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Allocation of Virtual Machines in Cloud Data Centers—A Survey of
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Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs)
with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical
resources incurs significant monetary costs and environmental impact. Therefore, cloud providers must
optimize the use of physical resources by a careful allocation of VMs to hosts, continuously balancing between
the conflicting requirements on performance and operational costs. In recent years, several algorithms have
been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly
comparable because of subtle differences in the used problem models. This article surveys the used problem
formulations and optimization algorithms, highlighting their strengths and limitations, and pointing out
areas that need further research.
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1. INTRODUCTION

In recent years, the increasing adoption of cloud computing has transformed the IT
industry [Buyya et al. 2009]. From a user’s perspective, the practically unlimited scal-
ability, the avoidance of up-front investments, and usage-based payment schemes make
cloud computing a very attractive option. Besides globally available public cloud solu-
tions, enterprises also take advantage of similar solutions in the form of private clouds
and hybrid clouds.

Large, virtualized data centers (DCs) are serving the ever-growing demand for com-
putation, storage, and networking. The efficient operation of DCs is increasingly im-
portant and complex [Barroso et al. 2013]. Besides traditional cost factors such as
equipment and staff, energy consumption is playing an increasing role because of its
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costs and environmental impact. According to a recent study, DC energy consumption
is the fastest-growing part of the energy consumption of the ICT ecosystem; moreover,
the initial cost of purchasing the equipment for a DC is already outweighed by the cost
of its ongoing electricity consumption [Digital Power Group 2013].

Cloud DCs typically make extensive use of virtualization technology to ensure iso-
lation of applications while at the same time allowing a healthy utilization of physical
resources. Virtual machines (VMs) are either provided directly to the customers in
case of an Infrastructure-as-a-Service (IaaS) provider or used to wrap the provisioned
applications in case of Software-as-a-Service (SaaS) or Platform-as-a-Service (PaaS)
providers [Zhang et al. 2010].

An attractive option for saving energy in DCs is to consolidate the VMs to the minimal
number of physical hosts and switching the unused hosts off or at least to a less power-
hungry mode of operation (e.g., sleep mode). However, VM consolidation that is too
aggressive can lead to overloaded hosts with negative effects on the delivered quality
of service (QoS), thus potentially violating the service level agreements (SLAs) with
the customers. Hence, VM allocation must find the optimal balance between QoS and
energy consumption [Buyya et al. 2010; Srikantaiah et al. 2009].

Good VM allocation also helps to serve as many customer requests as possible with
the given set of resources, thus amortizing the expenses related to purchasing, opera-
tions, and maintenance of the equipment (computing, network, and storage elements,
as well as the physical DC infrastructure with cooling, redundant power supplies, etc.).
In fact, achieving good utilization of server capacities was one of the key drivers be-
hind the wide spread of virtualization technology. Today, virtualization and the live
migration of VMs between hosts are key enablers of efficient resource allocation in
DCs [Beloglazov and Buyya 2010b].

Besides using its own DC, a cloud provider (CP) can—in times of extremely high
demand—use VMs from other providers as well, such as in a cloud federation or hybrid
cloud setting [Casalicchio et al. 2013]. This way, the CP can serve its customers without
restrictions. However, this further enlarges the search space for the best allocation.

In this article, we focus on the VM allocation problem, i.e., determining the place-
ment of VMs on physical hosts or using external providers, taking into account the
QoS guarantees, the costs associated with using the hosts—with special emphasis
on energy consumption—and the penalties resulting from VM migrations. Several
algorithms have been proposed in the literature for this important and challenging
optimization problem. However, these algorithms address slightly different versions
of the problem, differing for example in the way the communication between hosts is
modeled or how multicore CPUs are handled. Lacking a generally accepted definition
of the VM allocation problem, or some versions of the problem, many researchers came
up with many different versions, and these differences can have substantial impact
on algorithm runtime and/or on the applicability of the algorithm. This somewhat
chaotic situation is even worsened by the fact that some authors failed to explicitly and
precisely define the version of the problem that they are addressing, so this must be
figured out indirectly from the algorithms that they proposed or the way in which they
evaluated their algorithms.

The primary aim of this work is to “tidy up” the relevant problem formulations.
Specifically, in Section 2, we start with a discussion of the context and the actors of the
VM allocation problem, followed by a description of the characteristics of the problem
in Section 3. Section 4 presents a survey of the problem formulations existing in the
literature, showing how those works fit into our general framework. Although our main
focus is on problem formulations, we complete the survey of the literature with a brief
description of the algorithms that have been proposed and how they were evaluated
in Section 5. This is followed by a more detailed description of the most important
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algorithmic works of the field in Section 6, a discussion of the areas that we believe
will need further research in Section 7, and our concluding remarks in Section 8.

Here, we are mostly concerned with the details of problem formulations and their
algorithmic implications. Technical details relating to infrastructure, architecture, and
implementation issues are covered only as necessary for the aim of this work.

2. PROBLEM CONTEXT

The VM allocation problem is one of the core challenges of using the cloud comput-
ing paradigm efficiently. Cloud computing encompasses several different setups, and
depending on this, the VM allocation problem also has different flavors.

Usually, cloud computing scenarios are classified along two dimensions [Zhang et al.
2010; Strauch et al. 2011]. One dimension concerns the nature of the offered service,
differentiating between three categories: IaaS, PaaS, and SaaS. The other dimension
refers to whether the service is provisioned in-house (private cloud), by a public provider
(public cloud), or a combination of the two (hybrid cloud). The three possibilities along
both dimensions give rise to nine different possibilities.

Another classification focuses on service deployment scenarios [Li et al. 2012]. Here
it is assumed that a service provider (SP) would like to deploy a service on the infras-
tructure provided by one or more infrastructure providers (IPs) [Talwar et al. 2005].
Depending on the relationship(s) between the SP and IP(s), the following scenarios are
distinguished [Li et al. 2012]:

—Public cloud: The SP makes use of the IP’s infrastructure offering available to the
general public.

—Private cloud: The SP uses its own resources so that it also acts as IP.
—Bursted cloud: A hybrid of the public and private clouds, in which both in-house

resources and resources rented from a public IP are used.
—Federated cloud: The SP contracts only one IP, but the IP collaborates with other IPs

to share the load in a manner that is transparent to the SP.
—Multicloud: The SP uses multiple IPs to deploy (parts of) the service.
—Cloud broker: The SP contracts a single broker, which contracts multiple IPs but

hides the complexity of the multicloud setup from the SP.

From our point of view, the crucial observation is that in each scenario, there is a
need to optimize the allocation of VMs to physical resources, but this optimization may
be performed by different actors and may have different characteristics, depending on
the exact setup [Rochwerger et al. 2009; Ferrer et al. 2012]. Using the classification of
Li et al., the VM allocation problem occurs in the respective scenarios as follows:

—Public cloud: The IP must optimize the utilization of its resources to find the best
balance between the conflicting requirements on profitability, performance, depend-
ability, and environmental impact.

—Private cloud: The same kind of optimization problem occurs for the provider that
acts as both SP and IP in this case.1

—Bursted cloud: Two slightly different optimization problems occur:
—The IP must solve the same kind of optimization problem as above.
—The SP must solve a similar problem for its own resources, extended by the possi-

bility to off-load some VMs to an external IP.

1However, there can be subtle differences—for example, SLAs tend to be less formal and VM sizes are more
flexible.
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—Federated cloud: The IPs must solve an optimization problem similar to the one the
SP faces in the bursted cloud setup (i.e., optimization of own resources coupled with
workload off-loading decisions).

—Multicloud: Again, two different optimization problems occur:
—The IPs must solve the same kind of optimization problem as in the public cloud

setup.
—The SP must solve an optimization problem in which the optimal allocation of

parts of the service to the IPs is decided.
—Cloud broker: From an optimization point of view, this is the same as the multicloud

scenario, with the broker taking the role of the SP.

In the following, we try to describe the VM allocation problem in a manner that is
general enough to cover the preceding variants, and we make the differences explicit
only when necessary. We use the term cloud provider (CP) to refer to the entity who
must carry out the VM allocation (which can be either the SP or the IP, depending on
the setup). We assume that the CP must allocate VMs to a set of available resources.
In general, there can be two kinds of resources: they can belong either directly to the
CP or the CP can also rent resources from external cloud providers (eCPs). Depending
on the specific setup, it is possible that the CP has only its own resources and there are
no eCPs, but it is also possible that the CP does not own resources and can only select
from eCPs. The case in which both internal resources and eCPs are available can be
seen as the common generalization of all preceding scenarios.

3. PROBLEM CHARACTERISTICS

Depending on the exact setup, there can be some differences in the most appropriate
problem formulation, but in most cases, the main characteristics of the VM allocation
problem are the following [Mann 2015b]:

—The CP accommodates VMs on the available physical machines (PMs) or by renting
capacity from eCPs.

—The number of VMs changes over time as a result of upcoming requests to create
additional VMs or to remove existing VMs.

—The resource requirements (e.g., computational power, memory, storage, network
communication) of a VM can vary over time.

—The PMs have given capacity in terms of these resources.
—The use of resources incurs monetary costs and consumes electric power. The mag-

nitude of the costs and power consumption may depend on the type, state, and
utilization of the resources.

—VMs can be migrated from one PM to another by means of live migration. This takes
some time and creates additional load for the involved PMs and the network.

—PMs that are not used by any VM can be switched to a low-energy state.
—If the QoS requirements of the customer are not met, this may result in a penalty.

In the following, we investigate these aspects in more detail.

3.1. Virtual Machines

A VM is usually characterized by the following:

—The number of CPU cores
—Required CPU capacity per core (e.g., in million instructions per second (MIPS))
—Required RAM size (e.g., in gigabytes)
—Required disk size (e.g., in gigabytes).
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Additionally, there can be requirements concerning the communication (bandwidth,
latency) between pairs of VMs or a VM and the customer.

All of a VM’s resource requirements can vary over time. Depending on the type of
application(s) running on the VM, the VM’s resource requirements can be relatively
stable, changing periodically (e.g., in daily rhythm), or oscillating chaotically. To opti-
mize resource usage, the CP must be well aware of the current resource requirements
of the VMs and, even more importantly, the resource requirements expected for the
near future [Guenter et al. 2011].

