

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 1

Abstract—IoT-generated data are characterized by its

continuous generation, large amount, and unstructured format.
Existing relational database technologies are inadequate to handle
such IoT-generated data due to the limited processing speed and
the significant storage-expansion cost. Thus, big data processing
technologies, which are normally based on distributed file systems,
distributed database management, and parallel processing
technologies, have arisen as a core technology to implement IoT-
generated data repositories. In this study, we propose a sensor-
integrated RFID data repository-implementation model using
MongoDB, the most popular big data-savvy document-oriented
database system now. Firstly, we devise a data repository schema
that can effectively integrate and store the heterogeneous IoT data
sources such as RFID, sensor, and GPS, by extending the event
data types in Electronic Product Code Information Services
(EPCIS) standard, a de facto standard for the information
exchange services for RFID-based traceability. Secondly, we
propose an effective shard key to maximize query speed and
uniform data distribution over data servers. Lastly, through a
series of experiments measuring query speed and the level of data
distribution, we show that the proposed design strategy, which is
based on horizontal data partitioning and a compound shard key,
is effective and efficient for the IoT-generated RFID/sensor big
data.

Index Terms— Big Data, EPCIS, IoT, MongoDB, RFID, Sensor,
Supply Chain

I. INTRODUCTION
n the last couple of decades, radio-frequency identification
(RFID) technology has been widely used in logistics,

manufacturing, defense, environment, health care, agriculture,
retail, aviation, and information technology. Moreover, the use
of the Internet of Things (IoT) enabling technologies, including
RFID, sensors, global positioning systems (GPSs), and
automated actuators has lately been expanded to production
management, factory management, quality management,
logistic management, utility management, and inventory
management in various industries [1]-[3]. In the manufacturing
industry, for example, once an RFID tag is attached to
individual parts or products, their location information can be
collected in real time, thereby enabling flexible production
planning and shipment order placement. Furthermore, if quality

This work was supported by the Dongguk University Research Fund of 2014

and the Agriculture Research Center (ARC, 710003-03-1-SB110) program of
the Ministry for Food, Agriculture, Forestry and Fisheries, Korea

Y.-S. Kang is with the Nano Information Technology Academy, Dongguk
University-Seoul, 82-1, Pil-dong 2-ga, Jung-gu, Seoul, 100-272, Korea (e-mail:
yskang@dgu.edu).

issues arise, their causes can be analyzed using corresponding
sensor data collected from the relevant manufacturing facility
to pinpoint the source of the quality problems. In the food
industry, safety management of perishable food has been
extended from production to disposal [4]. IoT technologies like
RFID sensor tags and GPS have already started to be used for
freshness management purposes in food supply chains. For
example, monitoring food quality using the real-time sensor and
traceability data can support various operational logistic
decision makings. Even in the logistics and transportation
industry, IoT technologies are used, to keep pace with the
international awareness on climate change and environmental
issues, in order to fulfill the requirements of “green,” “low
carbon,” and “energy saving” logistics. IoT-generated data on
fuel consumption, carbon emissions, and engine idling can be
collected and analyzed in real time in order to plan logistics that
minimizes carbon emissions.

IoT-generated data, such as RFID and sensor data, is not only
constantly generated in real time as the supply chain and the
manufacturing processes continue, but also provided in a
variety of data formats. In addition, if several billion tags and
sensors were connected through the Internet, an unprecedented
number of transactions and amounts of data would be generated
[5], [6]. An automotive manufacturing traceability system, for
instance, has to store hundreds of Giga byte data only for
handling 30 components of a single vehicle production line as
illustrated in Section IV. A single automobile is composed of
around 25,000 parts and the average production cycle time is
one minute, meaning that a fully-implemented futuristic IoT-
based manufacturing environment, where RFID tags are
attached to most of the parts and logistics units, will easily
overwhelm the traditional database systems. Furthermore, the
databases will be quickly flooded with not only RFID-tracking
information but also sensor data such as temperature, humidity,
vibration, pressure, and images collected every other few
seconds. In this sense, the IoT-generated data in a supply chain
are definitely “big data”, satisfying the sufficient conditions in
terms of volume, velocity, and variety of data.

