
Software Testing: A Research Travelogue (2000–2014)

Alessandro Orso
College of Computing

School of Computer Science
Georgia Institute of Technology

Atlanta, GA, USA
orso@cc.gatech.edu

Gregg Rothermel
Department of Computer Science

and Engineering
University of Nebraska - Lincoln

Lincoln, NE, USA
grother@cse.unl.edu

ABSTRACT
Despite decades of work by researchers and practitioners on numer-
ous software quality assurance techniques, testing remains one of
the most widely practiced and studied approaches for assessing and
improving software quality. Our goal, in this paper, is to provide
an accounting of some of the most successful research performed in
software testing since the year 2000, and to present what appear to
be some of the most significant challenges and opportunities in this
area. To be more inclusive in this effort, and to go beyond our own
personal opinions and biases, we began by contacting over 50 of
our colleagues who are active in the testing research area, and asked
them what they believed were (1) the most significant contributions
to software testing since 2000 and (2) the greatest open challenges
and opportunities for future research in this area. While our col-
leagues’ input (consisting of about 30 responses) helped guide our
choice of topics to cover and ultimately the writing of this paper,
we by no means claim that our paper represents all the relevant and
noteworthy research performed in the area of software testing in the
time period considered—a task that would require far more space
and time than we have available. Nevertheless, we hope that the
approach we followed helps this paper better reflect not only our
views, but also those of the software testing community in general.
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging
General Terms: Algorithms, Experimentation, Verification
Keywords: Software testing

PROLOGUE
In 2000, the International Conference on Software Engineering held
its first “Future of Software Engineering” track, and featured a
number of papers described as “Roadmaps”. These papers offered
assessments, by authors expert in various areas of software engi-
neering, of the directions we could expect research in those areas to
take. Among the papers and presentations was one entitled, “Test-
ing: A Roadmap”, authored by Mary Jean Harrold.

In the spring of 2013, we (Alex and Gregg) were contacted by
the organizers of the FOSE track for ICSE 2014, Matthew Dwyer
and James Herbsleb. They told us that, in addition to the usual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSE’14, May 31–June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2865-4/14/05 ...$15.00.

“Roadmaps”, they wanted to include in the FOSE track some pa-
pers called “Travelogues”, in which researchers would reflect on
the research performed, since 2000, in various software engineer-
ing areas, as well as expose potential future directions. They asked
us to prepare a Travelogue on software testing. Of course, we knew
that the appropriate person to prepare such a Travelogue would be
Mary Jean herself. However, we also knew that Mary Jean had de-
clined their invitation, as she was facing a different and much more
profound challenge.

As Mary Jean’s Ph.D. students, postdoctoral advisees, close col-
leagues, and friends, we are humbled in taking on the task of writ-
ing a Travelogue that should, indeed, be hers to write. As we re-
read Mary Jean’s own words, from her Travelogue of 2000, we hear
her voice clearly in our heads; and we overhear again the many
conversations we had with her, about work, about life, about life’s
work. We know we have been forever changed by her, and will
forever feel the effects of those changes.

But of course, we are not the only persons who can say this.
Mary Jean touched many lives in many ways, and helped so many
people achieve a level of potential that they might not otherwise
have achieved. Alex remembers something that Mary Jean said of-
ten during his early years at Georgia Tech, as they were pulling all-
nighters for papers or research proposals: “If anyone can do it, you
can, Alex.” The way Mary Jean said this, with her genuine smile,
completely captures her attitude toward people—students and col-
laborators in particular—and her ability to motivate and even nudge
them a bit, while always doing so in a pleasant and encouraging
way. Gregg recalls a day when, nearing graduation and beginning
his job search, and tired of spending the bulk of his time in the lab,
he told Mary Jean that he hoped to end up someplace where he
could plant an orchard and grow trees. Mary Jean replied, “your
students will be your trees”. And so they have been.

We apologize to readers who may feel that this preface is too
personal, or unnecessary in a paper that should be about research.
We nevertheless believe that we owed this to Mary Jean, a wonder-
ful person whose legacy is not just in the impact of her research
(as far-reaching as that has been), but also in the lives of those she
touched, and the lives of those who they will touch.

1. INTRODUCTION
As we mentioned in our preface, this is not the first paper to at-

tempt to assess the state of the art and possible future directions
for software testing. Where the Future of Software Engineering
(FOSE) track is concerned, two such papers have appeared: Mary
Jean Harrold’s 2000 paper, “Testing: A Roadmap” [88] (already
mentioned), and Antonia Bertolino’s 2007 paper, “Software Test-
ing Research: Achievements, Challenges, Dreams” [19]. We en-
courage our readers to also consider these earlier efforts to obtain a
more comprehensive picture of the field.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

FOSE’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2865-4/14/05
http://dx.doi.org/10.1145/2593882.2593885

117

Figure 1: Word cloud generated using the responses to our informal survey.

Mary Jean Harrold’s roadmap, in particular, began with the fol-
lowing sentence: “A report by the Workshop on Strategic Direc-
tions in Software Quality posits that software quality will become
the dominant success criterion in the software industry [143].” Few
would argue that this prediction was inaccurate. Testing remains
one of the most widely practiced approaches for assessing (and ul-
timately improving) the quality of software, and it remains one of
the most extensively researched software engineering topics. In this
paper, as requested by the FOSE chairs, we provide an accounting
of the research in software testing over the past 14 years, focusing
on the areas in which the greatest progress has been made and the
highest impact has been achieved. We also comment on significant
challenges and opportunities for future researchers in these areas.

While we, the authors of this paper, have a certain amount of
experience in various areas of testing research, and follow much
of the testing research to the best of our capabilities, we wished
to go beyond our personal views, opinions, and knowledge of the
area in preparing this Travelogue. We therefore began by reaching
out to many of our colleagues, in an attempt to obtain some larger
consensus as to the work that the testing research community views
as having been the most important and promising. Specifically, we
identified over 50 colleagues who are currently active in testing
research, and sent them email asking two questions:

1. What do you think are the most significant contributions to test-
ing since 2000, whether from you or from other researchers?

2. What do you think are the biggest open challenges and opportu-
nities for future research in this area?

Primarily due to lack of forethought on our part, we gave our typ-
ically very busy colleagues a fairly short deadline for sending re-
sponses. We were heartened, therefore, when about 30 of them
were able to get back to us with comments and, in many cases, ex-
tensive input. To provide a quick overview of the most common
topics mentioned in the responses we received, Figure 1 contains a
word cloud that we generated using all such responses and filtering
out obvious keywords, such as “test” and “testing”.

We used our colleagues’ responses to compile lists of contribu-
tions, challenges, and opportunities, and we prioritized these based

on the frequency with which they appeared in such responses. We
classified most of the identified contributions as “research contri-
butions”, while classifying two as “practical contributions”. These
latter are contributions that, in our view, were driven more by indus-
trial effort than by research activities, and yet have had a dramatic
effect on both practice and research. As might be expected, in most
of these areas of contributions there remain challenges and oppor-
tunities for future research, many of which were mentioned by our
colleagues, and that we note in the remainder of this paper. We also
selected several areas that were seen not as areas in which substan-
tial contribution had yet been made, but rather, as areas that pose
new (or continuing) challenges and opportunities for researchers.

In presenting our thoughts on contributions and opportunities,
we attempted to cite relevant papers in the areas discussed. We
make no pretense, however, of having cited all such papers, a task
better left to survey papers, several of which we cite to guide read-
ers further. Similarly, while our colleagues’ input helped guide our
choice of topics to cover, we do not claim that our paper represents
all the relevant and noteworthy research performed in the area of
software testing in the time period considered. Such a task would
require considerably more space and time than we have available.
Nevertheless, we truly hope that the approach we followed helped
this paper better reflect the views of researchers in the software test-
ing community and provide an unbiased view on this challenging
and exciting research field.

We structure the rest of this paper as follows. Section 2 describes
research contributions and additional opportunities in these areas.
Section 3 describes practical contributions and additional opportu-
nities in these areas. Section 4 describes additional areas in which
opportunities and challenges exist. Finally, Section 5 concludes.

2. RESEARCH CONTRIBUTIONS
We classified the nine research contributions that we identified

from our colleagues’ responses into four categories: (1) automated
test input generation, (2) testing strategies, (3) regression testing,
and (4) support for empirical studies. The following subsections
present contributions in each of these categories.

118

2.1 Automated Test Input Generation
Among the various contributions that testing researchers have

made since 2000, the contributions that were most frequently men-
tioned by our colleagues involved automated test input generation.
Automated test input generation techniques attempt to generate a
set of input values for a program or program component, typically
with the aim of achieving some coverage goal or reaching a partic-
ular state (e.g., the failing of an assertion).

Test input generation is by no means a new research direction,
and there is a considerable amount of work on the topic prior to
2000, but the last decade has seen a resurgence of research in this
area and has produced several strong results and contributions. This
resurgence may stem, in part, from improvements in computing
platforms and the processing power of modern systems. However,
we believe (and our colleagues’ responses to our inquiry support
this) that researchers themselves deserve the greatest credit for the
resurgence, through advances in related areas and supporting tech-
nologies, such as symbolic execution, search-based testing, random
and fuzz testing, and combinations thereof. In the rest of this sec-
tion, we discuss each of these areas and supporting technologies.

2.1.1 Symbolic Execution
Advances in symbolic execution are one of the main reasons au-

tomated test input generation has become more relevant. Static
symbolic execution is a program analysis technique that was first
proposed by King in 1976 [107]. In its most general formulation,
symbolic execution executes a program using symbolic instead of
concrete inputs. At any point in the computation, the program state
consists of a symbolic state expressed as a function of the inputs,
and the conditions on the inputs that cause the execution to reach
that point are typically expressed as a set of constraints in conjunc-
tive form called the path condition (PC). More formally, the sym-
bolic state can be seen as a map S :M 7→ E , whereM is the set
of memory addresses for the program, and E is the set of possible
symbolic values, that is, expressions in some theory T such that all
free variables are input values.

Both symbolic state and PC are built incrementally during sym-
bolic execution, with PC initialized to true, each input expressed
as a symbolic variable, and S initialized according to the semantics
of the language. Each time a statement stmt that modifies the value
of a memory location m is executed, the new symbolic value e′ of
m is computed according to stmt’s semantics, and S is updated by
replacing the old expression for m with e′ (S ′ = S ⊕ [m 7→ e′],
where ⊕ indicates an update). Conversely, when a predicate state-
ment pred that modifies the flow of control is executed, symbolic
execution forks and follows both branches. Along each branch, PC
is augmented with an additional conjunct that represents the input
condition, expressed in terms of the symbolic state, that makes the
predicate in pred true or false (depending on the branch).

Symbolic execution, when successful, can be used to compute an
input that causes a given path to be executed or a given statement to
be reached. To do this, at program exit or at a point of interest in the
code, the PC for that point is fed to an SMT solver, which attempts
to find a solution for the PC. This solution, if found, consists of an
assignment to the free variables in PC that satisfies PC, and thus
constitutes the desired input.

