
JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.1 (1-7)

Big Data Research ••• (••••) •••–•••
 Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Prototyping a GPGPU Neural Network for Deep-Learning Big Data

Analysis ✩

Alcides Fonseca ∗, Bruno Cabral

University of Coimbra, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2016
Received in revised form 14 November 2016
Accepted 20 January 2017
Available online xxxx

Keywords:
Big-data
Deep-learning
Prototyping
GPGPU
Cluster
Parallel programming

Big Data concerns with large-volume complex growing data. Given the fast development of data storage
and network, organizations are collecting large ever-growing datasets that can have useful information.
In order to extract information from these datasets within useful time, it is important to use distributed
and parallel algorithms.
One common usage of big data is machine learning, in which collected data is used to predict future
behavior. Deep-Learning using Artificial Neural Networks is one of the popular methods for extracting
information from complex datasets. Deep-learning is capable of more creating complex models than
traditional probabilistic machine learning techniques.
This work presents a step-by-step guide on how to prototype a Deep-Learning application that executes
both on GPU and CPU clusters. Python and Redis are the core supporting tools of this guide. This tutorial
will allow the reader to understand the basics of building a distributed high performance GPU application
in a few hours. Since we do not depend on any deep-learning application or framework—we use low-level
building blocks—this tutorial can be adjusted for any other parallel algorithm the reader might want to
prototype on Big Data. Finally, we will discuss how to move from a prototype to a fully blown production
application.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Deep Learning [1] refers to the usage of Artificial Neural Net-
works (ANN or NN) with several hidden layers used for data with a
high dimensionality. A common example and benchmark for Deep
Learning is image classification from the ImageNet dataset [2].
ANNs can be used for classification tasks [3], with several appli-
cations in industry, business and science [4]. Examples of appli-
cations include character recognition in scanned documents [5],
predicting bankruptcy [6] or health complications [7]. Autonomous
driving also makes heavy use of ANNs [8].

An ANN begins with random weights, practically deciding ev-
erything at random. By training the ANN with several existing
instances of the problem, one can evaluate the error produced.
Weights are then adjusted, taking into account if it overly or un-
derly estimated the final value.

In order to predict values, ANNs are built connecting layers of
neurons. ANNs use the first layer of neurons for each input feature,
and the final layer for the classification output. Fig. 1 shows an

✩ This article belongs to HPC Tutorial for Big Data.

* Corresponding author.
E-mail addresses: amaf@dei.uc.pt (A. Fonseca), bcabral@dei.uc.pt (B. Cabral).
http://dx.doi.org/10.1016/j.bdr.2017.01.005
2214-5796/© 2017 Elsevier Inc. All rights reserved.
Fig. 1. An example of a neural network with 4 input neurons, 4 neurons in the
hidden layer and 2 output layers.

example of an ANN with four input neurons, four neurons in the
hidden layer and two output neurons. All neurons in one layer are
connected to all the neurons in the following layer.

When the number of features increases (high dimensionality),
the number of neurons in the hidden layers increases as well, in

http://dx.doi.org/10.1016/j.bdr.2017.01.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:amaf@dei.uc.pt
mailto:bcabral@dei.uc.pt
http://dx.doi.org/10.1016/j.bdr.2017.01.005

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.2 (1-7)

2 A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–•••

order to compensate for the possible interactions of input neu-
rons [9]. However, a rule of thumb is to use only one hidden
layer [10] with the same number of hidden neurons as there are
input neurons.

The second scalability issue with ANNs is that for a high ac-
curacy, they have to be trained with a large dataset. Typically, to
achieve a good accuracy score, the number of instances should be
three orders of magnitude higher than the number of features [10].
Thus, we reach a point in which we need to train an ANN over sev-
eral iterations, using a high number of features and instances. In
these conditions, training an ANN becomes a computationally in-
tensive operation, highly demanding in terms of processing, mem-
ory and disk usage. As the amount of data available for training
goes above a terabyte, it becomes Big Data problem.

The solution for Big Data processing is to distribute the com-
putation across different machines, splitting data among them and
merging results afterwards. In Map-Reduce approaches, it is possi-
ble to divide the computation into independent sub-problems that
can be combined to produce a final result. Hadoop and Spark [11]
are the most used frameworks for Big Data processing.

ANNs are described by the following characteristics: layout (the
number of layers and neurons on each layer) and the weights of
connections between neurons (the second attribute is dependent
on the first). When training an ANN for a specific problem dataset,
the weights are being adjusted to minimize the output error.

Because the prediction of ANNs can be described as matrix op-
erations (we are multiplying the same weights to a each row of
features of problem instances), graphical processing units (GPUs)
are usually a good solution for improving performance and reduce
training times. GPUs were designed to perform matrix operations
in the context of video processing, but have been widely used for
other ends. This technique is commonly referred to as General Pur-
pose GPU programming (GPGPU).

