating modes.

1) State $1\left[t_{0} \sim t_{1}\right]$: As shown in Fig. 3(a), during this interval, the switch S_{1} is turned on, but the switches S_{2}, S_{3} and S_{4} are turned off. At the same time, the diode D_{1} is turned off, but the diodes D_{2}, D_{3} and D_{4} are turned on. The input voltage $V_{i n}$ is across the capacitor C_{1}, the inductor L_{1} and the output load, thus making C_{1} being charged and L_{1} being magnetized. Also, the currents $i_{L 2}, i_{L 3}$ and $i_{L 4}$ are freewheeling via D_{2}, D_{3} and D_{4}, respectively, thereby making the inductors L_{2}, L_{3} and L_{4} being demagnetized. Therefore, the voltage on $D_{1}, v_{D 1}$, is clamped at $V_{i n}-V_{C 1}$, the voltage on $S_{2}, v_{S 2}$, is clamped at $V_{i n}-V_{C 2}$, the voltage on $S_{3}, v_{S 3}$, is clamped at $V_{C 2}-V_{C 3}$, and the voltage on $S_{4}, v_{S 4}$, is clamped at $V_{C 3}$. The associated
differential equations are described below:

Fig. 2. Illustrated waveforms of the proposed converter operated in CCM.

$$
\begin{align*}
& L_{1} \frac{d i_{L 1}}{d t}=V_{i n}-V_{C 1}-V_{o} \tag{1}\\
& L_{2} \frac{d i_{L 2}}{d t}=-V_{o} \tag{2}\\
& L_{3} \frac{d i_{L 3}}{d t}=-V_{o} \tag{3}\\
& L_{4} \frac{d i_{L 4}}{d t}=-V_{o} \tag{4}\\
& C_{1} \frac{d v_{C 1}}{d t}=i_{L 1} \tag{5}\\
& C_{2} \frac{d v_{C 2}}{d t}=0 \tag{6}\\
& C_{3} \frac{d v_{C 3}}{d t}=0 \tag{7}
\end{align*}
$$

2) States $2,4,6,8\left[t_{1} \sim t_{2}, t_{3} \sim t_{4}, t_{5} \sim t_{6}, t_{7} \sim t_{8}\right]:$ As shown in Fig. 3(b), during these intervals, the switches S_{1}, S_{2}, S_{3} and S_{4} are all turned off. At the same time, the currents $i_{L 1}$, $i_{L 2}, i_{L 3}$ and $i_{L 4}$ are freewheeling via the diodes D_{1}, D_{2}, D_{3} and D_{4}, respectively, thereby causing L_{1}, L_{2}, L_{3} and L_{4} to be demagnetized. Therefore, the voltage across S_{1} is $V_{i n}-V_{C 1}$, the voltage across $S_{2}, v_{S 2}$, is $V_{C 1}-V_{C 2}$, the voltage across S_{3}, $v_{S 3}$, is $V_{C 2}-V_{C 3}$ and the voltage across $S_{4}, v_{S 4}$, is $V_{C 3}$.

$$
\begin{align*}
& L_{1} \frac{d i_{L 1}}{d t}=-V_{o} \tag{8}\\
& L_{2} \frac{d i_{L 2}}{d t}=-V_{o} \tag{9}\\
& L_{3} \frac{d i_{L 3}}{d t}=-V_{o} \tag{10}\\
& L_{4} \frac{d i_{L 4}}{d t}=-V_{o} \tag{11}
\end{align*}
$$

