
1556-6013 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2014.2381872, IEEE Transactions on Information Forensics and Security

1

Segmentation-based Image Copy-move Forgery
Detection Scheme

Jian Li, Xiaolong Li, Bin Yang, and Xingming Sun Senior Member, IEEE,,

Abstract—In this paper we propose a scheme to detect the
copy-move forgery in an image, mainly by extracting the key-
points for comparison. The main difference to the traditional
methods is that the proposed scheme first segments the test
image into semantically independent patches prior to keypoint
extraction. As a result, the copy-move regions can be detected by
matching between these patches. The matching process consists
of two stages. In the first stage, we find the suspicious pairs
of patches that may contain copy-move forgery regions, and we
roughly estimate an affine transform matrix. In the second stage,
an EM-based algorithm is designed to refine the estimated matrix
and to confirm the existence of copy-move forgery. Experimental
results prove the good performance of the proposed scheme via
comparing it with the state-of-the-art schemes on the public
databases.

Index Terms—Copy-move forgery detection, image forensics,
segmentation.

I. INTRODUCTION

An image with copy-move forgery (CMF) contains at least
a couple of regions whose contents are identical. CMF may
be performed by a forger aiming either to cover the truth or to
enhance the visual effect of the image. Normal people might
neglect this malicious operation when the forger deliberately
hides the tampering trace (Figure 1). So we are in urgent
need of an effective CMF detection (CMFD) method to
automatically point out the clone regions in the image. And
CMFD is becoming one of the most important and popular
digital forensic techniques currently [1].

In the literature there are mainly two classes of CMFD
algorithms [1]. One is based on block-wise division, and the
other on keypoint extraction. They both try to detect the CMF
through describing the local patches of one image. The former
first divides the image into overlapping blocks and then finds
the CMF by looking for the similar blocks. In [2] the authors
proposed such a kind of method based on DCT describing the
block, and they also decreased the complexity of the matching
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Fig. 1: CMF examples from Christlein et al.’s database [1].
The left column gives the original images, and right column
gives the images with CMF.

process by means of dictionary sorting. Because the descriptor
of the block is important for the algorithm, various description
methods like DWT, PCA etc were tested in these papers [3]–
[8]. Among them Zernike moment [8], [9] may be the best
choice in terms of detection accuracy and robustness. Besides,
some post-processing techniques were proposed to improve the
CMFD algorithms’ efficiency. For example, in [9] the authors
provided a method for the selection of duplicated blocks,
namely SATS (Same Affine Transformation Selection). This
method was able to improve the robustness of the detection al-
gorithm against some attacks like rotation. The second class of
algorithms detects the CMF through observing the keypoints
in the image [10]–[15]. SIFT [16] and SURF [17] might be the
most widely used keypoints for CMFD1. In some papers like
[13]–[15], the authors estimated the transform matrix between
the copying source region and pasting target region as well
as detecting CMF in the image. In order to remove the effect
of unwanted outliers, RANSAC [20] was often employed to
guarantee the robustness of the estimation. In [1] the authors
further improved the accuracy of the estimation result obtained
by RANSAC via the gold standard algorithm [21, pp.130].
Because the number of the keypoints is much smaller than
that of the blocks divided in an overlapping way, the keypoint-
based algorithms require less computational resource than the
block-based ones. Readers are referred to [1], [22] for some

1As basic computer vision techniques, SIFT and SURF may be used in a
large variety of different applications like smart home etc [18], [19].
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survey and evaluation works.
In this paper we propose a new framework for CMFD.

The test image is first segmented into non-overlapped patches.
Then the mission of CMFD in one image is transfered to
partial matching between the obtained patches, which is a
problem having been deeply studied in the computer graph
research domain [23]–[26]. Based on the EM algorithm [27]
we propose a new solution for the problem which has been
proved to be an extension of the classic registration method it-
erative closest point (ICP) [23]. Our solution performs CMFD
with two stages. The aim of the first stage is to find the
suspicious matches, and a transform matrix between them
is roughly estimated. Then in the second stage we confirm
the existence of CMF by means of refining the transform
matrix. Experimental results show that the proposed CMFD
scheme outperforms most prior arts, especially the keypoint-
based ones in terms of detection rate.

The rest of the paper is organized as follows. In Section
II we first revisit the issues about CMFD and then show the
framework of our proposed scheme based on image segmenta-
tion. Section III and IV describe the first stage and the second
stage of matching process, respectively. The experimental
results are given in Section V, followed by conclusion in
Section VI.

II. OVERVIEW OF THE PROPOSED CMFD SYSTEM AND
IMAGE SEGMENTATION

In this section, via revisiting the important issues involved
in CMFD we first give the framework of our proposed scheme,
and then we explain the reason for using image segmentation.

