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1. Introduction 

Phonon-dislocation interaction has a strong effect on various materials properties. For ex- 
ample, phonon-induced dislocation vibrations significantly influence all characteristics re- 
lated to the phonon flux, such as thermalsuch as and acoustic attenuation. Besides that, 
interaction of moving dislocations with phonons determines the viscosity coefficient in the 
dislocation motion, which in turn controls the dislocation dynamics. 

The interaction between dislocations and phonons has been extensively studied for 
decades. Nevertheless, the established experimental methods (internal friction and ther- 
mal conductivity measurements) suffer from two principal disadvantages that hamper the 
studies in this field. First, the existing methods provide only averaged information over 
an ensemble of dislocations, with neither spatial nor temporal resolution. In other words, 
we are unable to resolve the interaction of phonons with individual dislocations, which is 
the subject of theoretical models. Secondly, the existing methods can be applied (and have 
been applied) only to ductile crystals, such as metals and alkali halides. Ductile crystals are 
characterized by high viscosity of dislocation motions, which results in the slowing down 
of dislocation movements. As shown later on, the viscosity coefficients in brittle ceramic 
crystals, such as LiNbO3, may be 2-3 orders of magnitude lower than in ductile crystals. 

In order to overcome these difficulties and limitations we have developed a new imaging 
technique, called high-frequency stroboscopic X-ray topography. It allows us to visual- 
ize, on the same image, the deformation fields of both individual acoustic wave fronts 
and vibrating dislocations. In order to visualize rapidly changing dynamic deformation 
fields, we conduct high-frequency stroboscopic measurements in which the acoustic wave 
propagation is synchronized with X-ray bursts coming from a synchrotron source to the 
sample position. Comprehensive theoretical analysis enabled us to find optimal experi- 
mental conditions for enhanced contrast. We also found a way to apply this technique to 
non-piezoelectric crystals. Due to these developments, it is now possible to visualize an 
interaction of short wavelength (down to 6 jam) surface acoustic waves with individual 
dislocations in a wide variety of crystals. 

X-ray images, which were taken from LiNbO3 crystals excited by surface acoustic 
waves, revealed significant distortions of acoustic wave fronts in the vicinity of disloca- 
tion lines. We showed that these distortions are related to the dynamic deformation field of 
the vibrating dislocation string. A theoretical model developed enabled us to simulate the 
overall dynamic displacement field, which is a combination of the displacement fields of 
the surface acoustic waves and the vibrating dislocations. By comparing the experimental 
and simulated images, the amplitudes and velocities of individual vibrating dislocations 
were determined for the first time. 

It was found that dislocations can reach nearly "relativistic" velocities (close to the speed 
of shear bulk waves) under the subtle strains generated by acoustic waves. This is because 
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of the very low viscosity of dislocation motion in LiNbO3, being at least 2 orders of mag- 
nitude lower than any value measured until now in all previously investigated materials. 

Stroboscopic X-ray imaging in the GHz frequency range, as reviewed in this chapter, 
significantly expands the ability to investigate dislocation interactions with phonons in 
single crystals, including brittle ceramics, which were beyond the scope of the established 
experimental techniques. 

The chapter is written to encompass all the information required to introduce the reader 
fully into the subject. Section 2 presents the relevant background of the theory of dislo- 
cations (with a focus on their dynamics) and comprises a survey of experimental methods 
and theoretical models for studying their interaction with phonons. In Section 3, the prin- 
ciples of stroboscopic X-ray imaging of acoustic waves are explained and the experimental 
technique is described in detail. Section 4 is devoted to the application of this method for 
studying the interaction of acoustic waves with individual dislocations in brittle ceramic 
crystals, such as LiNbO3. 

2. Survey  o f  d i s locat ion  in teract ion with  p h o n o n s  

2.1. Dislocation dynamics 

The motion of dislocations in their gliding plane is generally determined by the following 
equation [ 1]: 

m* 02~ 02~ O~ _ FExt -- Fp -- fBar, (1) 
S V  - r 7  + 8 a-; 

where ~ describes the temporally and spatially dependent deviation of the dislocation shape 
from a straight line situated along an energetically favored lattice direction. 

The first term on the left side represents the dislocation inertia, where the effective mass 
per unit length is approximately m* ~ 0.5pb 2, with p being the material density and b the 
Burgers vector. The second term on the left side gives the resistance of the dislocation to its 
elongation, where the line tension, T ~ 0.5/zb 2, approximately equals the energy per unit 
length of the dislocation line [1-3], with # being an effective shear modulus. The values 
of m* and T depend on the dislocation character (e.g., edge, screw or mixed dislocation), 
and the ratio between them, 

(2) 

defines the shear wave velocity, Vr, which also gives the speed of the atomic movements 
along the dislocation line. 

The third term on the left side of eq. (1) describes the viscous resistance to dislocation 
motion. The viscosity coefficient, B, is governed mainly by phonon interactions with the 
moving dislocation. The viscosity significantly affects not only the dislocation dynamics, 
but also the phonon propagation within the crystal. Thus, the dislocation interaction with 



§2.1 X-ray imaging of phonon interaction with dislocations 607 

phonons plays a significant role in such phenomena as heat conductivity [4,5] and attenu- 
ation of acoustic waves [6,7]. 

The terms on the right hand side of eq. (1) describe forces per unit length that act on the 
dislocation line. The expression FExt is the force exerted by the external stress, grij , o n  a 
unit of dislocation length, and it is given by the expression [8] 

FExt -- Z rticTijbj' (3) 

where the vector n with components ni is a unit vector normal to the glide plane. 
The term Fp on the right side of eq. (1) is called the Peierls force [9] and is caused by 

the periodic lattice potential applied to the dislocation line. The Peierls potential appears 
as a periodic array of valleys and hills in the glide plane. The Peierls force is typically 
expressed as [9] 

F p -  °-Pb sin ( 27r--fi-~ ) a  (4) 

where o-p is the external stress required to overcome the Peierls potential barrier (i.e. to 
move the dislocation out of a potential valley), and a is the distance between adjacent po- 
tential valleys, which as a rule is equal to the shortest lattice translation. Note, that for 
screw and mixed dislocations the vectors a and b are not parallel and hence are not nec- 
essarily equal. Nevertheless, since b also tends to follow the shortest lattice translation, in 
many cases a = b. The ratio ~P/#eff is roughly 10 -4 in fcc metals, 10 -3 in bcc metals and 
ionic crystals, and 10 -2 in covalent crystals such as silicon [1 ]. 

The term, FBar, on the right side of eq. (1) represents local forces exerted on the disloca- 
tion line by defects, such as precipitates or other dislocations. These defects typically form 
pinning points which prevent the dislocation motion across a crystal. 

By using eq. (1), one can predict both the steady-state shape of a dislocation line and the 
mode of dislocation motion. Let us consider, for example, a single crystal which during its 
growth or during annealing treatment is subjected to elevated temperature and no external 
forces (i.e. FExt ~ 0). In the steady state, the time derivatives of ~ are equal zero. If the 
density of pinning points is low, there exist rather long dislocation segments, for which 
FBar ~ O. These segments obey the following stationary equation 

T O--Ty - ~Tpb sin - - a  -- 0 (5) 

which follows from eq. (1) by setting all parameters mentioned above to zero and using 
eq. (4) for the Peierls force. 

The trivial solution of eq. (5), ~ -- 0, describes a dislocation line which is located within 
a single Peierls potential valley. This is extremely rare since the dislocation segments are, 
generally, pinned with their ends located at different potential valleys. In this case, there is 
competition between the first term of eq. (5), which acts to straighten the pinned dislocation 
line, and the second term, which tries to confine the dislocation segment within a certain 
potential valley. In a crystal, in which the second term is dominant, the dislocation lines 
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Fig. 1. Possible shapes of  dislocation lines, which are pinned at two points located in different Peierls valleys 

(indicated by dashed lines): (a) - d i s l o c a t i o n  line is composed of long segments,  which are completely  confined 

to Peierls valleys; (b) - dislocation line is composed of  short segments which are located in Peierls valleys and 

connected by kinks, which pass over potential barriers, (c) - nearly straight dislocation line, which is not confined 

to Peierls valleys. 

are typically confined within Peierls valleys and form shapes as illustrated in Fig. l(a). 
A classic example of such a crystal is silicon [ 10]. 

If the second term of eq. (5) is not dominant, the dislocation line can follow another 
solution of eq. (5) that describes a more complicated dislocation shape (see Fig. 1 (b)). In 
this case, it is composed of segments located in adjacent Peierls valleys and connected 
by small fragments called "kinks" [2]. Thus, the dislocation line can link the two pinning 
points by forming a set of kinks as illustrated in Fig. 1 (b). For geometrical kinks the average 
distance between two adjacent ones is 

L = a / 3 ~  (6) 

where 6~  is the angle between the direction of the Peierls valleys and a straight line that 
connects the pinning points. The width of an individual kink is given by [2]: 

Wk  w a  m a  
~=a /2 2abcr v, 

and is typically between a few and a few tens of lattice parameters. 

(7) 



§2.1 X-ray imaging of phonon interaction with dislocations 609 

The effect of the Peierls potential on dislocation motion depends on the ratio between L 
and Wk. If L >> W~, the majority of the dislocation line is confined to Peierls valleys (as 
illustrated in Fig. 1 (b)), and the entire dislocation segment is subjected to the Peierls force 
which hampers its motion. In contrast, if L ~< Wk, the dislocation line is no longer confined 
to Peierls valleys (see Fig. 1 (c)), and correspondingly, the dislocation motion is no longer 
subject to Peierls forces. 