However, we have many limitations on processing large
amounts of unstructured data, such as IoT-generated big data,
using existing relational database (RDB) technologies [7]-[9].

I.-H. Park, J. Rhee and Y.-H. Lee are with the Department of Industrial and
Systems Engineering, Dongguk University-Seoul, 30, Pildong-ro 1-gil, Jung-
gu, Seoul, 100-715, Korea (e-mail: ihpark@dgu.edu, jtrhee@dgu.edu,
yonghan@dgu.edu)

MongoDB-based Repository Design for IoT-
generated RFID/Sensor Big Data

Yong-Shin Kang, Il-Ha Park, Jongtae Rhee and Yong-Han Lee, Member, IEEE

I

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 2

For example, existing technologies use a “scale-up” system
expansion scheme, which replaces existing equipment with
higher-performance equipment when the performance degrades
due to a significant increase in the amount of data. This
approach is, however, not viable because this requires repeating
equipment investments, especially in handling the fast-growing
big data. To overcome this drawback, Not Only SQL (NoSQL)
database technologies, such as HBase, MongoDB, Cassandra,
and CouchDB, have been developed. NoSQL technologies can
store unstructured data because of their easy data schema-
modification capability, and require lower server expansion
cost than relational databases because of their “scale-out”
scheme compared to the “scale-up” scheme of RDB’s. Besides,
NoSQL database systems can process massive input and output
data efficiently by virtue of the distributed storage and
processing approach over the multiple data nodes.

In this study, we propose a sensor-integrated RFID data
repository-implementation model that can integrate and store a
large amount of IoT-generated RFID/sensor data collected from
supply chain processes, and can quickly process and query them.
To achieve this goal, firstly we design a MongoDB-based
RFID/sensor data repository that can integrate and store RFID
and sensor data by referencing event types of Electronic
Product Code Information Services (EPCIS) [10] in the
EPCglobal network, which is a de-facto standard for RFID
information exchange. Secondly, we suggest an effective shard
key. A shard is a horizontal partition of data in a database, or
the database server in which the partition is located. A shard
key is a set of fields to which the partitioning is carried out with
respect. Therefore cautious selection of a shard key is a critical
decision in maximizing query speed and uniform data
distribution over data servers. A combination of fields among
RFID/sensor event-data fields as a shard key is selected based
on intensive experiments as well as suggestions in literature.
Lastly, we verify our suggestions based on simulated data. We
generate a huge amount of RFID/sensor event data using a
simulation model on a virtual automotive-parts supply chain for
our experiments, which verify the sharding performance of the
proposed RFID/sensor data repository in terms of the amount
of data, the number of clients, and the number of distributed
servers.

II. BACKGROUND

A. NoSQL
The term ‘NoSQL’ collectively refers to the database

technologies which do not abide by the strict data model of
relational databases. By sacrificing some of the properties (such
as ACID transactional properties) of relational database model,
NoSQL databases can achieve higher availability and
scalability, which are essential requirements for big data
processing. Unlike relational databases NoSQL databases do
not need to have a fixed schema with pre-defined data structures
and constraints to be finalized in an early stage of database
design. In addition, “shared nothing” architecture of NoSQL
allows horizontal scaling – replicating and partitioning data
over many nodes, consequently achieving stable and fast

read/write operations of massive data [11], [12].
Strauch et al. [11] classified NoSQL databases into three

types – key-value stores, document databases, and column-
oriented databases depending on their data models. In a key-
value store, all the data instances are stored in the form of key-
value pair. Document databases are based on the same key

-value structure as key-value stores, but the values are in the
form of a more complex data structures called “documents”
such as XML documents. Unlike the key-value stores,
document databases generally support secondary indexes and
multiple-type/nested documents in a database. Column-
oriented databases store data tables as sections of columns of
data, rather than as rows of data. This type of database is
efficient when the majority of the database operations are of
OLAP, which requires intensive column-oriented calculations
like aggregation. Unlike row-oriented databases, column-
oriented databases can easily add and delete columns. Table I
shows representative NoSQL database solutions of each type.

