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ABSTRACT
The Internet of Things (IoT) and its service-oriented ar-
chitecture (SoA) has increased the interest on the concept
of service composition. Simpler (modular) web services are
interconnected to realize more complex ones. To this end,
we propose a semi-automatic approach, tailored to suit the
needs of developers, allowing them to easily discover, con-
sume and interconnect services so as to create more complex
ones by exploiting their semantics. We build upon our previ-
ous work on the SYNAISTHISI platform and an ontology for
smart meeting rooms. To demonstrate the workflow of our
approach, we present a real-world case; we create a complex
application for counting the persons within a smart meeting
room, by interconnecting simpler, IoT-enabled services.

1. INTRODUCTION
During the last few years, everyday physical objects have

been modified with the embodiment of short-range and en-
ergy efficient mobile transceivers and enhanced with unique
identifiers. The extensive networking of heterogeneous de-
vices has led to the emergence of the Internet of Things
(IoT), which is considered as the next industrial revolu-
tion [5] and is expected to find numerous applications in
diverse areas. IoT adopts a service-oriented architecture
(SoA), where all “things” are exposed as web services that
can be used and reused [2]. These IoT-related services can be
categorized into three distinctive, yet interdependent, types:
(i) sensing services that capture properties of the physical
world and provide raw or slightly processed measurements,
(ii) processing services that process the acquired measure-
ments and provide the inferred results and (iii) actuating
services that enable certain actions based on these results.

Available services in an IoT ecosystem can be combined
to construct complex applications that fulfill e.g., some new
desired functionality which none of the existing services is
able to provide. This procedure is known as “service compo-
sition” [15]. Key steps in composing a service are the discov-
ery of suitable services and their appropriate interconnection
using an IoT-ready platform, such that a functional compo-
sition is ensured where every service can be readily invoked
(i.e., each service’s inputs and preconditions are satisfied
from the outputs and the effects of other services participat-
ing in the composition).

In our previous work [1], we described a methodology of
developing complex applications using the SYNAISTHISI
platform [12]. The core of this work was a smart meeting
room ontology, providing semantic annotations for the avail-
able services in the room. We showed that a developer with

knowledge of (i) what kind of services are required for the
complex application and (ii) how they should be intercon-
nected, is able to discover the appropriate services by uti-
lizing the semantic information (via SPARQL1 queries) and
define an interconnection scheme, thus manually compose a
service that is subsequently realized by the platform. In this
work we extend the aforementioned ontology and present
a semantically-aware procedure that allows developers to
compose services in semi-automatic fashion, alleviating the
assumptions made in [1].

As a test case to illustrate our approach, we revisit the
composed “person counting” service of [1], using the pro-
posed semi-automatic methodology. We show that the whole
procedure becomes now more intuitive. The developer still
does not need to have prior knowledge regarding the avail-
able services’ implementation details (programming langu-
ages, technologies, etc.) and is also safeguarded against
taking wrong decisions, i.e. interconnecting services whose
inputs–outputs do not match.

The rest of this paper is organized as follows: In Section 2
we provide an overview of related work in service compo-
sition and web service ontologies. Then, in Section 3 we
briefly present the SYNAISTHISI platform. In Section 4 we
present the smart meeting room ontology, while in Section 5
we describe the steps that must be performed to compose
services and build a complex application. In Section 6 we
present a use case of our approach. Discussion follows in
Section 7, along with possible directions for future work.

2. RELATED WORK
Semantics provide a means to enhance the descriptions of

web services and facilitate various IoT-related tasks, such
as service discovery and composition. Several ontologies ex-
ist for attaching semantic content to web services, convert-
ing them into semantic web services [9]. OWL-S [8] and
WSMO [14] are two renowned efforts, which provide highly
expressive models for annotating web services. The Min-
imal Service Model (MSM) [11] focuses only on the core
semantics of web services, trading the expressivity of OWL-
S and WSMO to improve usability. The aforementioned
ontologies constitute general purpose upper ontologies that
include high-level concepts which can be applied across het-
erogeneous domains. However, specializing these ontologies
to also model the low-level concepts specific to a particular
domain demands considerable effort. To overcome this dif-
ficulty, web service ontologies that are domain-specific have

1http://www.w3.org/TR/sparql11-query



been also developed. The smart building ontology in [17], as
well as the smart meeting room ontology we presented in [1]
and further extend herein, are two such examples.