Considering the dislocation motion under the general eq. (1), one can indicate three 
different regimes corresponding to three specific intervals of the external force. If FExt is 
larger than both FBar and Fp, the dislocation movement in the long term will be governed 
by viscosity resistance. According to eq. (1), after a short time the dislocation will reach a 
uniform steady state velocity 

B Vd = FExt, (8) 

where Vd = O ~ / O t. 
If the external force is in the range, Fp < FExt < Fsar, the dislocation line can be pinned 

as a whole, but segments located far from the pinning points can easily move. If the dislo- 
cation can get away the pinning points by thermal activation, its motion will be determined 
by the combined effect of the activation rate at the pinning points and the viscous motion 
between the pinning points. 

In the range where FExt is smaller than both FBa r and Fp, the dislocation segment can 
overcome the Peierls potential by a thermal activation process only. This is done by a 
formation of "bulges" on the dislocation line, which are composed of two kinks and a very 
short fragment between them (see stage (a) in Fig. 2). After the formation of a bulge, the 
kinks move in opposite directions along the Peierls valley and thus drag the dislocation 
line to the neighboring valley (see stages (b) and (c) in Fig. 2). The stress required to move 
kinks parallel to the potential valleys is very small; hence ,  kinks typically move in viscous 
mode. The kinks that are formed by this mechanism are called "thermal kinks", in contrast 
to geometrical kinks which were depicted in Fig. 1 (b). 

It becomes clear from the above analysis that the viscous resistance to dislocation mo- 
tion plays a significant role in dislocation dynamics. As follows from eq. (1), the viscosity 
coefficient, B, is the only parameter whose magnitude is not a priori known because of 

S tage  (c) 

S tage  (b) 

S tage  (a) ~ m 

Fig. 2. Thermally activated motion of a linear dislocation over the Peierls barrier. Stage (a) - formation of a bulge, 
which consists of a pair of kinks and a short segment already situated in the adjacent Peierls valley. Stage (b) - 
movement of the kinks in opposite directions along the Peierls valley. Stage (c) - drag of the entire dislocation 

line into the adjacent Peierls valley. 
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the complexity of viscosity mechanisms. Therefore, there is a necessity for experimental 
studies aimed at obtaining viscosity coefficients to dislocation motion for different materi- 
als. 

2.2. Viscous drag of dislocations 

It is possible to divide the mechanisms of viscous drag of dislocations into three categories 
which are described below. 

2.2.1. General viscous behavior 
The dynamic deformation accompanying the dislocation motion can be considered in terms 
of elastic waves that create an excess of phonons and disturb the local phonon equilibrium. 
The dispersion and absorption of the non-equilibrium phonons results in a viscous resis- 
tance to dislocation motion. The viscous behavior is a general property of a crystal, which 
causes an attenuation or drag to any waves, not only to those that are generated by moving 
dislocations. For example, waves that create a local excess of phonons can be caused by 
temperature gradients or by an external excitation of acoustic waves. Therefore, the mech- 
anisms that are responsible for general viscous behavior also affect the heat conductivity 
and attenuation of acoustic waves. 

There are different mechanisms for the dispersion and absorption of phonons in crys- 
tals. The dominant is phonon-phonon interaction, the theory of which was developed by 
Akhiezer [11]. As was shown later on in Ref. [12], phonon-phonon interactions signifi- 
cantly contribute to the overall viscosity coefficient of dislocation motion. Similar to the 
phonon interaction with the "phonon gas", there also exists interaction with the "electron 
gas" [13], but its effect is much weaker, even in metals [1,14]. Another mechanism that 
causes the dispersion and absorption of excess phonons is due to the thermoelastic effect, 
which reveals itself in changing temperatures under stress. Hence, the dislocation motion 
is accompanied by heat transfer and thereby causes an energy loss. 

2.2.2. "Phonon w ind" -  scattering of phonons due to non-linear elastic behavior 
In this mechanism, phonons are scattered by the deformation field of the dislocation due 
to small changes in the material density and elastic modules (the detailed description of 
this effect is given in Section 2.4). Phonon scattering influences the attenuation of acoustic 
waves due to their scattering by static dislocations and the resistance to dislocation mo- 
tion due to the scattering of the crystal phonons by moving dislocations. In the coordinate 
system of a moving dislocation, the phonons propagate with the same speed as the dis- 
location moves, but in the opposite direction. This "phonon wind" transfers momentum 
to the dislocation line opposite to the dislocation motion, with momentum proportional to 
the dislocation velocity. Calculations [15] showed that this mechanism usually makes an 
important contribution to the overall viscosity coefficient. 

2.2.3. Acoustic emission 
Time-dependent changes of the dislocation velocity and related kinetic energy losses are 
a source of acoustic emission [14]. Local velocity changes are due to interactions with 
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crystal defects or thermal fluctuations. The latter is called "fluttering" and has a similar 

effect on thermal conductivity and attenuation of acoustic waves. The Peierls potential 

also causes small perturbations of the dislocation velocity as the dislocation line moves 
from valleys to hills and so forth (the radiation friction effect). Calculations [14] showed 
that the mechanisms of acoustic emission are relatively weak, and their influence is only 

important under certain conditions such as low temperatures or very high Peierls barri- 
ers. 

2.2.4. Viscosity coefficients in different materials 
It can be concluded that the viscosity coefficient of dislocation motion is a result of phonon 
interactions with moving dislocations. Most of the described mechanisms for viscous drag 

of dislocations also have a significant effect on the heat conductivity and attenuation of 
acoustic waves. 

The room temperature viscosity coefficients, B, of dislocation motion, measured by dif- 

ferent methods described in the next section, are summarized in Table 1. The wide ranges 

of measured B-values (hundreds of percent) are, in part, due to the uncertainty of the dis- 

location character and partially due to large errors inherent to some of the experimental 
techniques. Due to limitations of conventional experimental methods, the variety of crys- 
tals in which the viscosity coefficients were measured is also very limited and restricted 
to metals and alkali-halides, which are ductile at room temperature. The typical viscosity 
coefficients in ductile materials are rather high, ranging from 0.1 to 3 mPoise. 

In brittle materials, the viscosity coefficients are much smaller and cannot be measured 

by conventional methods. In order to evaluate them one can assume the proportionality be- 

tween the viscosity coefficient, B, and total acoustic wave attenuation, or. This assumption 

is well justified for general viscous behavior (see Section 2.2.1) for which a mechanical 

viscosity, r/, can be defined, and it can be proven that both B cx r/ [12,14] and ot cx 7/ [7]. 

Other types of viscosity mechanisms, including the phonon wind and acoustic emission, 
also affect both the B- and o~-values, but not necessarily in the same proportion. 

The room-temperature values of the acoustic attenuation, or, for different types of materi- 
als are summarized in Table 2, which shows remarkable variation among groups containing 
metals, semiconductors, and insulating ceramics. The typical or-values for semiconductors 
are an order of magnitude smaller than those for metals, and the typical or-values for in- 
sulating ceramic crystals are 2-3 orders of magnitude smaller than in metals. This fact 
motivates the study of dislocation motion in insulating ceramic crystals such as the ones 
used in acoustic devices due to their low acoustic attenuation. 

Table 1 
Measured values of the viscosity coefficient, B, of dislocation motion in single crystals at room temperature 

(Ref. [14]) 

Crystal LiF NaC1 KC1 KBr Cu A1 Pb Zn Nb 

B (mPoise) 0.3-1.3 0.1-0.3 0.3-0.8 1.7-2.0 0.1-0.9 0.2-3.1 0.4 0.4-2.5 0.2 
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Table 2 
Total acoustic attenuation coefficients (at 1 GHz) in cubic single crystals at room 

temperature (Ref. [7]) 

Crystal Propagation Wave mode Attenuation 
direction coefficient (dB/m) 

Metals 
A1 
Cu 
Au 
Semiconductors 
Si 

Ge 

Ceramic insulators 
MgO 

Strontium titanate 
Yttrium iron 
garnet 
Yttrium aluminum 
garnet 

1 1 0 )  Longitudinal 7500 
1 0 0 )  Longitudinal 27000 
1 1 0 )  Longitudinal 20000 

1 0 0 )  Longitudinal 1000 
1 1 1 )  Longitudinal 650 
1 0 0 )  Longitudinal 2300 
100) Shear 1000 

1 0 0 )  Longitudinal 330 
100) Shear 40 
1 0 0 )  Longitudinal 600 
1 0 0 )  Longitudinal 200 

(100) Shear 34 
( 1 0 0 )  Longitudinal 20-32 
(100) Shear 110 

2.3. Experimental methods for studying phonon interaction with dislocations 

Until our research, there were three conventional experimental methods for studying the 
phonon interactions with dislocations: measurement of dislocation mobility, internal fric- 
tion, and measurement of heat conductivity. 

2.3.1. Measurements of dislocation mobility 
This method [14,16] is based on the measurement of the distance, Ax, that individual dis- 
location propagates under application of a stress pulse with an amplitude o-, and duration, 
At. If the stress value is high enough to provide FExt >> Fsar, Fp (see eq. (1)) the whole 
dislocation line, after a short time, r0, reaches the steady state velocity, Vd(~), as was 
explained in Section 2.1. Substituting FExt = ~b (see eq. (3)) in eq. (8), yields: 

B Vd -orb. (9) 

The dislocation velocity is calculated as Vd -- Ax/At ,  which is valid until z0 << At, and 
after that the B-value is extracted using eq. (9). In order to measure the distance, Ax, 
selective etching of dislocation pits before and after the application of the stress pulse is 
done, followed by the subsequent measurement of the distance between pits by optical or 
electron microscopy. The accuracy to measure the B-value for an individual dislocation is 
about 30%. 

At room temperature, this technique can be used only for ductile materials since brit- 
tle materials are subjected to fracture before the dislocation motion starts (i.e. at smaller 
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stresses). By using this technique, brittle materials can be investigated only at elevated 
temperatures (when strictly speaking they are no longer brittle). Unfortunately, the results 
of these studies cannot be extrapolated to room temperature because the mechanism of 
dislocation motion is changed with temperature (thermal activation instead of viscous drag 
(see Section 2.1)). 

