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a b s t r a c t

The purpose of this paper is to propose effective parallelization strategies for the Ant Colony Optimization
(ACO) metaheuristic on Graphics Processing Units (GPUs). The Max–Min Ant System (MMAS) algorithm
augmented with 3-opt local search is used as a framework for the implementation of the parallel ants
and multiple ant colonies general parallelization approaches. The four resulting GPU algorithms are
extensively evaluated and compared on both speedup and solution quality on a state-of-the-art Fermi
GPU architecture. A rigorous effort is made to keep parallel algorithms true to the original MMAS applied
to the Traveling Salesman Problem. We report speedups of up to 23.60 with solution quality similar to
the original sequential implementation. With the intent of providing a parallelization framework for ACO
on GPUs, a comparative experimental study highlights the performance impact of ACO parameters, GPU
technical configuration, memory structures and parallelization granularity.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Ant Colony Optimization (ACO) metaheuristic [17] is
a constructive, population-based approach based on the social
behavior of ants. As it is acknowledged as a powerful method
to solve combinatorial optimization problems, a considerable
amount of work is dedicated to improving its performance. Among
the proposed solutions, we find the use of parallel computing to
reduce computation time, improve solution quality or both.

Most parallel ACO implementations can be classified into two
general approaches. The first one is the parallel execution of the
ants construction phase in a single colony. Initiated by Bullnheimer
et al. [5], it aims to accelerate computations by distributing ants to
computing elements. The second one, introduced by Stützle [27],
is the execution of multiple ant colonies. In this case, entire ant
colonies are attributed to processors in order to speedup com-
putations as well as to potentially improve solution quality by
introducing cooperation schemes between colonies. These imple-
mentations usually follow themessage-passing and shared-memory
computing paradigms. The relatively high-level abstraction model
they provide facilitates the development of effective and portable
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optimization software on conventional CPU-based parallel archi-
tectures.

However, as research on parallel architectures is rapidly evolv-
ing, new types of hardware have recently become available for high
performance computing. Among them, we find Graphics Process-
ing Units (GPUs) which provide great computing power at an af-
fordable cost but are difficult to program. In fact, it is not clear that
conventional paradigms are suitable for expressing parallelism in a
way that is efficiently implementable onGPU architectures. As aca-
demic and industrial combinatorial optimization problems always
increase in size and complexity, the field of parallel metaheuristics
has to follow this evolution of high performance computing.

The purpose of this paper is to propose parallel implementa-
tions of ACO that are suitable for GPU computing environments.
For both parallel ants and multiple colonies general approaches,
two parallelization strategies are designed and experimentally
compared on speedup and solution quality. Important algorith-
mic, technical and programming issues are also addressed in this
context.

This paper is organized as follows. First, we present the ACO
metaheuristic, the Max–Min Ant System (MMAS) algorithm and
its application to the Traveling Salesman Problem (TSP).We choose
MMASandTSP to focus on algorithmic aspects of ACOand technical
issues of GPU computing that are not problem dependent, as well
as to strictly compare our results to the original works of Stützle
and Hoos [28]. After a fairly complete review of the literature
on parallel ACO, the proposed GPU parallelization strategies for
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MMAS are explained. Finally, extensive experimental results are
presented to evaluate and compare their performance.

2. Ant Colony Optimization for the traveling salesman problem

The Traveling Salesman Problem (TSP) is well-known in
combinatorial optimization. It may be defined as a complete
weighted directed graph G = (V , A, d) where V = {1, 2, . . . , n}
is a set of vertices (cities), A = {(i, j)|(i, j) ∈ V × V } is the set of
arcs, and d : A → N is a function assigning a weight or distance
(positive integer) dij to every arc (i, j). The objective is to find a
minimum weight Hamilton cycle in G, which is a path of minimal
length visiting each city exactly once.

In most ACO algorithms, a given number of ants gradually
and concurrently build tours using heuristic and pheromone
information. Ants update pheromone values in the process to guide
other ants to potentially better tours. In many cases, updates are
performed according to the tours built and to various general rules.
Following a given number of iterationswhere ants have builtmany
– hopefully – improved solutions, the best one is chosen as the
solution of the problem. A complete description of ACO can be
found in Dorigo [16,17].

The Max–Min Ant System (MMAS) [28] is generally recognized
as one of the most effective ACO algorithms at the present
time. It also incorporates the main mechanisms and memory
structures that are common to most algorithmic versions of this
metaheuristic. Fig. 1 illustrates a simplified pseudo-code of the
MMAS. In this algorithm, the number of antsm is set to the number
of cities n. The ants tour construction process is performed in each
of the ni iterations. To that end, each ant antk is initially placed on
a randomly chosen city. Then, at each solution construction step,
antk builds its tour Tk by repeatedly applying a state transition
rule to choose the cities that will be added to its tour among the
unvisited cities. After all ants have built their tour, pheromone τ
is updated according to some rule which follows two objectives:
to increase the desirability of arcs associated to the global best
solution found so far Tgl or to the best solution of the current
iteration Tit and to reduce the ones that have not been used. To
avoid search stagnation, τ is kept between minimal and maximal
values τmin and τmax on each arc. τ is also initialized at τmax in order
to facilitate exploration of the search space in the beginning of the
algorithm. Moreover, MMAS uses a trail-smoothing mechanism
which also promotes exploration by increasing the probability of
choosing arcs with low pheromone values.

For better readability, the state transition and pheromone
update rules are not explained in this paper. More information
on these subjects may be found in the original works of Stützle
and Hoos [28]. However, it is important to mention that the state
transition rule computes the probability for each unvisited city to
be chosen by the ant according to distance and pheromone values.
These are stored in two n × n matrices that need to be available
to each ant. Consequently, when implementing MMAS (as well as
most ACO algorithms) on a real computer architecture, memory
must be large enough to accommodate these data structures
and fast enough to keep up with the numerous requests from
processing elements. This requirement becomes more prohibitive
as problem size increases.

