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 

Abstract—Resubmission and replication are two fundamental 

and widely recognized techniques in distributed computing 

systems for fault tolerance. The resubmission based strategy has 

an advantage in resource utilization, while the replication based 

strategy can reduce the task completed time in the context of fault. 

However, few researches take these two techniques together for 

fault-tolerant workflow scheduling, especially in Cloud systems. 

In this paper, we present a novel fault-tolerant workflow 

scheduling (ICFWS) algorithm for Cloud systems by combining 

the aforementioned two strategies together to play their respective 

advantages for fault tolerance while trying to meet the soft 

deadline of workflow. Firstly, it divides the soft deadline of 

workflow into multiple sub-deadlines for all tasks. Then, it selects 

a reasonable fault-tolerant strategy and reserves suitable resource 

for each task by taking the imbalance sub-deadlines among tasks 

and on-demand resource provisioning of Cloud systems into 

consideration. Finally, an online scheduling and reservation 

adjustment scheme is designed to select a suitable resource for the 

task with resubmission strategy and adjust the sub-deadlines as 

well as fault-tolerant strategies of some unexecuted tasks during 

the task execution process, respectively. The proposed algorithm 

is evaluated on both real-world and randomly generated 

workflows. The results demonstrate that the ICFWS outperforms 

some well-known approaches on corresponding metrics. 

Index Terms—fault-tolerant, workflow, Cloud systems, 

resubmission, replication, imbalance 

I. INTRODUCTION 

loud computing has emerged as an attractive platform for 

diverse tasks, as it allows for low-entry costs, reduced cost 

of maintaining IT infrastructure and on demand 

heterogeneous resources provisioning in a pay-as-you-go 

model [1]. Empowered by the flexibility and elasticity of using 

computing resources, Cloud systems give customers the 

illusion of unlimited resources and have been widely adopted 

by increasing customers for their tasks, such as data storage 

[2,3] and scientific computing [4,5].  

While the benefits are immense, the Cloud systems have a 

high resources failure probability due to the increased 
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functionality and complexity [6,7]. Such faults can cause a 

devastating influence to the execution of submitted tasks, 

especially for the tasks with soft deadline, because the 

performance depends not only on the correctness of 

computation results, but also on the time instants at which these 

results become available [8]. Although the results are still 

useful if the soft deadline is not met, the Quality of Service 

(QoS) provided is greatly reduced. If a system regularly fails to 

meet soft deadlines by large amounts, customers will be 

dissatisfied with the offered QoS [9]. In the context of 

workflow with dependent relationship among tasks, it has 

become even more difficult since a delay in finishing one task 

caused by fault can propagate widely and then cause delays 

among many tasks on the other related resources. Therefore, 

providing an effective fault-tolerant mechanism is mandatory 

for the soft deadline-constrained workflow in Cloud systems. 

Among the multiple fault-tolerant strategies, replication and 

resubmission are two fundamental and widely recognized 

techniques in distributed environments [9,10]. Replication 

submits the primary copy and some backup copies of the same 

task to different process units simultaneously to achieve fault 

tolerance. Resubmission tries to find another suitable process 

unit to reexecute the task after a fault happened. Moreover, 

resubmission is mostly applicable during execution process and 

can strength the resource utilization of systems, while 

replication is a method suited to the task scheduling phase and 

has an advantage in saving the task execution time. Based on 

replication or resubmission, many algorithms have been 

proposed to design fault-tolerant strategy in distributed systems 

in last decades [7-9,15-18,20-24]. However, few of them try to 

combine the above techniques together to play their respective 

advantages for fault-tolerant workflow scheduling. Thus, the 

proposed resubmission and replication based strategies usually 

spend lots of time and resources, respectively, to complete the 

submitted workflows. For the soft deadline-constrained 

workflow in Cloud systems, taking fewer resources to complete 

more tasks is valuable for both users and resource providers as 

the users can reduce their cost for the submitted workflow 

while the resource providers can offer service to more users 

under the same resources and thus to increase their revenues. 

In this paper, we propose a novel fault-tolerant workflow 

scheduling algorithm, called ICFWS, by combining replication 

and resubmission together to play their respective advantages 

for fault tolerance while trying to meet the soft deadline of 

workflow in Cloud systems. It divides the whole soft deadline 

of workflow into multiple sub-deadlines for all tasks. Based on 
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the assigned sub-deadline, each task selects a corresponding 

fault-tolerant strategy from the aforementioned two strategies 

and reserve suitable resource through on-demand resource 

provisioning model of Cloud systems. For the task with 

resubmission strategy, it also adopts online rescheduling for 

reexecution when it encounters a fault during its previous 

execution process. Furthermore, in order to make full 

advantage of time slot, it also takes an online reservation 

adjustment scheme to adjust the sub-deadlines of some 

unexecuted tasks and then adjust their fault-tolerant strategies 

during the execution process. The ICFWS can be immediately 

applied in any Cloud computing platform, even if no historic 

trace data to build a platform-specific fault model is available.  

The main contributions of this paper are as follows. Firstly, a 

deadline division scheme is designed to divide the soft deadline 

of workflow into multiple sub-deadlines for all tasks. Secondly, 

a novel fault-tolerant workflow scheduling algorithm called 

ICFWS is proposed to combine resubmission and replication 

together to play their respective advantages in the context of 

fault. Thirdly, an online reservation adjustment scheme is 

presented to adjust the sub-deadlines and fault-tolerant 

strategies of some unexecuted tasks during the task execution 

process. Finally, an on-demand resource provisioning strategy 

is designed during the resource reserving process in the context 

of combining the above two fault-tolerant strategies together.  

The rest of this paper is organized as follows. The related 

work is discussed in Section II. In Section III, we describe the 

Cloud systems and fault model used in this paper. After 

introducing the used workflow model, the ICFWS algorithm is 

presented in Section IV. In Section V, we evaluate the proposed 

algorithm with some other competitors and analyze the 

obtained results. Finally, we present the main conclusions and 

future work in Section VI. 

II. RELATED WORK 

In last decades, lots of fault-tolerant algorithms have been 

proposed to decrease the adverse impact caused by fault in 

distributed systems from different perspectives. Javadi et al. 

[11] started to investigate how to manage and predict failures in 

complex infrastructures for the fault in these systems. However, 

building the model used in this work can be a very difficult task 

that often requires the traces of failure data about the specific 

target environment. Jhawar et al. [12] advocated a new 

dimension where applications deployed in Cloud systems can 

obtain required fault tolerance properties from a third party. 

Nevertheless, selecting the suitable third party is difficult and 

impractical for normal users. Zheng [13] and Qiu [14] proposed 

a ranking-based method in which all components in Cloud 

systems were ranked according to their invocation structures 

and invocation frequencies. Based on the ranking results, an 

optimal algorithm was derived to determine the fault tolerance 

strategies for different components. However, the precise 

ranking is very hard to achieve and requires not only a deep 

knowledge of the behavior of the target infrastructure, but also 

years of trace data of the specific system. 