Except the overall value of B, this method does not provide any information concern- 
ing the details of phonon interaction with dislocations and its sensitivity to the phonon 
frequency and structure of the dislocation line. Dislocation vibrations under an excitation 
of acoustic waves, which play very important role in heat conductivity and attenuation of 
acoustic waves, are beyond the scope of this technique. 

2.3.2. Internal friction 
In this method [3], the effect of vibrating dislocations on acoustic wave propagation is 
probed by measuring the changes of the acoustic wave attenuation and velocity as functions 
of its frequency and amplitude. These measurements provide information, not only on the 
overall value of B but also on the specific mode of interaction between a dislocation and 
acoustic wave. The majority of experimental results were explained in the framework of the 
vibrating string model, developed by Granato and Lticke [3], which describes the vibration 
of pinned dislocation segments (for details see Section 2.5.2). 

The B-value is determined by measuring the asymptotic limit of the acoustic wave atten- 
uation, ot~, at frequencies much higher than the resonance frequencies. According to the 
vibrating string model, the part of ~ which is caused by dislocation vibrations, is given 
by [17]: 

4x lzb2 N (10) otdis 
7r 2 B VT ' 

where N is the density of free dislocation segments, and X is the Schmid factor. The latter 
connects the acoustic stress tensor to the effective shear resolved stress that acts on the 
dislocation line in its glide plane. In order to extract the dis ot~-values from measured ~ -  
coefficients, the acoustic attenuation is taken twice, before and after gamma irradiation. 
Point defects, generated by the radiation, prevent the dislocation motion and hence .dis 
is nearly given by the difference between ot~-values measured before and after sample 
irradiation. 

Evaluation of the density of free dislocation segments in eq. (10) is more problematic 
since the dislocation lines most often have multiple pinning points and cannot vibrate. This 
complication is overcome by using specimens subjected to plastic deformation at room 
temperature with no annealing. In such specimens the majority of dislocations are free to 
move. The experimental procedure limits the implementation of internal friction technique 
to ductile materials only. 

2.3.3. Measurements of heat conductivity 
The principle of this method is similar to that one used for the internal friction measure- 
ments, but now the subject is an effect of vibrating dislocations on heat conductivity. The 
heat conductivity at low temperatures is determined by measuring the traveling time of a 
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thermal pulse excited by a laser [18]. An improved technique comprises two-dimensional 
mapping of the thermal pulse propagation [5,19] and allows one to study heat conductivity 
along different crystal directions. 

In this method, as for the internal friction technique, one has to separate the net effect 
of dislocation vibrations from other interactions which influence the heat conductivity. 
This is accomplished by doing measurements before and after plastic deformation at room 
temperature, and hence this method is also limited by applications to ductile materials. 

2.3.4. Drawbacks of conventional experimental methods 
We repeat that the described experimental methods suffer from two principal disadvantages 
that hamper the studies in this field. The first is that the methods for studying the phonon 
interaction with dislocations (i.e. internal friction and heat conductivity measurements) 
provide only averaged information on the ensemble of dislocations with neither spatial 
nor temporal resolution. In other words, they are not able to probe the phonon interaction 
with individual dislocations, which is the subject of theoretical models (see Section 2.5). 
There is an attempt to overcome this problem (see Section 2.5.2) by summing the effect of 
numerous dislocations having different geometrical parameters. This approach is problem- 
atic since the strength of interaction changes by several orders of magnitude depending on 
geometrical factors, which may be very different for individual dislocations. Moreover, the 
result of the summation depends on some poorly defined parameters such as the average 
length of free dislocation segments, which can hardly be measured and may vary within 
several orders of magnitude. 

Another disadvantage of the existing techniques relates to the fact that they can be ap- 
plied (and have been applied) only in ductile crystals such as metals and alkali halides. 
Ductile crystals are characterized by high viscosity coefficients (see Section 2.2.4), which 
result in sluggish dislocation motion. As is mentioned in Section 2.2.4 and shown recently 
by us in Ref. [20], the viscosity coefficients in brittle ceramic crystals, such as LiNbO3, 
may be 2-3 orders of magnitude lower than in ductile crystals. Correspondingly, the ve- 
locities of dislocation segments can reach very high values (close to the speed of sound) 
which cannot be measured experimentally. 

In order to overcome these difficulties we developed a fast time-resolved X-ray visual- 
ization technique which simultaneously gives the images of the propagating acoustic wave 
and of the vibrating dislocation (see Section 3). In order to analyze these images, the the- 
oretical models dealing with phonon scattering by dislocations should be revised. This is 

done in Sections 2.4-2.5. 

2.4. Theoretical models describing the scattering of acoustic waves by the 
dislocation strain field 

This section deals with scattering of acoustic waves by a static dislocation or by a dislo- 
cation which moves with no relation to acoustic waves. In this case, the acoustic waves 
are scattered due to non-linear elastic behavior in the vicinity of the dislocation line. In 
other words, the scattering mechanism is based on the changes of the acoustic wave speed 
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caused by strain-induced modification of material density and elastic modules. The overall 
effect of the strain field on the acoustic wave speed can be expressed, as [21 ]" 

Vi - Vi ° yj-k~j~, 
v? = - E  ; jk 

(Jl) 

where Vi and V/° are the acoustic wave speeds with and without the strain field, respec- 

tively, 6jk is the strain tensor, and gjk is the tensor of Gruneisen constants which are of the 
order of 1. The index i denotes a specific mode of acoustic waves. For example, putting 
the strain field of screw dislocation in an isotropic material [1], ~ -- b/47rr (with r being 
the distance from the dislocation line), into eq. (11), yields 

A Vi v ib  

Vi 0 4 7r r 
(12) 

The changes in the acoustic velocity cause refraction of the acoustic wave when it 
crosses the dislocation line. In order to evaluate the refraction effect, one can use geo- 
metrical optics, giving the scattering angle of the order of A Vi /Vi .  This approach is jus- 
tified at distances r larger than the acoustic wavelength, k. Therefore, for r > k -- 5 pam, 
b = 0.5 nm, and y i - 1, the scattering angle is of the order of 10 -5 rad or smaller. 

Comprehensive calculations, based on the quantum scattering theory [22-24], also 
proved that the acoustic wave refraction by static dislocations has negligible effect on 
the acoustic wave propagation as compared with the effect of the dynamic interaction of 
acoustic waves and dislocations, which is considered in the next section. 

2.5. Theoretical models for the dynamic interaction of acoustic waves with 
dislocations 

Dynamic interaction between an acoustic wave and dislocation means that a whole dislo- 
cation line or some of its segments are vibrating under the applied acoustic stress field. 
In general, the dislocation vibrations cause rather strong changes in the attenuation and 
velocity of the acoustic waves. More specifically, they lead to the wave field distortions of 
the primary acoustic wave and the emission of secondary acoustic waves. There are differ- 
ent modes of dislocation vibrations which require appropriate modeling. In the subsequent 
sub-sections, we will distinguish between three types of dislocation vibrations which relate 
to three different types of dislocation dynamics as mentioned in Section 2.1. 

First, we will analyze the situation when FExt (i.e. the force applied to the dislocation 
by the acoustic stress field) is larger than both FBa r and Fp,  and a whole dislocation line 
moves uniformly. The second type of motion arises when Fp < FExt < FBar and corre- 
sponds to dislocation segments pinned at both their ends, which vibrate as strings. In the 
third case, the dislocation line is confined within Peierls potential valleys (i.e. FExt < Fp) 
and only very limited dislocation motion is permitted. 
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2 . 5 . 1 .  V i b r a t i n g  d i s l o c a t i o n  in a u n i f o r m  m o t i o n  

Eshelby and Nabarro [25,26] developed a model that describes uniform motion of a free 
dislocation, which is not subjected to pinning barriers, Peierls barriers, or viscous resis- 
tance. The solution is given for a screw dislocation under the influence of a bulk shear 

dis of the vibrating screw wave. The model calculations focus on the displacement field, A u  z , 

dislocation, which is located parallel to the z-axis and vibrates in the x-direction according 
t o  

= ~0 cos(cot + ~b), (13) 

where co = 27rf is the circular vibration frequency and q~ is the phase shift of the dislocation 
vibration with regard to the acoustic wave. 

At distances, r << ~., the displacement field follows the local shape modification of the 
dislocation line, and hence, it can be expressed as a displacement field of static dislocation, 
U dis, located at x = ~(t). Thus, the dislocation vibration forms a dynamic displacement 
field, which near the dislocation line is given by: 

A U  dis - -  u dis (x  - -  ~ ,  y) - u dis ( x ,  y). (14) 

Eq. (14) is valid for any dislocation which vibrates in any mode of motion. In the model 
described the expression for specific displacement field of screw dislocation in an isotropic 
material [1,27]: 

,(y) Uz -- 2rr tan (15) 

was substituted to eq. (13). 
Note that the combination of displacement fields described by eqs (14) and (15) does not 

satisfy the wave equation, and, hence, it cannot be used to obtain the dynamic displacement 
field in a whole medium. Moreover, the time which is needed for elastic deformation to 
arrive at the regions far away from the dislocation line is much larger than the time period 
of the dislocation vibrations and hence eq. (14) is not valid in the range, r >> )~. Eshelby 
and Nabarro [25,26] looked for a solution which satisfies both a general wave equation 
at r >> )~ and eqs (14)-(15) at r << )~. They suggested the following expression for the 

dynamic displacement field (in cylindrical coordinates (r, 99)): 

A dis [ J1  ( k r )  cos(cot + qS) + Y1 ( k r )  sin(cot + qS)], u z - A o u o  sin~o (16) 

7/" 
A0 = - (17) 

ln(4/kb) - V - 1 / 2 '  

where k is the acoustic wave vector, J and Y are the Bessel functions of the first and second 
kinds, respectively, and y - 0 . 5 7 7 2  is the Euler constant. The displacement amplitude, 

o _ 1 / 2 k u o  A comparison u0, relates to the strain amplitude of the acoustic wave by ey  z 
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of the asymptotic behavior of this solution with eqs (14) and (15) provides the vibrating 
amplitude: 

2Aos°z~. 2 
beO -- 7t" 2b . (18) 

Recently, Maurel et al. [28] developed more general approach which allows obtaining 
solutions for any dislocation character. They applied it to both screw and edge disloca- 
tions and showed important distinctions that arise when considering different dislocation 
character and various polarizations of the acoustic waves. 