When faced with large problems, MMAS uses candidate lists
to reduce the possible cities to be chosen by ants during the
tour construction phase. These lists contain, for each city, a given
number of its cl nearest neighbors sorted in increasing order. Ants
choose cities exclusively in candidate lists until all candidates are
visited. Only in that case is an ant allowed to pick a city outside the
lists.

Finally,MMASmay be augmentedwith a local search procedure
such as 3-opt [21] to improve the solutions found by the ants. This
Fig. 1. MMAS pseudo-code with local search.

method aims to improve a current solution by replacing at most
three of its arcs. The process of replacing the current solution with
an improved one is then iterated until no better solution is found.

ACO algorithms have proven to be successful in solving
many academic and industrial combinatorial optimization prob-
lems [17]. However, facedwith large and hard problems, they need
a considerable amount of computing time and memory space to
be effective in their exploration of the search space. Consequently,
some interest in their parallelization has been raised in the recent
years. The following section presents a literature reviewon parallel
ACO.

3. Literature review on parallel Ant Colony Optimization

The concurrent nature of both tour construction and global
search of the solution space makes the ACO metaheuristic a good
candidate for parallelization. However, this potential comes with
important challenges mainly due to pheromone management and
to the size of the data structures that have to bemaintained.Works
on traditional, CPU-based parallel ACO can be classified into two
general approaches: parallel ants and multiple ant colonies. These
approaches are briefly explained in Sections 3.1 and 3.2. On the
other hand, few authors have proposed parallel implementations
dedicated to specific architectures. Section 3.3 is dedicated to these
hardware-oriented approaches. In all cases, a survey of related
works is also provided.

3.1. Parallel ants

Works related to the parallel ants approach, which aims to
execute the ants tour construction phase on many processing
elements, were initiated by Bullnheimer et al. [5]. They proposed
two parallelization strategies for the Ant System on a message
passing and distributed-memory architecture. The first one is
a low-level and synchronous strategy that aims to accelerate
computations by distributing ants to processors in a master-slave
fashion. At each iteration, the master broadcasts the pheromone
structure to slaves, which then compute their tours in parallel and
send them back to the master. The time needed for these global
communications and synchronizations implies a considerable
overhead. The second strategy aims to reduce it by letting
the algorithm perform a given number of iterations without
exchanging information. The authors conclude that this partially
asynchronous strategy is preferable due to the considerable
reduction of the communication overhead.
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The works of Talbi et al. [29], Randall and Lewis [24], Islam
et al. [19], Craus and Rudeanu [8], Stützle [27] and Doerner
et al. [15] are based on a similar parallelization approach and a dis-
tributed memory architecture. Delisle et al. [13,11] implemented
this scheme on shared-memory architectures like SMP comput-
ers and multi-core processors. They also compared performance
between the two types of architectures [12].

3.2. Multiple ant colonies

The multiple ant colonies approach, also based on a message-
passing and distributed memory architecture, aims to execute
whole ant colonies on available processing elements. It was
introduced by Stützle [27] with the parallel execution of multiple
independent copies of the same algorithm. Middendorf et al. [23]
extended this approach by introducing four information exchange
strategies between ant colonies: exchange of globally best solution,
circular exchange of locally best solutions, migrants or locally best
solutions plus migrants. It is shown that it can be advantageous
for ant colonies to avoid communicating too much information
and too often. Giving up on the idea of sharing whole pheromone
information, they based their strategy on the trade of a single
solution at each exchange step.

Chu et al. [7], Manfrin et al. [22], Ellabib et al. [18] and
Alba et al. [2] have also proposed different information exchange
strategies for the multiple ant colony approach. Many parameters
are studied like the topology of the links between processors as
well as the nature and frequency of information exchanges. These
strategies are implemented using MPI on distributed memory
architectures. On the other hand, Delisle et al. [10] adapted some
of them on shared-memory architectures.

3.3. Hardware-oriented parallel ACO

Even though they mostly follow the parallel ants and multiple
ant colonies approaches, hardware-oriented approaches are dedi-
cated to specific and untraditional parallel architectures. Scheuer-
mann et al. [26,25] designed parallel implementations of ACO on
Field Programmable Gate Arrays (FPGA). Considerable changes to
the algorithmic structure of themetaheuristic were needed to take
benefit of this particular architecture.

Few authors have tackled the problem of parallelizing ACO on
GPU in the form of preliminary work. Catala et al. [6] propose
an implementation of ACO to solve the Orienteering Problem.
Instances of up to a few thousand nodes are solved by building
solutions on GPU. Wang et al. [30] propose an implementation of
theMMASwhere the tour construction phase is executed on a GPU
to solve a 30 city TSP. You [31] provides some results obtainedwith
a similar implementation of the Ant System, reporting speedups
ranging from 2 to 20 approximately on TSPs containing from
50 to 800 cities approximately. Zhu and Curry [33] implement
the same strategy on an ACO with pattern search for nonlinear
function optimization problems. Speedups ranging from 128 to
403 are provided as computational results using 15,360 ants. We
also report the works of Li et al. [20] on a fine-grained ACO
implementation. Finally, Delévacq et al. [14] have proposed an
implementation of an Ant System and a comparative study to show
the influence of various ACO and GPU parameters on performance.

Bai et al. [3] provides a multi-colony implementation of MMAS
where each colony has different parameters. For each colony,
the whole execution of each iteration is deported on the GPU.
Speedups between 2.2 and 2.3 are reported on TSPs with sizes
varying from 51 to 400 cities.