In this tutorial we will demonstrate how to implement a Neu-
ral Network for Big Data analysis using GPUs. The sources for this
tutorial are available for download at https :/ /github .com /alcides /
bigdatagpunn.

In Section 2 we introduce the problem, as well as the ANN be-
ing created. In Section 3 it is shown how to implement a basic
ANN. In Section 4, we explain how a Master–Worker distributed
model can be implemented using a message queue. In Section 5,
we describe how to implement a ANN for running on the GPU. Fi-
nally, in Section 6, we discuss the merits and shortcomings of our
approach and present some thoughts on how to improve it. Sec-
tion 7 summarizes this tutorial.

2. Problem and dataset

Before starting implementing the ANN, it is necessary to define
the problem dataset to use for development and testing purposes.
It would be unpractical to use a large dataset in development,
since it would impose an unbearable overhead in each test iter-
ation. Instead, a small subset of a larger dataset should be used for
prototyping, and the remaining data should be used for evaluating
the complete solution.

As such, we are going to use the Wine Data Set [12], which
has been utilized for evaluating classifiers when faced with high
dimensionality (a high number of features). The dataset has 178
instances, a reasonable number for testing our prototype. Each in-
stance has 13 features (either real or integer values) and three out-
put values. Since each instance can belong to one of three classes,
the output values are set to one if the instance belongs to the cor-
responding class.

In this tutorial, we will show how to build an ANN trained to
classify wine when faced with an unknown instance. The ANN will
have 13 input neurons and three output neurons, matching the
dataset format. There is one hidden layer and 13 input neurons.
Bear in mind that this is only an example configuration, many oth-
ers are acceptable and may even have better results.

In order to adapt more easily to different problems, ANNs use
at their core a non-linear function. In our prototype we will use
the sine function, the most common function for this use. In order
to improve the learning performance, we normalize our dataset to
values between 0 and 1.

3. A neural network in Python

1 import numpy as np
2 import pandas as pd
3
4 df = pd.read_csv("datasets/wine.txt", sep="\t",

header=None)
5
6 instances = df.shape[0]
7 train_instances = 20
8 ndims = 13
9 nclasses = 3

Listing 1.1. Dataset import.

Importing the dataset, which is in a CSV file, can be accom-
plished using Pandas and Numpy libraries [13]. These libraries al-
low to store the data in memory efficiently since they resort to C
arrays, which are less demanding in terms of resources than lists
in Python. This step is described in Listing 1.1

1 def generate_random_config():
2 weights0 = 2 ∗ np.random.random((ndims,

ndims)) − 1
3 weights1 = 2 ∗ np.random.random((ndims,

nclasses)) − 1
4 return (weights0 , weights1)

Listing 1.2. Generation of a random configuration.

Since the layout of the ANN is static and pre-defined, only the
weights between nodes can be dynamically adjusted. Listing 1.2
shows the function used to randomly generate weights for the
starting ANN. weights0 refers to the weights applied to each of
the 13 values in the input layer (Layer 0) and weights1 refers to
the weights applied to the 13 values in the hidden layer (Layer 1).
Random values are scaled to be in the [−1, 1[range, which is suit-
able to use with sigmoid activation functions.

1 def train(X, y, conf, iterations=6000):
2 weights0, weights1 = conf
3 for j in x r a n g e (iterations):
4 # F e e d f o r w a r d
5 l0 = X
6 l1 = sigmoid(np.dot(l0,weights0))
7 l2 = sigmoid(np.dot(l1,weights1))
8 # B a c k P r o p a g a t i o n
9 l2_error = y − l2

10 l2_delta = l2_error∗sigmoid_d(l2)
11 l1_error = l2_delta.dot(weights1.T)
12 l1_delta = l1_error ∗ sigmoid_d(l1)
13 weights1 += l1.T.dot(l2_delta)
14 weights0 += l0.T.dot(l1_delta)
15 return (weights0 , weights1)

Listing 1.3. Training the ANN.