Web services may be seen as self-contained units of func-
tionality. Service-oriented architectures (SoA) allow them
to be published, discovered and consumed [15]. Apart from
using the available services, users are also able to compose
them, so as to realize more powerful services that fulfill their
needs more effectively. Typically, service composition is ac-
complished using one of the following approaches [15]:

i. Manual composition: the user has total freedom at
every step of the process. However, this advantage is
compensated by the need of too much knowledge and
effort on the part of the user.

ii. Semi-automatic (interactive) composition [3,7]: at ev-
ery step of the process the system assists the user by
presenting him/her with possible choices, however de-
cisions are ultimately taken by the user.

iii. Automatic composition [6, 13]: the user typically sets
constraints and/or preferences, but is not allowed to
intervene at the process. Such methodologies are not
demanding nor require knowledge on the part of the
user, but may often lead to results that do not match
the user’s original intentions.

A survey on recent works regarding web service composition
may be found in [15].

3. THE SYNAISTHISI PLATFORM
The work presented herein has been developed within the

context of the SYNAISTHISI project2, whose goal was to
deliver energy efficient, secure and effective applications, as
well as services, to end users, aiming to minimize the envi-
ronmental impact, monetary costs, user discomfort, delays
and utilization of resources. In this section we shall pro-
vide a brief description of the SYNAISTHISI platform [12],
an IoT-ready platform, and outline how it enables the in-
tegration, interconnection and coordination of a large num-
ber of heterogeneous devices and algorithms which are ex-
posed as semantic web services. The platform architecture
is discussed in detail in our previous work [12]. In brief,
the platform supports communication channels which real-
ize service interconnection, controls the available resources,
permits the deployment of custom applications and provides
a set of tools to accommodate system administrators.

The available services are registered into the service reg-
istry, implemented by an RDF triplestore equipped with a
semantic reasoner, and following the IoT paradigm discussed
in Section 1, they are divided into three distinct categories:
(i) S-type services corresponding to sensors that sense the
physical world, (ii) P-type services corresponding to proces-
sors (i.e. algorithms) that process the measurements of the
S-type services and/or the processed results of other P-type
services and (iii) A-type services corresponding to actuators
that are used for the actuation of devices/signals based on
the acquired results. Seen from the services’ IOPEs (Inputs,
Outputs, Preconditions, Effects) perspective, S-type services
produce outputs, but do not have inputs (strictly speaking,
they may only receive trigger signals), P-type services have
both inputs and outputs, while A-type services have inputs
and their output (actuation), is actually an effect. We will
refer to the set of these services as “SPA services” hereafter.

2http://iot.synaisthisi.iit.demokritos.gr

Figure 1: Two services interconnected with the SYNAIS-
THISI platform exchange messages. Solid arrows correspond
to messages published to topics, while dashed arrows depict
the messages arriving to the subscribers of those topics.

Within the platform, services communicate by publish-
ing messages and/or subscribing to topics managed by a
Message-oriented Middleware (MoM), which is a message
broker. Thus, all sensor measurements, processor results,
and actuations are encapsulated into messages and commu-
nicated via these topics. Once a message is published to a
topic, the MoM informs and delivers it to all clients that are
subscribed to that topic. An example is depicted in Fig. 1. A
camera is an S-type service which captures RGB video data
from the physical world and publishes them to a topic. A
Background Subtraction module is a P-type service, which
receives these data by subscribing at the same topic. Upon
processing, it publishes its output at another topic.

4. SMART MEETING ROOM ONTOLOGY
To enhance the efficacy of service discovery and compo-

sition towards realizing complex applications, the SPA ser-
vices of the SYNAISTHISI platform are semantically en-
riched using ontologies. Specifically, we have developed a
domain-specific ontology that models the concepts related
to smart meeting rooms, where all sensors, processors and
actuators are exposed as web services.

Our semantic model imports existing ontologies and reuses
their knowledge. The Internet of Things Architecture (IoT-
A) ontology [4], includes high-level concepts for describing
key aspects of the IoT domain and forms its basis. Also, the
popular Semantic Sensor Network (SSN) ontology3 is uti-
lized to represent various features of sensors and actuators
(e.g. the measurement capabilities of a sensor), while the
QU4 and QUDT5 ontologies provide descriptions for physi-
cal quantities (e.g. temperature) and their measuring units.