2.5.2. The vibrating string model 

This model describes the vibrating dislocation segment, having a length L0 and pinned at 
both its ends. The appropriate equation of motion is 

02~ 0~ 
m* ~,, - TO-- ~- + B 0t --o-b, (19) 

which is derived from eq. (1) by neglecting Fp and using FBa r to describe the pinning 
properly. The acoustic stress field, o', is given by 

cr -- crO exp(--otdisx) cos(0)t -- x~ V) (20) 

where V is the acoustic wave velocity, which is influenced by the vibrating dislocations 
and hence is a function of 0). The model assumes that partial attenuation coefficient, c~ dis, 
due to vibrating dislocations depends on frequency, co. 

The solution of eqs (19) and (20) is given by the series [3] 

4crb ~ 1 

~ -  m~ 2~+1 
n=O 

sin[ (2n + 1)7rz]  
L Hn (0), (On) cos(0)t - ~n), (21) 

- - , (22)  

B 
f2 = ~ ,  (23) 

m* 

7r 2 n + l  ,~ 
con -- (2n + 1) -7-- VT -- co (24) 

L0 2 L0 

and 

COl2 
m 

tan qS, 0)2 _ _  0)2" (25) 
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2 co2 from eq. (25), its substitution to eq. (22), and utilizing Extraction of the expression c o n  - -  

some trigonometric transformations yields the simplified expression for Hn: 

I sin ~bn I 
Hn = ~ .  ( 2 6 )  

coS2 

In a majority of situations, the first term (n = 0) in the expansion series (eq. (21)) domi- 
nates [3]. In any case it is possible to learn something about the behavior of the system by 
considering the first term only. In this approximation, using the relationship, or0 = #e0, as 
well as eqs (23) and (26), the dislocation vibrations can be written as 

~0 sin ( z r ~ )  - cos(cot - 4)o), (27) 

with amplitude 

41zeob 
~0 = ~ l  sin 4~01. (28) 

Bco 

Further summation over the dislocation ensemble allows obtaining expressions for the 
acoustic parameters which are measured by internal friction, i.e. the attenuation coeffi- 
cient and the acoustic wave velocity. Keeping only the first term in the series (21), these 
parameters can be expressed as: 

Ot dis - -  ~--0-0 ~f2xb'* I sinoSI - 4x/zb2N sin 2 qb0 (29) 
- -  Z 7t" e O 7r 2 B VT 

and 

V -  VT x f V2 N 

VT col2 
I sin 24~0 I, (30) 

where N is the density of dislocation segments that can glide freely and )¢t is some geo- 
metrical factor smaller than 1. 

Substituting the values of B, typical to metals and alkali-halides from Table 1 into 
eq. (23), yields f2 ~ 200 GHz. Hence, in all the internal friction experiments co << f2. 
Moreover, according to eqs (25)-(26), at frequencies much larger than resonant frequen- 
cies (i.e. co >> con), the value of I sin4~01 is approximately 1. Therefore, eq. (29) transforms 
to eq. (10), which was used for evaluation of the B-values in Section 2.3. 

The vibrating string model is appropriate if one can neglect the Peierls force. However, 
usually the Peierls barrier, crp, is larger than the acoustic stress amplitude. Yet the vibrat- 
ing string model is valid for dislocation lines that are initially not confined to the Peierls 
potential valleys, as illustrated in Fig. 1 (c). It turned out that this situation is very common, 
at least in fcc metals. If a majority of the dislocation lines is initially located within the 
Peierls valleys, other models described in the next section should be used. 
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2.5.3. Vibrating dislocations located within the Peierls potential valleys 
Dislocations that are confined to Peierls valleys may exhibit limited vibrating motion in 
three forms: 

(1) Dislocation segments which are located at the bottom of potential valleys vibrate 
within these valleys. Modeling of this problem can be found in Refs [25,29]. 

(2) The acoustic waves produce bulges on the dislocation line similarly to the case of 
thermally activated kinks (see Fig. 2). In this case, there exists a resonance frequency 
which depends on the activation energy for bulge formation and is temperature de- 
pendent [ 1,2]. 

(3) Kinks which initially exist will vibrate along a direction parallel to Peierls valleys. 
Such kinks will also interact with other neighboring kinks, this interaction being 
non-linear. It is possible to obtain a set of linear equations by approximating the 
kink motion by small amplitude vibrations [2,29]. If the kink density is high enough 
to allow a collective motion of the dislocation line, the results of this model [2] are 
similar to those obtained by the vibrating string model. 

2.5.4. Concluding remarks 
The dynamic interaction of acoustic waves with dislocation results in three main effects: 
(i) attenuation of acoustic waves; (ii) motion of vibrating dislocations, and (iii) emission of 
secondary acoustic waves. The strength of interaction regarding all the effects mentioned is 
determined by a single parameter ~0/)~, i.e. the ratio of the vibrating amplitude, ~0, and the 
acoustic wavelength, )~. According to eq. (29), partial attenuation of the acoustic wave due 
to dislocation vibrations is proportional to ~0/)~. The overall speed of dislocation motion 
is determined by the amplitude of its velocity, Vd0 = ~0co, which is also proportional to 
~0/)~. The strain field amplitude of the emitted acoustic waves at far distances from the dis- 
location line is determined by AudiSkf, where Au0 °is is the amplitude of the displacement 

field A u  dis and kf is the wave vector of the emitted waves. As a rule, Au dis is proportional 
to the amplitude of the dislocation motion, ~0, and kf is approximately equals to 27r/)~. 
Hence, the strain field amplitude of the emitted acoustic waves is approximately propor- 
tional to ~0/)~. Thus, in each effect, the strength of the dynamic interaction is determined 
by ~0/~ o( seoa~. 

According to eq. (28) the product, ~0co, is proportional to 1/B. Hence, the insulating 
ceramic crystals, which are expected to have very small viscosity coefficients of disloca- 
tion motion (see discussion in Section 2.2.4), should also reveal a very strong dynamic 
interaction between acoustic waves and dislocations. 

The existing models of dynamic interaction of acoustic waves with dislocations describe 
only a small part of the possible interaction modes. In particular, it turned out that the spe- 
cific solution of the equation of motion for individual dislocations is strongly influenced by 
many geometrical parameters, such as the dislocation character, its orientation with respect 
to an acoustic wave, the length of the free dislocation segments, etc. Since the conventional 
experimental methods do not allow resolving the interaction of acoustic waves with indi- 
vidual dislocations and do not provide information about these geometrical parameters, 
there is an inherent difficulty in formulating a model which can be used to interpret the 
experimental results in this field (see examples in Refs [4,5]). 
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3. Stroboscopic X-ray imaging of acoustic waves 

The survey in Section 2 emphasizes the necessity for the development of experimental 
methods that are sensitive to an interaction of acoustic waves with individual dislocations 
and provide comprehensive information on the dislocation character and acoustic wave pa- 
rameters. These requirements are met in the stroboscopic X-ray diffraction imaging (stro- 
boscopic X-ray topography) which, in principle, allows us to visualize the deformation 
fields of acoustic wave fronts and vibrating dislocations in the same image. Visualization 
of acoustic wave fronts provides complete information on acoustic wave propagation and 
scattering processes since the normals to the wave fronts indicate the local direction of 
energy flow. Note that the acoustic wave fronts can be visualized by other methods, e.g., 
optically [30], acoustically [31] or by scanning electron microscopy [32]. However, only 
stroboscopic X-ray diffraction imaging has a unique capability to simultaneously "look" 
at both the traveling acoustic waves and lattice defects, such as dislocations and, hence, to 
probe the interaction between them. 

In order to achieve time-resolved visualization of acoustic waves, one has to first of all 
avoid time averaging of the dynamic deformation field induced by propagating acoustic 
waves in the crystal. For this purpose, the investigated samples are illuminated by X-ray 
pulses that are much shorter than the period of acoustic vibrations (see Fig. 3). However, 
since the number of X-ray quanta in a single pulse is not enough for the formation of 
the X-ray image (actually we need about 109 pulses per image even working with modern 
synchrotron sources), we use the stroboscopic principle of registration, which allows a data 
accumulation for long periods of time without destroying the phase relations between the 
acoustic wave and X-ray burst periodicities. 
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Fig. 3. The principle of stroboscopic measurement. In a given crystal point, all incident X-ray bursts interact with 
periodic deformation fields having exactly the same magnitude and phase. 
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This is achieved by phase locking the acoustic signal to the X-ray burst periodicity cre- 
ated by the electron bunch pattern within the synchrotron storage ring. As a necessary 
condition, the acoustic frequency, f - mfx, should be an integer multiple of the X-ray 
burst frequency, fx. Being synchronized with an acoustic wave, every X-ray burst probes 
the same instantaneous deformation field during the entire exposure [33]. As a result, 
the rapidly oscillating deformation field of the acoustic wave, propagating at the speed 
3-5 km/s, is revealed in the diffraction images as if frozen in time. 

The experimental setup, which we use for stroboscopic X-ray topography at the ID 19 
beam line of the European Synchrotron Radiation Facility (ESRF, Grenoble, France), is 
schematically illustrated in Fig. 4. It is based on the capability of modern synchrotron X-ray 
sources to provide very short bursts (of about 50 ps) of high intensity coherent X-rays, 
which are strictly periodic in time. The electronic signal from the synchrotron storage 
ring, having exactly the same frequency, fx = 5.68 MHz, as the X-ray bursts, is applied 
to a frequency synthesizer which produces the output phase-locked signal of a multiple 
frequency, f - -mfx.  The value of m is chosen to provide the output frequency, f ,  to 
be as close as possible to the resonance frequency of the interdigital transducer (IDT) 
deposited on top of the sample. The high-frequency output signal is then amplified and 
applied to the interdigital transducer, which generates surface acoustic waves (SAW). The 
stroboscopic X-ray diffraction image from the vibrating crystal is collected by using special 
X-ray photographic film with a spatial resolution down to 0.5 jam. 