Listing 1.3 depicts the training process, based on the example
from “A Neural Network in 11 lines” [14]. The training adjustment
is performed a certain number of times, defaulting to 6000. The
training process starts by feed-forwarding the input data through

https://github.com/alcides/bigdatagpunn
https://github.com/alcides/bigdatagpunn

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.3 (1-7)

A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–••• 3

the neural network, calculating the error between the prediction
and the recorded value, and then back propagating the error to
adjust the weights matrices. In line 6, the weights are applied to
the instances data (X) using a matrix multiplication. Each neuron
has its value modified by the sigmoid function. The sigmoid func-
tion returns values between 0 and 1, and has a derivative easy to
compute (Listing 1.4). Line 7 repeats the same process of line 6,
but from the hidden layer to the output layer. l2 will be a matrix
that will have one of three possible values for each instance row: a
prediction of which class the instance belongs to. At this point, the
neural network has been used to obtain a prediction. The quality
of the current solution (l2_error) will be low because we initi-
ated the process using random weights. In order to improve, it
is necessary to propagate the error into each weight matrix, ad-
justing the values so that in future predictions it is closer to the
correct value. This is done by multiplying the error by the final
value before the sigmoid function (using the derivative), having a
small value by which change the weight in the right direction. This
process is repeated for the previous layer, thus changing weights0
and weights1. Repetition will approximate the weights, so that the
error is minimized.

1 def sigmoid(x):
2 return 1/(1+np.exp(−x))
3
4 def sigmoid_d(x):
5 return x∗(1−x)

Listing 1.4. The Sigmoid function and its derivative.

Listing 1.5 shows an example that applies the training process
to the Wine Dataset. Lines 2 and 3 divide the dataset input file
into features (input) and classes (output). output_conf will have
the final configuration of the ANN to classify new instances.

1 conf = generate_random_config()
2 X = df.iloc[0:train_instances ,0:ndims].as_matrix

()
3 y = df.iloc[0:train_instances ,ndims:].as_matrix

()
4 output_conf = train_fun(X, y, conf_, iterations)

Listing 1.5. An example of a call to the training method.

4. A distributed neural network using redis

In the previous section we wrote a function to train an ANN
based on a given dataset. For Big Data, things are more complex.
To handle large amounts of data with hight dimensionality, it is
useful to distribute storage and computation distributed across ma-
chines. Map-Reduce is a very common paradigm for parallelizing
algorithms across different machines. The problem is divided in
several sub-problems, each concerning a subset of the data. Each
sub-problem is solved in a different machine, and the results are
combined to produce the solution for the overall problem.

Parallelizing an ANN can be done by subdividing the whole into
several training sets [15]. Each machine trains the neural network
on its dataset, obtaining different weight matrices per machine.
Then, matrices are combined by averaging each value across ma-
trices.

The example in Fig. 2 shows a master and two worker pro-
cesses. The master process manages execution, creates the requests
sent to the workers, waits for responses and merges results. Train-
ing is asynchronous and occurs in parallel, and consumes the
larger part of the computation time because it has to be repeated
a high number of times.
Fig. 2. Example of a Master–Worker model with two workers.

Requests and Responses have to be exchanged over the net-
work, in order to allow distinct machines to collaborate in the
computational work. To this end, we used redis [16] database as a
message broker. Several other message queue systems could have
been used, but we decided to work on redis because of its flexibil-
ity, no configuration is necessary and the interface is very straight-
forward. Other alternatives will be discussed in Section 6. We only
need a single redis instance, running on the master node, to en-
queue requests and responses. To keep things as simple as possible,
requests and responses hold the same data:

• Number of iterations to be performed (can be used to control
the task duration)

• The bounds of the data subset to use
• The configuration of the ANN

In requests, the ANN configuration is the initial master config-
uration. In responses, the configuration is the result of the worker
training.

Since redis only accepts strings as values, it is necessary to
encode and decode information. Listing 1.6 shows an example of

1 import redis
2 r = redis.StrictRedis(host=’localhost’, port

=6379, db=0)
3
4 def encode_req(a,b,it,conf):
5 weights0, weights1 = conf
6 metadata = "|".join(map(s t r ,[a,b,it,

weights0.shape[0], weights0.shape[1],
weights0.dtype, weights1.shape[0],
weights1.shape[1], weights1.dtype]))

7 data = conf[0].ravel().tostring()
8 data2 = conf[1].ravel().tostring()
9 return metadata, data, data2

10
11 def decode_req(metadata , data, data2):
12 a, b, iterations , l, w, array_dtype , l2, w2,

array_dtype2 = metadata.split(’|’)
13 weights0 = np.fromstring(data, dtype=

array_dtype).reshape(i n t (l), i n t (w))
14 weights1 = np.fromstring(data2, dtype=

array_dtype2).reshape(i n t (l2), i n t (w2))
15 return i n t (a), i n t (b), i n t (iterations),

(weights0, weights1)

Listing 1.6. Redis encoding functions.

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.4 (1-7)

4 A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–•••

a possible encoding. Encoding Numpy arrays is not trivial. Arrays
have to be reduced to one dimension and converted to string. The
dimensions and data type of the array are communicated sepa-
rately as metadata.