Besides the aforementioned fault-tolerant mechanisms, 

resubmission, which tries to submit and execute the task again 

on the same or another process unit after a failure, is a widely 

used strategy for fault-tolerant workflow scheduling in 

distributed systems. Inspired by the immunological mechanism, 

Yao et al. [7] proposed a novel rescheduling algorithm called 

IRW for workflow in Cloud systems. It was consisted by the 

surveillance unit, the response unit, the learning unit and the 

memory unit. All these units worked cooperatively to imitate 

the immune system for resubmission and rescheduling. Chen et 

al. [15] proposed an efficient resubmission heuristic with the 

support of reservation adjustment to alleviate the delay caused 

by resource contention for multiple workflows submitted at 

different time. Olteanu et al. [16] designed a rescheduling 

algorithm by combining a wide variety of scheduling heuristics, 

including retry, alternate resource, rescue file and user-defined 

exception handing, together for workflow scheduling. Cao et al. 

[17] designed three schemes for tasks rescheduling in Cloud 

systems. After detecting a virtual machine (VM) was crashed, 

these schemes firstly stored the executing tasks on this VM and 

waited for a certain time to check whether the VM could be 

repaired. If it could not be repaired, the stored tasks were 

resubmitted to another VM. Sakellariou et al. [18] considered 

resubmission at some carefully selected points along execution. 

After the initial schedule is obtained, if the run time 

performance variation exceeded a predefined threshold, it 

selected a set of unfinished tasks for resubmission. Although 

the above resubmission based algorithms can provide 

corresponding fault-tolerant strategy for workflow and have 

advantage about resource utilization in the context of fault 

tolerance, the overall completion time of workflow is 

significantly delayed. Moreover, the soft deadline of workflow 

is not considered in the above resubmission based algorithms. 

Besides resubmission, replication, which generates one or 

many backup copies for one task besides the primary copy and 

allocates these copies to different process units, is another 

fundamental technique for fault in distributed systems [19]. If 

the primary copy of one task is suspended by the failure of 

process unit, the backup copy can still be executed on a 

different unit to guarantee the successful completion of the task. 

Based on replication, Qin and Jiang [8] proposed a new 

overlapping scheme, which allowed the backup copy of a task 

to overlap with the primary copies of its successors for deadline 

constrained workflow. After identifying two crucial limitations 

of scheduling backups for dependent tasks in Grid systems, 

Zheng et al. [20] proposed two fault-tolerant scheduling 

algorithms, namely MRC-ECT and MCT-LRC, to schedule 

backups of independent and dependent tasks, respectively. For 

the Grid systems with dedicated communication devices, 

Zheng and Veeravalli [21] designed two communication-aware 

fault-tolerant workflow scheduling algorithms based on 

replication to avoid the influence caused by the processors 

faults and communication delays. However, the above 

replication based fault-tolerant algorithms are designed for 

Grid systems and cannot be used in Cloud systems directly. 

Recently, Jing and Liu [22] designed a replication based 

fault-tolerant scheduling algorithm called CCRH for workflow 

in Cloud systems. However, the on-demand resource 

provisioning model of Cloud systems is not considered. 
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Although the above replication based algorithms can 

significantly improve the system fault-tolerant capacity and the 

workflow execution time under these algorithms is also better 

than that under resubmission, they have two common 

drawbacks: (1) the deadline of workflow is also not considered 

except [8], (2) the resource consumption is deteriorated caused 

by replication. 

 Different from the above researches adopted a single 

fault-tolerant strategy, Plankensteiner et al. [9] took both 

replication and resubmission simultaneously for each task in 

the workflow and used the impact of resubmission of each task 

to adjust the replication size of this task to balance 

resubmission and replication. However, the characteristics 

about resource provision in Cloud systems are not considered in 

this work. Recently, Jayadivya [23] and Patra [24] proposed 

FTWS and RRADFTRC, respectively, for fault-tolerant 

workflow scheduling in Cloud systems by taking resubmission 

and replication simultaneously for each task in the workflow. 

Both FTWS and RRADFTRC are implemented based on the 

provided maximum replication and resubmission count from 

users. The difference is that the FTWS adopted the impact of 

resubmission, out degree and deadline of each task to adjust the 

replication size of this task while the RRADFTRC did not. 

When a task encountered a fault, both FTWS and RRADFTRC 

took the designed backup copies at first. If all of these backups 

were not completed successfully, the resubmission was adopted. 

In other words, the resubmission used was only passive adopted 

when all backup copies of this task had failed in FTWS and 

RRADFTRC. As a result, more resources were needed by the 

backups and the advantage of resubmission was missed. 

Different from the above algorithms, the proposed ICFWS in 

this paper does not need any parameters from users and can be 

immediately applied in any Cloud computing platform. 

Moreover, each task in ICFWS only chooses one fault-tolerant 

strategy from replication and resubmission at any instant and 

the selected fault-tolerant strategy can be changed during the 

execution process if necessary. Furthermore, in the proposed 

ICFWS, if one task selects resubmission as its fault-tolerant 

strategy and encounters a fault during its execution process, the 

resubmission can be adopted immediately without any waiting. 

III. CLOUD SYSTEMS AND FAULT MODEL 

In this section, we describe the models used in this paper, 

including the Cloud systems model and fault model.  

A. Cloud systems model 

Through virtualization technology, each host in Cloud 

systems can be virtualized to a set of heterogeneous VMs. So 

the VM is the basic processor unit rather than host. In our 

model, the Cloud systems offer a set of   types of virtualized 

resources in the form of VMs                        
to customers in a pay-as-you-go model. For example, Amazon 

EC2 provides five types of computing optimized virtualized 

resources as shown in Table I. All VMs with the same type 

     have the identical processing capacity     . 

Furthermore, all VMs are assumed to be located in the same 

data center or region so that the average bandwidth between 

VMs is rough equal [4,5]. Empowered by the virtualization 

technology, an infinite amount of resources can be accessed in 

Clouds and there is no limitation on the number of VMs leased 

by an application. However, it is worth to note that not all the 

VMs are active. The VMs can be dynamically switched 

between the active status and the sleep one according to the 

system workload. When a VM is leased, it requires an initial 

boot time       for its proper initialization. So the       

should be considered when designing the scheduling strategy. 

The reserved VM is only active during its leased time interval. 

After that, the VM is shut down immediately to improve the 

energy consumption and resource utilization.  

The Cloud systems offer services to customers through 

Internet via the Scheduler, which accepts and schedules 

workflow submitted from customer. The Scheduler architecture 

used in this paper as shown in Fig. 1 is an improved model for 

workflow based on the architecture proposed in [7,25].  