Some important reasons behind the success of symbolic exe-
cution in the last decade are the dramatic increase in the compu-
tational power of modern computers, the development of power-
ful decision procedures that take advantage of such power (e.g.,
[15, 52, 57, 132, 165]), and a considerable amount of engineering.
As a result, we have witnessed an explosion both in the number
of techniques that implement different variants of symbolic ex-

ecution (e.g., [29, 30, 37, 73, 102, 150, 172, 178, 191]) and in the
number of (testing) techniques that rely on some form of sym-
bolic execution. The latter are too many to cite, but the interested
reader can begin simply by looking at the number of papers that
build on KLEE, a symbolic execution technique and tool for C pro-
grams [28]. For additional information, we refer the reader to a
recent survey on the use of symbolic execution in the context of
software testing [31].

Among the different variants of symbolic execution defined since
2000, a particularly successful one is Dynamic Symbolic Execu-
tion (DSE) (e.g., [73, 172, 191]). DSE addresses one of the main
limitations of classic symbolic execution: the inability to handle
PCs whose constraints go beyond the theories supported by the
underlying constraint solver. To alleviate this problem, DSE per-
forms symbolic execution and concrete execution at the same time.
The idea of performing symbolic execution that follows a specific
path is not entirely new, as it has been investigated previously (e.g.,
[38, 81, 110, 139]). However, DSE is novel in its core intuition
that symbolic analysis can leverage runtime information to address
some of its limitations. In particular, when a PC cannot be solved
due to limitations of the constraint solver, DSE can replace sym-
bolic values with concrete values for those constraints that go be-
yond the capabilities of the solver. This can considerably improve
the effectiveness and applicability of the approach [72].

Despite the excitement surrounding symbolic execution, and the
amount of novel research it has generated, the extent to which sym-
bolic execution (and DSE in particular) may have lasting practical
impact is still unclear. This is due largely to inherent limitations of
the approach in the presence of highly structured inputs, programs
that interact with external libraries, and large complex programs
in general. Another limiting factor is the need for an oracle that
can assess whether the program under test behaves correctly for the
inputs generated by symbolic execution (see Section 4.2). One re-
cent application of symbolic execution that has had considerable
practical impact is white-box fuzzing, which operates at the system
(rather than unit) level, begins from a set of existing inputs and cor-
responding paths, and attempts to explore all paths reachable from
this initial set in an iterative and systematic manner. One successful
instance of white-box fuzzing is Sage [74], which operates at the
binary level and has been extremely effective in discovering secu-
rity vulnerabilities (which can be identified without the need for an
oracle) in real-world software of considerable size and complexity.

2.1.2 Search-based Testing
While symbolic execution techniques received the largest num-

ber of mentions in our colleagues’ responses, where test input gen-
eration techniques are concerned, the second largest number of
mentions went to research on search-based test input generation
techniques, or more generally, search-based software testing (SBST).

Harman and colleagues provide the most recent in a line of sur-
veys on the use of SBST techniques, focusing on their use in soft-
ware engineering in general [85, 86]. (Several other surveys are
also available, including [2, 3, 6, 127, 128].) They point out that a
majority of papers on the use of SBST (54%, considering papers
through the end of 2008) address topics in test input generation,
and that the number of papers on search-based techniques has been
increasing regularly, and quite rapidly, ever since the year 2000.
They also cite several instances in which industrial organizations
such as Daimler, Microsoft, Nokia, Ericsson, Motorola, and IBM
have considered the use of SBST techniques.

In general, search-based techniques target optimization problems,
such as (in the area of testing) finding the smallest set of test cases
that cover all the branches in a program. They do this by employing

119

meta-heuristic search-based optimization techniques, which seek
good solutions from among a space of candidate solutions, guided
by fitness functions that can differentiate and rank such solutions.

The volume of papers on search-based test input generation is
enormous, and the surveys mentioned above provide citations to
those papers, so we do not attempt to duplicate that effort here.
We do attempt, however, to convey some of the reasons why SBST
research has been so prolific and successful to date.

One significant aspect of SBST is the range of testing-related
problems to which it has been applied, which include structural
testing, model-based testing, mutation testing, temporal testing, ex-
ception testing, configuration and interaction testing, stress testing,
and integration testing, among others [85]. Most work on SBST,
however, has addressed test input generation. A second signifi-
cant aspect of SBST techniques is that they come in many forms;
in the context of test input generation, researchers have utilized a
number of approaches, including genetic algorithms (the most pop-
ular in the literature to date), simulated annealing, hill climbing
techniques, scatter search, particle swarm optimization, and tabu
search. Another important contribution in the SBST arena has in-
volved testability transformation, in which program constructs that
can be problematic for SBST are transformed into alternative con-
structs that SBST can handle (e.g., [16, 84, 129]).

In Reference [6], Harman and colleagues describe what they
consider to be the greatest open challenges and opportunities for
SBST techniques; we summarize that discussion here. A first chal-
lenge involves the need for test oracles. This challenge, however, is
faced by all test input generation techniques, and we discuss it fur-
ther in Section 4.2. A second challenge involves combining SBST
techniques with symbolic execution techniques, an effort that we
describe further in Section 2.1.4. An opportunity for SBST involves
co-evolutionary computation [1,11], in which multiple populations
evolve simultaneously, possibly under different fitness functions.
Co-evolution models competitive predator-prey relationships; for
example, and in relation to testing, it can model the case where
test cases (predators) seek out faults (prey). A final opportunity
involves “Hyper-heuristic software engineering”, which seeks to
unite different software engineering activities that utilize SBST,
such as test input generation and test case prioritization.

A final area in which research on SBST techniques needs further
work, arguably, involves empirical studies. As a case in point, Ali
and colleagues [3] survey search-based test input generation tech-
niques, focusing on empirical investigations of such techniques.
They identify 64 papers from 1995 to 2007 that use SBST and
that present some form of empirical study. While the authors find
enough in this work to conclude that SBST, and in particular meta-
heuristic techniques, do offer promise, they also identify shortcom-
ings in the state of the art with respect to empirical studies. One
shortcoming they cite is that a majority of studies in the time frame
considered focus on unit testing and structural coverage, and there
is thus limited evidence of the applicability of SBST approaches to
other testing phases and types of coverage. The authors also find
that the empirical studies they analyzed often did not adequately
account for the naturally occurring random variation in technique
results and not adequately compare the proposed SBST techniques
to simpler, existing alternative techniques.

2.1.3 Random Testing
In addition to dynamic symbolic execution and search-based test-

ing, another automated test input generation technique that has ma-
tured considerably in the last decade is random testing (RT). Specif-
ically, we have witnessed an increasing interest among researchers
in going beyond straightforward random input generation and in-

vestigating more sophisticated, and to some extent principled, ap-
proaches that can improve the effectiveness of this traditional tech-
nique. This increase in effectiveness is achieved by defining tech-
niques that can either improve the random input generation process
(e.g., [35,46,144]) or manage the often overwhelmingly large num-
ber of test inputs generated (e.g., [36]).

One example of these new random-testing approaches is adap-
tive random testing. Adaptive random testing (ART) [35] is a class
of testing techniques designed to improve the failure-detection ef-
fectiveness of random testing by increasing the diversity of the test
inputs executed across a program’s input domain. In general, to
generate an additional test input, ART techniques first randomly
generate a number of candidate test inputs. The techniques then
select as the next test input the candidate that is the most “distant”
from previously executed test inputs, according to a certain crite-
rion, while other candidates are discarded. Various studies (e.g.,
[91, 117, 188]) have shown that ART techniques can require sub-
stantially fewer test inputs than traditional RT to reveal failures in
programs. However, the approach has also been shown to have
high overhead [10] and has not yet been extended to handle com-
plex input formats. To address the former problem, researchers
have proposed techniques based on mirroring [34], forgetting [32],
and Voronoi tessellation [173].

Other representative and well-known examples of random-testing
approaches include JCrasher, an automatic robustness tester for
Java developed by Csallner and Smaragdakis [46], followup work
that combines test input generation and static analysis [47,48], and
Randoop, by Pacheco and colleagues [144–146]. Randoop, in par-
ticular, improves on traditional random testing by incorporating
feedback into the process. More precisely, the technique generates
test inputs in an incremental fashion by (1) reusing objects from
previous test executions and (2) running and checking test inputs
as soon as they are generated. This check determines whether the
input should be discarded (e.g., because it is redundant) or kept and
used to generate more inputs. Randoop has become the de-facto
random-testing tool for Java.

Additional random-testing approaches include work on swarm
testing by Groce and colleagues (e.g., [78]), which attempts to
increase the diversity of randomly-generated test inputs by using
a “swarm” of randomly-generated, incomplete feature sets, and
the work on random testing of concurrent programs by Sen [170,
171], which leverages dynamic partial-order techniques and stati-
cally identified (potential) data races to drive a random scheduler
towards executions that are likely to result in concurrency related
failures. Finally, random testing has also been used in combination
with dynamic symbolic execution (see Section 2.1.1) to generate
inputs that can be used to seed symbolic analysis (e.g., [73]).

2.1.4 Combined Techniques
In addition to specific testing techniques for input generation,

in the last decade, researchers have also investigated ways to suc-
cessfully combine techniques, as well as to combine testing with
other types of verification techniques. In this context, a direction
of particular interest is the combination of static verification and
dynamic verification (i.e., testing). A good representative of this
line of work is the Yogi project at Microsoft Research [153], which
seeks to combine testing, which under-approximates program be-
havior (i.e., can produce false negatives) but is effective at discov-
ering errors, and static verification, which is complete but over-
approximates program behavior (i.e., can produce false positives),
in order to leverage their strengths while reducing their weaknesses.
The Synergy [80] and Dash algorithms [18], in particular, combine
tests and abstractions so that they benefit each other in an iterative

120

and synergistic fashion: tests guide the refinement of abstractions,
while abstractions guide the generation of new test inputs.

Another direction that has produced some initial success and
is gaining increasing traction is the combination of symbolic ex-
ecution (SE) and search-based software testing (SBST). A starting
point for this work is the complementary nature of SE and SBST.
SE is inherently limited in its ability to handle structured inputs,
external libraries, and large and complex programs in general, but
can be effectively guided towards a goal, such as the triggering
of an assertion. SBST, conversely, can only be guided toward a
given goal indirectly, through the use of a fitness function, which
can be deceptive and can lead to local minima. SBST, however, is
extremely robust with respect to complex and unknown program
semantics (e.g., black-box libraries, non-linear expressions, com-
plex data structures, or reflection). Researchers have therefore tried
to find and exploit possible synergies between these approaches in
several ways, such as by using SE as an additional genetic opera-
tor [67, 122], alternating between SE and SBST [95], using fitness
to select which path to explore in SE [200], and using symbolic
execution to compute fitness values in SBST [14].

2.2 Testing Strategies
A second category of contributions mentioned frequently by our

colleagues involved three of what we choose (for lack of a better
term) to group under the header, “testing strategies”. These in-
clude combinatorial testing, model-based testing, and mining and
learning from field data. (Note that combinatorial and model-based
testing also have, as goals, the generation of test inputs; however,
we believe they are better classified as overall strategies.)