Listing 1.7 shows the source code of the master process. The
master divides data by the workers by encoding a message for
each one, with different bounds and sends metadata to a queue
(“worker_0” for the first worker) and the configuration matrices to
two other queues.

1 master_conf = generate_random_config()
2 blocks_per_worker = instances/(workers+2)
3 for k in r a n g e (10):
4 for i in r a n g e (workers):
5 a = blocks_per_worker ∗ i
6 b = blocks_per_worker ∗ (i+1)
7 print "Scheduling to worker", i, " data

from ", a, " to ", b
8 metadata, data, data2 = encode_req(a, b,

60000, master_conf)
9 r.rpush("worker_%d" % i, metadata)

10 r.rpush("worker_data_%d" % i, data)
11 r.rpush("worker_data2_%d" % i, data2)

Listing 1.7. Master splitting.

The source code for the worker is shown in Listing 1.8. It starts
by decoding the request data. Since this is a blocking call, this call
can be executed inside a loop to have a worker continuously pro-
cessing new requests. In lines 6 to 8, the worker prepares data and
trains the model. In the end, it encodes a response with the new
configuration and pushes the results to a mirror queue, which con-
nects worker to master (e.g., “master_0”).

1 metadata = r.blpop(’worker_%d’ % wid)[1]
2 data = r.blpop(’worker_data_%d’ % wid)[1]
3 data2 = r.blpop(’worker_data2_%d’ % wid)[1]
4 a, b, iterations , conf = decode_req(metadata ,

data, data2)
5
6 X = df.iloc[a:b,0:ndims].as_matrix()
7 y = df.iloc[a:b,ndims:].as_matrix()
8 output_conf = train(X, y, conf, iterations)
9

10 metadata , data, data2 = encode_req(a, b,
iterations , output_conf)

11 r.rpush("master_%d" % wid, metadata)
12 r.rpush("master_data_%d" % wid, data)
13 r.rpush("master_data2_%d" % wid, data2)

Listing 1.8. Worker code.

Finally, the master node receives results from the workers, and
averages the received matrices to achieve a final configuration. The
code for this part is omitted, as it is similar to the code used by
the worker to receive requests.

This distributed architecture, is also suitable for multi-core plat-
forms. In a 8-core machine, 8 workers can be executed in parallel
and, when each get a slice of the data to process, the efficiency of
multi-core processors is at its best.

5. A GPU-powered neural network

GPUs were designed to accelerate the processes of graphics
generation, which consist on performing thousands of matrix op-
erations, such as matrix multiplications. From Listing 1.3, it is
possible to understand how training a neural network can also
be achieved by matrix multiplications, and scalar multiplications,
additions and subtractions, making it clear that training ANNs in
GPUs would be largely beneficial in terms of performance.
Programming for GPUs typically requires using a low level lan-
guage such as Cuda or OpenCL. Recent efforts have allowed high-
level programming languages to be compiled to the GPU, such as
Matlab [17], Haskell [18], Java [19] or Python [20]. Also, Nvidia
GPU support has been added to Numba [21], a just-in-time com-
piler for Python functions. In this work we will use Numba and
Nvidia hardware. There is also support for HSA AMD GPUs, but it
is out of scope for this work.

The first thing we need to know about GPGPU is that GPUs and
CPUs do no share the same memory. This means that data and
code have to be copied to the GPU and back. As such, in order for
functions to be executed on the GPU, they should be annotated as
such to be compiled to the GPU assembly. Furthermore, arguments
have to be copied to the GPU before execution, and results to the
main memory after execution. Listing 1.9 shows the source code if
the worker that executes on the GPU. The initial configuration is
copied to the GPU, as well as the input and output matrices from
the dataset. The kernel, which is the function that executes in the
GPU, is invoked in line 11. Note that when invoking the kernel it
is necessary to pass the GPU versions of the arguments. Next, the
resulting configuration is copied from the GPU to main memory.
Lines 9 and 10 are used to compute the kernel work-group and
work-items, which are essential steps in GPGPU.

1 def train_cuda(X, y, conf, iterations=6000):
2 gpu = cuda.get_current_device()
3 weights0, weights1 = conf
4 weights0g = cuda.to_device(weights0)
5 weights1g = cuda.to_device(weights1)
6 Xg = cuda.to_device(X)
7 yg = cuda.to_device(y)
8 rows = X.shape[0]
9 thread_ct = (gpu.WARP_SIZE , gpu.WARP_SIZE)

10 block_ct = [i n t (math.ceil(1.0 ∗ rows / gpu.
WARP_SIZE)), i n t (math.ceil(1.0 ∗ ndims /
gpu.WARP_SIZE))]

11 train_kernel[block_ct, thread_ct](Xg, yg,
weights0g , weights1g , iterations)

12 weights0g.to_host()
13 weights1g.to_host()
14 return (weights0 , weights1)

Listing 1.9. Training an ANN on the GPU—Host code.