In a public cloud setting, it is common that the CP offers standardized types of
VMs. In a private cloud setting, customers usually have more freedom in specifying the
parameters of a requested VM.

3.2. Resources

The resources available to the CP can be of two types:

—PMs, owned by the CP
—eCPs, from which VMs can be leased.

These two resource types are significantly different. The CP’s own PMs are white-box
resources: the CP has detailed information about their state (e.g., power consumption
characteristics, current workload, temperature), and it is the CP’s responsibility to
optimize the use of these resources. On the other hand, eCPs represent black-box
resource pools: the CP has no knowledge about the underlying physical infrastructure;
it only knows the interface to request and manage VMs. Obviously, the CP has no direct
influence on the underlying physical resources in this case.

Another important difference is that utilizing VMs from eCPs incurs direct costs that
are normally higher than using the CP’s own resources, as they also cover the eCP’s
profit. Therefore, a CP will usually first try to use its own resources and use eCPs only
as an extension in times of demand peaks. It is also possible that a CP has no resources
on its own and uses eCPs only [Genez et al. 2012].

Own PMs can reside in one or more DCs. If two PMs reside in different DCs, this
usually leads to higher latencies in the communication between them, compared to the
case when both PMs are in the same DC. In addition, live migration is usually done
only within DC boundaries.

3.3. PM Characteristics

The utilization or load of a PM measures to what extent its resources are utilized by
the VMs residing on it. The most critical resource in terms of utilization is the CPU. On
the one hand, it is the CP’s interest to achieve high CPU utilization to make the best
use of the available resources. On the other hand, if CPU load is too high, this makes
it likely that the VMs residing on the given PM do not receive the required capacity,
which may lead to SLA violations and damage customer satisfaction. Too high of a CPU
load may also lead to overheating and can accelerate aging of the hardware. For these
reasons, many researchers concentrated on CPU load.

However, other resources like memory or disk space can also become a bottleneck
[Tomás and Tordsson 2014]. Of particular interest is the cache, because current vir-
tualization technologies do not ensure isolation of the cache usage of individual VMs
accommodated by the same PM, leading to contention between them [Koller et al.
2011; Verma et al. 2008b]. Thus, it is important to model and predict the performance
interference that can be expected when co-locating a pair of VMs [Kim et al. 2013].

Power consumption of a PM is a monotonously increasing function of the CPU load
[Khosravi et al. 2013]. Determining the exact dependence of power consumption on
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CPU load is a nontrivial problem on its own [Mobius et al. 2014] and is even applica-
tion dependent [Koller et al. 2010]. Additionally, the load of other system components
(e.g., disk) may also play an important role. However, a linear approximation of power
consumption as a function of CPU load works quite well across a wide range of ap-
plications and platforms [Rivoire et al. 2008]. Hence, several authors assumed linear
dependence on CPU load [Beloglazov et al. 2012; Jung et al. 2010; Gao et al. 2013; Lago
et al. 2011; Gmach et al. 2008; Svärd et al. 2014].

The amount of energy actually consumed by a PM not only depends on power effi-
ciency but also on the duration. As shown by Srikantaiah et al. [2009], consolidating
an increased amount of workload on a server improves energy consumption up to a
certain point, when the usage of some resource of the server starts to saturate. Further
increasing the load of the server leads to a slowdown of the execution of applications;
since jobs take longer, the energy per job starts to increase [Srikantaiah et al. 2009].

Energy consumption of a server has a substantial static component that does not
depend on the load of the server: even if a PM is “empty” (i.e., it accommodates no
VM), its energy consumption is nonnegligible. To save more energy, it is therefore
necessary to switch empty PMs to a low-energy state. In the simplest case, a PM has
two states: On and Off. More sophisticated models include multiple states with different
characteristics, such as On, Sleep, Hibernate, and Off. Realistically, switching between
states takes some time, the amount of which depends on the source and target states.
For instance, switching between On and Sleep is usually much quicker than switching
between On and Hibernate; however, Hibernate will consume less energy than Sleep
[Guenter et al. 2011]. Nevertheless, most of the existing works use only a simplified
two-state model.

To react to variations in the utilization, PMs usually offer—either directly or through
the virtualization platform—several possibilities. Dynamic voltage and frequency scal-
ing (DVFS) is widely used to scale up or down the frequency of the CPU: in times
of high load, the frequency is scaled up to increase performance at the cost of higher
power consumption, whereas in times of low load, it is scaled down to decrease power
consumption [Lago et al. 2011]. Using virtualization, it is possible to explicitly size the
VMs by defining their share of the physical resources, and VMs can also be resized dy-
namically [Cherkasova et al. 2007]. Scaling requests from the VMs can be used by the
virtualization layer to determine the necessary physical scaling [Nathuji and Schwan
2007].

3.4. eCP Characteristics

eCPs may offer VMs in two possible ways: either the eCP predefined some VM config-
urations from which customers can choose (e.g., Amazon EC2) or customers can define
their own VM configuration by specifying the needed amount from each resource (e.g.,
IC Cloud); this can make a difference in the achievable efficiency [He et al. 2012].

There can be considerable differences between eCPs concerning prices and pricing
schemes, and even the same eCP may offer multiple pricing schemes [Li et al. 2013].
For example, some providers offer discounted long-term rental rates and higher rates
for the pay-as-you-go model [Genez et al. 2012]. The latter is often based on time
quanta like hours. Further, there may be a fee proportional to the use of some re-
sources like network bandwidth [Lampe et al. 2012]. In recent years, a further pricing
scheme emerged: spot instances, the price of which depends on the current load of the
provider. When the provider has a lot of free capacity, spot instances are cheap, but
they become more expensive when the load of the provider is getting higher. Consumers
can specify until what price they would like to keep the spot instance [Chohan et al.
2011].
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3.5. Communication and Networking

VMs are used by customers to perform certain tasks, which are often parts of a bigger
application, such as tiers of a multitier application [Jung et al. 2010]. This results in
communication between the VMs. In some cases, this can mean the transfer of huge
amounts of data, which may lead to an unacceptable increase in latency or response
time as well as increased energy consumption in the affected hardware elements (PMs,
routers, switches, etc.).

For the preceding reasons, it is beneficial to place VMs that communicate intensively
with each other on the same PM, or at least within the same DC [Beloglazov and
Buyya 2010b]. On the other hand, VMs that belong to the same application may exhibit
correlation between their loads, increasing the probability that they will peak at the
same time; this also has to be considered carefully in the VM allocation [Verma et al.
2009].

In some cases, the available network bandwidth can become a bottleneck [Divakaran
et al. 2014]. Some authors model network bandwidth the same way as any other
resource of the PMs [Biran et al. 2012; Chaisiri et al. 2009; Oliveira et al. 2012; Rodero
et al. 2012; Wood et al. 2009]. Others focus specifically on the communication among
the VMs and try to minimize the resulting communication cost [Meng et al. 2010]
or makespan [Batista et al. 2007]. Some works use a detailed network model with
one or more layers of switches and communication links among switches and between
switches and PMs, based on different topologies [Jiang et al. 2012; Biran et al. 2012].
Analogous problems arise also concerning the communication between multiple clouds
[Bittencourt et al. 2012a].

A strongly related issue is the mapping of data on storage nodes. Some applications
use huge amounts of data that are to be mapped on specialized storage nodes, leading
to considerable network traffic between compute nodes and storage nodes. In such
cases, the placement of VMs on compute nodes and the placement of application data
on storage nodes are two interrelated problems that must be considered together to
avoid unnecessarily high network loads [Korupolu et al. 2009].

Besides communication among VMs and between VMs and storage nodes, there is
communication with entities outside the cloud. An important example are the users. In
several applications, the response time experienced by users is critical. The response
time is the sum of the network round trip time and the processing time, and can thus
be optimized by serving user requests from a DC offering a combination of low latency
to the respective user and quick processing [Keller and Karl 2014].

3.6. Service Level Agreements

By SLA, we mean any agreement between the CP and its customers on the expected
service quality. The SLA defines service level objectives (SLOs) [Xiong et al. 2015]: key
measures to determine the appropriateness of the service (e.g., availability or response
time). The SLA can be a formal document, specifying exactly for each SLO the perfor-
mance indicators, the way they are measured, target values, and financial penalties for
the case of nonfulfillment [Sturm and Morris 2000]. However, in many cases—notably
in private cloud settings, where the provider and the customers belong to the same
organization—SLAs can be less formal and less detailed. It is also possible that there
is no written SLA at all. But even in such a case, customers do have expectations
about service quality, and SLOs may exist also without an SLA or even if the SLA is
expressed in other terms [Serrano et al. 2015]. Failure to fulfill customer expectations
damages the reputation of the CP, which in the long run will lead to customer churn
and thus to profit loss. In this respect, SLA management is also closely related to trust
and long-term partnership [Hani et al. 2015].
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Hence, in all cases, it is the CP’s financial interest to pay attention to the explicit
or implicit SLAs and try to avoid or at least minimize the number of SLA violations
[Beloglazov and Buyya 2012]. This constrains the consolidation opportunities because
VM consolidation that is too aggressive and overbooking of PMs would degrade per-
formance [Tesfatsion et al. 2014] and thus increase the probability of SLA viola-
tions [Tomás and Tordsson 2014]. However, measuring the underlying performance
attributes and determining the fulfillment of the SLOs is a nontrivial task on its own
[Garg et al. 2013].

We may differentiate hard and soft SLOs. A hard SLO must be fulfilled in any case.
A soft SLO should be fulfilled as much as possible but may be violated (usually at the
price of a financial penalty). From a problem formalization point of view, hard SLOs
must be modeled as constraints, whereas soft SLOs are no constraints but the number
of violations of a soft SLO must be minimized, and hence it will be part of the objective
function.

Another distinction concerns the level of abstraction of the SLOs. Basically, we can
differentiate between user-level SLOs describing quality metrics as observed by users
(e.g., application response time, application throughput) and system-level SLOs defin-
ing the underlying technical objectives (e.g., system availability). Generally, user-level
SLOs are more appropriate indicators of service performance; nevertheless, from a
provider point of view, it is easier to control the system-level metrics, which will then
indirectly determine the user-level metrics. For this reason, translating user-level ob-
jectives to system-level requirements is an important problem on its own [Chen et al.
2008].