A. CMFD Revisiting and the Framework of the Proposed
Scheme

In order to obtain a convincing detection result we would
always like to acquire as much forensic information as possible
from the test image. So the mission of CMFD is not only to
determine if an image has some regions containing identical
contents, but also to locate these tampered regions. To this
end, we can describe the image with a set of local patches,
like the blocks or keypoints in traditional CMFD schemes,
and transfer CMFD into a problem of comparison among these
local patches. The comparison process may be time-consuming
if the number of the patches is too large. For example, the
block-based methods [3], [4], [8] usually need a huge amount
of time to detect an image. So it is important to decrease the
number of patches for comparing. In this regard, the keypoint-
based methods are faster and more favorable than the block-
based ones, because the number of the image keypoints is
smaller than that of the divided blocks.

However, on the other hand, keypoint-based method also
has the following two problems. Firstly, the keypoints lying
spatially close to each other should not be compared because
they may be naturally similar. The determination of the
shortest distance between two comparable keypoints is tricky.
Most prior arts empirically select this threshold but neglect
its relationship with the image size and content. Secondly, it
is uneasy to accurately localize and distinguish the copying

source region and the pasting target region, because, unlike the
overlapping blocks, the keypoints are often not concentrated
together. To deal with this problem Amerini et al. proposed a
method based on clustering the matched keypoints [14], which
was also adopted by the CMFD evaluation framework [1].
This method was further improved in [28] where the clustering
object became a vector associated to the candidate transform
estimation. It is shown that the new clustering-based CMFD
scheme significantly raise the accuracy of localization of CMF
regions.

We know that an image is seldom forged aimlessly. Hence
the copy-move regions should have a certain meaning. In this
light, we propose to segment the test image into a number of
non-overlapped patches (refer to Figure 2). Then the CMFD
can be performed by matching these patches, as long as the
pasting target and copying source regions are not in the same
patch2.

Feature extraction

Patch matching

Transform estimation

Obtaining new correspondences

Obtaining new transform matrix

Repeat the above two steps

Input Image

Detection Result

Fig. 2: Flowchart of the proposed CMFD framework

We note that this is not the first CMFD system that employs
image segmentation technique. Farid [29] proposed to detect
the duplication in science images by grouping the pixels with
similar properties. However, being designed for the science
images such as gel and micrograph, Farid’s method is not
efficient and robust enough for normal images that are content
rich and contain many different textures. Recently, Liu et al.
also proposed a forgery detection method using JPEG features
and local noises discrepancies [30], where segmentation is

2If unluckily the two regions are located in one same patch, we may either
perform CMFD within each patch using the traditional method [13], [14], or
suitably set the size of the patch to avoid it that one patch includes all the
CMF regions. In our implementation, we employ the latter solution which
will be discussed in Section II-B.
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proved to be useful to splicing detection. In our proposed
CMFD scheme, after segmenting the image, we perform the
first stage of affine estimation. During this stage we first
extract the keypoints from the whole image and construct
a k-d tree. Then the KNN (k-nearest neighbor) search is
performed in each region for each keypoint to find a possible
correspondence. One region is recorded if it has a certain
proportion of keypoints matched with another one. Finally we
estimate the affine relationship between the region pairs. The
estimated transform matrix is the input to the second stage of
matching process, where we iteratively refine the matrix via a
probability model based on the EM algorithm.

B. Image Segmentation

In order to separate the copying source region from the
pasting target region, the image should be segmented into
small patches, each of which is semantically independent to
the others. This job is best done by an expert with much ex-
perience of digital forensics. In our implementation, however,
we only consider the automatic approach and leave the expert
interfering method for future work. After testing four famous
image segmentation methods [31]–[34], it is observed that the
segmentation method does not greatly influence the CMFD’s
efficiency. Among them the methods in [32], [34] are more
favorable owing to their comparatively lower complexity. In
most cases, one image sized 800×600 can be segmented in 15
seconds using a personal computer (3.3GHz CPU, 4G RAM).
Figure 3 gives an example of image segmentation obtained by
[34].

C1
P1

C2 P2

C3 P3

Fig. 3: Example of image segmentation. The two towers in the
test image are CMF regions. We segment the image by means
of the SLIC algorithm [34]. It can be observed that one CMF
region is divided into several patches. Nevertheless, the two
CMF regions are segmented in a similar way. In particular,
there are some patch pairs with a large proportion of identical
contents, say C1 and P1, C2 and P2, etc.

One may concern the scenario that segmentation cannot
help us to separate the CMF regions into different patches.
As mentioned above, in order that two CMF regions do not
exist in the same patch, we should not coarsely segment

the image. In our implementation, each image is empirically
segmented into no less than 100 patches (refer to Section V for
a further explanation), and thus, a CMF region may be in two
or more patches (refer to Figure 3). In consequence the useful
information for CMFD is reduced in each patch. However,
to obtain a convincing detection result we need not a large
number of keypoints (sometimes four is enough). Furthermore,
because the CMF region exists in many patches, we meanwhile
have more than one chance to find the tampering operation.
Extensive experiments prove that the applied segmentation
method is able to provide us with satisfying results.