Leavitt [13] pointed out that NoSQL databases will not
replace relational databases, which are more mature and already
widely installed, in the near future. However, for some specific
purposes such as handling unstructured massive data even
requiring a high level of scalability, NoSQL databases will be a
better choice. Today we have a wide variety of NoSQL database
products (of different types as mentioned above) on the market,
which are built to fit specific purposes. Therefore, NoSQL
databases will have their own niches, which are even expanding
rapidly according to growing needs for big data processing in
various fields. In the near future, NoSQL proponents and
vendors will focus on developing better application
compatibility and management tools. As a result, the adoption
of NoSQL databases will be expedited. As reported in [14], five
NoSQL products are already included in the top providers of
operational database management systems in a Gartner’s Magic
Quadrant report, and MongoDB is the most popular one of them.

Veen et al. [7] compared the read/write performance of an
SQL database (PostgreSQL) with NoSQL database (Cassandra
and MongoDB) for the sensor data-storage purpose, and
concluded that Cassandra is a good choice for relatively bigger
sensor data, while MongoDB is for smaller sensor data with
higher priority to the writing performance. Li et al. [15]
proposed a MongoDB-based data storage architecture with a
preprocessing mechanism for raw-data classification, and
defined a query language working for this architecture. Jiang et
al. [16] suggested an IoT-based data repository framework for
combining HDFS, MySQL, and MongoDB together.

TABLE I
CLASSIFICATION OF NOSQL DATABASES [12]

Key-value stores Document databases Column-oriented
databases

Voldemort,
Riak,
Redis,
Scalaris,
Tokyo Cabinet

SimpleDB,
CouchDB,
MongoDB,
Terrastore

BigTable,
HBase,
HyperTable,
Cassandra

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 3

B. MongoDB
MongoDB, developed by 10gen, is a document-oriented

NoSQL database that offers high performance and scalability.
Unlike other NoSQL databases, its data structure is designed
independently as a document unit so that a schema definition is
not needed. Moreover, MongoDB uses a scale-out scheme,
which is flexible against hardware expansion, and supports
auto-sharding. Thus, the automatic distribution of data over a
number of servers can be conveniently carried out [17]-[20].
Fig. 1 shows the configuration of horizontal data partitioning,
called sharding, and replica sets to ensure high availability,
safety, and data consistency. They also enable distributed
expansion for data processing involving large amounts of data.
The functions of the MongoDB components are as follows.
 mongod: This is the primary daemon process for the

MongoDB system. It handles data requests, manages data
access, and performs background management operations.
 mongos: This is a routing service for MongoDB shard

configurations that processes queries from the application
layer and determines the location of these data in the shared
cluster.
 replica sets: This is a group of mongod processes that

maintain the same dataset. If the primary mongod is
unavailable, the replica set will elect a new primary mongod.
 shard: This stores data. For easy availability and data

consistency, each shard is a replica set.
 config server: This server stores the cluster’s metadata. These

data contain a mapping of the cluster’s dataset to the shards.
Even distribution of data among shards is controlled by a

shard key. A shard key is either a single indexed field or an
indexed compound field that exists in every document.
MongoDB divides the input data into chunks, logical units of
stored data, according to the shard key by using either range-
based partitioning or hash-based partitioning. Once the shard
key is set up, it cannot be modified. Hence, appropriate shard
key selection is a very important decision factor in the
MongoDB design.

There have been various research on the performance of
MongoDB. Nyati et al. [21] compared the insertion/searching
performance of MongoDB to MySQL in a single machine,
showing that MongoDB outperformed MySQL. Kanade et al.
[22] carried out an experimental comparative study between

embedding and referencing design patterns, showing that the
embedding pattern performs better in terms of query response
time. Liu et al. [23] proposed an algorithm to solve irregular
distribution of data among distributed storages, and
demonstrated that the proposed approach can improve the
throughput t and read/write response time of the existing
automatic data distribution.