The Scheduler consists of a Workflow Analyzer, a 

Resubmission Controller, a Replication Controller, and a 

Resource Manager. When a workflow arrives, the Scheduler 

will determine whether accept the submitted workflow by the 

cooperation of Workflow Analyzer and Resource Manager at 

first. If the Scheduler cannot find a feasible scheduling strategy 

for the submitted workflow under the given QoS, such as 

deadline, it will reject the workflow.  

For the accepted workflow, the Workflow Analyzer will 

analyze the relationship among tasks and then divide the whole 

soft deadline of workflow into multiple sub-deadlines for all 

tasks in this workflow. Then, the Scheduler will determine the 

selection of fault-tolerant strategy for each task from 

resubmission and replication according to the imbalance 

sub-deadlines of tasks and performance of Cloud resources. 

The task with enough time to execute again for the fault will 

select resubmission for fault tolerance. Otherwise, it will select 

replication. In this way, resubmission and replication are comb- 

TABLE I.  COMPTING OPTIMIZED VMS IN AMAZON EC2 

 CPU 
Processing capacity 

(MFLOPS) 

Memory 

(GB) 
Storage (GB) 

c3.large 2 8800 3.75 2×16 SSD 

c3.xlarge 4 17600 7.5 2×40 SSD 

c3.2xlarge 8 35200 15 2×80 SSD 

c3.4xlarge 16 70400 30 2×160 SSD 

c3.8xlarge 32 140800 60 2×320 SSD 
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Fig. 1. Scheduling architecture for Cloud systems model 
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ined together and each strategy plays its respective advantage 

for fault tolerance. Then, through the cooperation of 

Resubmission Controller and Replication Controller, the 

Scheduler adopts an initial scheduling and online scheduling 

before and during the task execution process, respectively. In 

order to make the full advantage of time slot, the Scheduler also 

adopts an online reservation adjustment scheme to adjust the 

sub-deadlines and fault-tolerant strategies of some other 

unexecuted tasks if possible. Moreover, on-demand resource 

provisioning is adopted by Scheduler to select suitable VMs for 

tasks in both initial scheduling and online scheduling. The 

active resources are adjusted dynamically by Resource 

Manager according to the system workload.  

In this work, the resubmission is performed immediately 

when the execution process encounters a fault for the task with 

resubmission strategy, and the primary and backup copy are 

executed on two different VMs simultaneously for the task with 

replication strategy. Through virtualization technology and 

on-demand resource provisioning, the proposed ICFWS can be 

extended easily to large systems. 

B. Fault model 

It is supposed that there exists a fault-detection mechanism, 

such as fail-signal and acceptance test, to detect failures [26]. 

Tasks will fail when the processor units where they are located 

fail. In this work, we focus on the failure of VM, which is the 

basic processor unit in Cloud systems. The faults can be 

transient or permanent and are assumed to be independent, 

affecting only a single VM. We also assume the minimum 

required value of the mean time to failure (MTTF) is always 

greater than or equal to the maximum task execution time [20].  

IV.  ALGORITHM IMPLEMENTATION 

In this section, we elaborate the proposed ICFWS. In order to 

make it clearly, the workflow application model is introduced 

at first and the major symbols and notations used throughout of 

this paper are summarized in Table II. 

A. Workflow application model 

In this paper, we use the Directed Acyclic Graph (   ) to 

represent the workflow submitted from customer. A     
      consists of   tasks               , which are 

interconnected through data and control flow such as 

                      |                , 

where     represents the size of data that needs to be transferred 

from    to   and         denotes the control relationship 

between    and   . Because the bandwidth among VMs is rough 

equal,  we also use      to represent the data transfer time from 

   to   . The size of each task    is measured by Million of 

Instructions    , so the execution times of tasks in the accepted 

workflow can be denoted as 

   
  |

   

    
 

   

    

   
   

    
 

   

    

|                , 

where    
  is the execution time of    on the m-th type VM  

TABLE II.  MAJOR SYMBOLS AND NOTATIONS IN ICFWS 

Symbol Definition 

     The VM of type  ,       

     The processing capacity of      

      The initial boot time of a created new VM 

    The data transfer time from    to    

    The size of task    

   
  The execution time of    on      

         The predecessor set of task    
         The successor set of task    
        The earliest start time of task    

         The modified earliest start time of task    
        The minimum execution time of task    

        
The average execution time of    among all 

VM types 

        The sub-deadline of task    
         The minimum time for reexecution of task    
        The selected fault-tolerant strategy of task     
        The planed finish time of task    
        The actual finish time of task     
        The critical predecessor of task    

           The set of already reserved VMs 

    
  The  -th reserved VM with type      

     
           

The reserved start time     and reserved 

finish time     of     
  

          The time of detecting the first fault of task    

           
The time of detecting another fault (not the 

first fault) of task    
     with the processing capacity     . The set of 

predecessors and successors of task    are denoted as          

and         , respectively. In a given    , a task without any 

predecessor is called the entry task        and a task without 

any successor is called the exit task      . In this paper, we 

always add two dummy tasks         and       to the beginning 

and the end of the graph, respectively, to ensure the given     

has a single entry and a single exit task. The execution times of 

these dummy tasks are zero and they are connected with 

zero-weight arcs to the real entry and exit tasks, respectively. In 

addition, each workflow has a soft deadline      , which is 

given by customer.  

In this work, we also suppose that each task cannot be 

interrupted during execution and must be finished except fault. 

It cannot be divided further for parallel processing, and thus 

must be scheduled in its entirety on a process unit. 

B. The scheme of the ICFWS algorithm 

The proposed ICFWS has three main phases: Deadline 

Division, Initial Scheduling as well as Online Scheduling and 

Reservation Adjustment. The Deadline Division is used to 

divide the soft deadline       into multiple sub-deadlines for 

all tasks. Based on the assigned sub-deadline and available 

resources, the Initial Scheduling is used to select the 

fault-tolerant strategy for each task from replication and 

resubmission and schedule all tasks for their first execution as 

well as the backup copies of the tasks with replication strategy. 

Thus, the tasks with replication strategy can be completed 

successfully even under fault. As for the task with resubmission, 
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if it encounters a fault during its execution process, the Online 

Scheduling scheme is used to select suitable VM for executing 

it again. In this way, the replication and resubmission can be 

combined together for fault tolerance and the workflow can be 

completed under the constrained soft deadline. In order to make 

full advantage of time slot, the Online Reservation Adjustment 

is used to adjust the sub-deadlines and fault-tolerant strategies 

of some unexecuted tasks when all of their predecessors have 

been completed before their sub-deadlines.  