An SLA violation occurs if one or more of the SLOs are not met. In many cases, this
is the result of a situation in which a VM is not being allocated the required capacity
(e.g., because of consolidation that is too aggressive). However, other factors, such as
inappropriate sizing of VMs or inadequate elasticity solutions, can lead to an inability
to serve requests within the boundaries stated in the SLA [Xiao et al. 2014].

3.7. Live Migration

Live migration of a VM from one PM to another makes it possible to react to the chang-
ing resource requirements of the VMs [Beloglazov and Buyya 2012]. For example, in
times of low demand, several VMs can be consolidated to one PM so that other PMs can
be switched off, thus saving energy. When the resource demand of the VMs increases,
they can be migrated to other PMs with a lower load, thus avoiding SLA violations. For
these reasons, VM migration is a key ingredient of dynamic VM placement schemes
[Svärd et al. 2014].

On the other hand, VM migrations take time, create overhead, and can have adverse
impact on SLA fulfillment [Rodero et al. 2012]. A VM migration may increase the load of
both the source and the target PM, puts additional burden on the network, and makes
the migrated VM less responsive during migration [Jung et al. 2010]. Therefore, it is
important to keep the number of live migrations at a reasonable level.

Understanding the exact impact of live migration is a difficult problem on its own. A
possible model for predicting the duration and overhead of live migration was presented
by Verma et al. [2010, 2011]. According to their findings, migration increases the load
of the source PM but not the load of the target PM. In contrast, other researchers
also measured increased load on the target PM [Rodero et al. 2012]. The quest for a
universally usable model of migration overhead is ongoing [Strunk 2012].

3.8. Actions of the CP

The CP has to update the VMs’ placement in several cases:
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—To react to a customer request [Shi et al. 2013]
—To react to critical situations [Gmach et al. 2009] and changes in system load

[Sedaghat et al. 2013]
—In the course of a regular evaluation of the current placement to improve overall

optimization objectives (see Section 3.9).

The first case is quite obvious. If a customer requests a new VM, it must be allocated
on a PM or eCP. If a customer requests the cancellation of an existing VM, it must
be removed from the hosting PM or eCP. Although rarely considered in the literature,
a customer may also request a change in the parameters of a VM (e.g., resizing). In
all of these cases, the CP must make a change to the current placement of VMs. This
may also be a good occasion to review and reoptimize the placement of other VMs. For
example, if a VM was removed upon the request of the customer, and the affected PM
hosts only one more VM with a small load, then it may make sense to migrate that VM
to another PM so that this PM can be switched off.

Often, a customer request consists of multiple VMs, such as VMs hosting the respec-
tive tiers of a multitier application [Iqbal et al. 2010]. Another important example is
the case of elastic services: here, the number of VMs that take part in implementing
the service changes automatically based on system load (autoscaling) [Li et al. 2012;
Kecskemeti et al. 2011]. In such cases, it is important to consider the placement of the
affected VMs jointly to avoid excessive communication costs [Alicherry and Lakshman
2012].

The CP must also react to unplanned situations, such as overloading of servers that
may threaten SLA adherence [Wood et al. 2009], thermal anomalies [Rodero et al. 2012;
Al-Qawasmeh et al. 2015], or breakdown of servers. Server unavailability may also be
a planned situation (e.g., maintenance).

Besides the preceding reactive actions, a CP will also have to regularly review and
potentially reoptimize the whole VM placement to find a better fit to the changed
demand of the existing VMs, modified eCP rental fees, modified electricity prices, or
other changes that did not require immediate action but made the placement subop-
timal [Sedaghat et al. 2013; Svärd et al. 2014]. Such a review may be carried out at
regular times (e.g., every 10 minutes), or it may be triggered by specific events. For in-
stance, a CP can continuously monitor the load of its servers or the performance of the
VMs, and whenever some load or performance indicator goes below or above specified
thresholds, this may be a reason to reconsider the VM placement.

Reoptimizing the VM placement may consist of one or more of the following actions:

—Migration of a VM from one host to another
—Switching the state of a PM
—Starting/ending the rental of a VM from an eCP
—VM resizing.

Increasing or decreasing the resource allotment of a VM (“VM resizing”) can take
multiple forms. In the case of VMs mapped on a PM owned by the CP, the virtual ma-
chine monitor (VMM) can be instructed to set the resources allocated to the respective
VMs as necessary [Wood et al. 2009; Guazzone et al. 2012a; Verma et al. 2010]. In
the case of VMs rented from eCPs, it may make sense to repack the application into
VMs of different size (e.g., into a smaller number of larger VMs). This gives rise to an
interesting balance between horizontal elasticity (number of VMs for the given service)
and vertical elasticity (size of the VMs) [Sedaghat et al. 2013].

3.9. Objectives

VM placement is inherently a multiobjective problem [Gao et al. 2013; Tsamoura et al.
2013; Xu and Fortes 2010]. The following is a list of typical objectives for the CP:
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—Monetary objectives:
—Minimize fees paid to eCPs
—Minimize operations costs
—Amortize capital expenditures
—Maximize income from customers
—Avoid penalties

—Performance-related objectives:
—Satisfy SLOs (availability, response time, makespan, etc.)
—Minimize number of SLA violations

—Energy-related objectives:
—Minimize overall energy consumption
—Minimize number of active PMs
—Minimize carbon footprint

—Technical objectives:
—Minimize number of migrations
—Maximize utilization of resources
—Balance load among PMs
—Minimize network traffic
—Avoid overheating of hardware units.

Of course, not all of these goals are independent of each other—for example, several
other objectives can be transformed to a monetary objective. Nevertheless, there are
several independent or even conflicting objectives that VM placement should try to
optimize. Given k objectives, to come to a well-defined optimization problem, one com-
mon technique is to constrain k− 1 of the objectives and optimize the last one; another
possibility is to optimize the weighted sum of the k objectives.

4. PROBLEM MODELS IN THE LITERATURE

A huge number of papers have been published about different versions of the VM allo-
cation problem. In the following, we first give a categorization in Section 4.1, and then
we review the problem models of the most important works. Most existing works con-
centrate on either the single-DC or multi-IaaS problem (defined in Section 4.1), which
are quite different in nature; these problem formulations are discussed in Sections 4.2
and 4.3, respectively. Finally, some other problem models are described in Section 4.4.

4.1. Important Special Cases and Subproblems

The problem described in Section 3 is very general. Most authors investigated special
cases or subproblems, the most popular of which are presented next. It should be noted
that these problem variants are not necessarily mutually exclusive—a given work may
deal with a combination of them.

4.1.1. The Single-DC Problem. The subproblem that has received the most attention is
the single-DC problem. In this case, the CP has a single DC with a number of PMs, and
there are no eCPs. Usually, the number of PMs is assumed to be high enough to serve all
customer requests. Typical objectives are optimizing the utilization of resources and
minimizing overall energy consumption, subject to performance constraints (SLAs).
Since all PMs are in the same DC, network bandwidth is often assumed to be uniform
and sufficiently high so that it can be ignored.

4.1.2. The Multi-IaaS Problem. In this case, the CP does not own any PMs; it uses only
leased VMs from multiple IaaS providers. Since there are no PMs, all concerns related
to them—states and state transitions, sharing of resources among multiple VMs, load-
dependent power consumption—are void. Power consumption plays no role; the main
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goals are minimizing the monetary costs associated with VM rental and maximizing
performance. Since data transfer between the different IaaS providers can become a
bottleneck, this also has to be taken into account.

It is important to mention that the literature on the multi-IaaS problem is mostly
unrelated to the literature on the single-DC problem. On the one hand, this is natural
because the two problems are quite different. On the other hand, a hybrid CP must
solve a combination of these two problems. This is why we include both of them in our
article, and we expect increased convergence between them in the future.

4.1.3. The One-Dimensional VM Placement Problem. In this often-investigated special case,
only the computational demands and computational capacities are considered, and no
other resources. Moreover, the CPU is taken to be single core, making the problem
truly one-dimensional.

The question whether one or more dimensions are taken into account is independent
of whether own PMs or eCPs are used. In other words, the one-dimensional VM place-
ment problem can be a special case of the single-DC, the multi-IaaS, or other problem
formulations.

4.1.4. The On/Off Problem. In this case, each PM has only two states: On and Off.
Furthermore, the power consumption of PMs that are Off is assumed to be 0, whereas
the power consumed by PMs that are On is the same positive constant for each PM,
and dynamic power consumption is not considered. The transition between the two
power states is assumed to be instantaneous. As a consequence, the aim is simply to
minimize the number of PMs that are On. This is an often-investigated special case of
the single-DC problem.

4.1.5. Online Versus Offline Optimization. As mentioned in Section 3.8, the CP must react
immediately to customer requests. This requires local modifications: allocating a new
VM to a host, possibly turning on a new host if necessary, or deallocating a VM from a
host, possibly switching the host to a low-energy state if it becomes empty. Finding the
best reaction to the customer request in the given situation is an online optimization
task.

On the other hand, the CP can also (e.g., on regular occasions) review the status of all
VMs and hosts, and possibly make global modifications (e.g., migrating VMs between
hosts). Finding the best new configuration is an offline optimization task.

These are two distinct tasks for which a CP may use two different algorithms.
It should be noted that there is some ambiguity in the literature on the terminology

used to differentiate between the preceding two cases, and the terms online and offline
are used by some authors to describe other problem characteristics. We use these
notions in this sense because this is in line with their generally accepted meaning in
the theory of algorithms.

4.1.6. Placement Tasks. Closely related to online versus offline optimization is what we
may call the placement task. On the one hand, (1) initial placement and (2) placement
reoptimization must be differentiated: the former determines a placement for a new
set of VMs, whereas the latter optimizes an existing placement. (The key difference is
that placement reoptimization must use migrations, which is not necessary for initial
placement.) On the other hand, based on the set of VMs for which the placement is
determined, the following three different levels can be distinguished: (1) all VMs of the
CP, (2) a set of coupled VMs (e.g., the VMs implementing a given service), or (3) a single
VM. Since these are two independent dimensions, we get six possible placement tasks;
all of them are meaningful, although some are rather rare (e.g., initial placement of
all VMs occurs only when a new DC starts its operation). It should also be noted that
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some works addressed multiple placement tasks, such as initial placement of a single
VM and placement reoptimization of all VMs.