SAW are particularly suitable for the X-ray imaging in the Bragg scattering geometry 
since the acoustic energy is concentrated within a thin layer (with a thickness of the order 
of the SAW wavelength) beneath the sample surface, which is comparable to the X-ray 
penetration depth. Furthermore, SAW can be excited to have shorter wavelengths by an 
order of magnitude than those characteristic for bulk acoustic waves. Short wavelengths 

ESRF 

- - Pulses 
Ring 

I 

Master ~ " ' -  "" 
Oscillator IDT ~ ~ ~ ~ J ~ s  AW 

[--~l Frequency 
Multiplier 

f× = 5.68 MHz 
f :  mfx 

~ ~  LiNbO3 

f = 0.29 - 0.58 GHz 

Fig. 4. Schematic illustration of the experimental setup for the stroboscopic X-ray imaging experiments. The 
sinusoidal signal inserted to the interdigital transducer (IDT) is phase locked with the X-ray bursts. 
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Fig. 5. Stroboscopic X-ray diffraction image of a 0.58 GHz SAW propagating in LiNbO3 with the speed of 
3.5 km/s. The spacing between individual acoustic wave fronts equals 6 ~tm. 

are especially important for visualizing the acoustic wave interaction with crystal defects 
of low dimensionality, such as dislocations. 

The first stroboscopic synchrotron X-ray diffraction experiments aimed at visualizing 
traveling acoustic waves in crystals were performed in the early 1980s with a 30 MHz 
SAW [34,35]. Because of the relatively large SAW wavelength (about 100 ~m) those ex- 
periments did not exhibit phonon interactions with dislocations. An attempt at the strobo- 
scopic X-ray imaging with a 500 MHz SAW was reported in Ref. [36], but those days it 
was impossible to resolve short individual acoustic wave fronts because of the limited co- 
herence of the X-rays used. A breakthrough in this field has been achieved in experiments 
that we performed with 0.29 GHz (i.e. 12 ~m) SAW devices at ESRF [33,37]. The images 
obtained exhibited well-resolved individual acoustic wave fronts and their local distortions 
in the vicinity of dislocation lines. However, because of the non-optimized image con- 
trast in these initial experiments, it was hard to quantitatively investigate the interaction of 
acoustic waves with dislocations. 

Detailed analysis of the X-ray focusing and de-focusing process by SAW [38] allowed 
us to find optimal experimental conditions for enhanced contrast in the stroboscopic X-ray 
diffraction images. As a result, we succeeded to visualize individual acoustic wave fronts 
of a 6 ~m SAW ( f  - 0.58 GHz) with excellent contrast allowing quantitative image analy- 
sis [39]. An example of such an image is shown in Fig. 5, in which alternating dark and 
bright lines are individual acoustic wave fronts of the high-frequency SAW propagating 
through a crystal. This image provides a 'snapshot' of the dynamic deformation field which 
actually changes with a periodicity of 1.6 ns. 

The experiments mentioned above were performed with SAW devices, which were fab- 
ricated on top of specifically oriented highly piezoelectric crystals (LiNbO3) (see Fig. 6). 
A development of a modified technique allowed us to apply the stroboscopic X-ray imag- 
ing to weakly- and non-piezoelectric crystals [40]. This has been achieved by transferring 
SAW from an external piezoelectric transducer to the crystal investigated by generating 
evanescent acoustic waves via viscous liquid as a coupling medium. The modified tech- 
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Fig. 6. SAW device, comprising an interdigital transducer (IDT) on top of LiNbO 3 crystal. Insert shows Cartesian 
coordinate system (X,Y,Z) related to hexagonal unit cell of LiNbO3. 

nique provided images of a 0.29 GHz SAW propagating in Si and GaAs as is demonstrated 
in Fig. 7. 

These technical developments were crucial for the establishment of the stroboscopic 
X-ray diffraction imaging as a regular method to study acoustic wave (phonon) interaction 
with dislocations, which is the subject of the next section. 
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Fig. 7. Stroboscopic X-ray diffraction images of a 0.29 GHz SAW in Si (upper panel), GaAs (lower panel) and 
LiNbO3 (in the middle). Material-dependent changes in the SAW wavelength, reflecting the differences in the 

SAW velocity, are clearly seen. 
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4. Interaction o f  acoustic waves with individual dislocations in brittle 
ceramics 

The experimental results presented in this section, which helped us to understand the 
phonon interaction with dislocations in brittle ceramics, were obtained with LiNbO3-based 
SAW devices. They were produced on the polished surfaces of the Y-cut LiNbO3 wafers, 
76 mm in diameter and 0.5 mm thick. For device fabrication, a system of sectioned in- 
terdigital electrodes, consisting of 1.5 Jam wide metal fingers separated by the same width 
blank intervals, was deposited on top of the wafers by using standard lift-off photolithogra- 
phy. The doubled distance between adjacent electrodes, i.e. the SAW wavelength was 6 jam, 
which corresponded the SAW frequency, f = 0.58 GHz, for Z-propagating SAW. The sec- 
ond type of SAW devices utilized the electrode structure providing the SAW wavelength of 
9.8 [am ( f  = 0.355 GHz). Stroboscopic diffraction images were taken from LiNbO3 single 
crystals ((030) reflection) at X-ray energy of 10 keV, utilizing the 16-bunch mode of the 
ESRF storage ring operation (fx = 5.68 MHz). The frequency multiplication coefficient 
was m = 102 for f = 0.58 GHz and m = 63 for f = 0.355 GHz. 

4.1. Experimental results 

A typical stroboscopic X-ray image revealing the propagation of a 6 jam SAW and its in- 
teraction with individual dislocations is shown in Fig. 8(a). Well-resolved acoustic wave 
fronts form alternating dark and bright lines that pass like a ruler through the entire im- 
age area. Besides that, the traces of five dislocation segments are also visible. Dislocations 
(dark lines) are better resolved in the image shown in Fig. 8(b), which was taken for com- 
parison from exactly the same crystal area, but after switching off the SAW. The two long 
dislocation segments are almost parallel to the surface since their visible lengths are in the 
range of tens of microns, whereas the X-ray penetration depth under experimental condi- 
tions was only 9 lam. 

In the vicinity of the dislocation lines, strong wave front deflections occur (see Fig. 8(a)). 
In particular, in the vicinity of the two long dislocation segments, wave front deflections are 
clearly visible as black streaks forming large angles with acoustic wave fronts existing far 
away from the interaction region. We show later on that these deflections arise as a result of 
the dislocation movements under SAW excitation. Similar features of the deflected wave 
fronts were found in all images taken from different samples and using SAW excitation 
of different wavelengths. For example, distortions in a 9.8 lam SAW wave front, when 
crossing the dislocation line, are clearly seen in Fig. 9. 

Such strong wave front deflection in a range of several microns around the dislocation 
line cannot be explained in terms of the acoustic wave scattering by the static strain field 
of individual dislocation. Following the discussion in Section 2.4, the effect of the static 
dislocation strain field on the refraction angle at a distance of several microns from the 
dislocation line should be of the order of 10 -5 rad, which is 3-4 orders of magnitude lower 
than that observed in Figs 8 and 9. Thus, we can unambiguously conclude that the wave 
front deflections visualized are related to vibrating dislocations (see Section 2.5) which are 
involved into dynamic interaction with acoustic waves (phonons). 
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Fig. 8. (a) Stroboscopic X-ray diffraction image of a 0.58 GHz SAW propagating in LiNbO3 and its interaction 
with linear dislocations. Remarkable wave front deflections in close vicinity to dislocation lines are clearly seen. 
The spacing between non-distorted individual acoustic wave fronts equals 6 jam. (b) Stroboscopic X-ray diffrac- 
tion image taken from exactly the same crystal region as in (a), but with no SAW excitation. Images are taken 

from Ref. [20]. 

Additional support of this idea comes from the following observation: deflection of 
acoustic wave fronts is a common feature for all dislocation lines situated along the crys- 
tal surface, except those that are parallel to the Z-axis of LiNbO3. An example of such 
behavior is shown in Fig. 10, which reveals pronounced wave front deflections in the left 
part of the dislocation line only. Wave-front deflections are practically absent in the right 
part of the dislocation line that is nearly parallel to the z-axis (the acoustic wave fronts 
far away from the dislocation line are perpendicular to the z-axis). As is explained in Sec- 
tion 4.3, dislocation lines parallel to the z-axis are confined to Peierls potential valleys and 
can hardly participate in high amplitude vibrations. 