The main pseudo code of the proposed ICFWS is shown in 

Algorithm1. After receiving the submitted workflow, the 

scheduler takes a simulated scheduling by Heterogeneous 

Earliest-Finish-Time (HEFT) [27] and then gets the makespan 

(            ) in an ideal state before real scheduling (line 

1). For a given workflow with deadline      , if  

             is greater than      , the workflow cannot 

be completed by Cloud systems and therefore is returned to 

customer for revising the deadline (lines 2-3). Otherwise, it is 

accepted. For the accepted workflow, the scheduler assigns the 

sub-deadline to        and       as zero and      , 

respectively (line 6). Then, the Deadline Division is executed to 

divide the whole deadline of workflow into multiple 

sub-deadlines for all tasks (line 7). Based on these 

sub-deadlines and available resources, the Initial Scheduling is 

adopted before task execution to determine the fault-tolerant 

strategy and reserve corresponding resource for each task (line 

8). During the task execution process, the Online Scheduling is 

used for task with resubmission strategy and the Reservation 

Adjustment is designed for adjusting sub-deadlines, 

fault-tolerant strategies and reserved resources for some 

unexecuted tasks (line 10). In the following sections, we 

elaborate on the details of these sub-algorithms.  

C. Deadline Division 

It is obviously that if the deadline of workflow can be divided 

into multiple sub-deadlines for all tasks and each task can be 

completed in/near its individual sub-deadline, then the whole 

workflow will be finished within/near its deadline. In this paper, 

the workflow deadline is distributed to each task based on a 

critical path (   ) heuristic. The    heuristics are widely 

applied in workflow scheduling and the    of a workflow is 

the longest execution path between the entry and the exit tasks 

of the workflow [28,29]. In this section, the whole deadline of 

workflow is divided to multiple sub-deadlines for all tasks in  

Algorithm1: ICFWS() 

1 schedule the DAG by HEFT in ideal state and get 

            ; 

2 if (                  ) 

3  prompt user to specify a deadline above 

             ; 

4 else 
5  // before task execution process 

6               ;                 ; 

7  call DeadDivi(            ); 

8  call IniScheduling();  

9  // during task execution process 

10  call OnlSchResAdj() 

the    based on the task execution time and communication 

time among tasks at first. In this way, each task in the critical 

path has been assigned a sub-deadline. Then, by taking two 

tasks in    as an entry node and an exit node in turn, the local 

   and sub-deadlines of tasks in local    can be computed 

under the same procedure. The procedure continues recursively 

until all tasks have been assigned sub-deadlines. To facilitate 

the description, some concepts are introduced as follows.  

Similar to [29,30], the Earliest Start Time of task   ,        , 

is defined as follow: 

        

{
                   

              
           (  )                

 ,   (1) 

where        , the Minimum Execution Time of task   , is the 

execution time of task    on one type of VM which has the 

minimum    
  among all VM types. Note that both 

            and            are equal to zero if        and 

      are two dummy tasks. 

Definition 1: The Critical Predecessor of a task   ,       , is 

the predecessor of    that has the latest data arrival time at   , 
that is, it is the predecessor    of    for which         

             is maximal. 

Having this definition, we can get the critical path,   , from 

      to        in a recursive manner. Then, the overall deadline 

of workflow can be distributed to each task in    according to 

the strategy presented as follows. 

For a serial and deadline constrained path,               , 

if the sub-deadlines of    and    are known as         and  

       , respectively. Then, we can distribute the path deadline 

to all tasks of this path in proportion to their average execution 

time and communication time. That is 

        

                  
              

            

∑            (  )
             

 
   

.         (2) 

where         is the average execution time of    among all 

VM types. 

Then, by setting              and            to zero and 

     , respectively, the overall deadline of workflow can be 

distributed to each task in    based on the task execution time 

and communication time among tasks according to Eq.(2). 

 After that, by taking two tasks in    as the entry task and exit 

task in turn, a local workflow can be formed. Then, the local    

and sub-deadline of each task, which belongs to this local   , 

can be calculated under the same procedure. The procedure 

continues recursively until all tasks have been assigned a 

sub-deadline. Moreover, the sub-deadlines are imbalance 

among tasks caused by the uneven size of tasks and transferred 

times between tasks.  

The pseudo code for the Deadline Division is presented in 

Algorithm2. The first execution of the Deadline Division 

scheme is called by        and       of the accepted workflow 

as shown in Algorithm1. Then, it gets the    of workflow by 

finding     from       to        (lines 2-5). After that, each 

task in    is assigned a sub-deadline according to Eq.(2) (lines 

6-7). Then, the same procedure is adopted by taking two nodes 
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Algorithm2 DeadDivi (            ) 

Input: a DAG         with a soft deadline      ; 

 the VM type            ; 

Output: sub-deadline for each task; 

1                 ;  

2 while (               ) 

3  select         according to Definition 1; 

4  add         to the beginning of   ; 

5            ; 

6 for (    to |  |) 
7  calculate         according to Eq.(2); 

8 for (    to |    |) 
9  for (    to |  |) 
10                     ; 

11                                         ; 

12   Call DeadDivi(            ); 

13 update the Earliest Start Time of each task; 

in    as the entry node and exit node in turn to assign one 

sub-deadline to each task in the local      The procedure is 

executed in a recursive manner until each tasks has been 

assigned a sub-deadline (lines 8-12). Through the above 

procedure, each task has assigned an individual sub-deadline 

and the sub-deadlines among tasks are imbalance. Then, the 

Earliest Start Time of each task is updated based on the 

sub-deadlines of its predecessors and the communications 

between it and its predecessors (line 13).  

D. Initial Scheduling 

In this section, we present how to select fault-tolerant 

strategy from resubmission and replication for each task based 

on the results of the Deadline Division at first. We also 

introduce how to schedule all tasks for their first execution as 

well as the backup copies of the tasks with replication strategy. 

Suppose task    is allocated on one VM, the time that needed 

for    executing successfully on this VM should contain the 

maximum data transfer time from its predecessors and the 

execution time on this VM. If task    selects resubmission as its 

fault-tolerant strategy, its sub-deadline needs to satisfy the 

requirement of executing this task at least twice on different 

VMs in the best situation. When taken the initial boot time of 

VM      into consideration, the required time for task 

selecting resubmission as its fault-tolerant strategy can be 

denoted as 

                                       
{    }  

                                                    .                               (3) 

If Eq.(3) is satisfied, the task will select resubmission as its 

fault-tolerant strategy and set the fault-tolerant strategy type 

        
as             . Otherwise, it selects replication and 

set         
as            . In this way, task    can determine 

its fault-tolerant strategy according to its available sub-deadline 

and the resources performance without any historic trace data. 

Furthermore, resubmission and replication are combined 

together for fault tolerance to play their respective advantages.  

Then, how to select the VM type, reserve corresponding 

serve time interval for each task and allocate the reserved serve 

time interval on which VM in the selected VM type are needed 

to be considered. For the task with resubmission strategy, to 

facilitate the description, we define the execution before and 

after fault as initial execution and reexecution, respectively. We 

also define the execution for the task with replication strategy 

as initial execution.  