3) State $3\left[t_{2} \sim t_{3}\right]$: As shown in Fig. 3(c), during this interval, the switch S_{2} is turned on, but the switches S_{1}, S_{3} and S_{4} are turned off. At the same time, the diode D_{2} is turned off, but the diodes D_{1}, D_{3} and D_{4} are turned on. Also, the capacitor C_{1} is releasing the energy to the capacitor C_{2}, the inductor L_{2} and the load, thus making C_{2} being charged and L_{2} being magnetized. Besides, the currents $i_{L 1}, i_{L 3}$ and $i_{L 4}$ are freewheeling via D_{1}, D_{2} and D_{4}, thereby rendering the inductors L_{1}, L_{3} and L_{4} being demagnetized. Therefore, the voltage across $D_{2}, v_{D 2}$, is $V_{C 1}-V_{C 2}$, the voltage across $S_{1}, v_{S 1}$, is $V_{i n}-V_{C 1}$, the voltage across $S_{3}, v_{S 3}$, is $V_{C 1}-V_{C 3}$ and the voltage across $S_{4}, v_{S 4}$, is $V_{C 3}$.

$$
\begin{align*}
& L_{1} \frac{d i_{L 1}}{d t}=-V_{o} \tag{12}\\
& L_{2} \frac{d i_{L 2}}{d t}=V_{C 1}-V_{C 2}-V_{o} \tag{13}\\
& L_{3} \frac{d i_{L 3}}{d t}=-V_{o} \tag{14}\\
& L_{4} \frac{d i_{L 4}}{d t}=-V_{o} \tag{15}\\
& C_{1} \frac{d v_{C 1}}{d t}=-i_{L 2} \tag{16}\\
& C_{2} \frac{d v_{C 2}}{d t}=i_{L 2} \tag{17}\\
& C_{3} \frac{d v_{C 3}}{d t}=0 \tag{18}
\end{align*}
$$

4) State $5\left[t_{4} \sim t_{5}\right]$: As shown in Fig. 3(d), during this interval, the switch S_{3} is turned off, but the switches S_{1}, S_{2} and S_{4} are turned on. At the same time, the diode D_{3} is turned off, but the diodes D_{1}, D_{2} and D_{4} are turned on. Also, the capacitor C_{2} releases the energy to the capacitor C_{3}, the inductor L_{3} and the load, thereby making C_{3} being charged and L_{3} being
magnetized. Moreover, the currents $i_{L 1}, i_{L 2}$ and $i_{L 4}$ are freewheeling via D_{1}, D_{2} and D_{4}, respectively, thus making L_{1}, L_{2} and L_{4} being demagnetized. Therefore, the voltage across $S_{2}, v_{S 2}$, is $V_{C 1}-V_{C 2}$ and the voltage across $D_{3}, v_{D 3}$, is $V_{C 2}$.

$$
\begin{align*}
& L_{1} \frac{d i_{L 1}}{d t}=-V_{o} \tag{19}\\
& L_{2} \frac{d i_{L 2}}{d t}=-V_{o} \tag{20}\\
& L_{3} \frac{d i_{L 3}}{d t}=V_{C 2}-V_{C 3}-V_{o} \tag{21}\\
& L_{4} \frac{d i_{L 4}}{d t}=-V_{o} \tag{22}\\
& C_{1} \frac{d v_{C 1}}{d t}=0 \tag{23}\\
& C_{2} \frac{d v_{C 2}}{d t}=-i_{L 3} \tag{24}\\
& C_{3} \frac{d v_{C 3}}{d t}=i_{L 3} \tag{25}
\end{align*}
$$

5) State $7\left[t_{6} \sim t_{7}\right]$: As shown in Fig. 3(e), during this interval, the switch S_{4} is turned on, but the switches S_{1}, S_{2} and S_{3} are turned off. At the same time, the diode D_{4} is turned off, but the diodes D_{1}, D_{2} and D_{3} are turned on. The capacitor C_{3} releases energy to the inductor L_{4} and the load, thus making L_{4} magnetized. Also, the currents $i_{L 1}, i_{L 2}$ and $i_{L 3}$ are freewheeling via D_{1}, D_{2} and D_{3}, respectively, thereby rendering the inductors L_{1}, L_{2} and L_{3} being demagnetized. Therefore, the voltage across D_{4} is $V_{L 1}+V_{o}$, the voltage across S_{1} is $V_{C 1}-V_{C 2}$, the voltage across S_{2} is $V_{C 1}-V_{C 2}$ and the voltage across S_{3} is $V_{C 2}-V_{C 3}$.