On the following, we outline the main classes and proper-
ties that make up the proposed ontology, omitting secondary
elements to avoid cluttering the presentation. A prelimi-
nary version of the ontology can be found in our previous
work [1], however it is here refined and extended with ad-
ditional concepts, to obtain a comprehensive description of
smart meeting room entities and facilitate the execution of
service composition tasks.

The resource and service model of the IoT-A ontology are
specialized by introducing classes, subclasses and proper-
ties related to the smart meeting room domain. In general,
the resource model is responsible for describing the char-

3http://purl.oclc.org/NET/ssnx/ssn
4http://purl.oclc.org/NET/ssnx/qu/qu
5http://qudt.org/



Figure 2: Core classes and properties of the resource model. The sm and ssn namespaces refer to the service model and the
SSN ontology, respectively.

Figure 3: Core classes and properties of the service model.
The rm namespace refers to the resource model. The hier-
archy of service types is not shown, as it has a one-to-one
correspondence to the resource type hierarchy.

acteristics of the actual device (i.e., sensor or actuator) or
processor, referred collectively as “resources” hereafter, that
is hidden behind a web service, while the service model is
responsible for describing the characteristics of the web ser-
vice (e.g. service input/output, service endpoint etc.) that is
used to access a resource and expose its functionality to the
outer world. Note that in the context of our work, the no-
tion of SPA services encapsulates both resource and service
model concepts.

4.1 Resource Model
The resource model, shown in Fig. 2, consists of a core

class, namely Resource, that captures the notion of a re-
source. A hierarchy is defined to represent various types of

resources that may exist in a smart meeting room, many of
which were not part of the ontology of [1]. The hierarchy
includes specific types of sensors, e.g., temperature sensors,
cameras and microphones, processors, e.g. modules for sub-
tracting the background of a scene, and actuators, e.g. plug
switches. Class names are quite indicative of the resources’
functionality. A resource is equipped with properties spec-
ifying its name (hasName), an ID (hasResourceID), some
keywords describing the resource (hasTag) and, importantly,
the web service that exposes its functionality to the outer
world (isExposedThroughService). The Location class de-
fines the location of a resource, while the Network class is
used to describe the network interface which makes the re-
source accessible through the web. Product-related infor-
mation, such as the manufacturer name, can be provided
using the Product concept. The ontology also allows to as-
sociate a resource with its owner (ResourceOwner). Finally,
for sensing and actuating devices the SSN ontology concepts
can be exploited using the link to the SSN Device class.

4.2 Service Model
The service model, depicted in Fig. 3, consists of a core

class, namely Service, that captures the notion of a web
service and contains the necessary information for discov-
ering and invoking the service. Various service types are
defined in a hierarchy, corresponding to the aforementioned
resource types. A service has a name (hasName), an ID
(hasServiceID), an owner (ServiceOwner), a link to the re-
source that is accessed using the service (exposes) and an
endpoint from where client applications can access the ser-
vice (ServiceEndpoint). The (physical) area that is affected
when the service is invoked can be determined via the has-

ServiceArea property. This property is particularly useful
for S-type services, declaring the area that is observed by
the sensor, and for A-type services, declaring the area that



is affected by an actuation. Possible time constraints on
the availability of a service can be defined using the Ser-

viceSchedule class. A very important element in the se-
mantic description of a service is to model its IOPEs. In
our case this is accomplished through the subclasses of the
Parameter class and by using the hasParameterType prop-
erty to annotate the IOPEs by providing the URI of the
concepts, defined in some appropriate ontology, that cap-
ture their meaning. Note that effects are considered as a
special type of output intended to describe the actuation of
A-type services. Finally, it is possible to declare a price for
trading a service in a service marketplace (ServicePrice).

5. SERVICE COMPOSITION
The manual service composition approach originally adopt-

ed in the SYNAISTHISI platform [1] imposes some rather
stringent assumptions that require a considerable amount of
effort on the developer’s side, who must himself decide what
SPA services are needed, write SPARQL queries to discover
them and define their interconnection. Hence, high-level
skills and a priori knowledge of the IoT ecosystem he oper-
ates in are necessary. Here, we transfer part of this effort
to the platform that will guide the developer in building a
complex application, by proposing a semi-automatic service
composition method which makes extensive use of IOPE-
related semantics. While presenting the method we shall
resort to the smart meeting room ontology (Section 4) to
obtain the semantic descriptions of SPA services, but as it
will become evident our approach is general, in the sense
that it can be applied over any SPA services ontology, if
SPARQL queries are appropriately adapted. Preconditions
of services are not considered by our framework and effects
are treated as a special case (i.e. subclass) of output pro-
duced by A-type services, therefore the discussion below is
oriented around the inputs and outputs of services.