2.2.1 Combinatorial Testing
Modern software systems can often be run in an enormous num-

ber of different configurations, where configurations involve things
such as different settings of parameters and user-configurable val-
ues, different environmental settings, or any other factors that may
vary and affect system operation. These different configurations
need to be considered during testing. Combinatorial testing is a
technique that addresses this problem and that has been investi-
gated for over two decades, but with greatly increased intensity
since 2000. In fact, Nie and Leung [136], in a survey of the area,
found that 77 of 93 papers published on the topic between 1985 and
2008 appeared after 2000.

In practice, testing all of a system’s configurations is in most
cases impossible due to the sheer size of the configuration space.
Testers must therefore find ways to sample such spaces and perform
effective testing while containing the cost involved. Combinatorial
interaction testing (CIT) offers strategies for doing this. The basic
CIT approach involves (1) modeling the system under test as a set
of factors that can assume different values, (2) generating a sample
of the possible combinations of factors and values, and (3) creating
and executing test inputs corresponding to this sample.

The most common approach for performing the second of these
three steps, as seen in the research literature, involves the use of
covering arrays. A t-way covering array for a system model is a set
of configurations in which each valid combination of factor values
for every combination of t factors appears at least once [136]. For
example, given a system with three parameters, A, B, and C, each of
which can take on two values, 1 and 2, eight configurations exist,
but a 2-way covering array need only contain four configurations
(e.g., A=1, B=1, C=1; A=1, B=2, C=2; A=2, B=1, C=2; A=2, B=2,
C=1) to ensure that each factor of each parameter is used with each
factor of each other parameter at least once.

Research in the area of combinatorial testing has considered sev-
eral challenges relevant to its application. One such challenge in-
volves the creation of a model of the system under test to which
CIT can be applied, and various approaches for doing so have been
suggested (e.g., [77, 111, 119]). At a minimum, this requires the
identification of parameters and environmental factors that may in-
fluence the system, and the selection of values for these. Also im-
portant, however, is the identification of (1) potential interactions
that exist between parameters and (2) constraints between param-
eters and values. Both interactions and constraints can help in se-
lecting combinations of parameters and values that are applicable,
as well as combinations that have greater potential to be useful.

A second line of CIT research considered different types of ap-
proaches for creating covering arrays. Of course, the mathemat-
ics community has generated numerous approaches, which are sur-
veyed in [43, 90]. The area on which software testing researchers
have made the greatest impact, however, involves heuristic tech-
niques for generating CIT samples. Initially, researchers consid-
ered various greedy algorithms (e.g., [40, 44, 49]). More recently,
more sophisticated approaches (e.g., meta-heuristic approaches such
as genetic and ant colony algorithms [175], simulated annealing [69],
and tabu search [137]) have been utilized (see References [6, 136]
for many additional examples.)

The issue of considering constraints and dependencies is another
area in which researchers have made much progress (e.g., [26, 41,
76, 168]). A further area of progress involves the development of
software tools that implement various CIT approaches; these have
been used in extensive empirical studies (e.g., [40, 49, 174]).

Additional topics of research on CIT involve considering differ-
ent classes of covering arrays. Variable-strength covering arrays,
for instance, attempt to improve cost-effectiveness by mixing dif-
ferent selections of “t”; that is, using higher values of “t” for cer-
tain subsets of factors that are deemed worth spending more effort
on [42]. Test-case-aware covering arrays attempt to address prob-
lems associated with systems on which both inputs and environ-
mental factors are present, by considering the two classes of factors
separately and then identifying constraints between them [204]. Fi-
nally, cost-aware covering arrays take into account the variance
in cost between testing different configurations using various ap-
proaches, such as approaches that incorporate cost functions [53].

There still remain significant challenges to face in this area. A
recent article by Yilmaz describes what several authors active in
CIT see as the frontiers for CIT research [205]. In traditional CIT,
developers face the difficult task of selecting CIT parameters, such
as models and constraints. Yilmaz and colleagues describe the need
for approaches that relieve developers of these tasks, such as mak-
ing CIT incremental and adaptive by dynamically observing pro-
gram behavior and testing results. Some of the strategies described
by the authors for doing this include (1) the use of incremental
covering arrays, where testing strength is allowed to increase as
resources allow, (2) computing interaction trees using machine-
learning techniques and using these to help determine the input
space model used in testing, (3) prioritizing the CIT effort in order
to cope with resource constraints, and (4) reducing masking effects
using adaptive CIT or adaptive error-locating arrays. The authors
also recommend that researchers consider the application of CIT to
“non-traditional” testing domains, such as in testing GUIs, software
product lines, and web applications.

2.2.2 Model-Based Testing
Model-based testing (MBT) involves deriving test suites from

models of software systems (see the brief survey by Anand and
colleagues [6] and the taxonomy by Utting and colleagues [193]).

121

MBT can be based on a wide range of models, including differ-
ent flavors of scenario-based models (e.g., message sequence charts
or use case diagrams), various state-oriented notations (e.g., finite
state models, UML statecharts, or event flow graphs), and different
types of process-oriented models whose notations map to labeled
transition systems that describe operational semantics. Models can
correspond to or be derived from system specifications, as is the
case with UML models, or they can be derived from code or sys-
tems themselves, as is the case with models of GUIs such as event
flow graphs. Depending on model type there are various ways to
generate test inputs. Coverage-based approaches are the most obvi-
ous, requiring test cases to cover entities, or sequences of entities,
in the models (e.g., states, transitions, or sequences of transitions).
Examples of other approaches are cause-effect or disjunctive nor-
mal form coverage of post-conditions, coverage of axioms. In any
case, such test cases are typically “abstract” and must be translated
into executable test cases by specifying appropriate inputs, envi-
ronmental conditions, and expected outputs.

MBT techniques have had considerable success in industry, where
they are used to enable large-scale test automation. Indeed, the
abundance of tools that support MBT, both freely available and
commercial, provides clear evidence of the success of, and interest
in, these approaches. Anand and colleagues [6] summarize three
tools that have been available for nearly 10 years: Conformiq De-
signer [45, 93]), Smartesting CertifyIt [113, 177]), and Microsoft
Spec Explorer [75, 180]). In addition, Binder provides a listing of
open-source tools for MBT [21]. Further evidence of the success
of MBT can be found in the fact that there are companies that sell
services built around existing tools (e.g., Smartesting [177]).

One reason for the success of MBT in practice is that, from a
practical standpoint, it has several perceived advantages over alter-
native test generation techniques. Traditional coverage measures,
in particular, are not necessarily a reliable proxy for software qual-
ity, as they treat all code as equal, and are not an ideal way to drive
automated test generation beyond the unit level. MBT, conversely,
by relying on domain knowledge, human expertise, and abstraction,
can better drive test generation. Once a model has been defined,
MBT can allow generation not only of test inputs, but also of ora-
cles. In addition, it can help maintain a picture of the traceability
of test cases to requirements.

Some challenges faced by users of model-based testing include
(1) difficulty generating models, which is a human intensive activ-
ity, (2) issues related to model explosion as the system size or num-
ber of system characteristics being modeled increase, and (3) rel-
ative lack of empirical understanding of the fault-detection capa-
bilities that may be afforded by different test generation strategies.
More generally, another opportunity for future research may lie in
approaches for combining dynamic information obtained from sys-
tem execution with information contained in the models. This sort
of approach has been used, for example, in the area of GUI testing,
where dynamic event-extraction based techniques have been used
to improve either the static models or the test executions derived
from those models [79, 124].

2.2.3 Mining and Learning from Field Data
In years past, testing related activities took place primarily in-

house—testers ran their test suites, recorded test outcomes, and de-
bugged observed problems in the lab. After deployment, the only
information collected involved bug reports explicitly submitted by
users. Nowadays, it is increasingly common to collect a broad spec-
trum of dynamic information from the software after it has been
deployed, while it runs on user platforms, and use this field (or

telemetry) data to support testing activities and improve their ef-
fectiveness.

This change is moving us towards a type of testing, and quality
assurance in general, that is increasingly observational in nature.
Moreover, this shift is happening not only in academia, but also
in industry, where telemetry is collected on a massive scale. In
both cases, researchers are studying ways to collect (e.g., [25, 60]
and to use field data for a variety of testing-related tasks, such as
debugging (e.g., [39, 71, 99, 116], failure reproduction (e.g., [97,
210]), and failure clustering (e.g., [54]).

The increased connectivity and increased computational power
of today’s computers is pushing this phenomenon even further, by
allowing developers to collect an increasingly large amount of data,
including execution profiles, program spectra, and failure data, and
to use statistical, data mining, and machine learning techniques on
these data. Although much of this work is still at an early stage,
these techniques promise to better guide the testing process, link
it to fault localization, permit more objective assessments of reli-
ability and other software attributes, and permit the uncertainty in
such assessments to be characterized. In this context, some impor-
tant challenges are scalability (albeit a number of these techniques
can scale well to large, high-dimensional datasets), the treatment
of sensitive information, and the general inability to assess whether
an execution in the field terminated correctly or resulted in a (non-
crashing) failure.

2.3 Regression Testing
Given program P , modified version P ′, and test suite T , engi-

neers use regression testing to test P ′. Regression testing can be
expensive, and the need for cost-effective techniques has helped it
emerge as one of the most extensively researched areas in testing
over the past two decades. In fact, Yoo and Harman’s 2009 sur-
vey [206] on work in these areas identifies 159 papers, including 34
on test suite minimization (27 since the year 2000), 87 on regres-
sion test selection (45 since 2000), and 47 on test case prioritization
(45 since 2000)—and these numbers exclude papers devoted solely
to comparative empirical studies. A scan of the contents of journals
and conference proceedings since 2009 shows that work in the area
continues at a high pace.

To perform regression testing, engineers often begin by reusing
T , but reusing all of T (the retest-all approach) can be inordi-
nately expensive. Regression test selection (RTS) techniques (e.g.,
[141, 158, 197]) attempt to address this problem by selecting, from
test suite T , a subset T ′ that contains test cases that are important
to re-run. When certain conditions are met, RTS techniques can
be safe; that is, they will not omit test cases which, if executed
on P ′, could reveal faults in P ′ due to code modifications [156].
Test case prioritization (TCP) techniques (e.g., [159,207]) reorder
the test cases in T such that testing objectives (e.g., coverage, fault
detection) can be met more quickly. Test suite reduction (TSR)
techniques (e.g., [89]) attempt to reduce T to some subset, Tmin,
that achieves the same objectives as T (typically, such objectives
involve code coverage). Unlike RTS techniques, however, TSR
techniques permanently exclude test cases from further runs. The
enormous number of papers on the foregoing topics preclude de-
tailed discussion of specific techniques, and interested readers can
refer to existing surveys for details (e.g., [23, 206]).

While most of the initial research on RTS, TCP, and TSR fo-
cused on creating new techniques, more recently, there has been an
increase in research aimed at applying the techniques to different
software domains, such as to web applications and web services
(e.g., [68, 162]), graphical user interfaces (e.g., [126]), and real-
time embedded systems (e.g., [209]). Because the need for regres-

122

sion testing applies across virtually all software domains, we be-
lieve that similar opportunities for cross-application will continue
to emerge.