4.1.7. The Load Prediction Problem. When the CP makes some change in the mapping of
VMs or the states of PMs at time instance t0, it can base its decision only on its obser-
vations of VM behavior for the period t ≤ t0; however, the decision will have an effect
only for t > t0. The CP could make ideal decisions only if it knew the future resource
utilization of the VMs. Since these are not known, it is an important subproblem to
predict the resource utilization values of the VMs or their probability distributions, at
least for the near future [Xiao et al. 2013].

Load prediction is seen by some authors as an integral part of the VM placement
problem, whereas others do not consider it, either because VM behavior is assumed to
be constant (at least in the short run) or it is assumed that load prediction is done by
a separate algorithm. Load prediction may or may not be considered, independently
from the types of resources (i.e., also within the single-DC or multi-IaaS problem).

4.2. The Single-DC Problem

The single-DC problem also received a lot of attention before the cloud computing age,
with the main objective of achieving good utilization of physical resources in a DC.
Early works include Muse, a resource management system for hosting centers [Chase
et al. 2001], approaches to using dynamic voltage scaling for power management of
server farms [Horvath et al. 2007] and to dynamic provisioning of multitier Internet
applications [Urgaonkar et al. 2005], and first results on consolidation using VM mi-
gration [Khanna et al. 2006]. The term load unbalancing was coined to describe the
objective of consolidating load on a few highly utilized PMs instead of distributing them
among many PMs with low utilization [Pinheiro et al. 2001]. Since about 2007, as vir-
tualized DCs have become ever more prevalent, the amount of research on resource
management in DCs has seen significant growth [Bobroff et al. 2007; Batista et al.
2007; Verma et al. 2008a]. These works already exhibited all of the important char-
acteristics of the problem: consolidation of the VMs on fewer PMs using migrations,
taking into account service levels and load fluctuations.

In recent years, the handling of SLA violations has become more sophisticated and
energy consumption has become one of the most crucial optimization objectives. For
example, the work of Beloglazov and Buyya [2010a, 2012], Beloglazov et al. [2012],
and Guazzone et al. [2012a, 2012b] has focused specifically on minimizing energy
consumption.

Energy minimization can be primarily achieved by minimizing the number of active
servers; thus, it is no wonder that many works focused only on this and ignored the
dynamic power consumption of PMs (leading to the special case of the On/Off problem).
Exceptions include the work of Jung et al. [2010], which treated dynamic power con-
sumption as a linear function of CPU load, as well as the nonlinear function used by
Guazzone et al. [2012a] and the table-based approach used in pMapper [Verma et al.
2008a].

Most works on the single-DC problem consider only the CPU capacity of the PMs and
the computational demand of the VMs, but no other resources, reducing the problem
to a single dimension. Several authors mentioned this deficiency as an area for future
research [Beloglazov and Buyya 2010b; Guazzone et al. 2012a]. Only few works also
take into account memory [Ribas et al. 2012; Shi et al. 2013] or memory and I/O as
further dimensions [Mishra and Sahoo 2011; Tomás and Tordsson 2014; Wood et al.
2009]. Moreover, the sharing of cores of multicore CPUs was hardly addressed explicitly.
For example, Beloglazov and Buyya [2012] model a multicore CPU by means of a single-
core CPU with capacity equal to the sum of the capacities of the cores of the original
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multicore CPU. Another extreme is the approach of Ribas et al. [2012], which does
consider multicore CPUs, but only the number of cores is taken into account—their
capacity is not.

The majority of these works did not address the load prediction problem. A notable
exception is the early work of Bobroff et al. [2007], which uses a stochastic model to prob-
abilistically predict the future load of a VM based on past observations. More recently,
Guenter et al. [2011] used linear regression for similar purposes in a slightly different
setting without virtualization. Beloglazov and Buyya [2013] introduce a Markov chain
approach for a related but perhaps somewhat simpler problem: to detect when a PM
becomes overloaded.

Concerning the investigated SLAs, most works consider the number of occasions
when a server is overloaded [Beloglazov and Buyya 2010a; Beloglazov et al. 2012;
Bobroff et al. 2007], which indirectly lead to SLA violations. Only a few works directly
considered the response time [Guazzone et al. 2012a] or waiting time [Salehi et al.
2012] as specific metrics with quantitative QoS requirements.

The main characteristics of some representative works are summarized in Table I.
The meaning of the table’s columns is explained next. A full circle means that the cited
work explicitly deals with the given characteristic as part of their problem formula-
tion and algorithms; an empty circle means that the given work does not explicitly
address it:

—Resources: The types of resources of VMs and PMs that are taken into account
—CPU: Computational capacity of the PMs and computational load of the VMs are

taken into account.
—Cores: Individual cores of a multicore processor are differentiated.
—Other: At least one resource other than the CPU (e.g., memory) is also taken into

account.
—Energy: The way energy optimization is supported by the given approach

—Switch of f : The given approach aims at emptying PMs so that they can be switched
to a low-power state.

—Dynamic power: The dynamic power consumption of the PMs also is taken into
account.

—Placement: The kind of placement task addressed by the given work
—Initial: The initial placement of the VMs is determined.
—Reoptimization: An existing placement is optimized.
—All VMs: The placement of all VMs in the DC is determined.
—VM set: The placement of a set of coupled VMs that together form a service is

determined.
—One VM: The placement of a single VM is determined.

—SLA: The way in which SLAs are handled (see Section 3.6)
—Sof t: Soft SLAs are supported.
—User level: User-level SLAs are supported.
—Priorities: VMs may have different priorities.

—Other: Some other important aspects
—Different PMs: Differences in the capacity and/or power consumption of PMs is

leveraged to find the best VM-to-PM mapping.
—Migration: The approach leverages migration of VMs between PMs.
—Migration cost: Migration costs are taken into account and must be minimized.
—Data transfer: The communication between VMs is taken into account.
—Load prediction: The future load of the VMs is predicted by the approach based on

past observations.
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Table I. Characteristics of Problem Models in the Single-DC Problem
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Batista et al. [2007] • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦
Beloglazov et al. [2012] • ◦ ◦ • • • • • ◦ • • ◦ ◦ • • ◦ ◦ ◦
Beloglazov and Buyya [2012] • ◦ ◦ • • • • • ◦ • • ◦ ◦ • • • ◦ ◦
Beloglazov and Buyya [2013] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •
Biran et al. [2012] • ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦
Bobroff et al. [2007] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •
Breitgand and Epstein [2011] • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • • ◦ ◦
Das et al. [2008] ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Guazzone et al. [2012a] • ◦ ◦ • • ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ ◦
Guenter et al. [2011] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •
He et al. [2012] ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Jayasinghe et al. [2011] • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦
Jung et al. [2010] • ◦ ◦ • • ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ •
Li et al. [2011b] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Mishra and Sahoo [2011] • ◦ • • ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Ribas et al. [2012] ◦ • • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Salehi et al. [2012] ◦ ◦ ◦ • ◦ ◦ • • ◦ • • • • ◦ • ◦ ◦ ◦
Shi et al. [2013] • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ ◦
Song et al. [2014] • ◦ • • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • • ◦ •
Srikantaiah et al. [2009] • ◦ • • • • • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦
Tomas and Tordsson [2014] • ◦ • ◦ ◦ • ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ •
Verma et al. [2008a] • ◦ ◦ • • ◦ • • ◦ ◦ ◦ • ◦ • • • ◦ ◦
Verma et al. [2009] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ • • ◦ ◦ •
Wood et al. [2009] • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • • ◦ •
Xiao et al. [2013] • ◦ • • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • • ◦ •

As can be seen in Table I, there are many differences between the approaches pre-
sented in the literature. In fact, it is hard to find two that address exactly the same
problem. Of course, some basic properties are typical of most approaches (e.g., the
CPU is considered in almost all works, as well as the possibility to migrate VMs and
to switch off unused PMs). Other characteristics such as the sharing of individual
cores of a multicore CPU among VMs or communication between VMs are still largely
unexplored.

Of course, Table I should not be seen as a valuation of these works (assuming that
more filled circles indicate a higher “score”). Approaches that tackle a limited version
of the problem can be highly valuable if that problem is practically meaningful and
the approach addresses it in an effective and efficient way. It is also important to
mention that we focus here only on problem models and algorithms, but some works
include many other aspects. Indeed, some works describe complete systems that are
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successfully applied in practice, such as Mistral [Jung et al. 2010], Muse [Chase et al.
2001], pMapper [Verma et al. 2008a], and Sandpiper [Wood et al. 2009].

4.3. The Multi-IaaS Problem

As already mentioned, the multi-IaaS problem is quite different from the single-DC
problem. In the multi-IaaS problem, the utilization and state of PMs, as well as their
energy consumption, are not relevant. On the other hand, monetary costs related to
the leasing of VMs from eCPs appear as a new factor to consider. In fact, some works
consider quite sophisticated leasing fee structures—for example, VMs reserved for
longer periods may be cheaper than on-demand VMs [Genez et al. 2012], or the costs
may consist of a fixed rental fee and usage-based variable fees for the used resources
[Lampe et al. 2012].

In many formulations of the multi-IaaS problem, the entities that need to be mapped
to resources are not VMs but (computational) tasks. However, this is not really a sig-
nificant conceptual difference: also in the single-DC problem, the actual goal is to map
applications or components of applications to resources, and VMs are just wrappers
that facilitate the safe co-location of applications or components of applications on the
same resources and their migration.

More importantly, communication and dependencies among the tasks are often con-
sidered important ingredients of the multi-IaaS problem [Bittencourt et al. 2012b;
Genez et al. 2012; Oliveira et al. 2012], in contrast to the single-DC problem where
communication among VMs is hardly considered.