These preliminary works provide some insights on the level of
performance that can be experimentally achieved with different
GPU implementations of ACO. However, they also present major
shortcomings that undermine their scientific credibility and leave
many important questions unanswered. First, speedups aremostly
provided with nonexistent or inappropriate evaluation of solution
quality as well as unrealistic or uncommon parameter settings.
Also, strategies based on associating each ant to a single thread
are proposed without any alternative approaches and multi-
colony strategies that perform well on both speedup and solution
quality are missing. Moreover, methods are often simplified to
become uncompetitive with state-of-the-art ACO metaheuristics
or experimented on TSPs limited to a few hundred cities without
bypassing obvious memory limits of actual GPUs. Finally, the
effects of using the different memory structures of GPUs on actual
parallel ACO performance are not understood well.

As the use of GPUs for general purpose computing is emerg-
ing, the field of parallel metaheuristics has to follow this evolution.
However, there is stillmuch conceptual, technical and comparative
work to achieve in order to effectively exploit this massively paral-
lel and affordable architecture for combinatorial optimization. This
is especially true in the case of ACO where extensive and rigor-
ous works are still missing. This paper aims to partially fill this gap
by proposing, evaluating and comparing various GPU implementa-
tions of a state-of-the-art ACO algorithm for the TSP: theMax–Min
Ant System as it has been defined by Stützle and Hoos [28]. An ef-
fort is made to keep the parallel algorithms true to the original se-
quential one and to avoid degrading solution quality for the sake
of improving speedups. This is shown by choosing the TSP bench-
marks accordingly and by comparing the results of theMMAS both
with and without local search, as it was done in the original paper.

For both parallel ants and multiple colonies approaches, two
GPU parallelization strategies are proposed and compared. Many
GPU and memory configurations are also evaluated. The proposed
work is incremental in the sense that each strategy is built upon
knowledge provided by the results of previous ones. Moreover,
in order to better exploit the GPU architecture, a strategy of finer
grain than parallel ants is proposed: computation of the transition
rule in parallel. We also show that this strategy can be adapted to
the standard 3-opt local search procedure used by the ants.

A last contribution of this article is to provide results on a state-
of-the-art GPU architecture, the NVIDIA Fermi, on problem sizes
to up to 2103 cities. This brings insight not only on the results
of solving considerably larger TSPs than the ones found in the
literature, but also on the actual limits of the GPU approach for
conventional ACO algorithms.

Next section presents the proposed parallelization strategies for
MMAS on GPU architectures.

4. Parallel GPU strategies for MMAS

As explained in Section 3, parallelization of ACO algorithms
usually follow the general paradigms of parallel ants in a single
colony and multiple ant colonies. Ants in the former case,
or colonies in the latter case, are distributed to processing
elements. Sections 4.1–4.4 are dedicated to the adaptation of
these paradigms to the GPU architecture. In each case, two
implementation strategies are proposed. They mainly differ by
their definition of processing elements and by their use of GPU
memories. Beforehand, for the sake of completeness, a brief
description of the GPU architecture and computational model are
given.

4.1. GPU architecture and CUDA programming model

The conventional NVIDIA GPU [9] includes many Streaming
Multiprocessors (SM), each one of them being composed of
Streaming Processors (SP). Several memories are distinguished on
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this special hardware, differing in size, latency and access type
(read-only or read/write).

Device memory is relatively large in size but slow in access time.
The global and local memory spaces are specific regions of the
devicememory that can be accessed in read andwritemodes. Data
structures of a computer program to be executed on GPU must be
created on the CPU and transferred on global memory which is
accessible to all SPs of the GPU. On the other hand, local memory
stores automatic data structures that consumemore registers than
available.

Each SM employs an architecture model called SIMT (Single
Instruction, Multiple Thread) which allows the execution of many
coordinated threads in a data-parallel fashion. It is composed
of a constant memory cache, a texture memory cache, a shared
memory and registers. Constant and texture caches are linked to
the constant and texture memories that are physically located in
the device memory. Consequently, they are accessible in read-
only mode by the SPs and faster in access time than the rest of
the device memory. The constant memory is very limited in size
whereas texture memory size can be adjusted in order to occupy
the available device memory. All SPs can read and write in their
local shared memory, which is fast in access time but small in
size. It is divided into memory banks of 32-bits words that can
be accessed simultaneously. This implies that parallel requests for
memory addresses that fall into the same memory bank cause the
serialization of accesses [9]. Registers are the fastest memories
available on a GPU but involve the use of slow local memory when
too many are used. Moreover, accesses may be delayed due to
register read-after-write dependences and register memory bank
conflicts.

GPUs are programmable through different Application Pro-
gramming Interfaces like CUDA, OpenCl or DirectX. However, as
current general-purpose APIs are still closely tied to specific GPU
models, we choose CUDA to fully exploit the available state-of-
the-art NVIDIA Fermi architecture. In the CUDA programming
model [9], the GPU works as a SIMT co-processor of a conven-
tional CPU. It is based on the concept of kernels, which are func-
tions (written in C) executed in parallel by a given number of CUDA
threads. These threads are grouped together into blocks that are
distributed on the GPU SMs to be executed independently of each
other. However, the number of blocks that a SM can process at the
same time (active blocks) is restricted and depends on the quantity
of registers and shared memory used by the threads of each block.
Threads within a block can cooperate by sharing data through
the shared memory and by synchronizing their execution to co-
ordinate memory accesses. In a block, the system groups threads
(typically 32) into warps which are executed simultaneously on
successive clock cycles. The number of threads per block must be
a multiple of its size to maximize efficiency. Much of the global
memory latency can then be hidden by the thread scheduler if
there are sufficient independent arithmetic instructions that can
be issued while waiting for the global memory access to complete.
Consequently, the more active blocks there are per SM, and also
active warps, the more the latency can be hidden.