RTS, TCP, and TSR techniques all focus on existing test suites
and test cases. Reusing existing test suites can be cost-effective, but
in general it is not sufficient, because system changes tend to add
new functionality, possibly affect existing functionality, and alter
test coverage. Recent research has attempted to address this prob-
lem by creating test suite augmentation (TSA) techniques (e.g.,
[164, 201]), which aim to identify where new test cases are needed
(e.g., code elements in the new program that are new or affected
by changes) and possibly help generate them. Seminal work in this
area (e.g., [22, 155]) tended to address the identification step, leav-
ing test input generation to engineers. More recent work has fo-
cused on automating also the input generation step by utilizing au-
tomatic test input generation techniques (e.g., [187]), and in some
cases leveraging existing test cases as seeds (e.g., [106, 202]).

Despite the amount of research performed on regression testing,
and the many advances made in the family of techniques described
above, there is relatively little evidence in regard to the practical
application of these techniques in industrial settings. A few pa-
pers have examined or reported on experiences with techniques in
industrial contexts (e.g., [181, 197]), but the number of such pa-
pers is dwarfed by the number of papers proposing new techniques
or studying them in lab contexts. A recent survey of practitioners
by Engstrom and Runeson [61] suggests, in fact, that practitioners
have many concerns beyond those addressed by RTS, TCP, TSR,
and TSA techniques. These concerns, which include problems with
test automation, test design, test suite maintenance, and change im-
pact assessment, pose potential challenges for future work.

In general, we believe that one reason why research on cost-
effective regression testing techniques is still relevant, despite the
increasing availability of computing infrastructure via server farms
and the cloud, is that test suites tend to expand to use all avail-
able resources, as also reported by Google’s test engineers [82].
This is especially true as test input generation becomes increas-
ingly automated, as techniques such as random or fuzz testing are
systematically applied, and as systems are tested under multitudes
of configurations.

One context in which regression testing is likely to be particu-
larly relevant involves continuous integration (see Section 3.2). Or-
ganizations interested in continuous integration have learned that it
is essential that developers test their code prior to submission, to
detect as many integration errors as possible before they can enter
the codebase, break builds, and delay the fast feedback that makes
continuous integration desirable. In this scenario, regression test-
ing can be especially useful: RTS techniques may help developers
decrease the cost of running regression test suites, TCP techniques
can help find faults faster, and TSA techniques can help ensure that
regression test suites are adequate for the code being tested and
guide the generation of additional test inputs otherwise.

Continuous integration is just one example of the many new
types of development processes that organizations are attempting
to utilize. As these processes proliferate, researchers will need to
find ways to adapt existing techniques to those new settings, or cre-
ate more appropriate, new techniques.

2.4 Empirical Studies and Support for Them
Many of our colleagues cited empirical studies of testing as an

area in which prominent advances have been made. Almost as
many, however, also described this area as one that continues to
offer challenges and opportunities.

Testing techniques are typically heuristics, and their performance
can differ widely across different workloads and testing scenarios.
To understand and assess these techniques, empirical methods are
therefore essential. In the initial decades of work on testing, how-
ever, empirical methods were used relatively sparsely. A study
of research papers on testing techniques conducted in 2005 [56],
considering papers published in the two top software engineering
journals and four active software engineering conferences over the
years 1994–2003, found that among 224 papers on software test-
ing topics, only 107 (47.7%) reported results of empirical studies.
Of these papers, only 37 utilized controlled experiments, 60 uti-
lized case studies (studies of single programs), and 10 presented
results more aptly described as illustrations via examples. In ad-
dition, most of the studies reported in these papers utilized exper-
iment objects (programs, test suites, faults, and so on) that were
not available to other researchers, and most of the controlled ex-
periments performed using publicly available artifacts focused on
a handful of small (less than 100 lines of code) C programs known
as the Siemens programs. (The Siemens programs were originally
introduced to the research community in 1994, by Tom Ostrand and
colleagues at Siemens Corporate Research [94].)

In the past ten years, this situation has changed dramatically. In
papers submitted to conferences, and even more so in papers sub-
mitted to journals, we have witnessed a movement to a near require-
ment that empirical results (of some sort) be included in papers.

There are several reasons behind the change in expectations and
research behaviors in the software testing research community. One
reason involves the increasing availability of experiment objects.
The establishment of objects adequate to support experimentation
in testing is a non-trivial task, but the research community has been
increasingly rising to meet this challenge. For example, in 2004,
the second author of this paper, together with many colleagues, es-
tablished (and continues to improve) the Software-artifact Infras-
tructure Repository (SIR) [176]. SIR contains a wide range of ar-
tifacts for use in experimentation, including programs written in
C, Java, C++, and C#, many available in multiple versions with test
suites and fault data. In addition, materials related to software prod-
uct lines, multithreaded Java programs, container classes, and run-
time monitoring of safety properties have recently been added. As
of February 2014, over 2100 individuals from over 600 companies
or institution have registered as SIR users, and over 580 published
papers report utilizing artifacts from the repository.

In addition to SIR, several other repositories of infrastructure
supporting experimentation have been established, such as (for ex-
ample, and by no means exhaustively) iBugs [50], Bugbench [120],
the SAMATE Reference Dataset [134], and Marmoset [179].

Established repositories are valuable, in part, because they have
the potential to support replicable controlled experimentation. Be-
yond these repositories, however, open-source systems and systems
for which test suites and data on faults are available also provide
support for empirical studies. The availability of such repositories
and data has also increased substantially over the past ten years,
and researchers have increasingly utilized these artifacts for stud-
ies. (This effect has been magnified by the recent use of JUnit to
create and package test cases with systems, as we also discuss in
Section 3.1.) While such artifacts are often more appropriate for
case studies than for experiments, given the relative lack of control
on processes by which the artifacts are assembled, they can still be
particularly useful in providing opportunities to study larger, real-
world systems and addressing threats to external validity present in
controlled studies performed on smaller artifacts.

A second reason behind the increased expectations for and re-
search utilizing empirical studies in the testing community is re-

123

lated to the increased availability of instrumentation to support ex-
perimentation. For example, toolsets for performing program mu-
tation have become increasingly available and robust (e.g., [135,
138, 166]), allowing researchers to inject large numbers of poten-
tial faults in programs. While such faults may not be ideal in terms
of external validity, there is some evidence that, for experimenta-
tion with testing techniques, they can be reasonable surrogates [8].
Moreover, the use of mutants allows researchers to obtain data sets
that are sufficient to support statistical analysis, improving the abil-
ity to assert that observed effects are significant. Such studies can
then be replicated by case studies on larger artifacts containing real
faults to address generalizability threats.

We have also witnessed a marked improvement in the manner
in which empirical studies are conducted and reported in papers.
It seems that the extent to which researchers are aware of and uti-
lize empirical methodologies clearly has increased over the past
ten years. In part, this may relate simply to the increased emphasis
placed by reviewers on strong studies. We suspect, however, that
the ever increasing number of examples of strong studies in the
literature, the influence of papers and books whose primary topic
concerns the proper conduct of experiments and case studies (e.g.,
[109,161,198]), and the increased feasibility of conducting studies
have also played a role.

While the foregoing discussion indicates the range of improve-
ments witnessed in empirical work over the past ten years, there is
much more to be done. There is still, in our opinion, an overabun-
dance of studies that focus on small, arguably non-representative,
experiment objects. For example, the Siemens programs served a
prominent role in moving empirical work forward, but it is time for
researchers to move on to more realistic objects of study. Further-
more, as noted above, controlled experiments on somewhat less
significant artifacts need to be complemented by larger empirical
studies of more substantial artifacts, and ideally studies should ul-
timately be conducted on industrial systems. Finally, studies in
which different engineering processes are utilized are needed, to
evaluate the effects of process differences on the cost-effectiveness,
and even viability, of techniques.

A second area in which improvements are needed involves user
studies. Certainly, much of the research conducted in software test-
ing has to do with algorithms and heuristics that can be automated,
and studying the cost-effectiveness of applying such techniques to
various workloads is an important first step in assessing their worth.
Most of the techniques being created in the research community,
however, are destined to be employed by software engineers. The
fact that a particular technique displays a particular level of effec-
tiveness relative to some metric does not imply that it will be prac-
tical or cost-effective in the hands of engineers. As a case in point,
research on fault localization techniques focused for years on the
ability of techniques to reduce the number of program statements
that might be labeled as suspicious, given a set of (passed and fail-
ing) program runs. However, only recently has any attempt been
made to assess whether the data produced by these techniques can
actually guide engineers in their localization of faults. This attempt
actually casts doubt on the efficacy of these approaches, and hence,
on the appropriateness of the metric being used and the assump-
tions being made in earlier studies [147].

The costs of performing more extensive studies, studies in indus-
try contexts, and user studies are high, and some may argue that the
research community does not currently provide sufficient rewards
for these. However, we believe that without the results of such stud-
ies, it will be much more difficult for us, as a research community,
to make the potential impact of our work apparent, and to see the
results of that work transferred into practice.

3. PRACTICAL CONTRIBUTIONS
In addition to research contributions, the software testing area

has also witnessed important improvements in the state of the prac-
tice. Two major contributions identified by our colleagues, in this
context, are the definition of new frameworks for test execution
and the widespread adoption of innovative practices that promote
shorter cycles in the testing process, such as continuous integration.

3.1 Frameworks for Test Execution
Although we would not classify them as research contributions,

frameworks for test execution have dramatically improved the state
of the art in software testing. In addition, they have also indirectly
affected research, as we discuss in the rest of this section.

Arguably, the most famous and widespread framework for au-
tomating test execution is JUnit [100]. JUnit is a relatively straight-
forward framework that allows developers to write repeatable tests
in what has became a de-facto standard format. In fact, today JU-
nit is supported in many IDEs (e.g., Eclipse [59]), has spawned a
number of similar frameworks for other languages referred to col-
lectively as xUnit (e.g., NUnit for C#, PHPUnit for PHP), and has
become almost a synonym for unit testing.

In a nutshell, xUnit frameworks provide a standard way to en-
code the four fundamental parts of a (unit) test case: setting the
initial state, invoking the functionality under test, checking the re-
sults of the test, and performing any necessary cleanup. For ex-
ample, a JUnit test case for the characterRead method of a
File class may (1) create an instance of File, associate it with
an existing file f , and open it (setting the initial state), (2) in-
voke characterRead to read one character from f (invoking
the functionality under test), (3) assert that the character read is the
first character of f (checking the results of the test), and (4) close
the file (performing any necessary cleanup).

Frameworks for automated test execution have become particu-
larly popular in the context of agile development processes. One of
the cornerstones of agile processes is, in fact, the notion of testing
early and testing often; test cases represent immediate feedback
that can tell developers whether their changes introduced any re-
gression errors or whether the code they just wrote satisfies a given
requirement (previously encoded in the form of tests). For exam-
ple, it is common practice to use JUnit in the context of eXtreme
Programming (XP) [17] or Scrum [167] processes.