III. FIRST STAGE OF MATCHING

In this section we will introduce the first stage of the
matching process of our proposed CMFD system. The three
steps (refer to Figure (2)) involved in this stage will be detailed
in the following three subsections.

A. Keypoint Extraction and Description

In our implementation, we employ vlFeat3 [35] software
to help us to detect and describe the keypoints. There are
many kinds of keypoint detection and description methods.
The common co-variant keypoint detection and description
algorithms, such as difference of Gaussian (DoG), Harris-
affine and Hessian-affine [16], [36], can provide similar detec-
tion performance. In our implementation we just employ the
default setting of vlFeat for keypoints detection and descrip-
tion, namely SIFT [16]. Although the methods of keypoint
detection and description are not rather important, note that
the number of the keypoints should be larger than 2000 for
good performance.

B. Matching between Patches

Next we look for the suspicious pairs of patches that
have many similar keypoints. This process is performed by
comparing each patch with the rest. Refer to Figure 4, assume
that patch A is considered at this time. Define the distance

A
B

Fig. 4: Find the suspicious pairs of patches. The lines con-
necting the points in patch A and B represent the matched
keypoint pairs.

between two keypoints by the L-2 norm of the difference
between their descriptors. In patch A for each keypoint we
search its K nearest neighbors that are located in the other

3Version 0.9.18
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patches. Considering there are usually more than one couple
of copy-move regions in the image, we set K = 10 in
our implementation. We should not take all the K searched
keypoints into consideration, but only if the difference is
smaller than a threshold (0.04 in our implementation), the
two keypoints are considered to be matched. In other words,
each keypoint in patch A is corresponding to no more than
K keypoints in the remaining patches. We know that the
target and source regions should have a large proportion
of matched keypoints. If a large proportion of the matched
correspondences of A are located in another certain patch, say
B in Figure 4, A and B are considered to be a suspicious pair of
patches where we may find CMF regions. So a threshold ϕ is
defined to find the matched patches. In our implementation, ϕ
is empirically set as 10 times the average number of keypoints
per patch, i.e.,

ϕ = 10
|{keypoints}|
|{patches}|

. (1)

With the help of ϕ, most patches are eliminated from the
estimation of transform matrix and, of course, the second stage
of matching process. Besides, like the traditional keypoint-
based CMFD schemes [13], we decrease the complexity of
searching K nearest neighbors for a keypoint from O(n2)
to O(nlogn), by constructing a k-d tree provided by vlFeat
software [35].

C. Affine Transform Estimation

After detecting a suspicious pair of patches, we preliminar-
ily know where the copying source region and pasting target
region are. Then we estimate the relationship between these
two regions in terms of a transform matrix H , such that

~x′ = H~x, (2)

where ~x and ~x′ are the coordinates4 of the pixels in the copying
source region and pasting target region, respectively. Some
proposed CMFD algorithms, especially the block-based ones
[2]–[4], only focus on finding the tampering regions and do
not further investigate the transform relationship between the
copying source region and pasting target region. In fact, it is
rather helpful for the CMFD scheme to estimate the transform
matrix between the two regions. Firstly, we are able to remove
some falsely detected CMF regions as they do not have a set
of points with uniform transform relationship. Secondly, more
important, the CMFD is enhanced by providing the tampering
detail about one image. So most recent CMFD algorithms
choose to calculate the transform matrix [9], [13]–[15].

In order to avoid leaving additional forgery traces in an
image, the forgers often do not further change the copying
source region. As a result, we can simply assume that the
error of keypoints extraction only exists in the target regions.
And the estimation of transform between the source region

4Please note that the homogeneous coordinates are used when estimating
the transform matrix. Specifically, H is a 3 × 3 matrix with the third row
equal to (0, 0, 1). Consequently, ~x is a three-dimensional column vector. The
first two elements are the horizontal and vertical coordinates of one pixel
while the third equals to 1. The readers are referred to [21, pp.2] for more
information.

and target region can be made by means of a classical method
[21, pp.95]. That is, no less than three random non-collinear
matched keypoints (~xi, ~x

′
i) are first used to calculate the

transform matrix H by means of minimizing the geometric
distance

∑
i d(~x

′
i,H~xi). As the existence of noise in the

keypoints detection, we also employ the robust estimation
method, namely RANSAC [20], to find a transform matrix H
that is the best among a certain number of trials. This method
is also adopted by some other CMFD schemes [13], [14].

In this transform estimation process, some small sized
regions with limited number of keypoints, say 5, influence
the detection accuracy. According to Pan et al.’s results, it
is hard to accurately detect the CMF forgery regions with a
size smaller than 32× 32. Clearly, the main reason is because
the forgery regions are too small, and a limited number
of keypoints cannot resist the possible errors in keypoint
extraction. So we propose a second stage of matching process,
where additional information of the image is employed to
improve the accuracy of transform estimation.