The kernel is be executed in several threads. The work-group
and work-item sizes are GPU layout configurations that the devel-
oper uses to decide how many threads will execute the kernel and
in how many groups they will be organized. If it is not important
for the algorithm, as it is the case here, a good number for the
work-group size is the Warp size. Physically, GPU threads are or-
ganized in groups, or warps, so matching the virtual layout with
the physical layout yields the best performance. Also, the number
of threads should be as high as the size of the largest matrix mul-
tiplication result, which is the number of instances by dimensions.
In this case, the Warp size is 32, resulting in a matrix o 32 by 32
work-items. The resulting 1024 threads will not all perform used
work, as the multiplied matrix will be of size 20 (instances) by 13
(features). While in this benchmark there are more threads than
work to perform, in a larger program it would be the opposite.

Listing 1.10 shows the auxiliary functions used by the kernel.
These are the same Python functions in Listing 1.4, except they
have a decorator on top, marking the function as being able to ex-
ecute on the GPU. Furthermore, by enabling function inlining there
is no overhead in function calling on the GPU.

Finally, Listing 1.11 shows the main kernel function. Despite be-
ing written in Python, code inside kernel functions is limited to a
subset of the language, called NoPython. This subset does not sup-
port try, catch, with, with and comprehensions. Kernel functions
also cannot return anything.

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.5 (1-7)

A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–••• 5

1 @cuda.jit(device=True, inline=True)
2 def sigmoidg(x):
3 return 1/(1+math.exp(−x))
4
5 @cuda.jit(device=True, inline=True)
6 def sigmoidg_d(x):
7 return x∗(1−x)

Listing 1.10. Sigmoid function and its derivative on the GPU.

1 @cuda.jit()
2 def train_kernel(X, y, weights0, weights1,

iterations):
3 l1 = cuda.shared.array(shape=(instances ,

ndims), dtype=numba.float32)
4 l2_delta = cuda.shared.array(shape=(

instances , 3), dtype=numba.float32)
5 l1_delta = cuda.shared.array(shape=(

instances , ndims), dtype=numba.float32)
6 i, j = cuda.grid(2)
7 if i < instances and j < ndims:
8 for it in r a n g e (iterations):
9 acc = 0

10 for k in r a n g e (ndims):
11 acc += X[i, k] ∗ weights0[k, j]
12 l1[i, j] = sigmoidg(acc)
13 cuda.syncthreads()
14 if j < 3:
15 acc = 0
16 for k in r a n g e (ndims):
17 acc += l1[i,k] ∗ weights1[k,

j]
18 l2 = sigmoidg(acc)
19 l2_error = y[i, j] − l2
20 l2_delta[i, j] = l2_error ∗

sigmoidg_d(l2)
21 cuda.syncthreads()
22 acc = 0
23 for k in r a n g e (3):
24 acc += l2_delta[i,k] ∗ weights1

[j, k]
25 l1_error = acc
26 l1_delta[i, j] = l1_error ∗

sigmoidg_d(l1[i, j])
27 cuda.syncthreads()
28 if j < 3:
29 acc = 0
30 for k in r a n g e (instances):
31 acc += l1[k, i] ∗ l2_delta

[k, j]
32 weights1[i, j] += acc
33 acc = 0
34 for k in r a n g e (instances):
35 acc += X[k, i] ∗ l1_delta[k, j]
36 weights0[i, j] += acc
37 cuda.syncthreads()

Listing 1.11. Kernel function for ANN training.

Marking a function as a kernel is accomplished by using the
@cuda.jit() decorator. By doing so, we can use features that are
GPU-only, such as getting the position of each thread in the work-
group, allocating local and shared memory and using barriers to
synchronize threads at a given point.

Shared arrays can be used to store temporary values in the
GPU. Accessing these arrays is typically faster than using the global
memory, the one the CPU writes to and reads from. Lines 3, 4 and
5 use this feature to allocate the arrays necessary to store the re-
sult of intermediate matrices.

Since the kernel function executes in all threads, we need to
identify each thread so it acts only on its respective input values.
This is done by reading the position of the thread in the work-
group. The actual number of threads can be decided later during
runtime. Line 6 obtains the 2D position in the work-group grid. In
Fig. 3. A representation of threads performing computations between barriers.

the previous example, the coordinates in the grid are given by (i,
j), with i between 0 and 24 and j between 0 and 16.

Since our kernel performs several matrix multiplications, and
not all matrices have the same size, we need to adjust the num-
ber of threads for the matrix being multiplied (lines 7, 14 and
28). Fig. 3 shows a representation of what threads are running
on which matrix operations, and the barriers used to synchronize
among threads.