In the multi-IaaS problem, the tasks and their dependencies are often given in the
form of a directed acyclic graph (DAG), in which the vertices represent the tasks and the
edges represent data transfer and dependencies at the same time [Calheiros and Buyya
2014]. Scientific workflows are popular examples of complex applications that are well
suited for a DAG representation [Oliveira et al. 2012; Wu et al. 2010]. The resulting
problem, often called the workflow scheduling problem [Bardsiri and Hashemi 2012],
has the advantage of solid mathematical formalism using graph theory; moreover, it
is similar to other multiresource scheduling problems (e.g., multiprocessor scheduling)
so that a rich arsenal of available scheduling techniques can be applied to it [Pinedo
2008]. Besides minimizing cost, the other objective of such scheduling problems is to
minimize the makespan of the workflow—that is, the time it takes from the start of
the first task to the finish of the last task.

The main characteristics of some representative works are summarized in Table II.
The meaning of full versus empty circles is the same as in Table I. The meaning of the
table’s columns, where different from those of Table I, is explained next:

—Scheduling: The way scheduling-related aspects are modeled
—Dependencies: Dependencies between tasks arising from data transfer are consid-

ered.
—Makespan: Minimization of the workflow’s makespan is either an explicit objective

or there is an upper bound on the makespan.
—Costs: The kinds of monetary costs of leased VMs that the approach takes into account

—Long-term rental: These are discounted fees for VMs that are rented for a long
term (e.g., multiple months).

—On demand: These fees are either proportional to the time the VM is used or
charged for small time quanta (e.g., hourly), based on the number of time quanta
the VM is used.

—Usage based: These fees are proportional to the used amount of some resource,
such as the number of transferred bytes to/from a VM.

—Other: Some miscellaneous aspects
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Table II. Characteristics of Problem Models in the Multi-IaaS Problem
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Bittencourt et al. [2012b] ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦
Candeia et al. [2010] • ◦ ◦ ◦ • ◦ • ◦ • ◦
Genez et al. [2012] ◦ • ◦ • • • • ◦ ◦ ◦
Lampe et al. [2012] ◦ ◦ • ◦ • • ◦ • ◦ ◦
Li et al. [2011a] • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦
Oliveira et al. [2012] • ◦ • • • ◦ • • ◦ •
Pandey et al. [2010] • ◦ ◦ • ◦ ◦ • • ◦ ◦
Tordsson et al. [2012] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Tsamoura et al. [2013] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦
Villegas et al. [2012] • ◦ ◦ ◦ • ◦ • ◦ ◦ •

—Migration: The approach leverages migration of tasks between VMs or between
eCPs.

—Load prediction: The future load of the tasks is predicted by the approach based
on past observations.

As can be seen from Table II, computational capacity and computational load, which
are mostly considered one dimensional (i.e., without accurate modeling of multicore
CPUs) are also the focus of most works in the multi-IaaS context, just like in the case
of the single-DC problem. Makespan minimization and the minimization of on-demand
rental costs are considered in most works. The other aspects are rarely handled. Again,
it is interesting to note how the used problem formulations are different.

4.4. Other Problem Formulations

Although most of the relevant works fall into either the single-DC or multi-IaaS cate-
gory, there are a few works that address some other, more general problems.

4.4.1. Multi-DC. An important generalization of the single-DC problem is the multi-
DC problem, in which the CP possesses multiple DCs. For an incoming VM request,
the CP must first decide in which DC the new VM should be provisioned and then on
which PM of the selected DC. Although the second step is the same as the single-DC
problem, choosing the most appropriate DC may involve completely different decision
making [Alicherry and Lakshman 2012]. A possibility is to consider the different power
efficiency and carbon footprint of the different DCs, taking into account that different
DCs may have access to different energy sources—for example, some DCs may be
able to better leverage renewing energy sources. In an attempt to optimize the overall
carbon footprint, the CP may prefer to utilize such “green” DCs as much as possible
[Khosravi et al. 2013].

4.4.2. Hybrid Cloud. In most works that address hybrid cloud setups, the CP owns one
DC and also has some eCPs at its disposal. This can be seen as a common generalization
of the single-DC and multi-IaaS problems.

Casalicchio et al. [2013] address this problem with an emphasis on the single-DC
subproblem. The PMs are explicitly modeled, migrations between PMs are allowed
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but incur a cost, and there is a sophisticated handling of SLAs, but communication
and dependencies among VMs are not handled, similarly to many formulations of the
single-DC problem.

In contrast, the approach of Bittencourt et al. shows more similarity to formulations
of the multi-IaaS problem. Here, dependencies among the tasks are given in the form
of a DAG, there is a hard deadline on the makespan, and the objective is to minimize
the total VM leasing costs, as is common in workflow scheduling. The own DC of the
CP is modeled as a special eCP, offering free resources, but only in limited quantity
[Bittencourt and Madeira 2011; Bittencourt et al. 2012a].

Bossche et al. [2010] use a similar approach, which is largely based on the multi-
IaaS problem, and own DCs are modeled as special eCPs offering free resources in
limited quantity. They explicitly allow having more than one own DC, so this can be
seen as a common generalization of the multi-DC and multi-IaaS problems. On the
other hand, the model uses a number of restrictions—for example, communication and
dependencies between VMs are not supported, and neither are migration of VMs or
aspects related to power consumption.

5. OVERVIEW OF PROPOSED ALGORITHMS

From a theoretical point of view, we must differentiate between exact algorithms that
are guaranteed to always deliver the optimum and heuristics that do not offer such
a guarantee. Although the majority of the proposed algorithms are heuristics, some
exact algorithms have been proposed as well, so it makes sense to review the two
groups separately.

As mentioned previously, most of the literature deals with either the single-DC or
multi-IaaS problem, and these two are quite different. Interestingly, the exact methods
proposed for the two problems are very similar, and hence we review them together.
On the other hand, the heuristics proposed for the two problems are quite different, so
we review them separately.

5.1. Exact Algorithms

In most cases, the exact algorithm consists of formulating the problem in terms of
some mathematical programming formalism and using an existing solver to solve the
mathematical program.

By far, integer linear programming (ILP) seems to be the most popular way to express
both the single-DC [Batista et al. 2007; Guenter et al. 2011; Li et al. 2011b] and
multi-IaaS problems [Genez et al. 2012; Lampe et al. 2012; Li et al. 2011a] or even
their common generalization [Bossche et al. 2010] as a mathematical program. Several
authors found that even the special case of ILP in which each variable is binary (binary
integer programming (BIP)) is sufficient to express the constraints of the problem in a
natural way [Bossche et al. 2010; Lampe et al. 2012; Li et al. 2011a, 2011b].

Some authors preferred to use nonlinear constraints, leading to a mixed-integer
nonlinear programming (MINLP) formulation [Guazzone et al. 2012b; Konstanteli et al.
2014] or a pseudo-Boolean (PB) formulation with binary variables and a combination
of linear and nonlinear constraints [Ribas et al. 2012].

For all of these mathematical programs, appropriate solvers are available, both as
commercial and as open-source software packages. In each case, the solver will deliver
optimal results, but its worst-case runtime is exponential with respect to the size of the
input, so solving large-scale problem instances takes much too long. Most researchers
turned to heuristics for this reason.

It is important to mention that an ILP formulation can be useful in devising a
heuristic. Removing the integrality constraint, the resulting linear programming (LP)
formulation can be solved in polynomial time. The result obtained this way may not be
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an integer, but in some cases a rounding method can be used to turn it into an integer
solution with near-optimal cost [Batista et al. 2007; Genez et al. 2012].

5.2. Heuristics for the Single-DC Problem

Several authors observed the similarity between the VM placement problem in a single
DC and the well-known bin-packing problem, in which objects of given weight must be
packed into a minimum number of unit-capacity bins. Indeed, if only one dimension,
such as the computational demand of the VMs and the computational capacity of the
PMs, is considered, and the aim is to minimize the number of PMs that are turned on,
the resulting problem is very similar to bin packing. There are some simple but effective
heuristics for bin packing, such as First Fit (FF), in which each object is placed into the
first bin where it fits, Best Fit (BF), in which each object is placed in the bin where it fits
and the remaining spare capacity is minimal, and Worst Fit (WF), in which each object
is placed in the bin where it fits and the remaining spare capacity is maximal. Despite
their simplicity, these algorithms are guaranteed to deliver results that are at most
70% off the optimum [Dósa and Sgall 2013, 2014]. This approximation ratio can be
improved if the objects are first sorted in decreasing order of their weights, leading to
modified algorithms such as First Fit Decreasing (FFD) and Best Fit Decreasing (BFD).
Specifically, if OPT denotes the optimal number of bins, then FFD is guaranteed to use
no more than 11/9 OPT + 6/9 bins [Dósa 2007].

These simple bin-packing heuristics can be easily adapted to the VM placement
problem. Indeed, the use of FF has been suggested [Bobroff et al. 2007], just like
BF [Beloglazov and Buyya 2012], WF [Jung et al. 2010; Li et al. 2011b; Tomás and
Tordsson 2014], FFD [Verma et al. 2008a, 2009], and BFD [Beloglazov and Buyya
2010a; Beloglazov et al. 2012; Guazzone et al. 2012a]. However, it should be noted that
the approximation results concerning these algorithms on bin packing do not auto-
matically carry over to the more complicated VM placement problem [Mann 2015a].
The application of semionline and relaxed online bin-packing algorithms has also been
proposed [Song et al. 2014; Xiao et al. 2014].

Metaheuristics have also been suggested, such as simulated annealing [Hyser et al.
2008], genetic algorithms [Gmach et al. 2008], and ant colony optimization [Gao et al.
2013].

Some authors proposed proprietary heuristics. Some of them are simple greedy al-
gorithms [Salehi et al. 2012; Wood et al. 2009] or straightforward selection policies
[Batista et al. 2007; Beloglazov and Buyya 2010a; Beloglazov et al. 2012; Shi et al.
2013]. Others are rather complex. For example, the algorithm of Jung et al. [2010]
first determines a target mapping by means of a WF-like heuristic but then uses
an A∗ tree traversal algorithm to create a reconfiguration plan, taking into account
not only the adaptation costs but also the cost of running the algorithm itself (which
means that search space exploration is restricted if the algorithm has already run for a
long time); moreover, this algorithm is carried out in a hierarchical manner on multiple
levels. Mishra and Sahoo [2011] categorize both PMs and VMs according to what kind
of resource is used by them most (from the three investigated dimensions, which are
CPU, memory, and I/O) into so-called resource triangles, and attempt to match them
on the basis of complementary resource triangles (e.g., a VM that uses the CPU most
should be mapped on a PM where the CPU is the least-used resource), at the same time
also taking into account the utilization levels. Verma et al. [2009] devised an algorithm
that starts by analyzing the workload time series of the applications to determine an
envelope of the time series that captures the bulk and the peak of the distribution.
This information is then used to cluster the applications on the basis of correlating
peaks, and then the application clusters are spread evenly on the necessary number
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of PMs. However, none of these sophisticated heuristics offers performance guarantees
in terms of approximation factors.