$$
\begin{align*}
& L_{1} \frac{d i_{L 1}}{d t}=-V_{o} \tag{26}\\
& L_{2} \frac{d i_{L 2}}{d t}=-V_{o} \tag{27}\\
& L_{3} \frac{d i_{L 3}}{d t}=-V_{o} \tag{28}\\
& L_{4} \frac{d i_{L 4}}{d t}=V_{C 3}-V_{o} \tag{29}\\
& C_{1} \frac{d v_{C 1}}{d t}=0 \tag{30}\\
& C_{2} \frac{d v_{C 2}}{d t}=0 \tag{31}\\
& C_{3} \frac{d v_{C 3}}{d t}=-i_{L 4} \tag{32}
\end{align*}
$$

(d)

(e)

Fig. 3. Operating circuits over one switching period: (a) state 1; (b) state $2,4,6,8$; (c) state 3 ; (d) state 5 ; (e) state 7 .

III. Steady State Analysis

A. Voltage Gain

Applying the volt-second balance to L_{1}, L_{2}, L_{3} and L_{4}, the following equations can be obtained to be

$$
\begin{align*}
& \left(V_{i n}-V_{C 1}-V_{o}\right) D=V_{o}(1-D) \tag{33}\\
& \left(V_{C 1}-V_{C 2}-V_{o}\right) D=V_{o}(1-D) \tag{34}\\
& \left(V_{C 2}-V_{C 3}-V_{o}\right) D=V_{o}(1-D) \tag{35}\\
& \left(V_{C 3}-V_{o}\right) D=V_{o}(1-D) \tag{36}
\end{align*}
$$

Hence, the relationship between the output voltage V_{o} and the input voltage $V_{i n}$ can be described as follows:

$$
\begin{equation*}
V_{o}=\frac{D}{4} V_{i n} \tag{37}
\end{equation*}
$$

Accordingly, the voltage gain M can be obtained to be

$$
\begin{equation*}
M=\frac{V_{o}}{V_{i n}}=\frac{D}{4} \tag{38}
\end{equation*}
$$

B. Voltage Stresses on Switches and Diodes

According to Figs. 3(a), 3(c), 3(d) and 3(e), the voltages across D_{1}, D_{2}, D_{3} and D_{4} can be obtained to be

$$
\begin{align*}
& v_{D 1}=V_{i n}-V_{C 1} \tag{39}\\
& v_{D 2}=V_{C 1}-V_{C 2} \tag{40}\\
& v_{D 3}=V_{C 2}-V_{C 3} \tag{41}\\
& v_{D 4}=V_{C 3} \tag{42}
\end{align*}
$$

By substituting (37) into (33), (34), (35) and (36), the voltage across C_{1}, C_{2} and C_{3} can be obtained to be

$$
\begin{align*}
& V_{C 1}=\frac{3}{4} V_{i n} \tag{43}\\
& V_{C 2}=\frac{1}{2} V_{i n} \tag{44}\\
& V_{C 3}=\frac{1}{4} V_{i n} \tag{45}
\end{align*}
$$

Therefore, the voltage stresses on D_{1}, D_{2}, D_{3} and D_{4} can be obtained to be

$$
\begin{equation*}
v_{D 1, \max }=v_{D 2, \max }=v_{D 3, \max }=v_{D 4, \max }=\frac{V_{i n}}{4} \tag{46}
\end{equation*}
$$

According to Fig. 3(a), 3(c), 3(d) and 3(e), the voltages across the switches S_{1}, S_{2}, S_{3} and S_{4} are

$$
\begin{align*}
& v_{d s 1}=V_{i n}-V_{C 1} \tag{47}\\
& v_{d s 2}=V_{i n}-V_{C 2} \tag{48}\\
& v_{d s 3}=V_{C 1}-V_{C 3} \tag{49}\\
& v_{d s 4}=V_{C 2} \tag{50}
\end{align*}
$$