It is important to note that in the context of GPU execution,
flow control instructions (if, switch, do, for, while) can affect the
efficiency of an algorithm. In fact, depending on the provided data,
these instructions may force threads of a same warp to diverge, in
other words, to take different paths in the program. In that case,
execution paths must be serialized, increasing the total number of
instructions executed by this warp.

4.2. Parallel ants

In the parallel ants general strategy, ants of a single colony
are distributed to processing elements in order to execute tour
constructions in parallel. On a conventional CPU architecture, the
concept of processing element is usually associated to a single-
core processor or to one of the cores of a multi-core processor.
On a GPU architecture, as previous work on ACO has shown, the
obvious choice is to associate this concept to a single SP. In that
case, a first strategy that may be defined is to associate each ant
to a CUDA thread. Each thread then computes the state transition
rule of each ant in a SIMD fashion. We call this strategy ANTthread.
It has the advantage of allowing the execution of a great number
of ants on each SM and the drawback of limiting the use of fast
GPU memory. In fact, each ant needs its own data structures,
mainly tour and probability arrays (of size O(n)), to effectively
compute the state transition rule required to build a solution.
Simple calculations show that using the shared memory for these
structures would restrict the algorithm to use a very small number
of ants on a single SM and that this restriction would grow linearly
with problem size. Code optimizationsmay help raise that number
by a constant factor, but hardly enough to bypass algorithmic
limitations. Therefore, these data structures must be stored in
global memory and accessed in read/write mode during the tour
construction phase.

The second proposed strategy is based on associating the
concept of processing element to a whole SM. In that case, each
ant is associated to a CUDA block and parallelism is preserved for
tour construction. We call this strategy ANTblock. A single thread of
a given block is still in charge of executing the tour construction
of an ant, but an additional level of parallelism may be exploited
in the computation of the state transition rule. In fact, an ant
evaluates several candidate cities before selecting the one to add
to its current solution. As these evaluations can be done in parallel,
they are assigned to the remaining threads of the block.

Following the idea of the first strategy, a simple implementation
would then imply keeping ant’s private data structures in the
global memory. However, as only one ant is assigned to a block
and so to a SM, taking advantage of the shared-memory becomes
possible for problems bigger than a few dozen cities. Data needed
to compute the ant state transition rule is then stored in this
memory that is faster and accessible by all threads that participate
in the computation. In order to evaluate the benefits and limits
of using the shared-memory in this context, two variants of the
ANTblock strategy are distinguished: ANT global

block and ANT shared
block .

Most remaining issues encountered in the GPU implementation
of the parallel ants general strategy are related to memory
management. More particularly, data transfers between CPU and
GPU as well as global memory accesses require considerable time.
As it was mentioned before, these accesses may be reduced by
storing the related data structures in shared memory. However,
in the case of ACO, the three central data structures are the
pheromone matrix, the distance matrix and the candidates lists,
which are needed by all ants of the colony while being too large
(ranging from O(n ∗ cl) to O(n2) in size) to fit in shared memory.
They are then kept in global memory. On the other hand, as they
are not modified during the tour construction phase, it is possible
to take benefit of the texture cache to reduce their access times.

Also, in order to compute the state transition rule, random
numbers need to be generated and that feature is not directly
available on GPUs. For that matter, a possible solution is to
compute them prior to the beginning of the iterations and to
store them in texture memory to enable faster access [33].
However, the great quantity of numbers needed by MMAS implies
important CPU–GPU transfers. Therefore, the adopted solution is
to implement the Linear Congruential Generator (LCG) procedure
on GPU as it was proposed by Yu et al. [32] to initialize the seeds
on the CPU and to let each ant use its own local numbers while
constructing tours.
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Fig. 2. ANTthread and ANTblock pseudo-code.

Fig. 2 describes a simplified pseudo-code of ANTthread and
ANTblock parallel strategies. Even if they are defined and evaluated
in the context of MMAS, they are general enough to be adapted to
most ACO implementations. Also, it is well known that current best
performing ACO algorithms improve the solutions generated by
the ants with local search algorithms, as it is the case with MMAS
for the TSP [28].

4.3. Adding local search to the parallel ants GPU strategies

Integrating a standard 3-opt local search to MMAS implies
that an important part of the global computation time will
be devoted to it. Fig. 3(a) shows the general model of the
execution of MMAS with local search. As each solution is being
improved independently of the others, this step is a good candidate
for parallelization. Not only is the local search well-suited for
integration in the general parallel ants scheme, but the previously
proposed strategies provide a natural framework for the GPU
acceleration of this procedure. In both cases, the 3-opt procedure
uses the distancematrix and candidates lists so it benefits from the
texture cache of global memory.

Fig. 3(b) shows the 3-opt integration to the ANTthread strategy.
A thread is not associated only to an ant anymore but to the
whole construction and improvement of a tour. In order to improve
a current solution, local search generates different neighbors
deleting arcs and reconnecting partial tours. These neighbors are
then evaluated and the best one replaces the current solution.
For the same reasons discussed in Section 4.2, the data structures
necessary to compute the 3-opt process for all the ants of a given
block can be stored only in global memory.
On the other hand, the ANTblock strategy provides a framework
where further improvements may be proposed to the GPU 3-opt
procedure. In fact, it renders the possibility of associating the
whole construction and improvement of a tour to a block. The
computation of the multiple neighbors is then shared between all
its threads. This scheme is illustrated in Fig. 3(c). In the ANT global

block
strategy, the necessary data structures for the local search process
are kept in global memory. However, the ANT shared

block strategy opens
the way for another improvement, which is to move all data to
shared memory.