C. EPC Information Services (EPCIS)
EPCIS is an RFID event repository, which is one of the core

components of the EPCglobal Architecture Framework [10]. It
helps store RFID event information and share the information
among supply chain partners. Electronic Product Code (EPC)
refers to a coding scheme for unambiguous code for the
designation of physical goods [24]. It can assign codes,
according to an appropriate coding scheme such as Serialized
Global Trade Item Number (SGTIN), a Shipment Container
Code (SSCC), and a Global Returnable Asset Identifier (GRAI),
to objects depending on the purposes. The EPCIS solutions
should provide predefined vendor-independent capture/query
interfaces to receive/supply RFID event data, although the
vendors can freely implement the services by their own ways.
Fig. 2 shows a summary of event types and fields of EPCIS
event data. The schema of a MongoDB-based RFID/sensor data
repository, extended from these event types, is described in
Section III.

Le et al. [25] proposed a Cassandra-based column-family
style EPCIS repository, and showed that it outperforms
MySQL-based implementation in terms of response time,
throughput, and flexibility. Li et al. [26] implemented an EPC
discovery service (DS), which is one of the core information
services along with EPCIS, using HBase. The proposed DS
successfully provides even nested traceability information
using a recursive discovery algorithm. Gomes [27] proposed an
IoT infrastructure with an EPCIS module, which is based on
NoSQL repository and works in a cloud virtual machine
environment. Byun and Kim [28] implemented a MongoDB-
based EPCIS architecture, and compare the query response time
performance with Fosstrack EPCIS (a highly referenced open
source EPCIS implementation) and Cassandra-based EPCIS,
and demonstrated it performs better. However, they did not
address an optimal design of MongoDB schema, and the
proposed architecture does not completely conform to the
EPCIS standard.

Fig. 1. MongoDB sharding architecture (edited from [18]).

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 4

Fig. 2. Four event types of EPCIS (edited from [29]).

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 5

III. MONGODB-BASED RFID/SENSOR DATA
REPOSITORY

In this section, we describe the design of our RFID/sensor
data repository in consideration of the MongoDB design pattern
as well as the process for selecting an optimal shard key. With
reference to the database schema of a well-known open-source
EPCIS, we propose a MongoDB schema, which combines
RFID and sensor data. Furthermore, we select an optimal
compound shard key according to the theoretical guidelines
suggested in previous literature.

A. Relational Database Schema for EPCIS Event Types
Fosstrak [30], which is an open-source RFID software

platform project, provides an EPCIS implementation based on
MySQL, which is one of the popular relational database
systems. Fig. 3 shows the ObjectEvent schema of the
Fosstrak EPCIS. Since EPCIS event fields may have multiple
values, such as epcList, childEPCs,
bizTransactionList, and extensions, a field table
with multiple values and event tables are normalized with one-
to-many or many-to-many relationships to overcome
addition/deletion/update anomalies. The
AggregationEvent, TransactionEvent, and
QuantityEvent are also designed in the same manner.

According to the EPCIS standard, every event has an
extension point, to which additional data members can be
attached. Therefore, we can easily store additional information
from the various IoT data sources, such as sensors, GPS’s, and
other intelligent devices.

B. MongoDB for EPCIS Implementation
As explained in Section III.A, EPCIS events are represented by

structured data types, which have even one-to-many or many-
to-many relationships among them. That means we cannot use
simple key-value stores for the purposed of RFID/sensor data
repository. On the other hand, RFID/sensor data repository are
used mainly for event tracking or search queries rather than any
type of column-wise aggregation operations as in OLAP,
meaning that column-oriented databases are not preferable to
document databases either. In these senses, the document
database is right choice for representing RFID/sensor data
repository. Furthermore, the queries between EPCIS and
accessing applications are all in the form of XML messages so
that data transformation processes are unnecessary. Among
document databases, MongoDB is the most popular NoSQL
database according to [31].