4.2. Theoretical model and simulations 

In order to explain experimental data and extract quantitative information on dislocation 
vibrations and related parameters, a model for simulating the observed X-ray images was 
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Fig. 9. (a) Stroboscopic X-ray diffraction image of a 0.355 GHz SAW propagation in LiNbO3 revealing pro- 
nounced wave front distortions in close vicinity to dislocation line. The spacing between non-distorted individual 
acoustic wave fronts equals 9.8 Jam. (b) Stroboscopic X-ray diffraction image taken from exactly the same crystal 

region as in (a), but with no SAW excitation. 

developed by us [20], which is based on the calculation of the dynamic deformation field 
of a vibrating dislocation. Most of the known models in this field (see Section 2.5), deal 

with calculating the effect of dislocation vibrations far away from the dislocation line. This 

approach is not suitable for our purpose since experimentally the wave front deflections are 

observed in a limited space (less than the one acoustic wavelength, )~) around the disloca- 

tion line. Keeping this in mind, we adopted the approach of Eshelby and Nabarro [25,26] 

(see also Section 2.5.1) for calculating the displacement field of the vibrating dislocations 

close to the dislocation line. A combination of the dynamic displacement fields of the SAW 

and of the vibrating dislocation was then used for simulating the local shapes of acoustic 

wave fronts and comparing them with the observed features in the X-ray images. Note 

that the X-ray contrast is not always proportional to the amplitude of atomic displacement, 

so the exact dependence can be more complicated [38]. Nevertheless, the local geometri- 

cal shapes of alternating dark and bright lines in X-ray images follow the local shapes of 

acoustic wave fronts which are determined by the combined displacement field. 
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Fig. 10. Stroboscopic X-ray diffraction image showing an interaction of a 0.58 GHz SAW with a dislocation line 
which is almost parallel to the crystal surface. On the left side of the dislocation segment, remarkable deflections 
of acoustic wave fronts are clearly visible. On the right part of the dislocation segment, which is parallel to the 
Z-crystallographic direction of LiNbO3, the SAW wave fronts remain undistorted. The spacing between non- 

distorted individual acoustic wave fronts equals 6 lam. 

In order  to descr ibe the d isp lacement  field of  the SAW, u s, we used an or thogonal  co- 

ordinate sys tem (x, y, z) (see Fig. 11), with the y-axis  normal  to the crystal  surface and 

the z-axis paral lel  to the SAW wave vector, ks. The Bragg scattering geomet ry  is sensitive 

only to the Uy componen t  of the d isp lacement  vector, u. In the case of  SAW [41 ]" 

s 
uy - UyO(Y) c o s ( k s z  - cot). (31) 

An auxil iary coordinate  sys tem (x' ,  y ' ,  z') is related to the vibrat ing dislocation,  with 

the z ~ axis paral lel  to the dis locat ion line (see Fig. 11). The X-ray topographs  indicate 

that the dis locat ion lines, which strongly interact with the SAW, are a lmost  paral lel  to 

A 
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Fig. 11. The coordinate systems related to the propagating SAW (x, y, z) and the vibrating dislocation line 
(x I, y', ~I). 
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the crystal surface. Hence, we chose the y~ axis parallel to the y axis and the x ~ axis to 
be perpendicular to both the yl and z ~ axes, so that the x l - z  ~ and x - z  planes coincide. 
Since screw dislocations parallel to the crystal surface result in Uy = 0, the deformation 
fields were simulated for edge dislocations with Burgers vector, b, along the x ~ axis, i.e. 
perpendicular to the dislocation line (the z ~ axis). Practically, we have mixed dislocations, 
but the difference in the displacement component, U y, between mixed and edge dislocation 
results in a geometrical factor close to one. 

According to Eshelby and Nabarro (see Section 2.5.1), at distances r << )~ (counted 
outwards from the dislocation line) the displacement field of the dislocation follows the 
instantaneous location of the dislocation segments. If so, in order to find the displacement 
field of a vibrating dislocation we can use the known one for a static dislocation, Uy dis, but 
taken in the locations, x ~ = ~(z ~, t), modified by the dislocation vibrations, ~. Thus, the 
dislocation vibration creates a dynamic displacement field which, when close enough to 
the dislocation line, can be expressed as: 

dis dis (X t dis (x', y'). A / / y  - - / , /y  --  ~, y~) - / , / y  (32) 

As the static displacement field, Uy dis in eq. (32), we used a well-known solution for an edge 
dislocation in isotropic medium [27]: 

udis, ~ y~ b I x~2-Y ~2] 
y tX , ) -- 87r(1 -- v) (1 -- 2v) ln(x '2 + y,2) + x t2 -+- y,2 ' (33) 

where v is Poisson's ratio. 
As is explained in Section 4.4, the solution of the dislocation's equation of motion, at 

time intervals much larger than the vibration period, is given by 

= ~o sin(kdz' - cot + ~b), (34) 

where ~0 is the vibrating amplitude (real) and ~b is the phase shift of dislocation vibra- 
tion with respect to the phase of the SAW. The wave vector, kd, is defined by the spatial 
periodicity of the force applied to dislocation by the SAW and is 

kd = ks cos ~, (35) 

where • is the angle between the dislocation line and ks (i.e. between the z ~ and z axes). 
The ratio ~0/)~ manifests the strength of the dynamic interaction between acoustic waves 
and dislocations (see Section 2.5.4) and determines the amplitude of the dislocation veloc- 
ity 

iq~ 7 

Vdo - coco - 2rr ~" VR, (36) 

where VR = co/ks is the speed of the SAW. 
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Substituting eqs (33) and (34) into eq. (32), yields the expression 

dis (X I, A u y  y l )  _ _ 
b [ 

8rr(1 -- v) (1 -- 2v)In  I (x I - ~0 sin(kdz I -- cot + qS)) 2 -+- y ,21  

x ~2 -k yZ2 J 
(x I - ~0 sin(kdz I -- cot + ~b)) 2 - yt2 xi2 _ yt2 ] 

+ (x I -- ~0 sin(kdZ I -- cot + ~b)) 2 + yf2 - xi2 -Jr- yi2 " (37) 

The total dynamic displacement field was calculated in the (x I, yl, z I) coordinate system 
by adding expressions (31) and (37): 

S + Audis (38) Uy m Uy y 

after the following coordinate transformation 

x = x ~ cos cI) - z ~ sin ~,  z = x I sin • + z ~ cos (I:,, (39) 

applied to eq. (31). 
The time dependence of the displacement field is formally revealed in both eqs (31) 

and (37) containing the terms that depend on the product, cot. However, in the stroboscopic 
mode of measurement, the X-ray pulses probe the displacement field at certain instants cor- 
responding to cot = 27r m (where m is an integer) and, hence, all periodic time dependences 
practically disappear. 

Additional simplification comes when one considers depth dependent effects in the dis- 
placement fields. In this context, both eqs (31) and (37) depend on the coordinates yl and y. 
However, the influence of the yl and y values is revealed only in some changes of the am- 

s and Au dis Detailed simulations show that within a reasonable range of yt plitudes of Uy y . 
and y-values, which are smaller than the X-ray penetration depth (and also yl < )~), the ex- 
act choice of the yl and y-values does not significantly influence the overall displacement 
field map in the x t - z  ~ plane. 

As mentioned above, eq. (37) is valid for r << )~. Beyond this range, the solution is very 
complicated and can be derived only in specific simple cases [25,26]. We used eq. (37) in 
the range ]xll < )v/2 and neglected the dynamic displacement field of the dislocation line 
in the range, Ix I ] > )~/2. This neglecting is justified by two findings: (i) the displacement 
field (37) decays as ~ o / r  with the distance, r, from the dislocation line; (ii) experimentally, 
the wave front distortions were observed only in the range, Ix ~ ] < )~/2. 

As an example of a simulation of the local shapes of acoustic wave fronts, the dynamic 
displacement map calculated for ~0/)v = 0.14 and ~b -- rr/2 is shown in Fig. 12 together 
with one of the experimental X-ray images. It can be seen that the simulated map re- 
produces all main features of the wave front distortions that appear in the X-ray image 
collected. The thin white lines, which were imposed artificially in order to follow the wave 
front distortions, are practically identical in both images. For a deeper understanding, we 
show two separate contributions to the dynamic deformation field in Fig. 13. In the mid- 
dle of the map, the dynamic part of the dislocation deformation field, Au dis is presented y , 

s in for Ixll < )~/2. The right and left sides of the map show the SAW's contribution, Uy, 
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Fig. 12. Stroboscopic X-ray diffraction image (a), showing wave front deflections in the vicinity of a vibrating 
dislocation in LiNbO3, as compared with the simulated map (b) of the total dynamic displacement field for 

~0/)~ = 0.14 and 4~ = Jr/2. The spacing between non-distorted individual acoustic wave fronts equals 6 lam. 

Fig. 13. Displacement fields of SAWs and the vibrating dislocation, shown separately, under the same conditions 
as in Fig. 12. The contribution of A dis z_XUy is drawn within Ix'[ < ,k/2, while that of u S - a t  Ix'l > )~/2. The displace- 

ment field of the vibrating dislocation forms a zigzag pattern near x t = 0. Two types of segments that comprise 
the zig-zag pattem are indicated by S 1 and $2. The instantaneous shape, ~(zt), of the vibrating dislocation is 

shown by the broken white line. 

the range of Ix'l > )~/2. It can be seen that the term, /__XUy-- dis, produces a dark "zigzag" like 
pattern, which is actually an image of the vibrating dislocation line, ~(zt). The latter is 
calculated by the means of eq. (34) and indicated by a wavy vertical white line in Fig. 13. 
The angle between the zigzag segments and the z t axis becomes smaller as the normalized 
amplitude, ~0/)~, decreases. 

In the total dynamic deformation field (see Fig. 12), some of the dark segments (indi- 
cated by S 1 in Fig. 13) that form the zigzag pattern disappear since they are located exactly 
in the middle of the bright SAW wave fronts. Thus, the observed pattern in the vicinity of 
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Fig. 14. Stroboscopic X-ray diffraction image (a) showing wave front distortions in the vicinity of a vibrating 
dislocation in LiNbO3, as compared with the simulated map (b) of total dynamic displacement field for ~0/)~ = 

0.14 and ~b = -zr /2 .  The spacing between non-distorted individual acoustic wave fronts equals 6 ~tm. 

the dislocation line is actually an image of the second type of zigzag segments (indicated 
by $2 in Fig. 13), which remain in the image. 

On the other hand, for 05 -- -7r/2,  the $2 segments of the zigzag pattern disappear, and 
only the S 1 segments remain in the image. As a result, the simulated map (see Fig. 14) 
exhibits dark streaks in the vicinity of the dislocation line, which are tilted by certain 
angles, as compared with Fig. 12. An example of the observed X-ray image of this type is 
also shown in Fig. 14. 