A different approach is to regard the VM placement problem as a control task, in
which a controller tries to balance the utilization of the PMs between the conflicting
objectives of minimizing power consumption and keeping performance levels, and to
apply control-theoretic methods. This includes fuzzy control techniques [Salehi et al.
2012] and distributed PID controllers [Tomás and Tordsson 2014].

5.3. Heuristics for the Multi-IaaS Problem

The heuristic algorithms that have been proposed for the multi-IaaS problem are quite
heterogeneous. The simplest algorithms include list scheduling [Bittencourt et al.
2012b], greedy provisioning and allocation policies [Villegas et al. 2012], greedy
scheduling and clustering algorithms [Oliveira et al. 2012], and simple proprietary
heuristics [Candeia et al. 2010]. Metaheuristics have also been suggested, such as
particle swarm optimization [Pandey et al. 2010]. Additionally, more sophisticated
algorithms have been proposed, such as those based on existing algorithms for the
knapsack problem [Lampe et al. 2012].

The preceding algorithms, whether simple or sophisticated, offer no performance
guarantees, or at least none has been proven. An exception is the work of Tsamoura
et al. [2013] addressing a multiobjective optimization problem, in which makespan and
cost are minimized simultaneously. The aim is to find Pareto-optimal solutions in the
time–cost space, and the bids of eCPs are in the form of time–cost functions. Drawing
on earlier results [Papadimitriou and Yannakakis 2001], an approximation algorithm
with pseudopolynomial runtime can be devised.

5.4. Algorithms for Other Problem Formulations

As mentioned in Section 4.4, there are few works considering other problem formu-
lations, such as the multi-DC problem or hybrid cloud setups, and these works are
similar to either the single-DC or multi-IaaS problem. Accordingly, the algorithms that
have been proposed for these problem formulations are similar to the ones for the other
problem variants.

In particular, Binary Integer Programming has been suggested to optimally solve the
task allocation problem in a hybrid cloud scenario [Bossche et al. 2010]. Hill climbing
has also been used as a simple heuristic [Casalicchio et al. 2013], as well as proprietary
heuristics [Bittencourt and Madeira 2011]. Heuristics inspired by bin packing play a
role here as well, such as FF [Khosravi et al. 2013], and Mills et al. [2011] compare
several bin-packing–style heuristics in a multi-DC setup.

5.5. Evaluation of Algorithms

Most papers also provide some evaluation of the algorithms they propose. In most
cases, this evaluation is done empirically, but there also are some examples of rigorous
mathematical analysis.

5.5.1. Rigorous Analysis. Tsamoura et al. [2013] proved the correctness and complexity
of their algorithms: an exact polynomial-time algorithm for a special case and an
approximation algorithm with pseudopolynomial runtime for the general case, albeit
for a rather uncommon problem formulation.

For some restricted problem versions, polynomial-time approximation algorithms
have been presented with rigorously proven approximation guarantees [Alicherry and
Lakshman 2012, 2013; Breitgand and Epstein 2012; Mann 2015c; Song et al. 2014].
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Guenter et al. [2011] proved an important property of the linear program that they
proposed: that its optimal solution will be integral, without explicit integrality con-
straints, thus allowing the use of an LP solver instead of a much slower ILP solver.

5.5.2. Empirical Evaluation. In many cases, the evaluation was carried out using simula-
tion. There are simulators specifically for cloud research, such as CloudSim [Calheiros
et al. 2011], but many researchers used their own simulation environments. Relatively
few researchers tested their algorithms in a real environment [Das et al. 2008; Jung
et al. 2010; Koller et al. 2010; Liu et al. 2009; Meng et al. 2010; Nathuji and Schwan
2007; Verma et al. 2009, 2011; Wood et al. 2009] or using a combination of real hard-
ware and simulation [Rodero et al. 2012; Svärd et al. 2014; Tomás and Tordsson 2014;
Villegas et al. 2012; Zhu et al. 2009]. However, it must be noted that in most of these
cases, the “real” environment used for evaluation was rather small (e.g., just a handful
of PMs and VMs). Apparently, most researchers do not have the possibility to perform
experiments on large-scale real systems.

As a compromise between pure simulation and a real evaluation environment,
several researchers used traces from real applications and real servers. Some
research groups of industry players used traces from their own infrastructure
[Gmach et al. 2008; Guenter et al. 2011; Verma et al. 2008a; Zhu et al. 2009].
Others used publicly available workload traces, such as those from the Paral-
lel Workloads Archive (http://www.cs.huji.ac.il/labs/parallel/workload/) of the He-
brew University [Feitelson et al. 2014; Jiang et al. 2012; Salehi et al. 2012],
the Grid Observatory (http://grid-observatory.org/) [Rodero et al. 2012], PlanetLab
(http://www.planet-lab.org/) [Beloglazov and Buyya 2012, 2013], or workload traces
made available by Google (https://code.google.com/p/googleclusterdata/) [Reiss et al.
2012; Ribas et al. 2012]. A related approach, taken by several researchers, was to use
a Web application with real Web traces. For example, RUBiS, a Web application for on-
line auctions [Cecchet et al. 2003], has been used by multiple researchers with various
Web server traces [Jung et al. 2010; Tomás and Tordsson 2014]; Wikipedia traces were
also used [Ferrer et al. 2012]. Other benchmark applications used include the NAS
Parallel Benchmarks (http://www.nas.nasa.gov/publications/npb.html) [Koller et al.
2011; Moreno-Vozmediano et al. 2011; Tordsson et al. 2012; Verma et al. 2011], the
BLAS linear algebra package (http://www.netlib.org/blas/) [Verma et al. 2011], and the
related Linpack benchmark (http://netlib.org/benchmark/hpl/) [Das et al. 2008; Verma
et al. 2008a].

6. DETAILS OF SOME SELECTED WORKS

Because of the sheer volume, it is impossible to provide a detailed description of all
works in the field. However, we selected some of the most influential and most interest-
ing works and give more details about them in the following. “Most influential” has been
determined based on the yearly average number of citations that the given paper has
received according to Google Scholar (http://scholar.google.com), as of February 2015,
and this list has been extended with some other works that are—in our opinion—also
of high importance to the field.

6.1. One-Dimensional Dynamic VM Consolidation in a Single DC

According to the above metric, the most influential papers are those of Beloglazov
and Buyya from the University of Melbourne (one of those papers is joint work with
Abawajy). They address the single-DC problem, focusing on the single dimension of
CPU capacity of PMs and CPU load of VMs. The main optimization objective is to
consolidate the workload on the minimal number of PMs with the aim of minimizing
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energy consumption. As a secondary objective, also the number of migrations should be
kept low. The authors’ early works focus on analyzing the context of and requirements
towards such an optimization framework, as well as architectural considerations and
preliminary results on some efficient optimization heuristics [Beloglazov and Buyya
2010a, 2010b].

Those heuristics are presented in more detail in a later paper [Beloglazov et al.
2012]. The main idea is to first remove all VMs from lightly used PMs so that they
can be switched off and also remove some VMs from overloaded PMs so that they will
not be overloaded. In a second phase, a new accommodating PM is searched for the
removed VMs. The latter subproblem is seen as a special version of the bin-packing
problem, in which the bins may have differing sizes (different PM capacities) and prices
(different energy efficiency of the PMs). For this problem, the authors developed the
Modified Best Fit Decreasing (MBFD) heuristic, which considers the VMs in decreasing
order of load and allocates each of them to the PM with the best energy efficiency that
has sufficient capacity to host it. For the problem of selecting some VMs to migrate
off an overloaded PM, the authors consider several heuristics. The Minimization of
Migrations (MM) policy selects the minimum number of VMs that must be removed to
let the PM’s load go back to the normal range. The Highest Potential Growth (HPG)
policy selects the VMs that have the lowest ratio of current load to requested load.
Finally, the Random Choice (RC) policy selects the VMs to be removed randomly. The
authors used the CloudSim framework to simulate a DC with 100 PMs and 290 VMs
to evaluate the presented heuristics and compare them to a Non-Power Aware (NPA)
method, one using DVFS only, and a Single-Threshold (ST) VM selection algorithm.
The simulation results, accompanied by a detailed statistical analysis, demonstrate the
superiority of the presented methods with respect to energy consumption, number of
SLA violations, and number of migrations. From the presented VM selection methods,
the MM heuristic proved best.

In a related paper, the same authors provide a mathematical analysis of some rather
restricted special cases or subproblems of the single-DC problem [Beloglazov and Buyya
2012]. In particular, they provide optimal offline and online algorithms for the problem
of when to migrate a VM off from a PM and prove an upper bound for the competitive
ratio of the optimal online algorithm for the case of n homogeneous PMs. Besides, they
also consider some adaptive heuristics for dynamic VM consolidation. The problem is
the same as the one considered in the other works of the authors, and the algorithms are
also similar but are now adaptive: instead of using fixed thresholds for determining
underutilization and overutilization, the thresholds now adapt to the variability of
the VMs’ load. For this, several methods are considered: Median Absolute Deviation
(MAD), Interquartile Range (IQR), Local Regression (LR), and Robust Local Regression
(RLR). The performance of the algorithms is evaluated again using CloudSim, but this
time with a simulated DC with 800 heterogeneous PMs and real workload traces
from PlanetLab. The authors also carried out a very thorough statistical analysis to
come to the conclusion that the LR method outperforms the others in terms of energy
consumption and SLA violations.