C. Design of MongoDB-based RFID/sensor data repository
The design patterns of the MongoDB data model fall into two
categories: embedding and referencing, as shown in Fig. 4.
Embedding is a scheme in which other documents related to a
given document are embedded as a sub-document, whereas
referencing is a scheme where related documents are separated
into other collections (such as tables in RDBs). In the
referencing scheme, a specific field in the referencing collection
is to be set as a link to the referenced collection, as a foreign
key does in RDBs [19], [20].

As an EPCIS event consists of logically-related entities (such
as bizTransactionList and extension) which have one-
to-many or many-to-many relationships, we need to decide
whether to include the entities in an event collection (i.e.,
embedding) or to separate them physically into other
collections (i.e., referencing). The decision is basically a matter
of which is more important between data integrity (plus storage
saving) and query performance. In this study, we propose an
embedding scheme-based RFID/sensor data repository because
RFID/sensor data are basically raw data that, once stored, is
rarely modified. This means that the data have no possibility of
modification/deletion anomalies and therefore, no need to
perform normalization. Moreover, as
bizTransactionList and extension entities are optional
members of each event, which is a weak relationship, there is
no reason to separate them physically into additional collections.
In addition, the embedding scheme, which does not carry out
normalization, is appropriate for a large RFID/sensor data
repository, which requires faster read and write performance.
Fig. 5 shows the embedding scheme-based design of the
proposed RFID/sensor data repository. The eventType field
was added to distinguish four different event types. The entities
who has multiple values like epcList and childEPCs are
defined as array-type members, while
bizTransactionList and extensions are embedded
as subdocument-type members.

Fig. 3. ObjectEvent schema of Fosstrak EPCIS (revised from [30])

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 6

Fig. 4. Embedding vs. referencing

Fig. 5. MongoDB-based RFID/sensor data repository schema.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 7

As explained in Section III.A, every EPCIS event can add
extension fields, called “extensions.” This member has
mandatory fields - fieldName, prefix, and values. As
shown in Fig. 6, sensor data and GPS data can be added to an
RFID event with the corresponding sensor type, prefix of name
space, and sensor value.

Fig. 7 shows a document stored in the proposed MongoDB-
based RFID/sensor data repository in XML format. This
document is the basic unit of data, in which an EPCIS receives
and supplies RFID/sensor events through capture and query
interfaces respectively.

D. Selection of Shard Key
A shard key should be determined to divide input data into

chunks effectively, and to distribute data through the shard

evenly. An ideal shard key is a compound key of two fields, in
which the first should have a moderately coarse-grained
cardinality and the other should be a more fine-grained field
with higher cardinality [17], [19]. Once selected as a shard key,
the field is to be indexed too. Thus, the choice of a field as a
shard key should also involve considering whether it is
frequently used in queries as criteria.

Two fields - eventType and readPoint - are the only
ones with finite cardinality among MongoDB-based
RFID/sensor event member fields. The readPoint field is
appropriate as the first part of the compound shard key, in the
sense that each readPoint, which represents a point where
an object is recognized, is identified by a unique ID. Once a
logistic process in business is defined, all the objects will pass
through almost the same (finite) set of readPoints. Note that
readPoint is optional in theEPCIS event schema. In order to
use readPoint as a shard key, implementers should define
readPoint as a Non-Null field having a finite set of values
in developing RFID/sensor systems.

On the other hand, the eventType field neither has
appropriately grained cardinality (it has only four as shown in
Fig. 2) nor is frequently used in queries compared to
readPoint. Actually, the most commonly used criteria in
queries are of what (epc), when (eventTime), and where
(readPoint). As the second part of the compound shard key,
a high-cardinality field is desirable. Two candidates are
eventTime, which records event time, and epcList, which
represents the ID of an object. The eventTime field is
characterized by an increasing value whenever an event occurs,
while the epcList field assigns a new ID whenever a new
object appears. Thus, both of them can be viewed as high-
cardinality and fine-grained key. However, due to the
MongoDB characteristics that an array-type field cannot be a
shard key, epcList cannot be considered as a shard key.
Hence, eventTime should be selected as the second part of
the compound shard key.