As mentioned above, the initial execution is decided during 

the scheduling process and the reexecution is designed during 

the task execution process. So it is necessary to arrange the 

initial execution at first. For the task with resubmission strategy, 

if a fault is happed during the initial execution process of   , the 

reexecution is required to be completed before its sub-deadline. 

The minimum time for the reexecution of    (denoted as 

        ) should contain the initial boot time of VM      , the 

maximum data transfer time from its predecessors and the 

minimum execution time on all VM types at least. That is 

                             
{    }              (4) 

So the maximum time for the initial execution of    with 

resubmission is                         . Then, the VM 

type      for the initial execution of    can be determined by  

{

                              

         
                           

                    
    

.           (5) 

If multiple VM types can satisfy Eq.(5),  the VM type with the 

minimum value of    
  (not        ) is selected as the elected 

VM type to reserve enough time for the reexecution. If no VM 

type can satisfy Eq.(5), the VM type with the closest value to 

                                             
    is 

selected. 

For the task with replication strategy, two VMs are selected 

to execute the primary and backup copy simultaneously. So the 

task    always can be completed successfully, even in the 

context of fault. The VM type for    with replication strategy 

can be decided by the following equation. 

{

                              

         
                       

               
    

       (6) 

If multiple VM types can satisfy Eq.(6),  the VM type with the 

maximum value of    
  is selected as the elected VM type to 

reduce the cost of customer as the VM with higher performance 

is usually more expensive and the economic cost is also needed 

to be considered when using resources in Cloud systems, which 

is similar to the economic cost in Grid systems [31,32]. If no 

VM type can satisfy Eq.(6), the VM type with the closest value 

to                                     
     is selected. 

Then, the planned finish time         of    can be denoted as 

                                    
        

 .   (7) 

For the task    with resubmission, if its initial execution is 

completed successfully, the actual finish time         of task 

  is equal to        . Otherwise,         is determined by the 

reexecution of   . For the task    with replication,        is 

always equal to        . Obviously, for task with either 

resubmission or replication,                        . 

After    is completed successfully, the VM where    is 

executed cannot be shut down immediately as it needs to 

transfer corresponding output to its successors. So the serve 
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time interval on one selected VM with type      for the initial 

execution of    can be denoted as                  
              

       . 

Then, the serve time interval                  
              

        reserved on which VM with type      is 

need to be considered as each type of VM has infinite amount 

and lots of VMs can be in active status simultaneously. Let 

           and     
  denote the set of already reserved 

VMs by other tasks and the n-th reserved VM with type     , 

respectively. Let      
           denote the already reserved 

time interval of     
 , where     and      are the reserved 

start time and reserved finish time, respectively. If multiple 

tasks can be allocated on the same VM in the context of 

fault-tolerant and deadline-constrained, the resource utilization 

of Cloud systems can be improved greatly [4]. So we try to find 

one VM in the set of already reserved VMs with the same type 

     at first. That is 

{
 
 

 
 

               
                                   

              
{    }                    

              
{    }                            

  (8) 

If there is one VM in            can satisfy Eq. (8), this 

VM is selected for the execution of    and the reserved serve 

time interval of this VM is updated. Otherwise, a new VM with 

type      is created for the execution of    and added to 

           with reserved serve time interval as 

                               
       .  

The pseudo code for the initial scheduling is presented in 

Algorithm3. Through initial scheduling, both the VM type and 

corresponding reserved serve time interval on suitable VM are 

decided for the initial execution of each task. However, the 

reexecution for the task with resubmission strategy is designed 

during the execution process and introduced in the next section. 

E. Online Scheduling and Reservation Adjustment 

As for the task with replication strategy, it always can be 

finished successfully even in the context of fault as two VMs 

are selected to execute the primary and backup copy 

simultaneously during the initial scheduling process. As for the 

task with resubmission strategy, if a fault happens during its 

initial execution process, its sub-deadline can allow it to 

execute at least twice as mentioned in the previous section. So it 

is necessary to find another VM for its first reexecution. 

Let           denote the time when the fault is detected 

during the initial execution process of   with resubmission. 

Obviously,                  . Thus, the left time for 

reexecution is                  . So the VM type for the first 

reexecution can be determined by the following equation. 

{

                              

         
                         

               
    

             (9) 

If multiple VM types can satisfy Eq.(9),  the VM type with the 

maximum value of    
  is selected as the elected VM type to 

reduce the workflow execution cost. If no VM type can satisfy 

Eq.(9), the VM type with the closest value to         
                              

     is selected.  

Algorithm3: IniScheduling() 

Input: the result of Algorithm 2; 

 the VM type            ; 

Output: the initial scheduling strategy for each task; 

1  for          

2 if (Eq.(3) is satisfied ) 

3                      ; 

4  if (Eq.(5) is satisfied ) 

5   select the VM type      with the minimum 

value of    
 ； 

6  else 

7   select the VM type      with the closest value 

to                                
              

    ; 

8 else 

9                     ; 

10  if (Eq.(6) is satisfied ) 

11   select the VM type      with the maximum 

value of    
 ； 

12  else 
13   select the VM type      with the closest value 

to 

                      
              

    ; 

14 calculate the planed finish time         according to 

Eq.(7); 

15 if (exist one VM belong to            and santify 

Eq.(8)) 

16  reserve                                
        

on this VM for   ; 
17  update      

          ; 
18 else 

19  create a new VM and reserve                  
              

        for   ; 

 Then, after the first reexecution after fault for    with 

resubmission strategy, the planed finish time         can be 

denoted as  

                                      
        

 . (10) 

So the serve time interval on one selected VM with type      

for the reexecution of    is                    
              

       . The next process for reserving the serve 

time interval on one VM for the first reexecution of    is similar 

to the corresponding process in the Initial Scheduling. 

If the first reexecution of    is completed successfully, the 

actual finish time         is equal to        . However, if the 

first reexecution of    encounters another fault at the time 

          , thus the left time for    is                   . 

Under this situation,    will decide its fault-tolerant strategy 

from resubmission and replication according to Eq.(3) by 

taking            to replace         in Eq.(3). Then, it adopts 

the same procedure as mentioned in the above sections to 

decide its service resource and time interval and thus its actual 

finish time         is decided by the successful execution. 

Through the aforementioned Initial Scheduling and Online 

Scheduling, the Cloud systems try to complete each task in/near 

its sub-deadline, even in the context of fault. In the above 
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analysis, it can find that the Cloud systems reserve 

corresponding serve time interval for any possible fault of each 

task during the scheduling process. However, some considered 

faults may not be happened during the task execution process. 

If one task can be finished before its sub-deadline, especially 

for the task with resubmission when no fault happens during its 

initial execution, the time slot between         and         can 

be used for other unexecuted tasks and thus alleviate the time 

constraints of these tasks effectively, especially in the context 

of fault and constraint of deadline.  So we design an Online 

Reservation Adjustment scheme to apply these time slots and 

enlarge the sub-deadlines of some unexecuted tasks during the 

task execution process. For   , if all of its predecessor tasks 

have been completed before their sub-deadlines, its Earliest 

Start Time         can be adjusted to Modified Earliest Start 

Time          as 

                               {      )           .   (11) 

And the available time slot for    can be enlarged to 

                  .  
 With the modified time slot of   , its fault-tolerant strategy, 

including the selection between replication and resubmission, 

the reserved VM type and serve time interval, can also be 

changed. The change process is similar to Algorithm2. 