As noted at the beginning of this section, frameworks for test
execution also affected, and in a sense aided, software testing re-
search. The availability of open source software that is released
together with JUnit test cases for that software, for example, has
enabled researchers not only to perform empirical evaluations on
more realistic systems (as noted in Section 2.4), but also to define
their tools in a de-facto standard way. In fact, a tool that can op-
erate on JUnit test cases can ideally be run on the many programs
for which that type of test cases is available. It is also not uncom-
mon, for researchers in the area of test input generation, to encode
their test cases using some standard framework, which can facilitate
adoption of their technique and foster sharing of research results.

3.2 Continuous Integration
Another practical contribution to software testing is the practice

of continuous integration (CI) [58, 64]. The basic idea behind CI
is to commit, one or more times a day, all of the working copies
of the software on which different developers or groups of devel-
opers are working. CI is related to the concept of automated test
execution frameworks, in that a regression test suite should be au-
tomatically run against the code (ideally, prior to commit it) to help
ensure that the codebase remains stable (i.e., no regression errors

124

have been introduced) and continuing engineering efforts can be
performed more reliably. If some of the tests fail, the developers re-
sponsible for the changes must then correct the problems revealed
by the tests. This approach is advantageous because it can reduce
the amount of code rework that is needed in later phases of devel-
opment, and speed up overall development time.

CI was first proposed in 1997 by Kent Beck and Ron Jeffries
(who, together with Ward Cunningham, were also the main creator
of extreme programming (XP) [17]), and represents a clear depar-
ture from more traditional development and testing practices. Tra-
ditionally, integration was performed at the end of a possibly long
cycle, and numerous incompatibility problems among the modules
to be integrated typically arose—this is informally known as “in-
tegration hell”. CI is now common practice in many organizations
that create software, such as Google (where it is performed at an in-
credibly large scale), Mozilla (with its Tinderbox software [133]),
and many others. These companies are increasingly relying on CI
to improve their product development. Consequently, tools for sup-
porting CI are becoming more and more widespread (e.g., [13, 96,
190]). In some contexts, entire computer farms are devoted to run-
ning build servers that perform intensive testing of the production
code in the main repository and update a dashboard where devel-
opers can check the status of the code in the system.

Even when large server farms or the cloud are employed in test-
ing, however, CI poses challenging (regression) testing problems
(e.g., [82]). Developers must conform to the expectation that they
will commit changes frequently, typically at a minimum of once per
day, but in many cases even more often. Version control systems
must support atomic commits, in which sets of related changes are
treated as a single commit operation, to prevent builds from being
attempted on partial commits. Testing must be automated and must
involve automated oracles. Finally, test infrastructure must be ro-
bust enough to continue to function in the presence of significant
levels of code churn.

Another challenge, in the context of CI, is how to shorten the
save-compile-check cycle and move the checking even closer to the
IDE, so that developers can (ideally) obtain feedback as they code.
This would be similar to what already happens today, in common
IDEs, for syntactic checks, but it would be at an increasingly se-
mantic level. In more general terms, automated testing, CI, and
other related practices provide clear evidence of how the testing
process has improved in practice. Software testing has gone from
being an ad-hoc, often neglected activity assigned to novice devel-
opers to a systematic and often sophisticated approach that is (1)
considered essential for the quality of the software, (2) tightly inte-
grated into the development process, and (3) performed by skilled
professional [61, 160].

4. CHALLENGES AND OPPORTUNITIES
As noted in Section 1, our colleagues also provided input on ar-

eas that, while not yet seen as sources of substantial research con-
tributions, offer new challenges and opportunities for researchers.
Here, we discuss the areas that were most salient in their responses.

It is worth noting that, in this section, we focus on research chal-
lenges. That is, we decided not to discuss challenges that, albeit
mentioned in some of the responses we received, were primarily
related to human factors (e.g., developer habits and mentality) and
technology transfer (e.g., transition of research to practice or better
communication with industry).

4.1 Testing Modern, Real-World Systems
Many testing techniques, and especially the academic techniques

that have not yet found their way into industrial practice, target

traditional software—software that is written in a single language,
homogeneous, non-distributed, and in some cases even small-sized.
Unfortunately, many of today’s software systems are very different
from these traditional systems, and have characteristics that ren-
der them unsuitable for existing testing techniques. Specifically,
many modern software systems consist of components of diverse
nature and provenance, with different degrees of coupling with one
another, and they are often distributed and highly dynamic. Nu-
merous classes of applications that are increasingly popular, such
as mobile applications, web applications, software product lines,
service-oriented architectures, and cloud-based applications, have
these characteristics.

To illustrate, consider web applications. A web application typ-
ically includes a set of server-side components that may consist of
a mix of Java servlets, PHP scripts, and XML configuration files,
hosted on an application server whose behavior and performance
depend on a myriad of configuration parameters. In addition, these
components often interact with a database server that may be hosted
on a different machine and have, itself, a complex configuration
space. A web application also typically has a set of client-side com-
ponents that consist of a mix of dynamically generated HTML code
and scripts that must run on various browsers and platforms.

In general, the characteristics of modern systems can render them
extremely problematic for existing testing approaches. Heterogene-
ity, rich environments, and high configurability make it difficult to
model a system in its entirety, as the techniques used to define and
build these models are usually defined for single-language, self-
contained systems. These characteristics also make it difficult to
identify differences between versions of a system, a key element
in understanding system evolution and performing regression test-
ing; techniques for testing evolving software tend to assume that
a change consists of a modification of the code and even make
specific assumptions on the invariability of the environment (e.g.,
[141, 157]). The characteristics of modern systems can even in-
validate the traditional concept of coverage—another notion that is
fundamental to existing testing techniques. Whereas structural cov-
erage is well defined for traditional code, for instance, it is not clear
how it should be defined for a database, a remote service, or a set
of configuration files. Finally, heterogeneity and environment de-
pendence affect the ability to perform impact analysis, yet another
key technique that is heavily used during maintenance.

In summary, many existing testing techniques fall short when
applied to commonly-used modern software systems, leading to
ineffective testing and, ultimately, to poor software quality. It is
true that there is increasingly greater attention being paid, by the
research community, to the problems involved in testing these ap-
plications (e.g., [4, 12, 123]). In practice, however, testing of these
systems is often performed in ad-hoc, inadequate ways, which can
have dramatic consequences (e.g., Amazon’s outage in 2008, which
cost the company dearly [192]). One important challenge for re-
searchers in this area is therefore to define techniques that can go
beyond the state of the art and be applied in the real world and on
modern software, regardless of its complexity and size.

4.2 Oracles
Long ago recognized as a significant problem [196], the “oracle

problem”—the problem of determining the correctness of a pro-
gram’s behavior under test—is still relevant today. In fact, active
work specific to test oracles is a relatively recent phenomenon [185],
and several authors have recently discussed the need to focus on test
oracles when evaluating the quality of the testing process [6, 185].
(A recent survey by Harman and colleagues provides a comprehen-
sive discussion of the state of the art in test oracle research [87].)

125

Overall, although there have been some initial research efforts in
this direction, the problem of constructing oracles in an automated
or semi-automated fashion is still by and large open.

Some researchers have worked on generating oracles for regres-
sion testing. Xie and Memon, in particular, explore methods for
constructing test oracles for GUI systems, yielding several recom-
mendations [130, 199]. In addition, several tools exist for automat-
ically generating invariant-based test oracles for use in regression
testing, including Eclat [144] and DiffGen [186]. These approaches
assume that the program is currently correct and identify differ-
ences in behavior between the current version and the next.

In other work, several authors have proposed methods for infer-
ring invariants from programs, with the potential for using them as
oracles in testing [62,195]. Fraser and colleagues propose µTEST ,
which generates JUnit test cases for object oriented programs [66].
Both of these approaches assume that the tester will later manually
correct the generated test oracles. Work evaluating this paradigm
with users is mixed, but overall, somewhat discouraging [65, 183].

A third class of techniques attempts to support, rather than com-
pletely automate, the creation of test oracles. Staats and colleagues
propose a mutation-based approach for selecting oracle data based
on how often a variable reveals a fault in a mutant [182]. This
work’s limitations are scalability and the need to estimate the num-
ber of required mutants to select effective oracle data. Loyola and
colleagues [182] propose an approach meant to assist engineers in
constructing expected value oracles—oracles that specify, for a sin-
gle test input, the concrete expected value for one or more program
values. Finally, Pastore and colleagues [148] propose CrowdOr-
acles, an approach to use crowdsourcing for checking assertions.
These approaches all aim to leverage added semantic knowledge
that can be provided by engineers or system users—if appropriately
qualified engineers or users can be found. However, they will face
problems of scale in cases where automatic test input generation
tools are being used to generate enormous numbers of test inputs.

Overall, as test case generation approaches improve, and the
ability to automatically generate large volumes of test cases in-
creases, the need for approaches that can determine whether test
cases elicit proper program behavior will become even more sig-
nificant. As a consequence, the oracle problem will continue to be
a significant challenge.

4.3 Probabilistic Program Analysis
Since 2000, we have witnessed the growth of a research area that

has generated considerable interest and that we believe may play an
important role in the area of testing in the future: probabilistic pro-
gram analysis, performed in various flavors (e.g., [92, 131, 163]).
The basic idea behind these probabilistic analysis approaches is
to go beyond traditional program analysis, which typically tries
to determine whether a given behavior can occur or not in a pro-
gram. Probabilistic program analysis, conversely, aims to quantify
the probability of an event of interest, such as the failure of an as-
sertion, to occur. In more recent years, researchers have applied this
idea to symbolic execution [70]. Whereas traditional symbolic exe-
cution analyzes paths within a program and uses a constraint solver
to decide whether a given path is feasible, probabilistic symbolic
execution assigns an estimated probability to each path.

In general, probabilistic program analysis has a number of po-
tential applications in the context of testing. For instance, the (es-
timated) probabilities associated with a program’s paths could be
used to decide where to focus the testing effort. As another exam-
ple, the same probabilities could be use to compute the expected
reliability of a program (e.g., [63]). Although promising, how-
ever, this area of investigation is extremely challenging, due to the

inherent cost and limitations of the techniques on which these ap-
proaches rely (e.g., model counting [51], quantification of the so-
lution space for a set of constraints in general [24]). Making these
techniques scale and work on realistic programs will therefore re-
quire considerable effort, but we believe that the benefits that could
be obtained may be well worth it.

4.4 Testing Non-Functional Properties
Much of the research on testing to date has focused on testing for

functional correctness, known in some quarters as “debug testing”.
There are, however, other properties of software systems that engi-
neers may wish to assess by means of testing, many of which have
received relatively little attention in the research literature to date.

In particular, one property cited several times by our colleagues
was “performance”. Performance issues can arise with virtually all
software systems, but they are of paramount importance for some
classes of systems. These classes include web applications and
web services, for which response time can be a key element in user
adoption, and for which a wide range of monographs (e.g., [149])
and both commercial tools (e.g., [98, 189]) and open-source tools
(for a list, see [140]) are available. They also include hard real-time
systems, which have been an issue of concern for some time, and
whose importance is growing in par with the increasing relevance
and widespread use of mobile platforms. Several researchers have
proposed approaches for estimating worst-case interrupt latencies
(WCILs) based on analyses of systems (e.g., [104, 169]). How-
ever, these approaches are conservative and can over-approximate
WCILs, which affects the precision and applicability of their re-
sults. Testing-based approaches, in contrast, may underestimate
WCILs, but there is some evidence that these approaches, when
coupled with certain static analysis techniques, can provide accu-
rate assessments [108, 151, 208].