Each matrix multiplication is expressed as a accumulative sum
of the products between the corresponding cells of the input ma-
trix. Examples of this pattern are in Lines 9 to 12, 15 to 18, 22 to
25, 29 to 32 and 33 to 36. These operations could be performed
in different kernels, but compiling and scheduling a kernel to the

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.6 (1-7)

6 A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–•••

Fig. 4. Comparison of the execution times between CPU and GPU versions.

GPU has its overheads, so executing everything in the same kernel
is faster.

Since each Warp can execute at its own pace, threads may be
executing different matrix multiplications at a given moment, cre-
ating a race condition. In order to prevent this, we introduce a syn-
chronization point in the program, in particular, a barrier among
all threads using the cuda.syncthreads() function, present in lines
13, 21, 27 and 37. When two matrix operations are not dependent
(as it is the case of those starting at lines 29 and 33), they do not
required a synchronization barrier between them.

Having the kernel, the auxiliary device functions and the host
code to schedule the kernel, we now have a GPGPU Neural Net-
work executing. In order to have an idea of the performance, we
compared the GPU version with the regular Python version. We re-
peated the measurements 30 times on CPython 2.7.6. Our machine
has an Intel i7-3520M processor and a NVIDIA GeForce GT 640 LE
GPU.

Fig. 4 uses violin plots to represent the distribution of execution
times of the GPU and the CPU versions, as well as the quartiles
of the distributions. The GPU version executes in one fifth of the
time of the CPU version, showing how this type of programs can
be easily parallelized on the GPU with speedups.

6. Discussion and homework

Just like any prototype, this is not a finished product. As such,
there are several shortcomings and significant room for improve-
ment. This section addresses issues with our work and proposes
alternatives that the reader may opt to pursue.

Python is not the best language in terms of performance, given
its overhead in interpreting code, expensive dynamic data struc-
tures (such as lists) and the Global Interpreter Lock (GIL). While
this is true, in our implementation, most of the computation does
not execute in Python: the GPU version compiles Python to LLVM,
which is compiled to the Nvidia PTX format, similarly to how cuda
works; and, the CPU version executes the matrix multiplications in
C, with C structures, thanks to the Numpy library. But, it is possi-
ble to reduce even further the overhead of Python code in the CPU
training function: execute the code through the Pypy interpreter,
which features JIT compilation and improves the performance of
hot code; Numba also features a JIT compiler for CPU that can be
activated using a one-line decorator; the code could also be writ-
ten in Cython, a typed version of Python that is compiled down
to C. Finally, GIL prevents efficient thread-based parallelization in-
side the same process. That is why our CPU parallelization resorts
to separate processes, each with its own individual GIL, taking
the greatest advantage of CPU parallelism. But we still have the
overhead of Redis communication inside the same machine. This
can be reduced using shared memory. The Python multiprocess-
ing module can automate this process, but has some limitations in
communicating the results back to the parent process.

Redis is a good choice for a production message queue. But,
ActiveMQ [22] and 0MQ [23] are also good alternatives. The tra-
ditional advantage of Redis, which is not relevant in this example,
is that is also serves as a NoSQL database store, frequently used
for caching. Nonetheless, any of these require the programmer to
prepare messages as raw bytes, using the metadata technique pre-
sented in this paper for serializing Numpy arrays.

Another aspect that is not considered in this work is how to
split data through different machines. A Distributed File System
such as NFS can be used, but slices of the dataset can also be
downloaded from a remote location before the local execution
of the training code. Any of these solutions require data copy-
ing mechanisms. Fortunately, in our parallelization approach each
worker only accesses a subset of the data and does not need to
access all of it.

The Neural Network implementation depicted in this paper had
only one hidden layer with 13 neurons. But, Deep-Learning as-
sumes the presence of several hidden layers, each with many neu-
rons. Adding more layers and neurons is left as an exercise for the
reader. Choosing an ideal configuration implies more work, which
can include pruning of useless neurons [24], using genetic algo-
rithms to evolve ANNs [25] or Monte Carlo methods [26]. These
approaches require a more extended study of the subjects.

Another aspect is the evaluation of the solution. A simple ap-
proach would be to leave a slice of the benchmark data apart for
evaluating the trained ANN. Cross-validation is possible, but it re-
quires much more computing power for the same data size.