IV. SECOND STAGE OF MATCHING

In the first stage of matching process, we have found the
suspicious pairs of patches as well as the transform matrix
between them. Although RANSAC [20] can provide us with
a robust estimation of transform matrix, it is still not accurate
enough. Furthermore, some of these detected patches may
be just false alarm containing not any CMF regions. In this
section, we will introduce our second stage of matching
process where the estimation of the transform matrix is refined
via an EM-based algorithm. And the false alarm patches might
also be eliminated in this stage.

A. CMF Determination Based on Probability

In the first stage of matching process, we made use of
the detected keypoints in the copying source region and
pasting target region to estimate a transform matrix H . This
process follows the traditional way of computer vision [21]. In
particular, the pixels not around the keypoints are abandoned.
It is mainly because computer vision usually focuses on the
research of transform estimation of two distinct images, in
which case we are able to obtain a comparatively larger
number of matched keypoints. However, in the CMFD case
the forgery regions are sometimes so small that only a limited
number of keypoints can be detected there. As a result, the
detection result of the first stage is not convincing because we
do not have enough keypoints.

So in the second stage we propose to exploit all the pixels in
the matched patches to find out a more accurate estimation H̄ .
Meanwhile, the pixels belonging to the CMF regions would
be more clearly distinguished from the background. Since the
really matched pixels in the copying source region and pasting
target region should be close to each other, we change the
definition of the relationship between them in (2) to

f(~x) = f(H−1~x′), (3)

where f(·) is an image characteristic function with respect
to the pixel coordinate, such as the image intensity or some
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other advanced image descriptors. In our implementation, we
employ the dense SIFT descriptors [35] for robustness and
efficiency. Equation (3) is hard to hold owing to the estimation
error etc. Nevertheless, based on (3), we are able to observe
the probability of a pixel at ~x located in the CMF region. We
introduce a random variable z to indicate that a pixel is located
at CMF region (z = 1) or not (z = 0). Then the probability
is given by

P (~x|z = 1,H) =
1√
2πσ

e−
(f(~x)−f(H−1~x′))T (f(~x)−f(H−1~x′))

2σ2 ,

(4)
Equation (4) is based on the assumption that the difference
between the matched pixels follows a Gaussian distribution
(zero mean and variance σ2). Although this assumption is not
theoretically strict, extensive experiments show that it is able
to provide us with satisfying result.

B. Obtaining the New Correspondences of the Pixels
Denote the transform matrix we estimated in the first stage

by H0 for differentiation here. As H0 is not accurate enough,
the ~x′ obtained by (2) may not be the real correspondence of ~x.
So we search a new correspondence of ~x in the pasting target
region, such that the pixel located at the new correspondence
position is more similar to the pixel at ~x than the old
correspondence in terms of their local feature descriptions.

We first align the image by means of the estimated transform
matrix, i.e. a new transformed image is obtained by,

Î = H−1
0 · I. (5)

Then the process of searching new pixel pairs is illustrated in
Figure 5. It is an example where the copying source region
is marked by a dashed line and the pasting target region by a
black solid line. After transforming the pasting target region
via (5), the transformed pasting target region (red solid line)
is not well aligned with the copying source region. There
is a pixel x in the copying source region and its original
matched point x′ in the pasting target region. The coordinates
of x and x′ satisfy the relationship defined in (2). And we
indicate the correspondence of x in the transformed image by
x̂ which has the same coordinate with x. Consequently, the
pixel x and its correspondence x̂ in the transformed image
may not have the identical value. In other words, x and its
real correspondence are unlikely at the same position. We need
to find the new correspondences for these pixels. Specifically,
for a pixel coordinate ~x in the copying source region, we find
one pixel coordinate ~̂

x̃ in the transformed image satisfying
~̂
x̃ = argmin

~̂y∈Î

(
f (I (~x))− f

(
Î
(
~̂y
)))

. (6)

In order to decrease the computational complexity, the new
position could be only searched around x̂. In our imple-
mentation, five neighboring pixels are considered, i.e. the up,
down, left, right and center ones of x̂. After obtaining the
new correspondence, we transform its coordinate back to the
original image via (2), namely

~̃x′ = H
~̂
x̃, (7)

and find the new matching pixel x̃′.

Pasting
target region

Coping source region

Transformed pasting
target region

Fig. 5: Alignment of the pasting target region to copying
source region. We have x in the copying source region (red
dashed line) and x′ in the pasting target region (black solid
line). The coordinates of x and x′ satisfy ~x = H−1

0
~x′.

After transforming the image by (5), we obtain x̂ in the
transformed image which is of the same coordinate with x
and is corresponding to x′ in the original image. Considering
the values of x̂ and x may not be similar, we look for a
new pixel in the transformed image that is more close to x
according to (6). The search range is four closest neighbors
as well as x̂ itself. After obtaining the new matched pixel ˆ̃x,
we transform it back to x̃′ via H0.