4.4. Multiple ant colonies

In the multiple ant colonies general parallelization approach,
originally described by Stützle and Hoos [27], several ant colonies
are distributed to processing elements. In that case, two possible
hardware configurations are considered: single GPU and multiple
GPU. This leads to two different strategies for independent ant
colonies: COLONYblock and COLONYGPU . Moreover, since ants are
executed on the GPU underlying architecture in both cases, they
also take benefit of the strategies described in Sections 4.2 and 4.3.
Fig. 4 illustrates the general model of this approach.

The COLONYblock strategy associates each colony to a different
block to be executed by a single SM of a GPU and applies the
ANTthread strategy to distribute the ants of a colony to threads
of a block. Some data structures, like pheromone matrices, ants
tours and various parameters, must be created for each colony. In
order to limit prohibitive CPU–GPU transfers for this huge amount
of data, the whole algorithm is executed on GPU. Distance and
candidate matrices are not modified during the execution of the
colonies so they may take advantage of the texture cache. On the
other hand, pheromone matrices are subject to updates so they
are kept in the global memory. Accordingly, all data structures are
created on CPU for each colony and then copied in GPU memory.
At the end of the algorithmwhere each block has completed all the
iterations of its associated colony, the shortest tour of each colony
is retrieved from GPU to CPU in order to determine the global best
solution. Fig. 5 provides a pseudo-code of the COLONYblock strategy.

The COLONYGPU strategy assumes a computing environment
where many GPUs are interconnected and associates each colony
to a different GPU. In that case, both parallel ants strategies of Sec-
tion 4.2may be applied and each ant of the colonymay correspond
to a thread or to a block of that GPU. This strategy implies some
a

b c

Fig. 3. Parallelization models of tour construction and local search for MMAS: general model (a), ANTthread (b) and ANTblock (c).
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Fig. 4. Parallelization model of multi-colony MMAS.

Fig. 5. COLONYblock pseudo-code.

Fig. 6. COLONYGPU pseudo-code.

form of CPU parallelization to manage each colony before and af-
ter GPUexecution: a parallel region createsmultiple CPU execution
threads (which could take the form of threads or processes at the
application level) and duplicates the algorithm and data for each
colony. Each GPU then becomes the SIMT co-processor of a given
thread, and possibly of a processing element if such an environ-
ment is available at the CPU level. After each thread has initialized
its colony and transferred the associated data to its GPU, it launches
its colony and either the ANTthread or ANTblock strategy is applied.
After the termination condition is met for each colony, each CPU
thread retrieves its shortest tour. Finally, at the end of CPU parallel
region, the best solution is kept as the solution of the problem. A
pseudo-code of this strategy is presented in Fig. 6.

An extensive experimental study, explained in the next section,
has been performed to evaluate and compare the four strategies in
a state-of-the-art GPU computing environment.

5. Experimental results

For each general parallelization approach, the two specific GPU
strategies for MMAS designed in Section 4 are experimented and
compared on various TSPswith sizes varying from51 to 2103 cities.
Conforming to the experimental principles adopted by Stüzle and
Hoos [28],minimums and averages are computed from25 trials for
problems with less than 1000 cities and from 10 trials for larger
instances. An effort is made to keep the algorithm and parameters
as close as possible to the original MMAS. In some cases where
we propose slightly different parameters to make the algorithm a
better fit for GPUs, our choices are justified and results are provided
to show the impact on solution quality.

Following the guidelines of Barr and Hickman [4] and Alba [1],
the relative speedup metric is computed on mean execution times
to evaluate the performance of the proposed implementations. For
the ANTthread, ANTblock and COLONYblock strategies involving only 1
GPU, speedups are calculated by dividing the sequential CPU time
with the parallel time, which is obtained with the same CPU and
the GPU acting as a co-processor. In the case of COLONYGPU , parallel
time is obtained with as many CPU (or cores in the case of multi-
core processors) and GPU as there are colonies, one CPU–GPU
combination being linked to each colony.

Experiments were made on two GPUs of a NVIDIA Fermi C2050
server available at the Centre de Calcul Régional Champagne-
Ardenne. Each GPU contains 14 SMs, 32 SPs per SM, 48 KB of shared
memory per SM and awarp size of 32. The server also includes two
4-core Xeon E5640 CPUs running at 2.67 GHz and 24 GB of DDR3
memory. Application code was written in the ‘‘C for CUDA V3.1’’
programming environment.

For each problem, the number of threads and blocks used for the
GPU resolutionwere empirically chosen according to a preliminary
study based on previous work by the authors [14]. At this
point, optimal general configurations can hardly be determined
beforehand since they depend on many technical constraints
linked to the GPU architecture and programming environment as
well as on the algorithmic design of the metaheuristic. Overall,
even though it is generally recommended to use a high number
of threads in GPU applications [9], a compromise had to be found
in the case of ACO algorithms. Consequently, thread and block
configurations are provided for all experiments.

Next two sections provides results for parallel ants andmultiple
ant colonies approaches.

5.1. Parallel ants

The first part of the proposed experiments is to evaluate the
performance of the ANTthread and ANTblock strategies on a basic
MMAS. Stützle and Hoos [28] recommend to use of a number
of ants m equal to the number of cities n. However, CUDA
documentation [9] strongly advise to use a number of threads per
block that is a multiple of warp size to maximize efficiency. In
order to take both considerations into account, we have chosen the
values of m such as they are the multiple of warp size closest to n
(in that case,m = 32×2x where x is some integral number). In the
ANTthread strategy, blocks and threads configurations always verify
m = number of blocks x number of threads with 64 blocks used for
each problem. In the ANTblock strategies, m blocks are used, each
one of them being composed of a number of threads equal to the
size of candidate lists cl, in that case 20.MMAS original authors also
set the number of iterations to 2500n with m = n. Consequently,
in our case it is set to 2500n

m with the intent of globally keeping the
same global number of tour constructions.