Therefore, the voltage stresses on these four switches can be obtained to be

$$
\begin{equation*}
v_{d s 1, \max }=\frac{V_{i n}}{4} \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
v_{d s 2, \max }=v_{d s 3, \max }=v_{d s 4, \max }=\frac{V_{i n}}{2} \tag{52}
\end{equation*}
$$

C. Auto Current Sharing

Based on (5), (16), (17), (24), (25) and (32) and by applying the ampere-second balance to the capacitors C_{1}, C_{2} and C_{3}, the following equations can be obtained to be

$$
\begin{align*}
& \frac{I_{L 1}-I_{L 2}}{C_{1}} D T_{s}=0 \tag{53}\\
& \frac{I_{L 2}-I_{L 3}}{C_{2}} D T_{s}=0 \tag{54}\\
& \frac{I_{L 3}-I_{L 4}}{C_{3}} D T_{s}=0
\end{align*}
$$

Hence, the relationship between $I_{L 1}, I_{L 2}, I_{L 3}$ and $I_{L 4}$ can be expressed by

$$
\left\{\begin{array}{l}
I_{L 1}-I_{L 2}=0 \tag{56}\\
I_{L 2}-I_{L 3}=0 \\
I_{L 3}-I_{L 4}=0
\end{array}\right.
$$

The output current I_{o} can be signified by

$$
\begin{equation*}
I_{L 1}+I_{L 2}+I_{L 3}+I_{L 4}=I_{o} \tag{57}
\end{equation*}
$$

From (56) and (57), the following equation can be obtained as

$$
\begin{equation*}
I_{L 1}=I_{L 2}=I_{L 3}=I_{L 4}=\frac{I_{o}}{4} \tag{58}
\end{equation*}
$$

From (58), the current sharing can be achieved, independent of the values of the capacitors.

D. Boundary Condition and Inductor Design

1) Boundary Condition: What condition the inductors operate on is

$$
\left\{\begin{array}{l}
2 I_{L i} \geq \Delta i_{L i}, i=1,2,3,4 \Rightarrow \mathrm{CCM} \tag{59}\\
2 I_{L i}<\Delta i_{L i}, i=1,2,3,4 \Rightarrow \mathrm{DCM}
\end{array}\right.
$$

where $I_{L i}$ and $\Delta i_{L i}$ are the dc component of $i_{L i}$ and the peak-to-peak value of the ac component of $i_{L i}, i=1,2,3,4$, respectively.

Substituting (58) into (59) yields the following equation:

$$
\left\{\begin{array}{l}
I_{o} \geq 2 \Delta i_{L i}, i=1,2,3,4 \Rightarrow \mathrm{CCM} \tag{60}\\
I_{o}<2 \Delta i_{L i}, i=1,2,3,4 \Rightarrow \mathrm{DCM}
\end{array}\right.
$$

From (60), if $I_{o} \geq 2 \Delta i_{L i}$, then the converter operates in CCM; otherwise, the converter operates in discontinuous conduction mode (DCM).
2) Inductor Design: The system specifications are given in Table I. Based on Table I and (60), the value of the inductor of each phase for the proposed converter always operating in CCM should satisfy
$L_{i} \geq \frac{V_{o}(1-D) T_{s}}{\Delta i_{L}}=\frac{24 \times(1-0.24) \times 25 \mu}{2.083}=218.9 \mu \mathrm{H}, i=1,2,3,4$
Finally, the value of L_{i} is set at $220 \mu \mathrm{H}$. Also, Table II shows the specifications of the components used for the proposed converter.