However, the criteria for determining select replication or 

resubmission is changed as follows. 

                                        
       

                    (12) 

The pseudo code for the Online Scheduling and Reservation 

Adjustment of task    is presented in Algorithm4. 

V. PERFORMANCE EVALUATION 

In this section, the WorkflowSim toolkit [33], which is a 

modern simulation framework aimed for workflow scheduling 

in Cloud systems and widely used in some related researches 

[7,34], is used to simulate the proposed ICFWS and evaluate 

the results with other related works. 

A. Simulation setup 

We compare the performance of ICFWS with some 

resubmission and replication based fault-tolerant workflow 

scheduling algorithms, respectively. IRW [7] is selected as the 

representative of resubmission based algorithms while CCRH 

[22] is chosen to stand for the replication based algorithms 

because both of them are designed for fault-tolerant workflow 

scheduling in Cloud systems. We also compare ICFWS with 

FTWS [23] and RRADFTRC [24]. Both FTWS and 

RRADFTRC adopted replication and resubmission 

simultaneously for fault-tolerant workflow scheduling in Cloud 

systems. The difference between FTWS and RRADFTRC is 

that the FTWS took the impact of resubmission, out degree and 

deadline of each task to adjust the backup number of this task 

while the RRADFTRC did not. The above algorithms are 

compared from the following metrics: 

(1) Task Completion Rate (TCR) is defined as the ratio of 

completed tasks over the total number of tasks in the tested 

workflow at the time of soft deadline, reflecting the task 

completion efficiency of the compared algorithms in the 

context of fault. 

(2) VMs Reserve Time Rate (VRTR) is defined as the ratio of 

the total reserved serve time of all the VMs in the context of 

fault over the total reserved serve time of all the VMs under 

ideal status got by HEFT [27], reflecting the system resource 

consumption of the compared algorithms under fault. 

Both of above metrics show the costs of the scheduling 

algorithms. The TCR reflects the cost about time while the 

VRTR shows the resource cost in the context of fault. 

In order to clearly observe the performances of the compared 

algorithms, we conduct the simulations on both real-world and 

randomly generated workflows. Pegasus project1 has published 

a lot of real-world workflows, including Montage, CyberShake, 

Epigenomics and Inspiral [35]. These workflows have been 

widely used to measure the performance of scheduling 

algorithms, and thus we include them in our simulations. The 

DAG characteristics of these workflows, including the numbers 

of nodes and edges, average data size and average task runtime, 

are given in Table III, and the structures of theses workflows 

are shown in Fig. 2 [7,35,36]. More details about these 

real-world workflows can be referred to [35]. 

Besides real-world workflows, we also conduct simulations 

on some randomly generated workflows. The DAG generator 

tool used in [36] is chosen to form the workflows for simulation. 

The generator tool defines the DAG shape based on five 

 
1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator 

Algorithm4: OnlSchResAdj() 

1  for (each task            ) 

2 if (one fault is detected during its execution) 

3  if (                     ) 

4   if (it is the first fault for   ) 

5    if (Eq.(9) is satisfied ) 

6     select the VM type      with the maximum 

value of    
 ； 

7    else 
8     select the VM type      with the closest 

value to    (  )       (  )        

    
  

              ; 

9    calculate the planed finish time         for 

reexecution according to Eq.(10); 

10    reserve                                          

on one VM as same as lines 18-23 in Algorithm 

3; 

11   else 

12    decide fault-tolerant strategy according to 

Eq.(3) by taking            to replace 

        in Eq.(3); 

13    take the same procedure as Algorithm 3; 

14 calculate                  ; 

15 calculate          according to Eq.(11); 

16 if (                     &&(Eq.(12) is satisfied)) 

17                     ; 

18 release the initial reserved resource for   ; 
19 reserve new resource for    as same as lines 2-19 in 

Algorithm3; 
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parameters: task count, width, regularity, density, and jumps. 

The task count denotes the total number of tasks in the 

generated workflow. The width determines the maximum 

number of tasks that can be executed concurrently. The 

regularity indicates the uniformity of the number of tasks in 

each level. The density denotes the number of edges between 

two levels of the DAG. A jump indicates that an edge can go 

from level l to level l+jump. A jump of one is an ordinary 

connection between two consecutive levels. In our simulations, 

the parameters for DAG generation are shown in Table IV.  

The VMs in simulations are heterogeneous and modeled 

similar to the VMs provided by Amazon EC2 as shown in 

Table I. The number of usable VMs in simulations is not 

restricted to imitate the unlimited resources in Cloud systems. 

During the simulation, the maximum replication and 

resubmission count are set as three for both FTWS and 

RRADFTRC. In order to test the impact of simulation 

parameters to the results, we investigate the compared metrics 

under two different situations for each DAG. The first one is 

that the soft deadline of each DAG is change dynamically under 

the case that the failure rate of VMs is constant. In this case, the 

soft deadline of each test case is set from 1.1 times of makespan 

got by HEFT in ideal status to 1.5 times with step of 0.1 times as 

well as the failure rate is 10%. The other situation is that the fa- 

TABLE III.  CHARACTERISTICS OF THE REAL-WORD WORKFLOWS 

Workflow 
Number 

of tasks 

Number 

of edges 

Average data 

size (MB) 

Average 

task 

runtime (s) 

Montage_1000 1000 4485 3.21 11.36 

Epigenomics_997 997 3228 388.59 3858.67 

CyberShake_1000 1000 3988 102.29 22.71 

Inspiral_1000 1000 3246 8.90 227.25 

* When calculating the number of edges, average data size and average task 

runtime, the pseudo entry/exit node and the related edges are included. 

 
          (a) Montage               (b) Epigenomics 

 
(c) CyberShake                      (d) Inspiral    

Fig. 2. The structure of evaluated real-world workflows 

TABLE IV.  PARAMETERS FOR GENETATED WORKFLOWS 

Parameter Value (min)-( max) 

task count (1100)-(1500) 

width [0.2, 0.4, 0.8] 

regularity [0.2, 0.4, 0.8] 

density [0.2, 0.4, 0.8] 

jumps [1, 2, 3] 

TABLE V.  PARAMETERS FOR CASE ONE AND CASE TWO 

  soft deadline (times) failure rate (%) 

Case One 1.1,1.2,1.3,1.4,1.5 10 

Case Two 1.3 5, 7.5,10,12.5 15 

 ilure rate of VMs is change dynamically but the soft deadline 

of each DAG is constant. Under this situation, we adopt 5%, 

7.5%, 10%, 12.5% and 15% as the failure rate, respectively, 

along with 1.3 times of makespan got by HEFT in ideal status as 

soft deadline unchanged. We call the first situation as Case One 

and the other one as Case Two as shown in Table V. 