Finally, the GPU approach presented here is far from being op-
timized. The first concern is how much memory is sent from the
CPU to the GPU. GPUs have limited memories and a worker may
be able to store more data in the main memory. A common ap-
proach for this scenario is to split the GPU memory in chunks.
While the GPU is processing a chunk, the CUDA driver is asyn-
chronously sending the remaining chunks. By synchronizing data
copies with kernel executions, it is possible to process more data
than what really fits in memory. The overhead of this process can
be lower than expected, since copies can be performed in parallel
with computations that do not target the same data. The organi-
zation of work-groups and work-items can also be improved. Our
solution left many GPU cores idle while trying to maximize cache
locality.

Maximizing the GPU throughput can be done by selecting the
ideal matrix sizes to be multiplied. In our ANN, this is done by
changing the number of hidden layers and neurons used. After this
configuration layout is decided, then the number of work-group
and items can be optimized. These are two optimizations that can
easily be applied to our codebase, with a few trial-and-error exe-
cutions.

Our ANN can be improved by leveraging multi-GPU machines.
Although our implementation allows each CPU process to drive a
GPU, recent GPUs have direct or cheaper accesses to the memo-
ries of other GPUs, which would allow the averaging of weights to
occur on the GPU.

7. Conclusion

To conclude, in this work we have presented a tutorial for
implementing a Neural Network for classification purposes using
back-tracking on both CPU and GPUs. We have also proposed a dis-
tributed protocol for training the ANN in parallel across machines,

JID:BDR AID:57 /FLA [m5G; v1.204; Prn:21/02/2017; 15:22] P.7 (1-7)

A. Fonseca, B. Cabral / Big Data Research ••• (••••) •••–••• 7

CPU cores and GPUs. We addressed the possibility of big data sizes
by distributing the dataset across several machines. We have also
use the GPUs to improve the processing time. For this tasks, we
have used: Python, Numpy, Numba and Redis, open-source tools
that can be used for prototyping this and other ANNs, as well as
other computation intensive Map-Reduce methods for Big-Data.

We have also address the shortcomings of our prototype, such
as the dataset scaling, the choice of language and tools for a fi-
nal version, the parallelization inside each machine and the ANN
features not considered for this prototype.

Acknowledgements

The first author was supported by the Portuguese National
Foundation for Science and Technology (FCT) through a Doctoral
Grant (SFRH/BD/84448/2012).

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.bdr.2017.01.005.

References

[1] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw.
61 (2015) 85–117.

[2] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep con-
volutional neural networks, in: Advances in Neural Information Processing Sys-
tems, 2012, pp. 1097–1105.

[3] G.P. Zhang, Neural networks for classification: a survey, IEEE Trans. Syst. Man
Cybern., Part C, Appl. Rev. 30 (4) (2000) 451–462.

[4] B. Widrow, D.E. Rumelhart, M.A. Lehr, Neural networks: applications in indus-
try, business and science, Commun. ACM 37 (3) (1994) 93–106.

[5] G.L. Martin, J.A. Pittman, Recognizing hand-printed letters and digits using
backpropagation learning, Neural Comput. 3 (2) (1991) 258–267.

[6] G. Zhang, M.Y. Hu, B.E. Patuwo, D.C. Indro, Artificial neural networks in
bankruptcy prediction: general framework and cross-validation analysis, Eur.
J. Oper. Res. 116 (1) (1999) 16–32.

[7] M.H. Ebell, Artificial neural networks for predicting failure to survive following
in-hospital cardiopulmonary resuscitation, J. Fam. Pract. 36 (3) (1993) 297–304.
[8] D.A. Pomerleau, Efficient training of artificial neural networks for autonomous
navigation, Neural Comput. 3 (1) (1991) 88–97.

[9] S. Lawrence, C.L. Giles, A.C. Tsoi, What Size Neural Network Gives Optimal Gen-
eralization? Convergence Properties of Backpropagation, UMIACS-TR-96-22 and
CS-TR-3617, Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, 1998.

[10] W.S. Sarle, On Computing Number of Neurons in Hidden Layer, February 1995.
[11] L. Gu, H. Li, Memory or time: performance evaluation for iterative operation on

hadoop and spark, in: 2013 IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing, HPCC_EUC, IEEE, 2013, pp. 721–727.

[12] M. Lichman, UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/,
2013.

[13] W. McKinney, et al., Data structures for statistical computing in Python, in:
Proceedings of the 9th Python in Science Conference, vol. 445, 2010, pp. 51–56.

[14] A. Trask, A Neural Network in 11 Lines of Python, http://iamtrask.github.io/
2015/07/12/basic-python-network/, 2013.

[15] G. Dahl, A. McAvinney, T. Newhall, et al., Parallelizing neural network train-
ing for cluster systems, in: Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing and Networks, ACTA Press, 2008,
pp. 220–225.