Another example of a non-functional property that has begun to
garner attention is energy consumption. Researchers have proposed
various testing and analysis techniques for verifying this property
(e.g., [20, 83, 114, 118]). Researchers have also considered is-
sues involving the efficient use of power while running regression
tests [101] and the use of power by test suites that run in-situ on
devices to provide self-check capabilities [115]. We believe that
this area will be increasingly important in the years to come, espe-
cially in the context of mobile computing platforms, such as mobile
phones and tablets, unmanned aerial vehicles, and sensor devices.

4.5 Domain-Based Testing
When new programming paradigms or technologies emerge and

become successful, inevitably, researchers turn their attentions to
them. Thus, in recent years we have witnessed researchers propose
testing techniques that address relatively new application domains,
such as component-based systems, web applications, mobile appli-
cations, and so on. Clearly, the need to address emerging languages
and application classes will continue, and we believe that this will
remain one of the larger opportunities for testing researchers. Re-
searchers are considering techniques for testing dynamic multi-tier
web applications (e.g., [4, 12, 123]), for example, but this is still a
relatively young field, as one might argue is research on techniques
for testing software product lines (e.g., [103, 142, 194]) and testing
of Android applications (e.g., [5, 7, 121]).

One area of domain-based testing research that we believe will
offer opportunities to researchers relates to end-user programming
systems. End-user programmers are individuals who have not been
trained in software engineering, but who nonetheless create soft-
ware that may eventually be used beyond its expected lifetime and
scope. Spreadsheets were among the first end-user programming

126

paradigms, and have been a subject of research where testing tech-
niques are concerned (e.g., [154]). Nowadays, languages support-
ing end-user programmers are proliferating. In particular, we are
now seeing end-user programmers writing software in highly popu-
lar and commercially successful environments, such as Matlab [125]
and Labview [112], and in open-source programming environments,
such as those provided by App Inventor [9], R [152], and Yahoo!
Pipes [203]. The increasing availability of programming environ-
ments that are accessible to and usable by non-professionals will
surely contribute to the democratization of computing, but it will
also contribute to the democratization of bugs. Addressing this
problem will require research on methods for helping and support-
ing end-user programmers in their efforts without requiring them
to actually become software engineers.

4.6 Leveraging the Cloud and the Crowd
The cloud has becoming pervasive in the last decade. We have

moved from a situation in which most of our computational power
and data resided on local machines to one in which our data are in-
creasingly remote, transparently stored in data centers, and a great
deal of computation also occurs on remote servers. It is only natu-
ral to begin using the cloud for testing, and in fact we are already
witnessing research in this direction (e.g., [27, 105, 184]). A note-
worthy example of such efforts involves Cloud IDEs; that is, in-
tegrated development environments that allow developers to code,
build, and test in the cloud, through a web interface. Clearly, cloud
IDEs could untap the potential of testing techniques that rely on
analyses that are often too expensive to be performed on a single
machine (e.g., test input generation or heavy-weight static analy-
ses).

Another opportunity that is loosely related to cloud computing,
but pushes the boundary even further, is the use of crowd-sourcing
to improve software testing. Despite the great deal of effort de-
voted to automating most testing tasks, from test input generation
to oracle creation, testing is still a human intensive activity in most
cases. It therefore makes sense to try to leverage the crowd in the
context of testing. Thus far, researchers have just scratched the sur-
face of what might be achieved by crowd-sourcing verification and
validation tasks (e.g., [33,55,148]), but we expect that this area will
attract increasing attention in the upcoming years. One challenge,
in this context, will be to find ways to encode testing problems in
ways that humans can handle. This may involve, for instance, en-
coding problems as games, but then, these must be games that real
humans will be willing to play. Moreover, and clearly, problems
must be encoded in such a way that “solving” the game is not as
difficult as solving the original problem.

5. CONCLUSION
Our goal, when we set out to write this paper, was to present

and discuss (some of) the most successful software testing research
performed since the year 2000. It is undoubtedly difficult, if not im-
possible, to summarize in any complete way almost 15 years of re-
search and cite all relevant papers in a relatively short report such as
this one. We therefore did not attempt to cover all relevant themes
and efforts, but rather focused on those that our colleagues and we
thought were particularly relevant, had already had a considerable
impact, or seemed likely to have impact in the (near) future.

We hope that interested readers will find our reflections useful
and thought-provoking. We welcome comments and feedback, and
look forward to seeing, in the next FOSE paper on software testing,
what the “state of the art in software testing” will be then.

Acknowledgements
This work was partially supported by NSF awards CCF-1320783,
CCF-1161821, and CCF-0964647, and by funding from Google,
IBM Research and Microsoft Research to Georgia Tech, and by the
AFOSR through award FA9550-09-1-0129 to the University of Ne-
braska - Lincoln. We are extremely grateful to all of our colleagues
who found time to respond (in several cases quite extensively) to
our request for input on contributions and challenges in the area of
software testing. They are too many to mention by name, but our
most heartfelt thanks go to them all.

6. REFERENCES
[1] K. Adamopoulos, M. Harman, and R. M. Hierons. How to

overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution. In GECCO (2), Volume 3103
of Lecture Notes In Computer Scienc, pages 1338–1349. Springer,
2004.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of
search-based testing for non-functional system properties.
Information and Software Technology, 51(6):957–976, June 2009.

[3] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A
systematic review of the application and empirical investigation of
search-based test case generation. IEEE Transactions on Software
Engineering, 36(6):742–762, Nov. 2010.

[4] N. Alshahwan and M. Harman. Automated web application testing
using search based software engineering. In Proceedings of
Automated Software Engineering, pages 3–12, 2011.

[5] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A GUI
crawling-based technique for Android mobile application testing. In
Proceedings of the IEEE International Conference on Software
Testing, Verification and Validation Workshops, pages 252–261,
2011.

[6] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn. An
orchestrated survey of methodologies for automated software test
case generation. Journal of Systems and Software,
86(8):1978–2001, Aug. 2013.

[7] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software Engineering,
pages 59:1–59:11, 2012.

[8] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proceedings of the
International Conference on Software Engineering, pages 402–411,
May 2005.

[9] Mit app inventor. http://appinventor.mit.edu/explore/.
[10] A. Arcuri and L. Briand. Adaptive random testing: An illusion of

effectiveness? In Proceedings of the International Symposium on
Software Testing and Analysis, pages 265–275, July 2011.

[11] A. Arcuri and X. Yao. Coevolving programs and unit tests from
their specification. In In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering,
pages 397–400, 2007.

[12] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework
for automated testing of Javascript web applications. In Proceedings
of the International Conference on Software Engineering, pages
571–580, 2011.

[13] Atlassian. Atlassian software systems: Bamboo.
https://www.atlassian.com/software/bamboo.

[14] A. I. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn,
P. Tonella, and T. E. J. Vos. Symbolic search-based testing. In
Proceedings of the International Conference on Automated
Softwaare Engineering, pages 53–62, 2011.

[15] J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization. In Proceedings
of the International Conference on Practical Aspects of Declarative
Languages, pages 174–186, 2005.

[16] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary
testing in the presence of loop-assigned flags: A testability

127

transformation approach. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 108–118, 2004.

[17] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[18] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pages 3–14, 2008.

[19] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering, pages 85–103,
2007.

[20] A. Bertolino, G. DeAngelis, and A. Sabetta. VCR: Virtual capture
and replay for performance testing. In Proceedings of Automated
Software Engineering, pages 399–402, Nov. 2008.

[21] R. V. Binder. Open source tools for model-based testing.
http://robertvbinder.com/open-source-tools-for-model-based-
testing.

[22] D. Binkley. Semantics guided regression test cost reduction. IEEE
Transactions on Software Engineering, 23(8), Aug. 1997.

[23] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression test
selection techniques: A survey. Informatica, 35:289–321, 2011.

[24] M. Borges, A. Filieri, M. d’Amorim, C. Pasareanu, and W. Visser.
Compositional solution space quantification for probabilistic
software analysis. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014.

[25] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed
software using software tomography. In Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pages 2–8, Nov. 2002.

[26] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for
pair-wise coverage with seeding and constraints. Information and
Software Technology, 48(10):960–970, Oct. 2006.

[27] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings
of the Sixth Conference on Computer Systems, pages 183–198,
2011.

[28] C. Cadar. KLEE-related publications and systems.
http://klee.github.io/klee/Publications.html,
2014.

[29] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the USENIX Conference on Operating
Systems Design and Implementation, pages 209–224, 2008.

[30] C. Cadar and D. R. Engler. Execution generated test cases: How to
make systems code crash itself. In Proceedings of the SPIN
Symposium on Model Checking of Software, pages 2–23, 2005.

[31] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software testing
in practice: Preliminary assessment. In Proceedings of the
International Conference on Software Engineering, pages
1066–1071, 2011.

[32] K.-P. Chan, T. Y. Chen, and D. Towey. Forgetting test cases. In
Proceedings of the International Computer Software and
Applications Conference, volume 1, pages 485–494, 2006.

[33] N. Chen and S. Kim. Puzzle-based automatic testing: Bringing
humans into the loop by solving puzzles. In Proceedings of the
International Conference on Automated Software Engineering,
pages 140–149, 2012.

[34] T. Y. Chen, F.-C. Kuo, R. Merkel, and S. P. Ng. Mirror adaptive
random testing. Information and Software Technology,
46(15):1001–1010, 2004.

[35] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling strategy:
A compendium and some insights. Journal of Systems and
Software, 58(1):65–81, 2001.

[36] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr. Taming compiler fuzzers. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 197–208, 2013.

[37] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective
symbolic execution. In Workshop on Hot Topics in Dependable
Systems (HotDep), 2009.

[38] L. A. Clarke and D. J. Richardson. Applications of symbolic
evaluation. Journal of Systems and Software, 5(1):15–35, 1985.

[39] J. Clause and A. Orso. A technique for enabling and supporting
debugging of field failures. In Proceedings of the International
Conference on Software Engineering, pages 261–270, 2007.

[40] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: An approach to testing based on combinatorial
design. IEEE Transactions on Software Engineering,
23(7):437–444, July 1997.

[41] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of
constraints: A greedy approach. IEEE Transactions on Software
Engineering, 34(5):633–650, Sept. 2008.

[42] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn.
Constructing test suites for interaction testing. In Proceedings of the
International Conference on Software Engineering, pages 38–48,
2003.

[43] C. Colbourn. Combinatorial aspects of covering arrays. Le
Matematich (Catania), 58:121–157, 2004.

[44] C. J. Colbourn and M. B. Cohen. A deterministic density algorithm
for pairwise interaction coverage. In Proceedings of the IASTED
International Conference on Software Engineering, pages 242–252,
2004.

[45] Conformiq. http://www.conformiq.com.
[46] C. Csallner and Y. Smaragdakis. JCrasher: An automatic robustness

tester for Java. Software Practice and Experience,
34(11):1025–1050, Sept. 2004.