A first step in our experiments is to compare solution quality
obtained by sequential and parallel versions of the algorithm.
Table 1 presents minimum and average tour lengths for each
strategy and for each problem. The reader may first note
the similarity between the results obtained by our sequential
implementation and the ones provided by the authors of the
original MMAS, as well as their closeness to optimal solutions.
Results provided for all parallel strategies are also similar, showing
that solution quality is globally preserved.

A second step is to evaluate and compare the reduction of
execution time that is obtained with each parallelization strategy.
Fig. 7 shows the speedups obtained for each problem. The reader
maynotice that the best speedup ofANTthread strategy is 5.84,which
is greatly lower than the best ones of 15.50 and 19.47 obtained
with the two variants of the ANTblock strategy. Overall, ANTthread
speedups are many times lower than ANTblock ones for each
problemand the gapbecomes larger as problemsize increases. This
great difference comes mainly from code divergence induced by
computing the state transition rule ofmany ants on the same block
in SIMD mode, as well as from the limited amount of threads and
blocks required to effectively hidememory latencies. Nevertheless,
speedup generally increases with problem size, indicating that the
strategy is scalable to some extent. The slight speedup decreases
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Table 1
Minimum and average tour lengths of basic MMAS.

Problem Optimum Stützle and Hoos Sequential algorithm ANTthread ANT global
block ANT shared

block

426 426 426 426 426
eil51 427.80 427.32 427.76 427.20 427.20

21,282 21,282 21,282 21,282 21,282
kroA100 21,336.90 21314.36 21321.20 21305.84 21317.32

15,780 15,913 15,864 15,850 15,851
d198 15952.30 15973.84 15976.16 15970.52 15961.64

42,029 42,107 42,172 42,102 42,147
lin318 42346.60 42341.72 42315.84 42336.20 42325.32

8806 8923 8905 8894 8899
rat783 – 9042.44 9014.72 9054.68 9002.32

22,249 24,201 24,344 23,764 23,938
fl1577 – 24490.30 24541.90 24204.30 24287.80

80,450 82,378 82,566 81,891 82,547
d2103 – 82754.30 82749.50 82704.80 82756.00
Fig. 7. Speedups of basic MMAS GPU implementations.
encountered with 318 and 1577 cities are due to structural
differences that are specific to these problems.

The greater speedups obtained with the ANT global
block strategy,

ranging from 5.16 to 15.5, show that sharing the work of each
ant between several threads is more efficient. Distributing the
global work on a much higher number of threads is also beneficial
for GPU execution. For example, for 2103 cities, it uses 40 960
threads versus 2048 for the ANTthread strategy. This shows that
the SIMT computation model of the GPU is better tailored to the
computation of the state transition rule of single ants than to the
execution of whole ants. Also, using different blocks favors ants
independence during GPU execution.

Results also show that assigning ants to blocks brings further
improvements by the use of shared memory. In fact, the ANT shared

block
strategy provides the best speedups for all problems, ranging from
6.84 to 19.47.

Overall, speedups of the ANTblock strategy increases more
rapidly with problem size than the ANTthread strategy, showing
that this approach is more scalable. However, a slight decrease
is encountered with the 2103 cities problem. In that case, the
large workload and data structures implymemory access latencies
and bank conflicts costs that grow faster than the benefits of
parallelizing available work. Associated to the combined effect of
the increasing number of blocks required to perform computations
and a limited number of active blocks per SM, performance gains
become less significative.

An important objective of this work is to propose parallel
GPU strategies that provide competitive solution quality for TSP.
Following this idea, next section is dedicated to performance
evaluation of parallel ants strategies with MMAS augmented with
local search.

5.2. Parallel ants with local search

The next step in our experiments is to evaluate the ANTthread
and ANTblock strategies when MMAS is augmented with a 3-opt
local search. As the smallest problems are of little interest in this
context, only the problems ranging from 198 to 2103 cities are
tested. As it was explained in Section 5.1, algorithm parameters
are set to be as close as possible to Stützle and Hoos [28] while
taking GPU constraints into account. The size of candidate lists
used for local search is set to 40. Even though 25 ants are usually
used for tour construction, we choose to use 28 as this value is a
multiple of the number of available SM. Also, in original MMAS
work, authors limit the algorithm execution to a fixed maximum
time then calculate the average number of iterations needed to find
the optimal solution. As this method introduces a bias in speedup
evaluation and comparison, we choose to use a fixed number of
iterations for each problem. This value is set to 2048 as it is the
first power of 2 higher than the needed iterations for solving bigger
problems by the sequential algorithm. As this value is also easily
divisible by the usual numbers used in GPU configurations, this
ensures that the same number of tour constructions is performed
in all cases no matter how many blocks and threads are used.

The number of blocks and threads used for each problem is as
follows. For the ANTthread strategy, 28/1 (28 blocks of 1 thread) is
used in both tour construction and local search phases. For the
ANTblock strategy, 28/20 is used for tour construction tour phase and
28/192 (d198), 28/160 (lin318), 28/160 (rat783), 28/224 (fl1577)
and 28/192 (d2103) are used for local search.

In the same way as Section 5.1, Table 2 provides minimum
and average tour lengths for each strategy. The reader may note
that overall results are similar to those presented by Stützle
and Hoos [28]. They are also close to optima. Moreover, results
of parallel strategies are similar to those of sequential strategy,
indicating that solution quality is globally preserved.