Comparing the simulated maps with experimental images allowed us to extract the 
values of 05 and ~0/)~ for each individual vibrating dislocation that appeared in the col- 
lected X-ray images. It was found that the normalized amplitude (strength of phonon- 
dislocation interaction) is in the range of ~0/)~ = 0.08-0.14 under a 6 ~m SAW excitation 
and ~0/)~ = 0.02-0.06 under a 9.8 lam SAW excitation. The lower vibration amplitude 
under an excitation of a 9.8 ~m SAW is probably a result of weaker amplitude of SAW 
generated at a frequency which is shifted a few MHz away from the exact resonance value 
for a 0.355 GHz SAW transducer. For all vibrating dislocations the qS-values extracted from 
the displacement maps were found to be either q5 = 7r/2 or ~b = -7r/2.  As is explained in 
Section 4.4, this means that they vibrate in the resonant mode. 

The amplitude of the dislocation velocity can be evaluated by substituting the extracted 
~0/)~ values into eq. (36), which yields Vdo/VR = 0.5-0.88 for samples excited by a 
0.58 GHz SAW. Using the relationship V:r = 1.08VR, between the Rayleigh velocity, 
VR, and shear bulk velocity, V:r, which is appropriate for YZ-LiNbO3 [41], we obtain 
Vdo/VT = 0.46-0.81. The dislocation velocities are 2-3 orders of magnitude higher than 
those previously measured in metals and alkali halides [3]. This result indicates that the dy- 
namic interaction between acoustic waves and dislocations (see discussion in Section 2.5.4) 
in LiNbO3 is several orders of magnitude stronger than that of metals and alkali halides. 
Moreover, a part of dislocations have the velocities not far from the velocity of shear bulk 
waves, V:r, which is considered to be the highest possible value of dislocation motion 
[1,27]. Until now such high dislocation velocities were observed only under extremely 
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high stresses [42]. The physical reasons for high dislocation velocities under subtle strains 
introduced by SAW will be clarified in the next section. 

4.3. Dislocation analysis 

As mentioned above, dislocations can move fast only if they are not subjected to Peierls 
barriers. In our case, the magnitude of the SAW-induced stress field (typically, cr/l~eff < 
10 -4) is much smaller than the Peierls stress (typically, crp/#eff ~ 10-3-10 -2 for brittle 
ceramic crystals) and hence, the applied external force, FExt, is definitely smaller than 
the Peierls force, Fp (see eqs (3) and (4) as well as discussion in Section 2.1). Thus, the 
collected stroboscopic X-ray images give strong hints that the vibrating dislocations are 
not confined to Peierls potential valleys. This important point is demonstrated below by 
direct dislocation analysis in X-ray images. 

According to Section 2.1, a dislocation does not "feel" the Peierls potential barrier if 
L ~< Wk, where L is the average distance between adjacent kinks and W~ is the width of 
an individual kink. Substituting eqs (6) and (7) into this inequality, yields: 

~/ 2a b cr F, 
6@ >~ ~ (40) 

7rT ' 

where 6 @ is the angle between the direction of the Peierls valley and the whole dislocation 
line (see Fig. 1 (c)). By using typical magnitudes of the parameters involved in eq. (40): 
T ~ 0.5#effb 2 [1-3], a ~ b, and crp/#eff ,~ 10 -2 [1], one obtains 

6@ ~> 6.5 °. (41) 

Important information about the directions of vibrating dislocations can be extracted 
from the collected X-ray images by measuring the angles, @f, that dislocation images 
form with the z/-axis, which is perpendicular to visible acoustic wave fronts (see Fig. 15). 
Performing this analysis, one has to keep in mind that the image of the dislocation line 
is a projection of its direction in a three-dimensional crystal onto the plane of the X-ray 
photographic film. For the X-ray scattering geometry that we used in our experiments (see 
Fig. 15), the following relations exist between the real crystal coordinate system (x, y, z) 
and the coordinate system (xf, z f)  in the plane of the film: 

Xf = X sin 0 -- y cos 0, 

z f = z, (42) 

where 0 is the Bragg angle for the X-ray reflection used. By using eq. (42), the angle (I)f 
can be expressed as: 

(I) f - -  a r c t a n  ( lx sin 0 - ly cos 0 
, (43) 
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Fig. 15. Projection of a dislocation line on the X-ray photographic film. 

where the vector [lx, ly, lz] denotes the direction of the dislocation line in the crystal. Using 
eq. (43), it is possible to understand whether or not the vibrating dislocation lines are con- 
fined to the Peierls potential valleys by calculating the difference between the magnitudes 
of (I)f and ~ y ,  the latter being related to the directions of the Peierls potential valleys in 
LiNbO3. 

For the reader's convenience, the glide systems for dislocations in LiNbO3 and their pos- 
sible @~-values are summarized in Table 3. The left column specifies the three gliding sys- 
tems known for LiNbO3 [43]. The most common is the basal plane system (see Fig. 16(a)) 
with Burgers vectors, Ibl -- 0.5148 nm, equal to a - translations of the hexagonal unit cell 
[44,45]. Supplementary gliding systems are the pyramidal and prismatic plane systems (see 
Figs 16 (b) and (c)). In both of them the smallest Burgers vectors, Ibl = 0.5494 nm, are 
along the directions ½ (1101). The study [41] of the high temperature plastic deformation 
at 1070 °C > 0.8Tin (Tin stands for melting temperature) showed that the critical resolved 

Table 3 
Directions of Peierls valleys for major glide systems in LiNbO3. Angles, ~ f ,  calculated by means 

of eq. (42), are placed in last column 

Glide Possible directions Cartesian axes Calculated 
system of Peierls potential valleys [Ix, ly, 1 z] [ ~ f l  

Basal 1 (1120) [a, 0, 0] 90 ° 

31- (11"20)(0001 ) [a/2, a ~c3/2, 0] 90 ° 

[-a/Z, ax/3/2, 0] 90 ° 

1 (i l01) [3a/2, a~/-3/2, c] 3.46 ° Pyramidal j 

1 (~ 101){1012} [-3a/2, ax/3/2 c] 27.67 ° j 
[0, ax/3, c] 30.33 ° 

Prismatic 
l ( i l01){1210} 

!(1101) [3a/2 ax/3/2, c] 3.46 ° 3 
[-3a/2, ax/3/2, c] 27.67 ° 

[0, ax/-3, c] 30.33 ° 
[ooo 1 ] [o, o, c] o 



634 D. Shilo and E. Zolotoyabko Ch. 80 

Fig. 16. Three major glide systems in LiNbO3, (a) - in the basal plane, (b) - in the pyramidal plane, and (c) - in 
the prismatic plane. The glide planes are marked in gray. The shortest Burgers vectors are indicated by arrows. 

shear stresses for these gliding systems are very similar. Taking into account also the prox- 
imity of Burgers vectors, it is reasonable to assume that dislocations related to all the three 
gliding systems can be formed during the crystal growth. As a rule, the directions of Peierls 
potential valleys and Burgers vectors form a two dimensional primitive unit cell within the 
gliding plane [1]. This consideration allowed us to indicate possible directions of Peierls 
potential valleys and calculate the ~y-values (the last column of Table 3) for each of the 
three gliding systems. 

When analyzing the collected X-ray images, we found out that the values of ~ f ,  mea- 
sured for a large number of vibrating dislocations, do not fit the calculated ones. Instead, 
the measured angles are distributed in the range of (I)f = 6°-20 ° with no bias toward 
any values. Furthermore, for most imaged dislocations, the difference between (I)f and 
the nearest ~y-value was larger than 10 °, and hence, it is reasonable to assume that the 
condition (41) is fulfilled. 

This result strongly supports the conclusion that the vibrating dislocations are not con- 
fined to Peierls potential valleys that is a necessary condition for high speed dislocation 
movement. However, in a majority of metals and alkali halides, which are frequently inves- 
tigated by the internal friction technique, the dislocations also are not confined to Peierls 
potential valleys [3], yet the measured dislocation velocities are much lower. In fact, to 
obtain such high dislocation velocities as we measured, the viscosity coefficient, B, for 
dislocation motion should be very small. The appropriate B value for LiNbO3 can be ex- 
tracted by analyzing the dislocation's equation of motion. 

4.4. Extraction of the physical characteristics of vibrating dislocations 

The equation of motion for dislocations not subjected to the Peierls force [1,2] can be 
written as: 

- ~  - T ~z~2 + B-~7 -- FEx,. (44) 

This equation is very similar to eq. (19), which was used by Liicke and Granato (see Ref [3] 
and Section 2.5.2). The only difference between their solution and the solution given below 
stems from the differences in the boundary conditions and a different application of the 
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external force, FExt, with regards to the dislocation line. The SAW-induced applied external 
force can be expressed by means of eq. (3) and Hooke's law, O'ij = ¢ijklgkl, where Skl is the 
SAW's strain field, which is calculated by taking spatial derivatives OuSi/Oxj, of the SAW's 

displacement field, u s (see, e.g., eq. (31)) and ¢ijkl is the tensor of elastic moduli. The 
applied external force depends on the dislocation character and, generally can be written 
as: 

FExt -- lzsoff b sin(kdz' -- cot), (45) 

where e0 if is an effective value of the SAW-induced strain amplitude, which actually de- 
pends on the dislocation character. In order to derive eq. (45), the equality ks z - kdz', i.e. 
ks = kd cos • (see eq. (35)), is used. Substituting eqs (2) and (44) into eq. (43) and dividing 
by m* -~ 0.5pb 2 (see discussion in Section 2.1) yields the following normalized equation: 

Ot 2 
V~ eeff z ~ _ V2Z12+~O____~02~ 0~ __ 2--if- 0 sin(kd cot) (46) 

in which ~ = B/m* according to eq. (23). 
The solution of eq. (16) depends on the boundary conditions, which in our case can be 

imposed by using the geometrical parameters of individual vibrating dislocations deduced 
from the X-ray images. The capability to obtain this information is a significant advan- 
tage of the stroboscopic X-ray diffraction techniques over other non-diffraction methods. 
According to X-ray images (see, e.g., Figs 8 and 9), the vibrating dislocations are almost 
parallel to the crystal surface but yet have rather long parts propagating in depth. Therefore, 
the dislocation lines usually end at the surface, and this end is most probably not pinned. 
Concerning the second end, the X-ray images show that dislocations penetrate much deeper 
than the X-ray penetration length. Since the latter approximately equals to the SAW's pen- 
etration depth, we can conclude that a part of dislocation line excited by the SAW is free of 
pinning points. In that situation the dislocation vibrations will attenuate before they arrive 
at the dislocation end located in the crystal bulk and hence one can neglect the reflected 
wave from this end, even if it is pinned. Based on these considerations, it is reasonable to 
choose boundary conditions that correspond to a long dislocation string (much longer than 
the SAW wavelength), which is free at both its ends. 