C. Iterative Re-estimation of the Transform Matrix

Using the newly matched pixel pairs we wish to estimate
a more convincing matrix H̄ . Please note that some of these
pixel pairs are outliers that are located outside the CMF region.
Furthermore, some correspondences are not accurate enough
because they may be at the smooth image regions. One natural
solution is RANSAC as it is rather good at handling outliers.
However, there usually are a large number of pixel pairs and
hence RANSAC is too time-consuming.

We have two classes of pixels in each segmented patch. One
is the CMF region, the other is the background. Distinguishing
the CMF region from the background is the same problem as
classifying these two kinds of pixels. We propose to employ
the EM algorithm [27] to this end. The EM algorithm is
a useful method for statistical parameter estimation of the
samples with underlying distributions. The algorithm repeats
a procedure until a target variable converges. The procedure
consists of an E-step and an M-step. In the E-step, we
calculate the following value which is an expectation of the
log likelihood P (X, z|Hn), with respect to the conditional
distribution P (z|X,Hn−1), i.e.,

Q(Hn|Hn−1) = Ez|X,Hn−1
ln[P (X, z|Hn)], (8)

where X represents all the coordinates of the pixels in the
current patch, namely X = (~x1, ~x2, · · · , ~xn). And z is the
same random variable as in (4). Then in the M-step we
calculate Hn via maximizing Q. If the new estimated matrix
Hn is similar to Hn−1, stop the iteration and output H̄ = Hn.
Otherwise, take Hn as the initial estimation and repeat the
above two steps.

These two steps can be explained as follows. We have an
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estimation of transform matrix Hn−1, and want to obtain a new
one Hn which is more accurate than the last one. With the
help of Hn−1, for the pixels of the current patch we obtain the
correspondences in the matched patch according to (2). Then
for each pixel a new correspondence around the original one
is re-detected as described in the last subsection. After that
we calculate the probability of the pixel being in the copy-
move region, namely P (z|X,Hn−1). Then we re-estimate a
new transform matrix Hn such that the pixels in the CMF
region are able to match their newly obtained correspondences
as much as possible. From a statistical point of view, it is
to maximize the expectation of the log-likelihood function
P (X, z|Hn).

Maximizing (8) needs the definition of the probability
P (X, z|Hn). In the case of z = 1, we define

P (X, z = 1|Hn) =
∏
i

e(~xi−H−1
n

~̃x′
i)

T (~xi−H−1
n

~̃x′
i). (9)

This definition is derived from the fact that the pixels in a CMF
region are related to their correspondences with the transform
matrix Hn. Please note that the definition here is slightly dif-
ferent in comparison with (4). We do not make use of the pixel
feature again. The main reason is to simplify the calculation in
the maximization step. Besides, (9) requires the coordinate of
the current pixel and that of its new correspondence searched
by means of (6) and (7), which implies that we will perform
the searching process in Section IV-B at each E-step.

In the case of z = 0, P (X, z|Hn) gives the probability
that a pixel does not belong to forgery regions. Considering
the image pixels exist randomly, the probability can be simply
considered to follow a uniform distribution, i.e.,

P (X, z = 0|H) =
∏
i

1

U
, (10)

where U is a number related to the value range of the
difference between two arbitrary pixels.

Because P (X, z = 0|Hn) is defined as a constant, in the
maximization step we need not consider the case of z = 0.
With (9) and (10) we can rewrite (8) as follows,

Q̃(Hn|Hn−1) = Ez=1|X,Hn−1
ln[P (X, z = 1|Hn)] (11)

= Ez=1|X,Hn−1
ln[

∏
i

e(~xi−Hn~̃x′
i)

T (~xi−Hn~̃x′
i)] (12)

= Ez=1|X,Hn−1

∑
i

(~xi −Hn
~̃x′
i)

T (~xi −Hn
~̃x′
i)

(13)

=
∑
i

P (z = 1|~xi, Hn−1)(~xi −Hn
~̃x′
i)

T (~xi −Hn
~̃x′
i).

(14)

Then the new Hn can be obtained by

Hn = argmax
Hn

Q̃(Hn|Hn−1). (15)

P (z = 1|~x,Hn−1), namely the conditional probability in-
volved in (14), represents the probability of a pixel being
in the copy-move region (z = 1) given the coordinates of
the pixel and its correspondence with respect to a transform
matrix Hn−1. According to the conditional probability rule,

we define

P (z = 1|~x,Hn−1) =
P (z = 1|Hn−1)P (~x|z = 1,Hn−1)∑

z P (~x, z|Hn−1, )
(16)

We have defined P (~x|z = 1,Hn−1) in (4). Consistent with
(9) and (10), P (~x, z = 1|H) is defined by

P (~x, z = 1|H) = e(~x−Hn
~̃x′)T (~x−Hn

~̃x′), (17)

and P (~x, z = 0|H) is defined by 1
U .