B. Simulations on real-world workflows 

1) Case One 

Firstly, we compare the TCR of real-world workflows under 

Case One and the results are presented in Fig. 3. It can be found 

that the TCRs of all algorithms are increased with the growth of 

soft deadline. This is because more time can be used to decrease 

the influence caused by fault with the increase of soft deadline. 

The different structure as shown in Table III can explain why 

the identical algorithm can get the different TCR among 

different test cases under the same soft deadline.  

Figure 3 also shows that the ICFWS, FTWS, RRADFTRC 

and CCRH get the similar results of TCR under different soft 

deadlines and all of them are better than that of IRW. This is 

caused by the different adopted fault-tolerant strategies of these 

algorithms. The FTWS and RRADFTRC adopted both 

resubmission and replication simultaneously for each task. 

Although the FTWS adopted the impact of resubmission, out 

degree and deadline to adjust the number of backups, it still 

formed multiple backups for each task. And the CCRH only 

adopted replication as its fault-tolerant strategy. As for the 

proposed ICFWS, it combines replication and resubmission 

together and selects one approach from them for each task as its 

fault-tolerant strategy. Therefore, all these four algorithms 

adopt replication for all or parts of tasks as their fault-tolerant 

strategy. It is known that the procedure for finding suitable 

resource for fault in replication based algorithms is designed 

during the scheduling process. As a result, lots of time is saved 

and more tasks are completed at the time of soft deadline. Thus, 

they have high value of TCRs. As for the resubmission based 

algorithm IRW, the procedure for finding suitable VM for 

resubmission is performed during the task execution process 

and takes lots of time and then leads a delay to finish this task. 

Caused by the dependent relationship among tasks, the delay 

can also propagates to other tasks depended on it. So the TCR of 

IRW is lower than the other four algorithms. When taking the 

ICFWS into consideration, as some tasks select replication as 

their fault-tolerant strategy and the others choose resubmission, 

the TCR of ICFWS is a littler lower than those of FTWS, 

RRADFTRC and CCRH and higher than that of IRW. 

Moreover, both the replication and resubmission in ICFWS are 

different from that in other algorithms. As for replication, two 

VMs are active executed simultaneously for one task in ICFWS 

while the backups in FTWS, RRADFTRC and CCRH were 

only passive started to work when the primary or one other 

replication had encountered a fault. The active execution 

scheme for replication in ICFWS can also save parts of time. At 

the same time, the resubmission in ICFWS is constrained by the 

sub-deadline of this task, whereas no such limitation in IRW. 

Furthermore, the resubmission in ICFWS is also different from 

those in FTWS and RRADFTRC. Based on the results of 

Deadline Division and assigned fault-tolerant strategy of each 

task, the resubmission is active adopted directly if the initial 

execution of this task encounters a fault. However, the 
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resubmissions in both FTWS and RRADFTRC were only 

passive adopted when all backups of this task had failed even 

the counter of backups is adjusted by the impact of 

resubmission, out degree and deadline in FTWS. 

The results about VRTR under Case One are shown in Fig.4. 

It can be found no matter which fault-tolerant strategy is 

adopted, more resources are needed for fault. Furthermore, the 

VRTRs of RRADFTRC, FTWS and ICFWS are decreased with 

the increase of soft deadline. The RRADFTRC and FTWS get 

the top two values of VRTR among all algorithms. This is due to 

that they adopted replication and resubmission simultaneously 

for each task. For RRADFTRC, its VRTR is greater than other 

algorithms because each task has three backup copies. As for 

FTWS, the counter of backups for each task was adjusted 

according to the impact of resubmission, out degree and 

deadline and thus some tasks had less backup copies. So the 

VRTR of FTWS is less than four but still greater than three. The 

CCRH only adopted replication, which needed two resources at 

least for each task, for fault. Moreover, because the on-demand 

resource provisioning is not considered in CCRH and the 

resources for backups cannot always have the same 

performance for primary copies, the VRTR of CCRH is greater 

than two. As for IRW, it only chose resubmission when the task 

encountered a fault. So it has the minimum value of VRTR. 

Moreover, both CCRH and IRW took one single fault-tolerant 

strategy for all tasks, without considering the influence of soft 

deadline. Thus both of them get the unchanged VRTRs with 

different soft deadlines as shown in Fig.4. As for the proposed 

ICFWS, it reserves moderately serve time of VMs for fault and 

the reserved serve time is decreased with the increase of soft 

deadline. This is caused by that the ICFWS adopts different 

fault-tolerant strategy for different task based on the imbalance 

sub-deadlines among tasks and the performance of resources. 

When the soft deadline is low, more tasks choose replication as 

their fault-tolerant strategy. With the increased soft deadline, 

same tasks change their fault-tolerant strategy from replication 

to resubmission, and then the VRTR is decreased. Furthermore, 

the Online Reservation Adjustment can make full use of time 

slot and also further decrease the VRTR of ICFWS. Moreover, 

the on-demand resource provisioning is also adopted and thus 

more resources with same performance can be got in ICFWS. 

So the VRTR of ICFWS becomes lower and lower with the 

increase of soft deadline. 

From the perspective of one single compared metric, the 

achievements of ICFWS are similar to those of other algorithms. 

For example, the TCR of ICFWS is similar to those of CCRH, 

FTWS and RRADFTRC. However, no matter TCR or VRTR, 

they only reflect one aspect of all algorithms. The TCR reflects 

the cost about time in the context of fault while the VRTR shows 

the resource cost. So it is necessary to consider TCR and VRTR 

simultaneously. From this perspective, it can be found that the 

ICFWS gets a higher TCR at a lower VRTR while the other 

algorithms get a higher TCR at a higher VRTR or a lower TCR at 

a lower VRTR. This means that only the proposed ICFWS can 

reduce the cost of time and resource at the same time for the 

soft deadline constrained-workflow in Cloud systems. As for 

CCRH, FTWS and RRADFTRC, they complete more tasks at 

the cost of lower resource utilization. On the contrary, the IRW 

improve the resource utilization of Cloud systems but complete 

fewer tasks at the soft deadline. As mentioned in the above 

section, completed more tasks with less resources is valuable 

for both users and resource providers. So the proposed ICFWS 

is more practical than other algorithms for the soft 

deadline-constrained workflow in Cloud systems.  

2) Case Two 

The results about TCRs under Case Two are shown in Fig.5. 