[47] C. Csallner and Y. Smaragdakis. Check’n’crash: combining static
checking and testing. In Proceedings of the 27th International
Conference on Software Engineering, pages 422–431. ACM, 2005.

[48] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher: A hybrid
analysis tool for bug finding. ACM Transactions on Software
Engineering and Methodology (TOSEM), 17(2):8:1–8:37, 2008.

[49] J. Czerwonka. Pairwise testing in the real world: Practical
extensions to test-case scenarios. In Proceedings of the Pacific
Northwest Sofware Quality Conference, 2006.

[50] V. Dallmeier and T. Zimmermann. Extraction of bug localization
benchmarks from history. In Proceedings of Automated Software
Engineering, pages 433–436, Nov. 2007.

[51] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective
lattice point counting in rational convex polytopes. Journal of
Symbolic Computation, 38(4):1273–1302, 2004.

[52] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages
337–340, 2008.

[53] G. Demiroz and C. Yilmaz. Cost-aware combinatorial interaction
testing. In Proceedings of the Internatinoal Conference on Advances
in System Testing and Validation Lifecycles, pages 9–16, Nov. 2012.

[54] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by
cluster analysis of execution profiles. In Proceedings of the
International Conference on Software Engineering, pages 339–348,
2001.

[55] W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper,
T. Pavlik, and Z. Popović. Verification games: Making verification
fun. In Proceedings of the Workshop on Formal Techniques for
Java-like Programs, pages 42–49, 2012.

[56] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering: An International
Journal, 10(4):405–435, 2005.

[57] B. Dutertre and L. de Moura. The YICES SMT Solver.
[58] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:

Improving Software Quality and Reducing Risk. Pearson Education,
2007.

[59] Eclipse Foundation. Eclipse. http://www.eclipse.org/,
2014.

[60] S. Elbaum and M. Hardojo. An empirical study of profiling
strategies for released software and their impact on testing
activities. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 65–75, 2004.

128

[61] E. Engström and P. Runeson. A qualitative survey of regression
testing practices. In Proceedings of the International Conference on
Product-Focused Software Process Improvement, pages 3–16, 2010.

[62] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao. The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming,
69(1):35–45, 2007.

[63] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in
symbolic pathfinder. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 622–631,
Piscataway, NJ, USA, 2013. IEEE Press.

[64] M. Fowler. Continuous integration.
martinflowler.com/articles/continuousIntegration.html.

[65] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does
automated white-box test generation really help software testers? In
Proceedings of the International Symposium on Software Testing
and Analysis, pages 188–198, July 2013.

[66] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering,
38(2):278–292, 2012.

[67] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving search-based test
suite generation with dynamic symbolic execution. In Proceedings
of the International Symposium on Softaware Reliability
Engineering, pages 360–369, 2013.

[68] D. Garg and A. Datta. Test case prioritization due to database
changes in web applications. In Proceedings of the International
Conference on Software Testing, pages 726–730, Apr. 2012.

[69] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating
improvements to a meta-heuristic search for constrained interaction
testing. Empirical Software Engineering, 16(1):61–102, Feb. 2011.

[70] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic
execution. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 166–176, 2012.

[71] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the
(very) large: Ten years of implementation and experience. In
Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles, pages 103–116, 2009.

[72] P. Godefroid. Higher-order test generation. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 258–269, 2011.

[73] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages
213–223, 2005.

[74] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing
for security testing. Queue, 10(1):20:20–20:27, Jan. 2012.

[75] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman.
Model-based quality assurance of protocol documentation: Tools
and methodology. Journal of Software Testing, Verification, and
Reliability, 21:55–71, 2010.

[76] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen.
Interaction coverage meets path coverage by smt constraint solving.
In Joint Conference of the IFIP International Conference on Testing
of Communicating Systems and International Workshop on Formal
Approaches to Testing of Software, 2009.

[77] M. Grindal and J. Offutt. Input parameter modeling for combination
strategies. In Proceedings of the Conference on IASTED
International Multi-Conference: Software Engineering, pages
255–260, 2007.

[78] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr. Swarm
testing. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 78–88, 2012.

[79] F. Gross, G. Fraser, and A. Zeller. Search-based system testing:
High coverage, no false alarms. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 67–77, 2012.

[80] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. Synergy: A new algorithm for property checking. In
Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 117–127, 2006.

[81] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for
branch coverage. In Proceedings of the IEEE International

Conference on Automated Software Engineering, pages 219–227,
September 2000.

[82] P. Gupta, M. Ivey, and J. Penix. Testing at the speed and scale of
google. http://googletesting.blogspot.com/2011/
06/testing-at-speed-and-scale-of-google.html,
June 2011.

[83] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating
mobile application energy consumption using program analysis. In
Proceedings of the 2013 International Conference on Software
Engineering (ICSE 2013), pages 92–101, 2013.

[84] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel,
and M. Roper. Testability transformation. IEEE Transactions on
Software Engineering, 30(1):3–16, Jan. 2004.

[85] M. Harman, A. Mansouri, and Y. Zhang. Search based software
engineering: A comprehensive analysis and review of trends,
techniques and applications. Technical Report Technical Report
TR-09-03, King’s College London, 2009.

[86] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys, 45(1):11:1–11:61, Dec. 2012.

[87] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A comprehensive
survey of trends in oracles for software testing. Technical report,
Research Memoranda CS-13-01, Department of Computer Science,
University of Sheffield, 2013.

[88] M. J. Harrold. Testing: A roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 61–72,
2000.

[89] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Transactions on Software
Engineering and Methodology, 2(3):270–285, July 1993.

[90] A. Hartman and R. L. Problems and algorithms for covering arrays.
Discrete Mathematics, 248:149–156, 2004.

[91] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable
model-based testing through test case diversity. ACM Transactions
on Software Engineering and Methodology, 22(1):6:1–6:42, 2012.

[92] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A
tool for automatic verification of probabilistic systems. In
Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages
441–444, 2006.

[93] A. Huima. Implementing Conformiq Qtronic. In A. Petrenko,
M. Veanes, J. Tretmans, and W. Grieskamp, editors, Testing of
Software and Communicating Systems, volume 4581 of Lecture
Notes in Computer Science, pages 1–12. 2007.

[94] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of the International Conference on Software
Engineering, pages 191–200, May 1994.

[95] K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing and
symbolic execution. In Proceedings of the International Conference
on Automated Softwaare Engineering, pages 297–306, 2008.

[96] Jenkins. Jenkins: An extendable open source continous integration
server. jenkins-ci.org.

[97] W. Jin and A. Orso. BugRedux: Reproducing field failures for
in-house debugging. In Proceedings of the International Conference
on Software Engineering, pages 474–484, 2012.

[98] Apache JMeter. https://jmeter.apache.org.
[99] J. A. Jones, A. Orso, and M. J. Harrold. Gammatella: Visualizing

program-execution data for deployed software. Information
Visualization, 3(3):173–188, 2004.

[100] JUnit Testing Framework. http://www.junit.org, 2014.
[101] E. Y. Kan. Energy efficiency in testing and regression testing: a

comparison of DVFS techniques. In Proceedings of the
International Conference on Quality Software, pages 280–283,
2013.

[102] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proceedings of the
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 553–568, 2003.

129

[103] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines. In Proceedings of the
International Conference on Aspect-Oriented Software
Development, pages 57–68, 2011.

[104] J. Kim, H. Oh, H. Ha, S.-H. Kang, J. Choi, and S. Ha. An ILP-based
worst-case performance analysis technique for distributed real-time
embedded systems. In Proceedings of the Real-time Systems
Symposium, pages 363–372, 2012.

[105] M. Kim, Y. Kim, and G. Rothermel. A scalable distributed concolic
testing approach: An empirical evaluation. In Proceedings of the
International Conference on Software Testing, pages 340–349, Apr.
2012.

[106] Y. Kim, Z. Xu, M. Kim, M. B. Cohen, and G. Rothermel. Hybrid
directed test suite augmentation: An interleaving framework. In
Proceedings of the International Conference on Software Testing,
Apr. 2014.

[107] J. C. King. Symbolic Execution and Program Testing.
Communications of the ACM, 19(7):385–394, 1976.

[108] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based
worst-case execution time analysis using automatic test-data
generation. In Proceedings of the IEEE Workshop on Software
Technology for Future Embedded and Ubiquitous Systems, pages
7–10, 2004.

[109] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. IEEE Transactions on
Software Engineering, 28(8):721–734, Aug. 2002.

[110] B. Korel. A Dynamic Approach of Test Data Generation. In
Proceedings of the IEEE Conference on Software Maintenance,
pages 311–317, November 1990.

[111] R. Krishnan, S. M. Krishna, and P. S. Nandhan. Combinatorial
testing: Learnings from our experience. SIGSOFT Software
Engineering Notes, 32(3):1–8, May 2007.

[112] LabView System Design Software. http://www.ni.com/labview/.
[113] B. Legeard and M. Utting. Model-based testing - next generation

functional testing. SoftwareTech News, 12(4):9–18, Jan. 2010.
[114] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating

source line level energy information for android applications. In
Proceedings of the 2013 International Symposium on Software
Testing and Analysis, pages 78–89, 2013.

[115] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond. Integrated
energy-directed test suite optimization. In Proceedings of the
International Symposium on Software Testing and Analysis, July
2014.

[116] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 15–26, 2005.

[117] Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented
approach to adaptive random testing of Java programs. In
Proceedings of the International Conference on Automated
Software Engineering, pages 221–232, 2009.

[118] Y. Liu, C. Xu, and S. C. Cheung. Where has my battery gone?
Finding sensor related energy black holes in smartphone
applications. In Proceedings of the International Conference on
Pervasive Computing and Communications, pages 2–10, 2013.

[119] C. Lott, A. Jain, and S. Dalal. Modeling requirements for
combinatorial software testing. In Proceedings of the 1st
International Workshop on Advances in Model-based Testing, pages
1–7, 2005.

[120] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In Proceedings of
the Workshop on the Evaluation of Software Defect Detection Tools,
2005.

[121] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for android apps. In Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
pages 224–234, 2013.

[122] J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. In Proceedings of the International
Conference on Automated Softwaare Engineering, pages 436–439,
2011.

[123] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax
web applications. In Proceedings of the International Conference
on Software Testing, pages 121–130, 2008.

[124] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. AutoBlackTest:
A tool for automatic black-box testing. In Proceedings of the
International Conference on Software Engineering, pages
1013–1015, 2011.

[125] Matlab. http://www.mathworks.com/products/matlab/.
[126] S. McMaster and A. Memon. Call-stack covereage for GUI test

suite reduction. IEEE Transactions on Software Engineering,
34(1):99–115, 2008.

[127] P. McMinn. Search-based software test data generation: A survey.
Journal of Software Testing, Verification, and Reliability,
14(2):105–156, June 2004.

[128] P. McMinn. Search-based software testing: past, present, and future.
In Proceedings of the International Workshop on Search-Based
Software Testing, pages 153–163, Mar. 2011.