TABLE I
SPECIFICATIONS OF THE PROPOSED CONVERTER

System parameters	Specifications
Input voltage $\left(V_{i n}\right)$	400 V
Rated output voltage $\left(V_{o}\right)$	24 V
Rated output current /power $\left(I_{o, \text { rated }}\right)$	$20.83 \mathrm{~A} / 500 \mathrm{~W}$
Minimum output current $\left(I_{o, \text { min }}\right) /$ power $\left(P_{o, \text { min }}\right)$	$4.17 \mathrm{~A} / 100 \mathrm{~W}$
Switching frequency $\left(f_{s}\right)$	40 kHz

TABLE II
COMPONENTS USED IN THE PROPOSED CONVERTER

Components		Specifications
Inductors $L_{1}, L_{2}, L_{3}, L_{4}$	$220 \mu \mathrm{H}$	
Capacitors C_{1}, C_{2}, C_{3}		$10 \mu \mathrm{~F} / 450 \mathrm{~V}$
Output capacitor C_{o}		$220 \mu \mathrm{~F} / 50 \mathrm{~V}$
Switches	S_{1}	IRFB4227PbF, $200 \mathrm{~V}, R_{d s(o n)}=19.7 \mathrm{~m} \Omega$
	S_{2}, S_{3}, S_{4}	IRFB4137PbF, $300 \mathrm{~V}, R_{d s(o n)}=56 \mathrm{~m} \Omega$
Diodes $D_{1}, D_{2}, D_{3}, D_{4}$		V 40120 C

E. Loss Analysis

Table III shows the voltage stresses on the switches and diodes of the classical interleaved buck converter (IBC), the converter in [19] and the proposed converter, whereas Table IV shows the MOSFET and diode specifications for the classical IBC, the converter in [19] and the proposed converter. Accordingly, under the specifications (400V input voltage, 24 V output voltage, 500 W output power, and 40 kHz switching frequency), a loss breakdown comparison of between these three converters operating at rated load is made, and shown in Fig. 4.

TABLE III
COMPARISON OF THE STEADY-STATE CHARACTERISTICS ALONG WITH THE SELECTED PRODUCT NAMES

	Classical IBC		Converter in [19]		Proposed converter	
Duty ratio		1/16		1/4		1/4
Voltage stress on switch	S_{1}	$\begin{gathered} 400 \mathrm{~V} \\ \text { (IXFK64N50P) } \end{gathered}$	S_{2}	$\begin{gathered} 100 \mathrm{~V} \\ \text { (IXFH150N15P) } \end{gathered}$	S_{1}	$\begin{gathered} 100 \mathrm{~V} \\ \text { (IRFB4227PbF) } \end{gathered}$
Voltage stress on switch	S_{2}	$\begin{gathered} 400 \mathrm{~V} \\ \text { (IXFK64N50P) } \end{gathered}$	$\frac{S_{1}}{\frac{S_{3}}{S_{4}}}$	$\begin{gathered} 200 \mathrm{~V} \\ \text { (IXFH100N25P) } \end{gathered}$	$\begin{aligned} & \frac{S_{2}}{S_{3}} \\ & \hline S_{4} \end{aligned}$	$\begin{gathered} 200 \mathrm{~V} \\ \text { (IRFB4137PbF) } \end{gathered}$
Voltage stress on diode		$\begin{gathered} 400 \mathrm{~V} \\ \text { (DSEP 8-06A) } \end{gathered}$		$\begin{gathered} 100 \mathrm{~V} \\ (\mathrm{DSSK} 60-02 \mathrm{~A}) \end{gathered}$		$\begin{gathered} 100 \mathrm{~V} \\ (\mathrm{~V} 40120 \mathrm{C}) \end{gathered}$