It can be seen that the TCRs of all algorithms are decreased with 

the increase of failure rate. The reason for this phenomenon is 

that more time is needed to deal with the rose faults with the 

increase of failure rate and thus fewer tasks are completed at the 

defined soft deadline. However, the TCRs of ICFWS, FTWS, 

RRADFTRC and CCRH are still better than that of IRW. This 

is due to that the time required by resubmission is more than 

that of replication and more resubmissions are needed in IRW 

with the increase of failure rate. Caused by the same reason and 

some tasks select resubmission as their fault-tolerant strategy, 

the proposed ICFWS has a little smaller TCR than those of 

FTWS, RRADFTRC and CCRH at each failure rate.  

 
(a) Montage                                     (b) Epigenomics                                  (c) Cybershake                                      (d) Inspiral 

Fig. 3. Comparative TCR on real-world workflows under Case One

 
(a) Montage                                       (b) Epigenomics                                    (c) Cybershake                                        (d) Inspiral 

Fig. 4. Comparative VRTR on real-world workflows under Case One 
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(a) Montage                                       (b) Epigenomics                                    (c) Cybershake                                        (d) Inspiral 

Fig. 5. Comparative TCR on real-world workflows under Case Two 

 
(a) Montage                                 (b) Epigenomics                                (c) Cybershake                                     (d) Inspiral 

Fig. 6. Comparative VRTR on real-world workflows under Case Two 

The results about VRTR of all algorithms under Case Two are 

presented in Fig.6. It indicates that the VRTRs are grown up 

with the increase of failure rate except CCTH. The reason for 

this phenomenon is that the CCRH only adopted replication as 

its fault-tolerant strategy and corresponding approach for every 

possible fault is designed during the scheduling process. So the 

increased failure rate does not cause any impact to the VRTR of 

CCRH. As for the other four algorithms, more resubmissions 

are needed with the increase of failure rate and thus rise up the 

VRTRs. Fig.6 also shows that the ICFWS offers the maximal 

increment of VRTR in all algorithms for each real-world 

workflow. This is caused by the Online Reservation 

Adjustment in ICFWS. With the increase of failure rate, more 

and more tasks change their fault-tolerant strategy type from 

resubmission to replication by the Online Reservation 

Adjustment after they encounter faults and thus the VRTR is 

increased observably. Although the resubmission is also 

increased in FTWS and RRADFTRC under Case Two, each 

task still has some backups and the resubmission is only passive 

adopted when all backups of this task have failed.  

When taking TCR and VRTR into consideration 

simultaneously, it can be found that the proposed ICFWS still 

outperforms other competitors  even with the increased failure 

rate. 

C. Simulations on randomly generated workflows 

 Besides real-world workflows, we also conduct simulations 

on some randomly generated workflows. We use the DAG 

generator tool to form a DAG with 1300 tasks as the tested case. 

The simulation results about TCR and VRTR under Case One 

for the generated workflow are presented in Fig. 7. The results 

about TCR and VRTR under Case Two are shown in Fig.8. The 

results on randomly generated workflow are similar to the 

previous simulations on real-world workflows and confirm the 

findings in terms of the compared metrics. 

We also execute some simulations on randomly generated 

workflow with varied task number under fixed soft deadline (1. 

3 times of makespan got by HEFT in ideal status) and failure  

   
(a) TCR                                                 (b) VRTR 

Fig. 7. Comparison on randomly generated workflow with fixed task 

count under Case One 

 
(a) TCR                                                (b) VRTR 

Fig. 8. Comparison on randomly generated workflow with fixed task 

count under Case Two 

rate (10%) to evaluate the impact of task number. The results 

under this situation are presented in Fig.9. 

From Fig.9(a), it can be found the TCRs are decreased with 

the increase of task number except CCRH. The decrease of 

TCR is mainly caused by the increase of resubmissions. When 

the task counter is increased under the same failure rate, the 

resubmissions in ICFWS, FTWS, RRADFTRC and IRW are 

also grown up. Then, the TCRs of these algorithms are 

decreased. However, the CCRH does not adopt any 

resubmission in its execution process and thus its TCR is not 

decreased. Fig. 9 also shows the TCRs of RRADFTRC, FTWS 

and ICFWS are reduced mildly with the increasing of task 

counter while that of IRW are decreased significantly. The rea- 
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(a) To TCR                                     (b) To VRTR 

Fig. 9. The impact of task counter under fixed soft deadline and failure rate  

sons as follows can explain this phenomenon. Firstly, although 

the resubmission strategy is also used in RRADFTRC and 

FTWS, the resubmission for each task is only passive adopted 

after all of its backup copies has failed. As for the ICFWS, the 

resubmission is active adopted and constrained by the 

sub-deadlines of these tasks. Moreover, the Online Reservation 

Adjustment also changes the fault-tolerant type of some tasks 

from resubmission to replication in ICFWS. At the same time, 

only the resubmission is adopted in IRW. The little different 

time required for fault by replication and resubmission for one 

task can lead to obviously delay of the whole workflow by other 

unexecuted tasks, which have dependent relationship on this 

task. The delay caused by fault between replication and 

resubmission is becoming more and more obviously with the 

increasing of task counter. 

However, different from RRADFTRC, FTWS and CCRH, 

the ICFWS keeps a low value of VRTR as shown in Fig. 9(b).  

This phenomenon is due to the tasks selected resubmission as 

its fault-tolerant strategy and the Online Reservation 

Adjustment scheme, which also changes the fault-tolerant 

strategy type of some tasks from replication to resubmission 

besides from resubmission to replication during the task 

execution process. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a novel fault-tolerant scheduling 

method, called ICFWS, for soft deadline constrained-workflow 

in Cloud systems by combining resubmission and replication 

together. The ICFWS can play the respective advantages of 

both resubmission and replication for fault-tolerant scheduling 

while trying to meet the soft deadline of workflow. It first 

divides the whole soft deadline of workflow into multiple 

sub-deadlines for all tasks in a recursive manner. Then, it 

selects the corresponding fault-tolerant strategy from 

resubmission and replication for each task based on the results 

of deadline division. After that, the ICFWS reserves 

corresponding VM and time interval for each task by taking 

on-demand resource provisioning model into consideration. 

For the task with resubmission strategy, the ICFWS also 

designs an online resubmission scheme when a fault is 

happened during its execution process. In order to take full 

advantage of time slot, the ICFWS also designs an online 

reservation adjustment scheme to enlarge the sub-deadlines of 

some unexecuted tasks during the task execution process and 

then adjust the fault-tolerant strategy of these tasks. In order to 

evaluate the performance of the proposed ICFWS, a series of 

simulations are conducted on both real-world and randomly 

generated workflows. The simulation results confirm that the 

proposed ICFWS is able to play the respective advantage of 

replication and resubmission for fault tolerance while trying to 

meet the soft deadline of workflow and outperform some 

corresponding competitors. 

Besides fault, the performance fluctuation of VMs also 

plays a negative effect to the execution of workflow. So we 

plan to design a robust scheduling algorithm with elastic 

resource provisioning strategy for workflow in the Cloud 

systems in the future. 
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