Fig. 8 shows the speedups obtained with each strategy. The
reader may first note that speedups as high as 8.03 are obtained
with this version of MMAS. Results also show that the ANTblock
strategy leads to the best speedups in that case. However, when
compared to Fig. 7, they indicate that speedups are lower when
local search is applied to MMAS. This is explained in two different
ways. On one hand, the structure of 3-opt local search is not
very well suited to the GPU architecture. In fact, it requires few
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Table 2
Minimum and average tour lengths of MMAS with local search.

Problem Optimum Stützle and Hoos Sequential algorithm ANTthread ANT global
block ANT shared

block

15,780 15,780 15,780 15,780 15,780 15,780
d198 15780.20 15780.08 15780.08 15780.04 15780.04

42,029 42,029 42,029 42,029 42,029 42,029
lin318 42061.70 42036.44 42033.96 42041.40 42036.04

8806 8806 8806 8808 8807 8806
rat783 8816.80 8826.04 8824.76 8828.52 8828.68

22,249 22,261 22,257 22,264 22,262 22,262
fl1577 22271.80 22273.50 22274.50 22279.30 22286.10

80,450 – 80,495 80,533 80,537 80,522
d2103 – 80585.20 80563.00 80648.30 80682.40
Fig. 8. Speedups of MMAS with local search GPU implementations.
Table 3
Blocks/threads configurations used for tour construction and local search for 2048
iterations and 28 ants (A), 256 iterations and 224 ants (B) and 32 iterations and 1792
ants (C) for 198 and 2103 cities.

Problem ANTthread ANT global
block ANT shared

block

d198
A 28/1 28/1 28/20 28/192 28/20 28/192
B 224/1 112/2 224/20 224/96 224/20 224/96
C 28/64 112/16 1792/20 1792/96 1792/20 1792/64

d2103
A 28/1 28/1 28/20 28/192 28/20 28/192
B 112/2 112/2 224/20 224/128 224/20 224/192
C 56/32 112/16 1792/20 1792/128 1792/20 1792/192

calculations compared to the high amount of read and write
accesses to GPU memory needed to generate and evaluate the
neighborhood of a current solution. On the other hand, the low
number of ants implies that only 28 blocks or 28 threads are
executed at each iteration, which is not enough work to efficiently
exploit GPU resources and hide memory latency. The ANTthread
strategy provides the worst case as indicated by the absence of
speedup. Speedups obtained by theANT global

block strategy, ranging from
2.85 to 6.54, show that this division of the work and the use of a
higher number of threads is more efficient. Further improvements
are brought by the use of shared memory of the ANT shared

block strategy,
which provides speedups between 3.42 and 8.03. On a last note,
speedups that increase with problem size show the scalability of
the ANTblock strategy on these problems, even with the local search
limitations.

In order to provide some insight on the influence of the amount
of work during tour construction and local search, we have tested
increasing the number of ants and decreasing the number of
iterations. Speedup and solution quality are thus always evaluated
with the same global number of tour constructions. Table 3 shows
the block/thread configurations used for tour construction and
local search with each of the three iteration/ant combinations
tested for 198 and 2103 cities problems. Table 4 respectively show
sequential times, speedups and average tour lengths.

The reader may note that raising the number of ants and
lowering the number of iterations generally has a positive effect
on speedup for all strategies. This effect is negligible for the
ANTthread strategy speedups as they are still lower than 1. Not
Table 4
Speedups (boldface) and average tour lengths for 2048 iterations and 28 ants (A),
256 iterations and 224 ants (B) and 32 iterations and 1792 ants (C) for 198 and 2103
cities.

Problem ANTthread ANT global
block ANT shared

block

d198
A 0.17 15780.08 2.85 15780.04 3.42 15780.04
B 0.62 15780.32 9.61 15780.36 11.28 15780.28
C 0.78 15780.00 10.48 15780.40 12.48 15780.52

d2103
A 0.21 80563.00 6.52 80641.10 8.03 80682.40
B 0.74 80672.83 10.01 80938.30 8.25 81034.00
C 0.82 82352.83 10.02 82775.30 8.15 82638.90

only is the number of threads still too low, but having many ants
on the same block that apply the state transition rule and local
search differently induces a great deal of thread divergence and
serialization. The speedup increase ismuchmore noticeable for the
ANTblock strategy, going up to 12.48 for the 198 cities problem. In
this case, the ANT shared

block strategy also performs better than ANT global
block

strategy, which highlights the benefits of using shared memory.
However, for the 2103 cities problem, speedup keeps increasing for
ANT global

block whereas it remains similar for ANT shared
block . Speedup values

are also higher in the first case. Since shared memory is limited in
size, using too much of it reduces the number of active blocks per
SM. Thus, for this specific case, experiments showed that only 2
blocks were active compared to 6 for ANT global

block strategy. Moreover,
for bigger problems, shared memory is not even large enough to
store necessary data structures for a single block, indicating that
the limits of shared memory are reached.

Concerning solution quality, Table 4 shows that raising the
number of ants and lowering the number of iterations has no
effect on average tour length for the 198 cities problem, whereas
it has a negative effect for the 2103 cities problem. This shows
that changing the dynamics of MMAS may lead to improvements
in execution times, but at the expense of solution quality. Even
though it might be possible to find specific parameters that
favor speedup without hindering solution quality, the objective
of this work was to relate to the original MMAS so it was not
experimented extensively.

The second step of our experiments is related to multi-colony
parallelization of MMAS. Results are presented in next section.
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Table 5
COLONYblock average tour lengths and speedups with different numbers of colonies
(c.) and iterations (i.)