5.1 Service Composition Algorithm
Initially, the developer must specify a service request de-

scribing the desired functionality of the composite service in
terms of outputs that should be generated when executed.
Each output is declared using a suitable concept from an
ontology that captures its meaning. For each concept in the
service request the platform employs a distinct service dis-
covery procedure that searches over the SPA services avail-
able in the platform to locate those that produce an output
(output concept) that “matches”, hence satisfies, the partic-
ular service request concept and organizes them in a match-
ing services’ list (the details of when two concepts match are
explained in Section 5.2). Outputs (and inputs) of SPA ser-
vices are retrieved by issuing platform-generated SPARQL
queries conforming to the service model of the smart meeting
room ontology, to extract the value of the hasParameterType
property associated with the Input/Output class. Services
included in a matching list represent alternative choices for
satisfying a concept of the service request and are presented
to the developer who must select one to be incorporated into
the composite service. Apparently, a selection must be made
for each service request concept.

After selecting a service, we must ensure that the ser-
vice can be invoked, i.e. all the inputs of the service can
be supplied with appropriate data, otherwise the composite
service will not execute. This is accomplished by retriev-
ing the inputs (input concepts) of the service (via SPARQL

Algorithm 1 Service Composition

Input: Dummy service SR, representing the service request
Output: Composite service CS, or fail

1: Set Q = ∅ // Queue structure with services as elements.
2: enqueue(Q, SR)
3: repeat
4: S = dequeue(Q)
5: for each input IS of service S do
6: L = service discovery(IS) // Matching services list.
7: if L == ∅ then // If the list is empty.
8: return fail
9: end if

10: Prompt the developer to select a service SL from L
11: Add SL to CS to supply the data for input IS
12: if SL not an S-type service then
13: enqueue(Q, SL)
14: end if
15: end for
16: until Q == ∅ // Until all services can be invoked.
17: return CS

queries generated by the platform) and launching a separate
service discovery procedure for each input to recover those
SPA services available in the platform that produce an out-
put (output concept) that matches the input, hence they
provide suitable data for the input. Subsequently, for each
input, the developer is prompted to choose a service from
the corresponding matching list that will be added to the
composite service and a new round of service discovery and
selection is initialized. This process is repeated until there
are no more SPA services participating in the composite ser-
vice which cannot yet be invoked. Note that S-type services
can be readily invoked since they do not have inputs, thus
there is no need to carry out service discovery if such a ser-
vice is chosen. By progressively selecting S-type services it
is possible to reach a state, where all services are invokable
and service composition terminates. After termination, the
platform proceeds with realizing and executing the compos-
ite service. Note that if, at any point, the service discovery
procedure for an input returns an empty matching list, the
composition process fails and no composite service is cre-
ated, since all available SPA services are deemed unsuitable.

The service composition process is summarized in Algo-
rithm 1, where the service request is represented as a dummy
service without outputs, having the service request concepts
as inputs. A graphic example is depicted in Fig. 4.

5.2 Semantic Relaxation
The service discovery procedure utilizes semantically rel-

evant concepts to decide whether the output of a service
matches a particular input of another service, thus include
it in the list of matching services (presented to the developer)
that can provide this input. An output concept A is consid-
ered to be semantically relevant (i.e. matched) to an input
concept B when one of the following hierarchical relationships
exists between them: (i) exact(A,B) when the two concepts
have the same URI or are equivalent in terms of OWL equiv-
alence, (ii) plugin(A,B) when A is subsumed by (is a sub-
class of) B, and (iii) subsume(A,B) when A subsumes (is a
superclass of) B. These hierarchical relationships represent
different degrees of semantic relaxation (in increasing order)
and are typical in the service composition literature [10].
The exact relationship implies that two concepts are the
same and can be used interchangeably during composition,
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Figure 4: The process of semi-automatic service composition.

thus avoiding syntactic limitations. Plugin and subsume im-
ply an approximate relationship between two concepts and
can be utilized to approximately match inputs to outputs,
a useful feature, especially, when exact matches do not ex-
ist in all steps of the composition process that, otherwise,
would lead to a failure in producing the requested service.
In general, we anticipate exact matches to be preferred over
plugin matches and plugin matches over subsume6 matches,
hence the services in the matching list are ordered accord-
ingly. Hierarchical relationships are calculated by applying a
semantic reasoner over the ontologies defining the concepts
used to annotate the IOPEs of the SPA services (not the
smart meeting room ontology).