The solution of eq. (46) under the above mentioned boundary conditions and at times 
much larger than the vibration period is given by eq. (34). Substituting this solution into 
eq. (45), yields 

2 V2T% ff #eoff b 
se° -- bf2co I sin41 - ~ l s i n 4 1 ,  (47) 

where 

tan ~b -- 
£~co 

2 2 O 9 2 "  VTk d 
(48) 
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Eq. (48) is equivalent to eq. (25) that appears in the solution of Lticke and Granato [3], 
if one uses the relationship co2 _ VZk 2, where coo is the dislocation's resonant frequency, 
which is not equal to co. Substituting the relationship, co -- VRks, and eq. (35) into eq. (48), 
yields: 

f2 1 
tan ~b = -- . (49) 

CO [ ( V T / V R ) 2  COS2 Op - 1] 

Based on eq. (49), it is easy to understand why the phase shift of the dislocation vibra- 
tions, extracted by comparing the experimental images and calculated dynamic defor- 
mation maps, was always close to ]qSI -~ re/2. In fact, setting Vr/VR ~- 1.08 [41] and 
0.94 < cos • < 1 (for • < 20 ° as measured in the collected images), one finds that the 
denominator in eq. (49) is close to zero (resonance conditions), i.e. ]~b] ~ 7r/2. Moreover, 
since the exact value of VT/VR depends on the direction of the dislocation line, the de- 
nominator in eq. (49) can be either slightly positive or negative, providing the phase shift 
with both signs, ~b ~ 7r/2 or ~b ~ -7r/2.  As shown in Section 4.2, a change of the sign of 
4~ from -7r /2  to +7r/2 causes sign changing in wave front deflections when crossing the 
dislocation line (compare Figs 12 and 14). An image of two dislocation lines located in 
the same crystal region and producing wave front deflections of both negative and positive 
signs is given in Fig. 8(a). 

The viscosity coefficients, B, for dislocation motion in LiNbO3 were evaluated by 
substituting the obtained values of I~l ~ re/2 and ~0/)~ = 0.08-0.14 as well as the ex- 

perimental and material parameters: # -  60 GPa, to ff - 5  × 10 -5, b -  0.55 nm, and 
co = 27r × 0.58 GHz, into eq. (47). Such evaluated B-values are in the range of B -- 
(5-9) × 10 -6 Poise, i.e. 2-3 orders of magnitude lower than those measured in metals 
and alkali halides [ 14]. The obtained results correlate well with the very low total acoustic 
attenuations, or, in LiNbO3 and other brittle ceramic crystals (see discussion in Section 2.2) 
as compared with ductile materials. 

A last remark relates to possible effect of SAW on other types of dislocations in LiNbO3. 
Note that the fight-hand term in eq. (47) is similar to the solution by Lticke and Granato 
[3], which appears in eq. (28). A comparison between these two equations allowed us to 
conclude that the vibration amplitude in model [3] is even four times higher than in our 
model. This fact has an important implication on the subject, since dislocations in the basal 
gliding system of LiNbO3 have the geometry that was considered in model [3] (i.e. a dislo- 
cation line is perpendicular to the acoustic wave propagation). Thus, these dislocations can 
indeed vibrate with very large amplitudes as follows from the well established model [3]. 
Unfortunately, we are not able to visualize these specific dislocation vibrations since in 
the scattering geometry used, the traces of these dislocation lines in the X-ray images are 
parallel to the acoustic wave fronts. Nevertheless, the phonon-induced vibrations of these 
dislocations may have a significant effect on the attenuation of acoustic waves in LiNbO3. 

4.5. Conclusions 

In this chapter we showed that stroboscopic X-ray diffraction imaging provides unique in- 
formation on the phonon-induced motions of individual dislocations. The key point of the 
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technique developed is the phase locking of the periodic high-frequency deformation field 
(affecting the dislocation movement) to the periodic X-ray illumination. In such a way, fast 
dislocation dynamics (on ans to sub-ns scale) can be investigated as if it is frozen in time. 
It should be emphasized that the X-ray diffraction imaging technique is the only method 
allowing to "see" in one image the static and dynamic deformation fields with spatial res- 
olution better than 0.5 pm and thus to study the dynamic interaction of dislocations with 
acoustic waves (phonons). Due to high spatial and temporal resolution, this technique is 
able to probe an elementary phonon interaction with an individual dislocation, which is a 
subject of theoretical analysis. 

By using this technique we succeeded to visualize individual acoustic wave fronts in a 
GHz range. Due to improved imaging contrast we were also able to resolve the wave front 
distortions when crossing the dislocation lines. We showed that the observed wave front 
deflections are caused by dislocation vibrations, as a result of the interaction with phonons. 
For quantitative image analysis, we developed a model which allowed us to simulate the 
dynamic displacement maps containing both contributions of SAW and vibrating dislo- 
cations. By comparing experimental images and simulated dynamic displacement maps, 
the amplitude and velocity of vibrating dislocations were extracted. Further solution of 
the dislocation's equation of motion, using boundary conditions that were deduced when 
analyzing experimental X-ray images, allowed us to obtain the dislocation viscosity coef- 
ficients, B. The B-values found in LiNbO3 were 2-3 orders of magnitude lower than any 
value measured before in ductile materials. The results obtained for brittle ceramic crys- 
tals, such a LiNbO3, prove that the technique developed significantly expands our abilities 
to investigate phonon interaction with dislocations. 

At the same time, the models that were used rely on several approximations. The dy- 
namic displacement maps were simulated for edge dislocation in isotropic material with 
the dislocation line parallel to the crystal surface. By taking X-ray images from different 
reflections, one can find the precise orientation and type of every dislocation in the image 
and after that perform more precise numerical simulations of the displacement maps using 
specific elastic constants of LiNbO3. Using anisotropic models may lower the evaluated 
amplitudes of dislocation velocity by a factor of 2 or 3. In this case, the dislocation veloc- 
ities are no longer "relativistic", but yet remain two orders of magnitude higher than any 
velocity value measured before in metals and alkali halides under acoustic wave excitation. 

The extraction of the value of B by substituting the parameters obtained, ~0/)~ and qS, 
into eq. (47) also relies on the approximated values of T or m*. As pointed out by Seeger 
[46], the exact value of T can be numerically calculated if the dislocation orientation and 
character are known. Following Seeger's analysis [2,46], an increase of B by a factor of 2, 
due to some uncertainty in the T-values, may be considered. Finally, applying both cor- 
rections mentioned can raise the actual value of B by a factor of 5. This corrected value 
is still two orders of magnitude lower than any value measured until now in all materials 
investigated. 

The experimental technique developed paves the route for further research in several 
directions. First, it is desirable to perform more accurate simulations of the dynamic dis- 
placement maps and to achieve more exact solutions for dislocation motion in order to 
have more accurate data on dislocation velocities and viscosity coefficients in brittle crys- 
tals. Secondly, the method developed [40] of applying stroboscopic X-ray imaging to 
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non-piezoelectric crystals opens the route for investigating dislocation interactions with 
phonons in a wide variety of semiconductor and optical crystals that are beyond the scope 
of other experimental methods. This can lead to the detection of new modes of dislocation 
vibration under acoustic wave excitation and can significantly expand the database of the 
viscosity coefficients, B, in different materials. 

Stroboscopic X-ray diffraction imaging can also be applied for the very ambitious goal 
of investigating dislocation motions at relativistic velocities. According to eq. (47), the 
amplitude of dislocation vibration and, correspondingly, the dislocation velocity depends 

directly on the applied strain amplitude, eo ff. Thus, a few times increase of the SAW am- 
plitude (that is technically possible), in principle, may result in dislocation velocities very 
close to VT. 

The question of whether a dislocation can move faster than VT is still open. Five decades 
ago Eshelby showed [47], basing on the theory of elasticity, that there exist solutions for the 
dislocation motion faster than Vr, that are accompanied by a strong emission of acoustic 
waves. For a long time, these solutions were considered to be unrealistic since the dislo- 
cation's energy infinitely increases at Vd - Vr. Thus, for decades no physical argument 
to overcome this infinitely high energy barrier was found. However, recent molecular dy- 
namic simulations [48,49] have demonstrated that the dislocation velocity can overcome 
the barrier of Vr and can even be larger than the speed of longitudinal bulk waves. In 
these simulations, the dislocation velocities jumped over Vr within less than one ps time 
interval, i.e. when passing a distance of about one Burgers vector. 

Dislocation velocities above Vr have never been observed experimentally. Apparently, 
nearly relativistic velocities were obtained by the application of a pulsed mechanical stress 
of about 0.01 la in amplitude during about 1 Its [42]. Measurements of the dislocation 
positions before and after pulse application allowed us to calculate the average dislocation 
velocity but failed to provide any information about the dislocation behavior during this 
motion. 

Applying the stroboscopic X-ray diffraction imaging to study the dislocation movements 
at relativistic velocities will provide important information not only on the limiting velocity 
itself but also on possible modifications of the dislocation strain fields at these velocities. 
Such experiments will open a new topic of research in dislocation mechanics. 
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