1 c. 256 i. 2 c. 128 i. 4 c. 64 i. 10 c. 25 i. 256 c. 1 i.

Length
average

15780.16 15780.17 15780.08 15789.00 15844.20

Speedup 0.06 0.15 0.30 0.73 1.77

Table 6
COLONYGPU speedups (boldface) and average tour lengths with different numbers
of colonies and iterations.

Problem 1 colony, 256 iterations 2 colonies, 128 iterations

d198 9.61 15780.36 16.24 15780.16
lin318 12.70 42071.52 23.60 42050.52
rat783 9.38 8830.96 18.52 8973.36
fl1577 9.83 22378.20 19.66 22461.30
d2103 10.01 80938.30 19.74 81223.20

5.3. Multiple ant colonies

Parallelization strategies proposed in Section 4.4 were tested
on problems from 198 to 2103 cities. As a starting point for
comparisons, the number of iterations is set to 256 and the number
of ants per colony is set to 224 for sequential CPU execution as it
was the case in Section 5.2. This ensures that there will be enough
ants in each colony tomake the search significative andprovides an
acceptable compromise between speedup and solution quality for
all problems. Experiments are based on keeping the same global
number of tour constructions for each configuration. Therefore,
when the number of colonies is increased, the number of iterations
is decreased.

For the COLONYblock strategy, the number of blocks and threads
are set to the number of colonies and to the number of ants per
colony respectively. Average tour lengths and speedups for this
strategy with 1, 2, 4, 10 and 256 colonies are shown in Table 5 for
the 198 cities problem.

The reader may notice that speedup is achieved only with
256 colonies and that this comes at the expense of solution
quality. Since all the ants of a colony are associated to a single
thread of its block, these threads have to be synchronized
during tour construction and local search. Moreover, pheromone
matrices associated to each colony are updated so they do not
take advantage of texture cache anymore. Deporting the entire
algorithm on GPU also involves a great number of registers which
dramatically lowers the number of active blocks per SM. Therefore,
memory latency is not efficiently hidden. Overall, this strategy
seems to offer limited potential and is not investigated more
deeply.

In order to apply the COLONYGPU strategy to the studied prob-
lems, the two available GPUs are used. The ANT global

block strategy is
integrated within each colony as it offers the best performance
without presenting shared memory limitations on bigger prob-
lems. 224 blocks of 20 threads are used within each GPU for the
tour construction phase. Blocks/threads configurations used for lo-
cal search phase are 224/96 for d198, lin318, rat783 and fl1577,
and 224/128 for d2103. Table 6 presents average tour lengths and
speedups obtained for 1 colony of 224 ants performing 256 itera-
tions in comparison to 2 colonies of 224 ants performing 128 iter-
ations on each GPU.

Results show that speedups range from 16.24 to 23.60 when 2
colonies are used. They are also approximately doubled in all cases
when compared to a single colony. This shows that a multiple GPU
parallelization is efficient. However, performing a lower number of
iterations aggravates solution quality for the biggest problems. In
this context, a way to improve tour lengths is to add information
exchange strategies between colonies. We plan to address this
issue in future work.

6. Conclusion

The aim of this paper was to propose efficient parallelization
strategies for the implementation of Ant Colony Optimization on
Graphics Processing Units. Following the parallel ants general ap-
proach, the ANTthread and ANTblock strategies aimed at associating
the ants tour construction and local search phases to the execu-
tion of streaming processors and multiprocessors respectively. On
the other hand, the COLONYblock and COLONYGPU strategies imple-
mented the multiple ant colonies approach by attributing entire
ant colonies to multiprocessors and whole GPUs respectively. We
showed that both general approaches can be efficiently imple-
mented on a GPU architecture. In fact, the ANTblock strategy man-
aged to provide speedups as high as 19.47 with the basic MMAS
and 12.48 with the addition of a 3-opt local search procedure.
Speedups raise even higher with the COLONYGPU strategy, reach-
ing 23.60 with the combination of MMAS and local search. Overall,
this shows that it is possible to significantly reduce the execution
time of ACO on GPU while rigorously keeping the similar compet-
itive solution quality of the sequential MMAS.

Still, as it is the case in the field of parallel ACO and parallel
metaheuristics in general, much can still be done for the effective
use of GPUs. In fact, the variety of the proposed strategies and
the extensive comparative study provided in this paper brings
its share of questions and research avenues. For example, even
though the use of the GPU shared memory leads to some of the
best speedups, this hardware feature also shows its limits on
bigger TSPs. Moreover, maximal exploitation of GPU resources
often requires algorithmic configurations that do not let ACO
perform an effective exploration and exploitation of the search
space. Globally, this paper shows that parallel performance is
strongly influenced by the combined effects of parameters related
to the metaheuristic, the GPU technical architecture and the
granularity of the parallelization. As it becomes clear that the
future of computers no longer relies on increasing the performance
on a single computing core but on using many of them in a
single system, it becomes desirable to adapt optimization tools for
parallel execution on architectures like GPUs.

Following this line of thought, our future works are aimed at
using the framework and knowledge built in this paper to propose
an ACOmetaheuristic that is specifically tailored to GPU execution.
Also, in order to provide better insight into the memory and
algorithmic bottlenecks that have been identified in this work, a
more formal analysis would be likely required. For example, the
requirements for the different types of memory (main, device,
shared, etc.) could be analyzed as a function of problem size,
numbers of ants, colonies, SM, SP, etc. Such an analysis could
lead to the proposition of algorithms that automatically determine
effective thread/block/GPU configurations for ACO and other
metaheuristics. We believe that the global acceptance of GPUs
as components for optimization systems requires algorithms and
software that are not only effective, but also usable by awide range
of academicians and practitioners.
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