With (16), we can obtain the derivative of Q̃ with respect
to Hn. And by making the derivative equal to zero, (15) can
be solved, that is

Hn = (X ∗W ∗XT )−1 ∗X ∗W ∗ X̃ ′T , (18)

where X = (~x1, ~x2, · · · , ~xn) and X̃ ′ = (~̃x′
1, ~̃x

′
2, · · · , ~̃x′

n),
represent the coordinates of the current pixels and its newly
obtained correspondences (refer to Fig. (5)), respectively. And
W is an n×n matrix of which the non-diagonal elements are
all zeros, i.e.,

W =


w1 0 · · · 0
0 w2 0 · · ·
... · · ·

. . .
...

0 0 · · · wn

 , (19)

where wi = P (z = 1|~xi,Hn−1). If |Hn − Hn−1| is smaller
than a predefined threshold % (% = 0.03 in our implemen-
tation), we stop the iteration and output Hn. Following the
approach of [1], we transform the test image using Hn and
compute the correlation coefficients between the transformed
image and the original test image. The generated map of
correlation coefficients is post-processed by means of filtering
and morphological operations. The copying source region
are found in the map where the correlation coefficients are
larger than the background. The pasting target region can be
obtained by transforming the copying source region with Hn.
Otherwise, if |Hn − Hn−1| > %, we continue the iteration.
If the procedure cannot converge even after 70 iterations, we
think CMF regions may not exist in this pair of patches and
stop the procedure.

As a summary, we note that our second stage of match-
ing process is also an extension of the classic registration
algorithm, namely iterative closest point (ICP) [23]. Generally
speaking, they both consist of the following three steps.

1) Obtaining the matched points.
2) Calculating the transform matrix.
3) Repeating the above two steps until a convergence con-

dition is satisfied.

V. EXPERIMENTAL RESULTS

A. Test Image Databases and Segmentation Settings

Table I presents two public available image databases in-
volved in evaluation of our proposed CMFD scheme. The
first one was constructed by Christlein et al [1], consisting
of 48 base images and 87 copied snippets that are pasted to
the other locations in the same image to make the forgeries.
These snippets are carefully selected such that the CMF trace
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TABLE I: Image databases to examine the performance of the
proposed scheme

Databases Descriptions

Benchmark database
for CMFD evaluation
[1]

Using the base images, copied snippets and
software provided by Christlein et al., we
generate 48 original images, 48 images with
plain CMF, and 1392 images with CMF that
the copied snippets are processed (adding noise
etc. Refer to Table IV.)

MICC-F600 [28] A mixture of two other databases, namely
MICC-F2000 [14] and the benchmark database
above, containing 440 original images and 160
forged images in which the copied snippets are
processed in a way different from Table IV.

is almost unnoticeable. The original sizes of the images are
rather large (e.g., beach wood.png, 3264 × 2488). However,
in some cases like the Internet and wireless multimedia
applications, we are often faced with small sized images. So in
our experiment the width and the height of the test images are
set to no larger than 800 by means of resizing. Furthermore, we
note that the process of resizing will make it difficult to extract
keypoints from the CMF regions, which is rather challenging
for the keypoint-based schemes.

The second database MICC-F600 was introduced by
Amerini et al [28]. Most of its original images (400 ones) are
from MICC-F2000 [14]. The forged images in MICC-F600 are
also derived from the aforementioned base images and copied
snippets provided by Christlein et al. Nevertheless, most of
the forged images in the two databases are not identical
because the attacks performed are different. For instance, in
MICC-F600 the copied snippets may be rotated by 30◦ and
then scaled by 120% prior to pasting to the base images.
Furthermore, in order to observe the influence of image size
on the proposed scheme we do not resize the images in MICC-
F600.

The images in the above two databases are segmented by
vlFeat software [35]. Because the images in the first database
are resized to approximately similar resolution, we segment
these images in the same way, i.e., using a vlFeat function
vl quickseg with certain parameters. This function implements
the quick shift image segmentation algorithm [32]. We set the
two control parameters, ratio and kernelsize, to 0.7 and 1,
respectively, such that each image is segmented to more than
100 patches.

Unlike the first database, we do not change the images in
MICC-F600. These images vary from 800×533 to 3888×2592
in size. Thus, they should not be uniformly segmented. Fur-
thermore, we find that vl quickseg is not fast enough for the
large images. So another vlFeat function vl slic implementing
the SLIC algorithm [34] is employed to segment the images
in MICC-F600. SLIC is similar to the quick shift algorithm
but is more efficient. Function vl slic requires two parameters
as well. One is regulizer used to control the regularization of
the patches. We set it to 0.8 for all the images. The other
parameter regionsize is related to the number of segmentation
patches. Its value hence should be adaptive to the image size.
Table II illustrates the empirical setting of regionsize in our

experiment.