Finally, yet another paper of the same authors looks at one specific subproblem of
VM consolidation: how to decide when a PM is overloaded and, consequently, when
VMs should be removed [Beloglazov and Buyya 2013]. Two conflicting goals are taken
into account: on the one hand, the time when the host is overloaded should be min-
imized to avoid performance degradation and SLA violation; on the other hand, the
overload detection method should signal an overload only if absolutely necessary to
keep the utilization high and avoid unnecessary migrations. The authors devise a
method using Markov chains for stationary workloads, which can also be applied to
nonstationary workloads by using the Multisize Sliding Window workload estimation
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technique. Simulation results on PlanetLab traces demonstrate the good performance
of the proposed method.

Bobroff et al. [2007] from IBM Research investigated a similar problem: they also aim
at minimizing the number of active PMs and the number of SLA violations by carefully
consolidating VMs to PMs in a single DC. The problem is one dimensional here as well,
with the CPU being the single investigated resource, and SLA violations are assumed to
happen if the CPU of a PM is overloaded. As a generic solution framework, the authors
propose the Measure-Forecast-Remap cycle, in which the workload consumption of
VMs is measured, based on which their future resource demand is forecast, and a new
VM-to-PM mapping is generated. This cycle is iterated at regular time intervals of
length τ . (In the practical examples, τ is 15 minutes.) The Remap phase is based on the
similarity to the bin-packing problem and makes use of an FF heuristic. The strength
of the paper lies in the solution for the Forecast phase (the load prediction problem, in
our terminology). It is based on a sophisticated time series analysis, aiming to identify
the principal periodic components of the load distribution based on past data. As a
result, the future load can be estimated along with the distribution of the prediction
error. This allows consolidation with a given upper limit on the allowed probability of
server overload.

Another similar work is pMapper by Verma et al. [2008a], from IBM India and IIT
Delhi. The aim here is to optimize the mapping of VMs to PMs with respect to energy
consumption and number of migrations. Another similarity is the one-dimensional
nature of the problem, considering only CPU capacity and CPU load. Besides trying
to switch off PMs, the authors emphasize dynamic power consumption. Interestingly,
they find that utilization does not determine power consumption and argue that this
prohibits the use of global optimization techniques. Instead, local power efficiency char-
acteristics are formulated that seem to hold in practice and can be exploited for local
optimization techniques. Based on these insights, three algorithms are presented. The
first one, min Power Parity (mPP), is a variation of the FFD heuristic: it considers VMs
in decreasing order of CPU load and puts each VM into the PM with sufficient capacity
that offers the best energy efficiency. The weakness of this method is that it can lead
to a prohibitively large number of migrations. Hence, the second algorithm, min Power
Placement with History (mPPH), enhances mPP by taking into account the starting
allocation so that unnecessary migrations can be avoided. The third algorithm, pMaP,
goes one step further in decreasing the number of migrations: it uses mPPH to gener-
ate a recommended new placement but actually performs only those migrations that
improve the overall energy—migrations trade-off. The algorithms were implemented
in the framework of the pMapper system and tested with a simulator using server
utilization traces from a real DC. The authors’ algorithms were compared to a non-
power-aware load balancer and a static placement approach. The results show that
at high levels of utilization, the difference between the algorithms’ results is not so
significant, but at lower utilization, the proposed algorithms perform significantly bet-
ter, with pMaP being the best. Finally, it is important to note that the paper contains
several other aspects beyond the algorithmic part, such as the pMapper architecture
and practical experience about (deficiencies of) the performance isolation provided by
virtualization.

6.2. Static Placement in a Single DC

A closely related paper, also from the IBM India Research Lab, investigates the op-
portunities for static placement in more detail. The work of Verma et al. [2009] starts
with a very detailed empirical assessment of server traces from a real DC. Among
other findings, they establish that VMs’ actual resource requirements are most of the
time less than half of the maximum value and that there is significant correlation
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between the load of some pairs of VMs—especially those that belong to the same ap-
plication. The authors then use these insights for designing optimization algorithms
with the aim of minimizing energy consumption and the number of PM overloads, tak-
ing into account the single dimension of CPU load. The authors argue that for static
(long-term) placement, the correlation between the loads of VMs, especially between
their load peaks, is key: VMs with correlating load peak should not be placed on the
same PM. They propose two new algorithms. Correlation-Based Placement (CBP) is an
extension of pMapper’s placement algorithm, using some given percentile of the load
distribution of a VM (e.g., the size at 90% of the cumulative distribution function) as
its size and avoiding the co-location of VMs with a correlation of their loads higher
than a given limit. The other algorithm (Peak Clustering-Based Placement (PCP)) is
completely new and works by clustering the VMs based on correlation between their
load peaks and distributing VMs of the same cluster evenly among the PMs. The al-
gorithms were evaluated using simulation, based on server traces from the DC where
the first experiments were carried out. A comparison with pMapper’s placement algo-
rithm (which is optimized for dynamic placement) shows the superiority of the newly
proposed algorithms for static placement, with PCP performing best in most cases.
Finally, the authors show how the two new algorithms can be tuned, as they are quite
sensitive to the used cutoff parameters and the training period.

6.3. Other Variants of the Single-DC Problem

Another paper that also starts with empirical investigations is the work of Srikantaiah
(Pennsylvania State University) and Kansal and Zhao (Microsoft Research). Their fo-
cus is on the minimization of energy consumption by means of consolidation, subject to
performance constraints [Srikantaiah et al. 2009]. In contrast to the works described
earlier, they consider two kinds of resources: CPU and disk. The main finding of the
paper is the observation that consolidation impacts performance and energy consump-
tion in a highly nontrivial manner. Up to some point, increasing the utilization leads
to higher energy efficiency, as expected. However, at some point, some resource of the
PM saturates, and thus further increase in the utilization leads to performance degra-
dation; since jobs take longer to complete, the energy consumption per job increases.
As a result, energy consumption per job is a U-shaped function of utilization, yielding
an optimal level of utilization. The authors propose to aim for this optimal utilization,
which should be determined in an offline profiling phase. Afterward, a two-dimensional
packing heuristic is used, where the bin sizes correspond to the optimal utilization of
the PMs. The heuristic is a variation of WF, aiming at maximizing the remaining free
capacity of PMs. This heuristic can be used both for accommodating new VMs and for
optimizing the current placement of the VMs.

Multidimensional optimization of VM placement was also the subject of the work
of Xiao et al. [2013] from Peking University. Their approach works in four steps: load
prediction, hot spot elimination, cold spot elimination, and execution of migrations.
For load prediction, an exponentially weighted average of past observations is used;
however, weights are different for increasing and decreasing values so that the method
reacts quickly if the load is increasing. Hot spots (PMs with load above some threshold
in at least one dimension) are handled by greedily choosing VMs to migrate away from
them. Cold spots (PMs with load below some threshold in each dimension) are handled
only if the the average load of all PMs is below some given threshold; in that case,
the algorithm tries to find a new host for the VMs on cold spot PMs; if a PM thus
becomes empty, it can be switched off. In both hot spot and cold spot elimination, the
skewness of the PMs is considered: this metric captures how unbalanced the resource
load of the PM in the different dimensions is; the algorithm tries to minimize the
skewness of the PMs. The proposed algorithm has been tested using both trace-based

ACM Computing Surveys, Vol. 48, No. 1, Article 11, Publication date: August 2015.



11:24 Z. Á. Mann

simulation and real servers. The results demonstrate that the algorithm is very fast
and—if the parameters are configured properly—effective in eliminating overloads and
consolidating servers.

A quite different problem formulation was addressed by Meng et al. [2010] from IBM
Research: they also consider the single-DC problem, but with the aim of minimizing
network communication costs. The PMs’ resources are not considered in detail, but it
is assumed that some capacity planning approach has been used to define a number of
slots on each PM, and the task is to map the VMs to the slots under the assumption
that each VM fits into any slot. As input, the communication intensity is given for
all pairs of VMs as well as the communication cost for all pairs of slots. The VM-to-
slot mapping should minimize the resulting total communication cost. The authors
classify this problem as a quadratic assignment problem and prove its NP-hardness
by reduction from Balanced Minimum k-Cut. They propose a multilevel clustering
algorithm: it clusters the VMs based on communication intensity, it also clusters the
slots based on communication costs, it maps VM clusters to slot clusters, and then
calls itself recursively for each of the generated VM cluster—slot cluster pairs. The
next part of the paper is quite uncommon: for two special communication matrices and
four network topologies, the authors try to determine the optimal cost (or, if this is
not successful, a lower bound) and the expected cost of random placement to assess
the optimization opportunities. The authors also evaluate the practical performance of
their proposed algorithm and compare it to two general-purpose quadratic assignment
heuristics using a combination of real server traces and synthetic additions. The results
show that the proposed algorithm finds slightly better results with significantly shorter
running time than the other heuristics.

6.4. Multi-IaaS Allocation

Communication costs also play a vital role in the DAG scheduling approaches that are
common for multi-IaaS problem formulations. A representative example is the work
of Pandey et al. [2010] from the University of Melbourne. Here, the aim is to map
the tasks of a scientific workflow on cloud resources. For each task and each compute
resource, it is given how long it would take and how much it would cost to execute
the task on the resource. Dependencies between the tasks are given in the form of a
DAG. For each edge of the DAG, the amount of transferred data is given; similarly,
for each pair of compute resources, the cost of communication between them is given.
For a mapping of tasks to resources, the total cost of a resource is defined as the
execution cost of the task on this resource plus the sum of the data access costs along
the incident edges; the objective is to minimize the maximum cost of a resource. For
this optimization problem, the authors propose the use of Particle Swarm Optimization
(PSO), a popular metaheuristic. Each particle encodes a task-resource mapping. The
optimization is carried out in an online manner: first, the source tasks of the DAG
are allocated; when some tasks have finished executing, the allocation of the tasks
that are ready to be executed is again optimized using PSO and so on. The algorithm
was evaluated using simulation on a rather small problem instance (three compute
resources, five tasks) and compared to an algorithm that always selects the fastest but
most expensive resource. Unsurprisingly, the solution found by the proposed algorithm
incurs lower costs.