6. EXAMPLE USE CASE
In this section we present a use case of the aforementioned

service composition methodology, by revisiting the example
of [1], where a people counting service was manually com-
posed using simpler ones. We assume that the goal of the
developer is to compose a “Person Counting” service, i.e. a
service able to provide an estimation of the number of peo-
ple present within a smart meeting room by utilizing the two
cameras overlooking the room. Moreover, we assume that
the developer is familiar with basic computer vision tasks,
thus is able to understand the flow of services suggested by
the system at each step and proceed to meaningful choices.

In Fig. 5 we illustrate the steps of the service composition
process. The process begins with the developer’s intention
to create a service with a specific functionality, i.e. he knows
the service’s output. He expresses this output via a ser-
vice request and two services are returned in the matching
list. Even though the output of the second service, namely
person_fusion, is not an exact match, but a plugin match,
his intention to interconnect more than one cameras, along
with his domain knowledge, constitute the second service a
preferable option over the first. The platform then auto-
queries the ontology and a single matching service, namely
person_tracking, that matches both queries is returned. A
further auto-query allows the developer to select the next
services, namely dynamic_bg and stereo_camera. The lat-
ter is an S–type service, thus does not trigger another auto-
query. Finally the process is terminated when the user se-
lects another S–type service, namely a static_camera. The
composed service is depicted in Fig. 6.

6A subsume match does not guarantee that the composite
service will execute smoothly during runtime, since the out-
put providing service produces a more general type of data
than the one the input receiving service consumes.

7. DISCUSSION AND FUTURE WORK
We next discuss various interesting features of the smart

meeting room ontology and the semi-automatic service com-
position method. Regarding our ontology, its most promi-
nent characteristics are: (i) the utilization of existing and
well-established semantic models, (ii) the ease of use in in-
stantiating a smart meeting room since the domain-specific
nature of the ontology means that not only high-level, but
also low-level concepts are provided and (iii) the ability to
readily extend the ontology to include a new type of SPA
service, by adding a new class in the resource-service type
hierarchy. On the downside, since the ontology is oriented
towards modelling SPA services of a smart meeting room,
adaptation is necessary so as to apply it on another domain.

Our service composition method guarantees that if a com-
posite service is created, all concepts included in the service
request will be satisfied and all SPA services combined in the
composite service can be invoked. Moreover, the exploita-
tion of semantics allows us to overcome syntactic barriers
and generate solutions that approximate the service request
when an exact solution does not exist. The involvement of
the developer is limited to the basic tasks of defining a ser-
vice request and selecting services from platform-generated
matching lists presented to him, hence the whole process
evolves in a semi-automatic manner with minimum human
intervention. It is the responsibility of the platform to dis-
cover appropriate SPA services and interconnect them, alle-
viating the need to know in advance what services are avail-
able and manually define their interconnection. It is now
evident that service composition becomes a straightforward
task, which can be even accomplished by an experienced
user who is not a developer, but skillful enough to compre-
hend the semantics of service descriptions. A drawback of
the algorithm described in Section 5.1 is the possibility of
failing to produce a composite service, although the neces-
sary services are available. This is attributed to the fact that
the composition process immediately stops when an empty
matching list is encountered after running the service dis-
covery procedure for one of the inputs of an already selected
service. However, this limitation is easily circumvented if,
instead of stopping, the composition process prompts the
developer to replace the service previously selected with an
alternative one contained in the corresponding matching list.
If no alternatives are available, it is possible to revert to an
earlier step of the composition process, replace the service
at this step and resume the composition from this step.

Future work will focus on fully automatic AI planning-
based [6] or graph-based [13] service discovery and composi-
tion, exploiting semantic information from ontologies. This
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way we aim to assist non-developers (i.e. end-users) to easily
develop complex applications within an IoT ecosystem using
its available services. Moreover, we shall consider adopting
lightweight standards that are native to services, such as
SAWSDL7, to semantically annotate the services and their
IOPEs in the SYNAISTHISI platform, as in [16].
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