TABLE IV
Parameters of MOSFETS and diodes

MOSFET	Diode
IXFK 64 N 50 P,	DSEP $8-06 \mathrm{~A}$,
$500 \mathrm{~V}, R_{D S(o n}=85 \mathrm{~m} \Omega$	$600 \mathrm{~V}, 10 \mathrm{~A}, V_{F}=1.42 \mathrm{~V}$
IXFH150N15P,	DSSK $60-02 \mathrm{~A}$,
$150 \mathrm{~V}, R_{D S(o n}=13 \mathrm{~m} \Omega$	$200 \mathrm{~V}, 60 \mathrm{~A}, V_{F}=0.7 \mathrm{~V}$
IXFH100N25P,	
$250 \mathrm{~V}, R_{D S(o n)}=27 \mathrm{~m} \Omega$	
IRFB4227PbF,	
$200 \mathrm{~V}, R_{D S(o n)}=19.7 \mathrm{~m} \Omega$	V40120C,
IRFB4137PbF,	$120 \mathrm{~V}, 40 \mathrm{~A}, V_{F}=0.63 \mathrm{~V}$
$300 \mathrm{~V}, R_{D S(o n)}=56 \mathrm{~m} \Omega$	

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Fig. 4. Loss breakdown comparison.

IV. Experimental Results

In order to demonstrate the effectiveness of the proposed converter, the following waveforms are measured under the rated conditions. Fig. 5 shows the voltages $v_{d s 1}, v_{d s 2}, v_{d s 3}$ and $v_{d s 4}$ across the switches S_{1}, S_{2}, S_{3} and S_{4}, respectively. From Fig. 5, it can be seen that the maximum values of $v_{d s 2}, v_{d s 3}$ and $v_{d s 4}$ are 200 V , equal to a half of the input voltage, which matches (52), and the maximum value of $v_{d s 1}$ is 100 V , equal to a quarter of the input voltage, which matches (51).

Fig. 6 shows the voltages $v_{d s 1}, v_{d s 2}, v_{d s 3}$ and $v_{d s 4}$ across the diodes D_{1}, D_{2}, D_{3} and D_{4}, respectively. From Fig. 6, it can be seen that the voltages $v_{d s 1}, v_{d s 2}, v_{d s 3}$ and $v_{d s 4}$ are 100 V , equal to a quarter of the input voltage, which matches (46). Fig. 7 shows the voltages $V_{C 1}, V_{C 2}$ and $V_{C 3}$ across the capacitors C_{1}, C_{2} and C_{3}. From Fig. 7, the voltage across C_{1} is 300 V , equal to three-fourths of the input voltage, which matches (43); the voltage across C_{2} is 200 V , equal to a half of the input voltage, which matches (44); the voltage across C_{3} is 100 V , equal to a quarter of the input voltage, which matches (45).

Fig. 5. Waveforms at rated load: (1) $v_{d s 1}$; (2) $v_{d s 2}$; (3) $v_{d s 3}$; (4) $v_{d s 4}$.

Fig. 6. Waveforms at rated load: (1) $v_{D 1}$; (2) $v_{D 2}$; (3) $v_{D 3}$; (4) $v_{D 4}$.

Fig. 7. Waveforms at rated load: (1) $V_{C 1}$; (2) $V_{C 2}$; (3) $V_{C 3}$.
Figs. 8 and 9 show the currents $i_{L 1}, i_{L 2}, i_{L 3}$ and $i_{L 4}$ in L_{1}, L_{2}, L_{3} and L_{4}, respectively. From Fig. 9, it can be seen that the output current is evenly distributed among four phases. Fig. 10 shows the input voltage $V_{i n}$ and the output voltage V_{o}. From Fig. 10, it can be seen that the input voltage $V_{i n}$ is 400 V and the output voltage V_{o} is 24 V , and this verifies the high step-down voltage gain. Fig. 11 shows the curve of efficiency versus load current as compared to the literature [19]. From Fig. 11, it can be seen that the efficiency of the proposed converter is better than that of the converter in [19].

Fig. 8. Waveforms at rated load: (1) $i_{L 1} ;(2) i_{L 2} ;(3) i_{L 3} ;(4) i_{L 4}$.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Fig. 9. Waveforms at rated load: (1) $i_{L 1}$; (2) $i_{L 2}$; (3) $i_{L 3}$; (4) $i_{L 4}$.