TABLE II: Segmentation Setting for the Images in MICC-
F600

Image size (S) regionsize Example Image (Number of
patches)

S > (3000× 2000) 200 Hedge(220)
(3000×2000) > S >
(2000× 1000)

150 Three hundred(175)

(2000×1000) > S >
(1000× 600)

100 Knight moves(224)

S < (1000× 800) 50 Giraffe(175)

B. Error Measures

Following the approach in [1], the performance of the
CMFD scheme is also tested by detection error at two different
levels, namely image level and pixel level. The detection error
at the image level is measured by the ratio of the missing
detection to the forged images (i.e. false negative rate, FN ),
and the ratio of the false alarm to the original images (i.e.
false positive rate, FP ). Mathematically,

FN =
|{Forged images detected as original}|

|{Forged images}|
, (20)

FP =
|{Original images detected as forged}|

|{Original images}|
. (21)

The detection error at the pixel level is measured by the
common criteria, precision and recall. The precision calculates
the ratio of the retrieved CMF pixels in all the retrieved pixels,
and the recall calculates the ratio of the retrieved CMF pixels
in all of the CMF pixels, mathematically,

precision =
|{CMF pixels} ∩ {retrieved pixels}|

|{retrieved pixels}|
, (22)

recall =
|{CMF pixels} ∩ {retrieved pixels}|

|{CMF pixels}|
. (23)

Besides, like [1] we also compute another criterion F1 that
combines both precision and recall, i.e.,

F1 = 2 · precision ∗ recall
precision+ recall

. (24)

C. Results on the First Database

We first examine the ability of the proposed scheme de-
tecting plain copy-move forgery, namely no further attack is
performed for the tampered image. This experiment involves
the 48 original images as well as the 48 images with plain
copy-move forgery. The result is shown by the detection errors
in image level with false negative rate FN and false positive
rate FP (defined in (20) and (21)). According to [1], SIFT and
SURF are the most widely used keypoints for CMFD job. So
in Table III we compare the proposed scheme with the results
associated with these two keypoints. The results are from the
CMFD algorithm implemented by Christlein et al, but may be
different to those in [1] owing to our resizing the test images.
From this experimental result we can see that our proposed
CMFD scheme is corresponding to the smallest false negative
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TABLE III: Result of plain CMF detection

Methods FN FP

SIFT 26/48 9/48
SURF 27/48 8/48
Proposed 8/48 17/48

rate, which means the proposed scheme is good at detecting
the tampered images. However, the false positive rate of the
proposed scheme is also larger than the others. We think the
reason is two-fold. First, the second stage of matching cannot
remove all the false alarm from the output of the first stage of
matching. On the other hand, when detecting the suspicious
pair of patches its threshold ϕ is set as loose as possible to
avoid miss of detection. In consequence, some images are
falsely detected especially those with repeated contents, say
Statue etc. Secondly, recall that we employ DSIFT to describe
the pixels in the second stage of detection. DSIFT descriptor
is fast and robust to attacks, but is not discriminative enough.
These two problems need to be solved in our future work
to essentially improve the efficiency of the proposed scheme.
Figure 6 shows two tampered images that can only be detected
by the proposed scheme.

Fig. 6: Two tampered images detected by proposed scheme.

As mentioned above our setting on the threshold ϕ is one
important reason blowing the false positive rate up. Thus the
false positive rate may be decreased simply by adjusting ϕ. We
plot the ROC curve in Figure 7 to show the trade-off between
false positive and false negative when changing ϕ. It can be
observed that the false positive rate can be smaller than 0.15
when set ϕ = 20. However, the false negative rate is increased
to 0.33 at the same time. So adjusting the parameter ϕ only
allows us to satisfy different detection requirements, but it
does not improve the performance of the proposed scheme
essentially. Since the both test databases are not large enough,
it is difficult to obtain a parameter setting suitable to every
images based on the results in Figure 7. Thus we still set
ϕ = 10 in the following tests.

Next we test the robustness of our proposed CMFD scheme
against various attacks. That is the copied snippets in the
plain copy-move images further undergo signal processing
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Fig. 7: ROC curve plotted when changing of parameter ϕ.

and geometric transformations in order to escape the CMFD.
In this experiment, we consider 4 kinds of attacks, namely
JPEG compression, adding noise, rotation, scaling down and
up. Table IV gives the settings for these attacks which are
almost the same as in [1]. With these attacks there are totally
1392 (29× 48) images for robustness testing.

TABLE IV: Setting of the Attacks

Attacks Parameters

Adding noise Deviation (20:20:100)
JPEG Quality Factor (20:10:100)
Rotation Angle(2◦ : 2◦ : 10◦)
Scaling Ratio(0.91:0.02:1.09)