Another approach to the multi-IaaS problem is presented by Tordsson (Umea Uni-
versity) and Montero, Moreno-Vozmediano, and Llorente (Universidad Complutense
de Madrid) [Tordsson et al. 2012]. Here we can select from a list of possible VM types,
where each VM type is associated with a capacity. There are multiple CPs, and for each
pair of VM type and CP, the hourly rental fee is given. The aim is to select a set of alto-
gether n VMs from the CPs such that the total price is below a given limit and the total
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capacity is maximal. This optimization problem is formulated as an integer program
and solved using CPLEX, a commercial off-the-shelf solver. The authors also show
how some further constraints can be incorporated (e.g., the number of VMs of a given
type can be constrained). The algorithm is evaluated using three real CPs and four
VM types, allocating a total of 16 VMs to run a distributed benchmark application.
Experimenting with different cost limits, an interesting observation is that in most
cases the optimal allocation involves more than one CP, highlighting the practicality
of such a multicloud setup. Beyond the algorithmic part, the authors also discuss some
other aspects, such as the role of a cloud broker in ensuring interoperability between
different CPs.

7. AREAS IN NEED OF FURTHER RESEARCH

Despite the large amount of work already presented in the literature, there are still
several aspects that, in our opinion, have not yet been addressed satisfactorily. This
is true both for problem formulations and for algorithms. Moreover, the state of the
art concerning the evaluation of algorithms also needs improvement. We elaborate on
these topics next.

7.1. Problem Formulations

We see the following issues as the most important deficits in the prevalent problem
formulations:

—Hybrid cloud: As mentioned previously, most works address either the single-DC
or multi-IaaS problem. Very few works address hybrid clouds, and even those usu-
ally have a strong bias in the modeling either toward the single-DC or multi-IaaS
subproblem, modeling the other parts only rudimentarily. Yet hybrid clouds play an
increasingly important role in practice [Bittencourt et al. 2012a; Moreno-Vozmediano
et al. 2011]. Especially in enterprise environments, hybrid clouds are becoming the
standard, and so enterprise IT executives face decisions every day that relate to both
in-house and cloud resources [Capgemini 2013]. Hence, in the future, we expect to
see more research about genuine hybrid cloud problem formulations.

—Task–VM–PM mapping: In the single-DC problem, the usual formulation is about
mapping VMs to PMs. In the multi-IaaS problem, it is more common to investigate
the mapping of tasks to VMs. However, these are just two sides of the same coin:
users actually want to get their tasks mapped to PMs, and VMs are just a tool that
is used to enable this mapping in a safe and efficient way. This becomes especially
clear in a hybrid cloud setting, where the users’ tasks either are wrapped into VMs
assigned to local PMs or are directly mapped to eCPs’ VMs. Hence, in the future, we
expect to see a converged model of the trilateral task–VM–PM assignment.

—Co-optimization: VM placement is just one level where power consumption is op-
timized. But power consumption optimization techniques are also implemented on
the server level (e.g., DVFS), the level of individual components (switching unused
cores, cache ways, memory banks, disks, etc., to a low-energy state), and in net-
work equipment (routers, switches), altogether making up a very complex system.
In particular, it is not clear how these different optimization techniques interact and
possibly interfere with each other [Raghavendra et al. 2008]. It is not clear whether
the optimal decision in the VM placement problem, if it does not account for the
other optimization levels, is indeed the best choice for the overall system’s power
consumption. More research is needed to better understand these interactions.

—Multicore CPUs: The existing problem formulations in the literature either do
not model multicore CPUs at all or model them in a very simplistic way. This
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compromises the practical applicability of such approaches, because multicore CPUs
are now omnipresent.

—Communication: Data transfer among VMs is another aspect severely missing from
many existing problem formulations, especially in the case of the single-DC problem,
although it can impact overall system performance substantially. In the literature
about the multi-IaaS problem, communication among tasks is more frequently taken
into account, yet almost exclusively coupled with the assumption that all dependen-
cies are given in the form of a DAG. However, in practice, there are often cyclic
communication scenarios (e.g., two applications regularly exchanging information
in both directions), and in many cases the communication paths are not static but
change at runtime depending on real-time information. In addition, the modeling of
workflows as DAGs usually assumes finish-to-start dependencies between adjacent
tasks, but in practice the second task can usually start its execution once some partial
results of the first task are available. For these reasons, although the DAG scheduling
approach is tempting because of its theoretical clarity, its applicability is limited to
some narrow domains. Further research is needed on more widely applicable models
of communication among VMs.

—Co-location interference: When deciding to place a set of VMs on a PM, many works
only check that the total size of the VMs does not exceed the PM’s capacity. However,
in practice, there are also other attributes of the VMs that influence how suitable
they are for co-location. One factor to consider is correlation: how likely it is that
the resource demand of several of the VMs will increase at the same time [Verma
et al. 2009]. Another factor is the “noisy neighbor” effect: since current virtualization
technologies do not offer complete performance isolation of the co-located VMs, if
one of the VMs uses a resource excessively, this may degrade the performance of the
others [Kim et al. 2013]. Up to now, very few works addressed these issues.

7.2. Algorithms

The most important deficiency in terms of algorithms is that mostly heuristic algo-
rithms (in most cases, quite simple heuristics) have been proposed, without any perfor-
mance guarantee. This is problematic because even if they perform well in controlled
experiments, they may yield poor results in real settings, especially for large and highly
constrained problem instances.

—Exact algorithms: Since the VM placement problem contains the bin-packing prob-
lem as special case, which is NP-hard in the strong sense [Martello and Toth 1990],
there is no hope for an exact algorithm with polynomial or even pseudopolynomial
runtime. Nevertheless, there is still much that could be done in the context of exact
algorithms—for example, efficiently solvable special cases, fixed-parameter tractabil-
ity, randomized algorithms with limited error probability, and algorithms with low
typical-case complexity [Mann 2011]. Those authors who did experiment with ex-
act solutions usually used off-the-shelf solvers for different classes of mathematical
programming; the fact that those solvers took a long time to solve even mid-sized
problem instances does not mean that it is not possible to come up with better exact
algorithms tailored specifically to the given problem.

—Approximation algorithms: Another logical possibility that has largely been unex-
plored would be to use approximation algorithms, i.e., polynomial-time algorithms
that are guaranteed to deliver a result with cost at most constant times the opti-
mum. Since there are good approximation algorithms for the bin-packing problem,
this may suggest that similar results could also be achieved for the VM placement
problem.
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—Coping with uncertainty: Most algorithms assume that all parameters of the prob-
lem are fixed and precisely known constants. (Even the approaches that attack the
load prediction problem assume that parameters other than the VMs’ load are fixed
and precisely known.) However, in reality, cloud DCs are very complex and highly
dynamic systems, so a real cloud management system must cope with estimation
errors (e.g., PMs’ background load is not constant, so the estimate of a PM’s avail-
able capacity may turn out be incorrect) and unforeseen events (e.g., a PM may be
damaged or may need to be restarted because of an urgent operating system patch).
The algorithms presented so far in the literature are usually not robust enough to
handle such situations.

7.3. Evaluation of Algorithms

Besides the problem formulations and the proposed algorithms, we feel a need for
improvement in the way in which algorithms for VM allocation are usually evaluated:

—Analytic evaluation: Most papers in the literature completely lack an analytic eval-
uation of the proposed algorithms. As a minimum, an estimation of the asymptotic
worst-case runtime and memory consumption of the algorithms should be given. If
mathematically feasible, an estimation of the asymptotic average-case behavior of
the algorithms (using some appropriate probability distribution of the input param-
eters) would be even more interesting. Alternatively, an analysis of some more easily
handled special cases would also contribute to a better understanding of, and thus
to an increased confidence in, the proposed algorithms.

—Empirical evaluation: In absence of a detailed analytic evaluation, the empirical
evaluation of the proposed algorithms is very important. Ideally, each new paper
should show the advantages of the proposed method by means of a systematic com-
parison to previously suggested methods on a large number of different, practically
relevant benchmark instances. Unfortunately, this is hardly ever done. One problem
is that there are no widely accepted benchmarks for the VM placement problem (and
its special cases), and another issue is the co-existence of many different problem
formulations, making meaningful comparisons difficult. But independently of these
issues, researchers often compare their approaches to trivial algorithms or to algo-
rithms that do not take into account some important characteristic of the problem,
compare different versions of their own algorithm to each other, or do not do any com-
parison at all. As a result, at this time, we have no way to tell which of the proposed
algorithms works best. The community will need to develop more rigor concerning
the empirical evaluation of algorithms to better support future development of the
field.

8. CONCLUSIONS

We have presented a survey of the state of the art in the VM allocation problem
concerning problem models and algorithmic approaches. Because of the large number
of papers in this field, we could not describe all of them, but we tried to show a
representative selection of the most important works. As we have seen, most papers
deal with either the single-DC or multi-IaaS problem, but also within those two big
clusters, there are significant differences between the problem formulations used in
each paper. Currently, the literature on these two subproblems is mostly disjoint, with
only few works addressing a combination of the two. However, we argued that to capture
hybrid cloud scenarios, a convergence of these two fields will be necessary in the future.

Given the diversity of the available approaches to VM placement, natural questions
that arise are which method is best—and, more realistically, when to use which method.
Unfortunately, the heterogeneity of the considered problem formulations and the lack
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of meaningful algorithm comparison studies make it very hard to answer these ques-
tions. We definitely see the need for future work comparing the real-world performance
of algorithms under different scenarios. In addition, a regular competition would be
very helpful for the community, similarly to competitions in other fields, such as the
Competition on Software Verification (http://sv-comp.sosy-lab.org/).

For now, we can make recommendations mainly based on problem formulations. In
other words, to find out which approaches may be most suitable in a given situation,
one should first determine if the single-DC, the multi-IaaS, or some of the other vari-
ants apply. Then, the main characteristics should be identified according to Table I or
Table II. For example, in the case of communication-intensive workloads, one should
consult the approaches that take inter-VM communication costs into account; likewise,
if there are stringent SLAs on response time, then one should focus on approaches that
support such user-level SLOs and so forth. This way, the search can be narrowed down
to a small number of works that need to be evaluated in detail.

It is our hope that our survey will help practitioners select the most appropriate
existing works and that it will contribute to the maturation of this important and
challenging field by demonstrating both previous achievements and areas for future
research.
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Wubin Li, Petter Svärd, Johan Tordsson, and Erik Elmroth. 2012. A general approach to service deploy-
ment in cloud environments. In Proceedings of the 2nd International Conference on Cloud and Green
Computing (CGC’12). 17–24.
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