Fig. 10. Waveforms at rated load: (1) $V_{i n}$; (2) V_{o}.

Fig. 11. Curves of efficiency versus load current as compared with the converter in [19].

Under the condition that the input voltage of the proposed converter is connected to the output voltage of the power supply, Figs. 12 to 14 show the input voltage and the voltages across the three dc blocking capacitors during the power-on and -off transitions. From these figures, all the voltages on these dc blocking capacitors almost linearly rise, synchronized with the input voltage with different slopes. Also, the voltages across all the switches during the power-on and -off transitions can be represented by (47) to (50). Based on (47) to (50) and Figs. 12 to 14, it can be seen that the voltage stresses on all the switches during the power-on and -off transitions are smaller than the input voltage.

Fig. 12. Transitions of $V_{i n}$ and $V_{C 1}$: (1) power-on; (2) power-off.

Fig. 13. Transitions of $V_{i n}$ and $V_{c 2}$: (1) power-on; (2) power-off.

Fig. 14. Transitions of $V_{i n}$ and $V_{C 3}$: (1) power-on; (2) power-off.

V. Conclusion

In this paper, a novel four-phase interleaved converter is presented, which possesses a high step-down voltage gain and automatic current balance. Above all, the number of phases can be increased or decreased. Due to the dc blocking capacitors, the switches and diodes have relatively low voltage stresses, and hence the conduction and switching losses are reduced. Furthermore, unlike the converter shown in [19], the input and output grounds of the proposed converter are connected. Moreover, the associated mathematical deductions for the proposed converter are given first, and then some experimental results, based on a prototype with 400 V input voltage, 24 V output voltage and 500 W output power, are used to verify the merits of the proposed converter. Accordingly, the experimental results show the low voltage stresses and the automatic uniform current sharing characteristic. In addition, the experimental results also show the relationship between the input voltage and the dc blocking capacitor voltages during power-on and power-off transitions. When the input voltage linearly rises during the startup period, these dc blocking capacitor voltages also linearly rise. When the input voltage linearly falls to zero during the shutdown period, these dc blocking capacitor voltages also linearly fall to zero. Thus, there are no over-voltages on the switches during power-on and power-off transitions.

The proposed converter can be used in the applications with high input voltage and low output voltage, such as battery chargers, distributed power systems, etc.