In this test we evaluate our proposed CMFD scheme by
the precision and recall at the pixel level (defined in (22)
and (23)). The experimental results are given in Figure 8.
Besides SIFT and SURF, the results corresponding to Zernike
moment are also illustrated. Please note that the results of
the comparison schemes are different to those in [1] because
of image resizing. We can see that under signal processing
attacks, namely JPEG compression and adding noise, Zernike
moment performs best mostly in terms of F1 criterion owing to
its good detection precision. However, its performance clearly
drops down when increasing the intensity of attacks. On the
contrary, the proposed scheme and the other two keypoint-
based schemes are more robust to various attacks. In most
cases, our proposed CMFD scheme outperforms the prior arts
in terms of F1 criterion especially under geometric attacks.
Besides, our proposed CMFD scheme is with the best recall
results among all the tested schemes, which means it is able
to find the largest number of CMF regions. However, the
precision of the proposed scheme is lower than that obtained
by prior arts. We observe that our scheme is likely to detect
human-made object (like windows of building) as CMF region.
This is also consistent with the results given in Table III and
literature [1]. So owing to its properties aforementioned, the
proposed scheme may be used in the case that we wish no
CMF regions escaping detection even with sacrifice of a little
high false alarm rate.

In order to justify the effectiveness of our proposed estima-
tion refinement step (Section IV), we further test the perfor-
mance of our proposed CMFD scheme without the second
stage of matching. Please note that although our proposed
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Fig. 8: Detection Results of different CMFD schemes against 5 kinds of attacks. The three columns give the recall, precision
and F1 results, respectively. Please note that the higher the curve the better the result is. The results of the comparison schemes
are different to those in [1] because of image resizing.
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Fig. 8: Detection Results of different CMFD schemes against 5 kinds of attacks. The three columns give the recall, precision
and F1 results, respectively. The results of the comparison schemes are different to those in [1] because of image resizing.
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Fig. 9: Detection results of our proposed CMFD scheme with and without the proposed estimation refinement step.

refinement method is not used, the final estimation of the affine
matrix here is refined as well using the gold standard algorithm
[21, pp. 130] as in [1]. This justification experiment also
employs the same criteria and test images as the robustness
test above. But unlike Figure 8, Figure 9 presents the test
results associated to the images instead of the attacks. Each
bar shows an average error measure (precision, recall or F1)
calculated from one base image on which we perform 29 kinds
of attacks as described in Table IV. We can find that in most
cases the detection performance deteriorates if our proposed
estimation refinement step is not taken. These results confirm
the effectiveness of the second stage of matching. However, we
point out that the second stage of matching requires additional
computational cost, which needs our further work to improve
it.

D. Test Results on MICC-F600

We also compare our proposed CMFD scheme with two
prior arts [14], [28] on the database MICC-F600 (refer to Table
I). The detection error at image level is given in Table V. It can

TABLE V: Detection results on MICC-F600

Measures Amerini et al. [14] Amerini et al. [28] Proposed

FN 31.0% 18.4% 11.9%
FP 12.5% 7.27% 13.8%

be observed that the proposed scheme is with the lowest false

negative rate but the highest false positive rate, which is rather
consistent with the results on the benchmark database. The
detection errors of the proposed scheme at pixel level for all
the forged images are also calculated. The average precision,
recall and F1 values are 0.86, 0.88 and 0.87, respectively.
These results also prove the effectiveness of our segmentation
setting in Table II. Figure 10 shows the detection results on
the test images with CMF regions fused in the background. It
can be observed that the proposed scheme detects most CMF
regions.

VI. CONCLUSION AND DISCUSSION

This paper presented a CMFD scheme based on image
segmentation. Although the CMF regions are detected mainly
by comparing the keypoints extracted in the image, we cannot
simply classify the proposed scheme as a keypoint-based one.
It can be seen as a combination of both existing schemes
because in the two stages of matching process both keypoints
and pixel features are employed. Our main contributions can
be concluded to the following two aspects.

1) Considering the CMF regions usually have certain mean-
ing, we propose to segment the image into semantically
independent patches, such that the CMFD problem can
be solved by partial matching among these segmented
patches.

2) The matching process between segmented patches con-
sists of two stages. In the second stage, an accurate
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(a) Original (b) Ground truth (c) Proposed (d) SIFT

(e) Original (f) Ground truth (g) Proposed (h) SIFT

(i) Original (j) Ground truth (k) Proposed (l) SIFT

(m) Original (n) Ground truth (o) Proposed (p) SIFT

Fig. 10: Detection results on the images with CMF regions fused in the background. The first column shows the test images
from MICC-600. The second column shows the ground truth of the CMF regions in these images. The third and the fourth
columns show the detection results of our proposed scheme and the scheme based on SIFT in [1], respectively.

estimation of transform matrix can be obtained by an
EM-based algorithm.

One may concern the computational complexity of the
proposed scheme. Compared with the keypoint-based schemes,
the proposed scheme mainly needs two more steps, namely the
image segmentation and the transform estimation refinement.
If using some efficient methods like [32], [34], we are able
to segment an image in several seconds. The re-estimation
of transform matrix is more complex because it needs an
iterative procedure (refer to Section IV-C). However, owing
to the threshold set in (1), only a few patches (about one
tenth) need the second stage of matching for transform matrix
re-estimation. In our future work, we will try to improve the
detection speed of the proposed scheme by means of parallel
programming.
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