[16] S. Sanfilippo, P. Noordhuis, Redis, 2009.
[17] J. Reese, S. Zaranek, GPU Programming in Matlab. MathWorks News&Notes, The

MathWorks Inc, Natick, MA, 2012, pp. 22–25.
[18] M.M. Chakravarty, G. Keller, S. Lee, T.L. McDonell, V. Grover, Accelerating

Haskell array codes with multicore GPUs, in: Proceedings of the Sixth Work-
shop on Declarative Aspects of Multicore Programming, ACM, 2011, pp. 3–14.

[19] A. Fonseca, B. Cabral, ÆminiumGPU: an intelligent framework for GPU pro-
gramming, in: Facing the Multicore-Challenge III, Springer, 2013, pp. 96–107.

[20] B. Catanzaro, M. Garland, K. Keutzer, Copperhead: compiling an embedded data
parallel language, ACM SIGPLAN Not. 46 (8) (2011) 47–56.

[21] S.K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT compiler, in:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, ACM, 2015, p. 7.

[22] B. Snyder, D. Bosnanac, R. Davies, ActiveMQ in Action, vol. 47, Manning, 2011.

[23] P. Hintjens, ZeroMQ: Messaging for Many Applications, O’Reilly Media, Inc.,
2013.

[24] E.D. Karnin, A simple procedure for pruning back-propagation trained neural
networks, IEEE Trans. Neural Netw. 1 (2) (1990) 239–242.

[25] D.B. Fogel, L.J. Fogel, V. Porto, Evolving neural networks, Biol. Cybern. 63 (6)
(1990) 487–493.

[26] J.F. de Freitas, M. Niranjan, A.H. Gee, A. Doucet, Sequential Monte Carlo meth-
ods to train neural network models, Neural Comput. 12 (4) (2000) 955–993.

http://dx.doi.org/10.1016/j.bdr.2017.01.005
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7363686D696468756265723230313564656570s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7363686D696468756265723230313564656570s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6B72697A686576736B7932303132696D6167656E6574s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6B72697A686576736B7932303132696D6167656E6574s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6B72697A686576736B7932303132696D6167656E6574s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7A68616E67323030306E657572616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7A68616E67323030306E657572616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib776964726F77313939346E657572616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib776964726F77313939346E657572616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6D617274696E313939317265636F676E697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6D617274696E313939317265636F676E697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7A68616E67313939396172746966696369616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7A68616E67313939396172746966696369616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7A68616E67313939396172746966696369616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6562656C6C313939336172746966696369616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6562656C6C313939336172746966696369616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib706F6D65726C65617531393931656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib706F6D65726C65617531393931656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C617772656E63653139393873697A65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C617772656E63653139393873697A65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C617772656E63653139393873697A65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C617772656E63653139393873697A65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib7361726C65313939356E6575726F6E73s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6775323031336D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6775323031336D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6775323031336D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6775323031336D656D6F7279s1
http://archive.ics.uci.edu/ml/
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6D636B696E6E65793230313064617461s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6D636B696E6E65793230313064617461s1
http://iamtrask.github.io/2015/07/12/basic-python-network/
http://iamtrask.github.io/2015/07/12/basic-python-network/
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6461686C32303038706172616C6C656C697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6461686C32303038706172616C6C656C697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6461686C32303038706172616C6C656C697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6461686C32303038706172616C6C656C697A696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib73616E66696C6970706F323030397265646973s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib726565736532303132677075s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib726565736532303132677075s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6368616B7261766172747932303131616363656C65726174696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6368616B7261766172747932303131616363656C65726174696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6368616B7261766172747932303131616363656C65726174696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib666F6E736563613230313361656D696E69756D677075s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib666F6E736563613230313361656D696E69756D677075s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib636174616E7A61726F32303131636F7070657268656164s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib636174616E7A61726F32303131636F7070657268656164s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C616D323031356E756D6261s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C616D323031356E756D6261s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6C616D323031356E756D6261s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib736E79646572323031316163746976656D71s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib68696E746A656E73323031337A65726F6D71s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib68696E746A656E73323031337A65726F6D71s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6B61726E696E3139393073696D706C65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib6B61726E696E3139393073696D706C65s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib666F67656C3139393065766F6C76696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib666F67656C3139393065766F6C76696E67s1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib64653230303073657175656E7469616Cs1
http://refhub.elsevier.com/S2214-5796(16)30040-5/bib64653230303073657175656E7469616Cs1

	Prototyping a GPGPU Neural Network for Deep-Learning Big Data Analysis
	1 Introduction
	2 Problem and dataset
	3 A neural network in Python
	4 A distributed neural network using redis
	5 A GPU-powered neural network
	6 Discussion and homework
	7 Conclusion
	Acknowledgements
	Appendix A Supplementary material
	References