References

[1] M. Bendali, C. Larouci, T. Azib, C. Marchand, and G. Coquery, "Design methodology of an interleaved buck converter for onboard automotive application, multi-objective optimisation under multi-physic constraints," IET Electr. Syst. Transp., vol. 5, no. 2, pp. 53-60, Jun. 2015.
[2] D. D.-C. Lu and V. G. Agelidis, "Photovoltaic-battery-powered DC bus system for common portable electronic devices," IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849-855, Mar. 2009.
[3] M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, "A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 920-933, Feb. 2012.
[4] S. Kai, Z. Li, X. Yan, and J. M. Guerrero, "A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage," IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 3032-3045, 2011.
[5] O. Garcia, P. Zumel, A. de Castro, and J. A. Cobos, "Automotive DCDC bidirectional converter made with many interleaved buck stages," IEEE Trans .Power Electron., vol. 21, no. 3, pp. 578-586, May 2006.
[6] C. C. Ying, "High-efficiency ZCS buck converter for rechargeable batteries," IEEE Trans. Power Electron., vol. 57, no. 7, pp. 2463-2472, Jul. 2010.
[7] L. L. Ray, C. H. Cheng, and K. C. Shih, "Interleaved four-phase buckbased current source with isolated energy-recovery scheme for electrical discharge machining," IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1788-1797, Jul. 2009.
[8] C. S. Moo, J. C. Yu, H. L. Cheng, and C. H. Yao, "Twin-buck converter with zero-voltage transition," IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2366-2371, Jun. 2011.
[9] M. Esteki, E. Adib, and H. Farzanehfard, "Soft switching interleaved PWM buck converter with one auxiliary switch," IEEE ICEE'14, pp. 232-237, 2014.
[10] M. Uno, "High step-down converter integrating switched capacitor converter and PWM synchronous buck converter," IEEE INTELEC'13, pp. 1-6, 2013.
[11] X. Song, C. W. Siu, C. T. Siew, and C. K. Tse, "A family of exponential step-down switched-capacitor converters and their applications in twostage converters," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 18701880, Apr. 2014.
[12] X. Ruan, B. Li, Q. Chen, S. C. Tan, and C. K. Tse, "Fundamental considerations of three-level DC-DC converters: topologies, analyses, and control," IEEE Trans. Circuits and Syst.-I: Regulator Papers, vol. 55, no. 11, pp. 3733-3743, Dec. 2008.
[13] J. P. Rodrigues, S. A. Mussa, M. L. Heldwein, and A. J. Perin, "Threelevel ZVS active clamping PWM for the DC-DC buck converter," IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2249-2258, Oct. 2009.
[14] P. Li, W. Li, Y. Zhao, H. Yang, and X. He, "ZVS three-level phase-shift high step-down DC/DC converter with two transformers," IEEE EPE'11, pp. 1-10, 2011.
[15] C. T. Tsai, and C. L. Shen, "Interleaved soft-switching coupled-buck converter with active-clamp circuits," IEEE PEDS'09, pp.1113-1118, 2009.
[16] S. S. Lee, "Step-down converter with efficient ZVS operation with load variation," IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 591-597, Jan. 2014.
[17] M. Esteki, B. Poorali, E. Adib, and H. Farzanehfard, "Interleaved buck converter with continuous input current, extremely low output current ripple, low switching losses, and improved step-down conversion ratio," IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4769-4776, Aug. 2015.
[18] C. T. Pan, C. F. Chuang, and C. C. Chu, "A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress," IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5290-5299, Oct. 2014.
[19] C. F. Chuang, C. T. Pan, and H. C. Cheng, "A novel transformer-less interleaved four-phase step-down DC converter with low switch voltage stress and automatic uniform current sharing characteristics," IEEE Trans. Power Electron., vol. 31, no. 1, Jan. 2015.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

K. I. Hwu (M'06) was born in Taichung, Taiwan, on August 24, 1965. He received the B.S. and Ph.D. degrees in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, in 1995 and 2001 respectively.

From 2001 to 2002, he was the Team Leader of the Voltage-Regulated Module (VRM) at AcBel Company. From 2002 to 2004, he was a Researcher at the Energy and Resources Laboratories, Industrial Technology Research Institute. He is currently a Professor at the Institute of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan, where he was the Chairman of the Center for Power Electronics Technology from 2005 to 2006. His fields of research interests include converter topologies, magnetic component applications, power factor correction rectifiers, sustainable energy applications, LED lighting drivers, and digital control.

Dr. Hwu has been a member of the Program Committee of the IEEE Applied Power Electronics Conference and Exposition since 2005. He has also been a member of the Technical Review Committee of the Bureau of Standards, Metrology, and Inspection since 2005. Since 2008, he has been a member of the IET.

W. Z. Jiang ($\mathrm{S}^{\prime} 12$) was born in Changhua, Taiwan, on May 9, 1989. He received the B.S. and M.S. degrees in electrical engineering from National Taipei University of Technology, Taipei, Taiwan, in 2011 and 2013, respectively. Currently, he is working toward a Ph.D. degree at National Taipei University of Technology. His fields of research interests include converter topologies, magnetic component applications, power factor correction rectifiers, sustainable energy applications, LED lighting drivers, and digital control.

P. Y. Wu was born in Taipei, Taiwan, on July 7, 1992. He received the B.S. degree in electrical engineering from National Taipei University of Technology, Taipei, Taiwan, in 2014. Currently, he is working toward a M.S. degree at National Taipei University of Technology. His fields of research interests include power electronics and digital control.