[129] P. McMinn, D. Binkley, and M. Harman. Empirical evaluation of a
nesting testability transformation for evolutionary testing. ACM
Transactions on Software Engineering and Methodology,
18(3):11:1–11:27, June 2009.

[130] A. Memon, I. Banerjee, and A. Nagarajan. What test oracle should I
use for effective GUI testing? In Proceedings of Automated
Software Engineering, pages 164–173, Nov. 2003.

[131] D. Monniaux. An abstract monte-carlo method for the analysis of
probabilistic programs. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 93–101, 2001.

[132] A. Morgado, F. Heras, and J. Marques-Silva. Improvements to
Core-guided Binary Search for MaxSAT. In Proceedings of the
International Conference on Theory and Applications of
Satisfiability Testing, pages 284–297, 2012.

[133] Mozilla Developer Network. Tinderbox. https:
//developer.mozilla.org/en-US/docs/Tinderbox,
2014.

[134] National Institute of Standards and Technology. Nist software
assurance reference dataset project. samate.nist.gov/SRD/.

[135] Nester. nester.sourceforge.net.
[136] C. Nie and H. Leung. A survey of combinatorial testing. ACM

Computing Surveys, 43(2):11:1–11:29, Feb. 2011.
[137] K. Nurmela. Upper bounds for covering arrays by tabu search.

Discrete Applied Mathematics, 138(1-2):143–152, 2004.
[138] J. Offut, Y.-S. Ma, and Y.-R. Kown. MuJava: An automated class

mutation system. Journal of Software Testing, Verification, and
Reliability, 15(2):97–133, June 2005.

[139] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction
procedure for test data generation. Software Practice and
Experience, 29(2):167–193, 1997.

[140] Open Source Software Testing Tools.
www.opensourcetesting.org/performance.php.

[141] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to
large software systems. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages
241–252, Nov. 2004.

[142] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise
feature-interaction testing for SPLs: potentials and limitations. In
Proceedings of the International Conference on Software Product
Lines, pages 6:1–6:8, 2011.

[143] L. Osterweil. Strategic directions in software quality. ACM
Computing Surveys, 4:738–750, Dec. 1996.

[144] C. Pacheco and M. Ernst. Eclat: Automatic generation and
classification of test inputs. Proceedings of the European
Conference on Object-Oriented Programming, pages 504–527,
2005.

[145] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random
Testing for Java. In Proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications, pages
815–816, 2007.

[146] C. Pacheco, S. K. Lahiri, and T. Ball. Finding Errors in .NET with
Feedback-Directed Random Testing. In Proceedings of the 2008

130

International Symposium on Software Testing and Analysis, pages
87–96, 2008.

[147] C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the International
Symposium on Software Testing and Analysis, pages 199–209, July
2011.

[148] F. Pastore, L. Mariani, and G. Fraser. CrowdOracles: Can the crowd
solve the oracle problem? In Proceedings of the International
Conference on Software Testing, Apr. 2013.

[149] Performance Testing Guidance for Web Applications.
perftestingguide.codeplex.com/releases/view/.

[150] C. S. Păsăreanu, N. Rungta, and W. Visser. Symbolic execution with
mixed concrete-symbolic solving. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pages
34–44, 2011.

[151] P. Puschner and R. Nossal. Testing the results of static worst-case
execution-time analysis. In Proceedings of the real-time systems
symposium, pages 134–143, Dec. 1998.

[152] The r project for statistical computing. http://www.r-project.org/.
[153] M. Research. The yogi project, 2014.

http://research.microsoft.com/en-us/projects/Yogi.
[154] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A

methodology for testing spreadsheets. ACM Transactions on
Software Engineering and Methodology, 10(1):110–147, Jan. 2001.

[155] G. Rothermel and M. J. Harrold. Selecting tests and identifying test
coverage requirements for modified software. In Proceedings of the
International Symposium on Software Testing and Analysis, pages
169–184, Aug. 1994.

[156] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering,
22(8):529–551, Aug. 1996.

[157] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering
and Methodology, 6(2):173–210, Apr. 1997.

[158] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test
selection for C++ programs. Journal of Software Testing,
Verification, and Reliability, 10(2):77–109, June 2000.

[159] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, Oct. 2001.

[160] P. Runeson. A survey of unit testing practices. IEEE Softw.,
23(4):22–29, July 2006.

[161] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering. John Wiley and Sons, Hoboken,
NJ, 2012.

[162] S. Sampath, R. C. Bryce, G. Viswanath, and V. Kandimalla.
Prioritizing user-session-based test cases for web application
testing. In Proceedings of the International Conference on Software
Testing, pages 141–150, Apr. 2008.

[163] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: Inferring whole program properties from
finitely many paths. SIGPLAN Notices, 48(6):447–458, June 2013.

[164] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and
M. J. Harrold. Test-suite augmentation for evolving software. In
Proceedings of Automated Software Engineering, Sept. 2008.

[165] SAT4J. http://www.sat4j.org, 2012.
[166] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for

Java. In Proceedings of the ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 297–298, 2009.

[167] K. Schwaber and M. Beedle. Agile Software Development with
Scrum. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2001.

[168] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision
diagrams for combinatorial test design. In Proceedings of the
International Symposium on Software Testing and Analysis, pages
254–264, 2011.

[169] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and
S. Wiegratz. Static WCET analysis of real-time task-oriented code
in vehicle control systems. In Proceedings of the Second
International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, pages 212–219, 2006.

[170] K. Sen. Effective random testing of concurrent programs. In
Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, pages 323–332, 2007.

[171] K. Sen. Race directed random testing of concurrent programs. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 11–21, 2008.

[172] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 263–272, 2005.

[173] A. Shahbazi, A. F. Tappenden, and J. Miller. Centroidal Voronoi
tessellations — A new approach to random testing. IEEE
Transactions on Software Engineering, 39(2):163–183, 2013.

[174] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn. Covering
arrays of higher strength from permutation vectors. Journal of
Combinatorial Design, 3(14):202–213, 2005.

[175] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques
to generate test cases for combinatorial testing. In Proceedings of
the Annual International Computer Software and Applications
Conference, pages 72–77, 2004.

[176] Software-artifact Infrastructure Repository.
http://sir.unl.edu/, Apr. 2012.

[177] Smartesting. http://www.smartesting.com.
[178] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A
new approach to computer security via binary analysis. In
Proceedings of the International Conference on Information
Systems Security, pages 1–25, 2008.

[179] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh. Software
repository mining with marmoset: An automated programming
project snapshot and testing system. In Proceedings of the
International Workshop on Mining Software Repositories, pages
1–5, 2005.

[180] Spec explorer. http://www.specexplorer.net.
[181] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in

development environment. In Proceedings of the International
Symposium on Software Testing and Analysis, 2002.

[182] M. Staats, G. Gay, and M. Heimdahl. Automated oracle creation
support, or: How I learned to stop worrying about fault propagation
and love mutation testing. In Proceedings of the International
Conference on Software Engineering, pages 870–880, May 2012.

[183] M. Staats, S. Hong, M. Kim, and G. Rothermel. Understanding user
understanding: Determining correctness of generated program
invariants. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 188–198, July 2012.

[184] M. Staats and C. Pǎsǎreanu. Parallel symbolic execution for
structural test generation. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 183–194, July
2010.

[185] M. Staats, M. W. Whalen, and M. Heimdahl. Programs, tests, and
oracles: The foundations of testing revisited. In Proceedings of the
International Conference on Software Engineering, pages 391–400,
2011.

[186] K. Taneja and T. Xie. Diffgen: Automated regression unit-test
generation. In Proceedings of Automated Software Engineering,
pages 407–410, Nov. 2008.

[187] K. Taneja, T. Xie, N. Tillmann, J. Halleux, and W. Schulte. eXpress:
Guided path exploration for regression test generation. In
Proceedings of the International Symposium on Software Testing
and Analysis, July 2011.

[188] A. F. Tappenden and J. Miller. A novel evolutionary approach for
adaptive random testing. IEEE Transactions on Reliability,
58(4):619–633, 2009.

[189] Test Studio. www.telerik.com/teststudio/performance-testing.
[190] ThoughtWorks. Go: Continous delivery.

www.thoughtworks.com/products/go-continuous-delivery.
[191] N. Tillmann and J. De Halleux. Pex: White box test generation for

.net. In Proceedings of the International Conference on Tests and
Proofs, pages 134–153, 2008.

[192] TransWorldNews. Amazon.com Down for Hours After Unknown
Outage. http://www.transworldnews.com/
NewsStory.aspx?storyid=49790, 2010.

131

[193] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of
model-based testing approaches. Journal of Software Testing,
Verification, and Reliability, 22(5):297–312, 2012.

[194] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing
software product lines using incremental test generation. In
Proceedings of the International Symposium on Software Reliability
Engineering, pages 249–258, 2008.

[195] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better
contracts. In Proceedings of the International Conference on
Software Engineering, pages 191–200, May 2011.

[196] E. J. Weyuker. On testing non-testable programs. The Computer
Journal, 15(4):465–470, 1982.

[197] L. White and B. Robinson. Industrial real-time regression testing
and analysis using firewalls. In Proceedings of the International
Conference on Software Maintenance, Sept. 2004.

[198] C. Wohlin, P. Runeson, M. Host, , M. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Kluwer
Academic Publishers, Norwell, MA, 2000.

[199] Q. Xie and A. M. Memon. Designing and comparing automated test
oracles for GUI-based software applications. ACM Transactions on
Software Engineering and Methodology, 16(1):4, 2007.

[200] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided
Path Exploration in Dynamic Symbolic Execution. In Proceedings
of the International Conference on Dependable Systems and
Networks, pages 359–368, 2009.

[201] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen. Directed test
suite augmentation: Techniques and tradeoffs. In Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software
Engineering, Nov. 2010.

[202] Z. Xu, Y. Kim, K. M, and G. Rothermel. A hybrid directed test suite
augmentation technique. In Proceedings of the International
Symposium on Software Reliability Engineering, 2011.

[203] Yahoo! pipes. http://pipes.yahoo.com/pipes/.
[204] C. Yilmaz. Test case-aware combinatorial interaction testing. IEEE

Transactions on Software Engineering, 39(5):684–706, May 2013.
[205] C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz, and

U. Koc. Moving forward with combinatorial interaction testing.
IEEE Computer, 47(2):37–45, Feb. 2014.

[206] S. Yoo and M. Harman. Regression testing minimisation, selection
and prioritisation: A survey. Software Testing, Verification and
Reliability, 22(2), 2012.

[207] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to
achieve effective and scalable prioritisation incorporating expert
knowledge. In Proceedings of the International Symposium on
Software Testing and Analysis, 2009.

[208] T. Yu, W. Srisa-an, and G. Rothermel. SimLatte: A framework to
support testing for worst-case interrupt latencies in embedded
software. In Proceedings of the International Conference on
Software Testing, Apr. 2014.

[209] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An automated
framework to support regression testing for data races. In
Proceedings of the International Conference on Software
Engineering, June 2014.

[210] C. Zamfir and G. Candea. Execution Synthesis: A Technique for
Automated Software Debugging. In Proceedings of the 5th
European Conference on Computer Systems, pages 321–334, 2010.

132