It is true that even if eventTime, which is a high-
cardinality and fine-grained key, is chosen as a single shard key,
data can be evenly split into shards. However, in this case,
RFID/sensor data currently being generated will be headed to a
specific server in a row, causing congestions. Another problem
can occur when readPoint, which has a moderate level of
cardinality, is adopted as a single shard key, such that it cannot
guarantee uniform data distribution and chunk split upon
continuous data accumulation. Such a situation can occur when
the cardinality of reappoint is too low compared to the number
of events generated. As shown in Fig. 8, if the number of
possible values of readPoint is five, only five chunks can be
formed, and no more splits occur even if a large amount of event
data is accumulated as time goes.

Consequently, in this study, we adopt the compound shard
key {readPoint, eventTime} as the optimal shard key. As
shown in Fig. 9, a chunk is created per readPoint. Once the
number of objects in a single chunk increases, a chunk can be
split further according to eventTime, hence ensuring uniform

Fig. 6. Example of extensions containing sensor data.

Fig. 7. Example of XML format for RFID/sensor event.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 8

distribution of data. Moreover, as both the readPoint and
eventTime fields are core keys for object and environment
tracking, they help improve the query performance in addition

to the benefits of uniform distribution of data. In Section IV, we
verify the appropriateness of our shard key selection and the
scalability of a MongoDB-based RFID/sensor data repository
through experiments.

Fig. 8. Chunks that cannot be split.

Fig. 9. Well-split chunks by shard key as readPoint and eventTime.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 9

IV. EXPERIMENTAL EVALUATION
In order to validate our proposed design, we carried out a

series of experiments using sample data set, which was
generated based on a realistic supply chain model as
summarized in Table II. The first experiment compares data
distribution levels and query performance of different shard key
choices in order to validate our choice of shard key. The second
experiment compares query performance of MongoDB-based
repository with MySQL-based repository on a single machine
in order to check if our choice of database (i.e., NoSQL)
outperforms a representative relational database (like MySQL).
The last experiment checks whether an increase in the number
of MongoDB shards improves query performance.

A. Supply Chain Scenario
To generate a large volume of RFID/sensor data, we assume

an automotive supply chain comprising three module
manufacturers along with nine part suppliers. Three module
manufacturers produce chassis modules, cockpit modules, and
front-end modules respectively. In general, chassis module,
cockpit module, and front-end module consist of about 100, 130,
and 30 components (or parts) respectively. We assumed only a
small portion of important parts is traced using RFID/sensor
tags. They are suspension, power steering, and brake for the

chassis module; instrument panels, cowl crossbars, and
ventilation systems for the cockpit module; and headlamps,
radiator assemblies, and front bumper beams for the cockpit
module. We also assume that the detailed internal logistic
processes of each part supplier are divided into two types -
molding type and assembly type, as shown in Fig. 10, and
simulation parameters such as production rate, processing time,
and transportation time are identical for convenience. In
addition, the temperature data in all the processes and the GPS
data during the transportation stage are assumed to be produced
in 10-second intervals. According to the defined process model
and parameters, around 100 million events were generated over
two simulation months, which require about 200 GB of
MongoDB storage.

TABLE II
EXPERIMENTS

No Test Name Metrics Comparison Targets

1 Shard key test distribution
level

different shard-key choices

 response
time

two compound shard-key choices

2 MongoDB vs. MySQL
performance test

response
time

MongoDB-based repository vs.
MySQL-based repository

3 Sharding performance
test

response
time

MongoDB-based repositories
with different no. of shards

Fig. 10. Supply chain process model.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 10

B. Test Environment
To generate the simulation data, we set up a cluster of three

server machines with same specifications, as shown in Fig. 11.
Three servers are configured as shards for storing data, and one
server is used as a mongos and config server. Client programs
for storing and querying data are situated in the same network
with mongos, and the tests were conducted in a wired network
connection.

C. Shard Key Test
This test aims to validate whether the compound shard key

{eventType, eventTime} proposed in Section III.D
guarantees an even distribution of data and better query
performance. In addition, a comparison between a single shard
key and a compound shard key in terms of evenness of data
distribution was made. Table III summarizes the candidates for
shard key to compare.
1) Distribution Level Test

 According to the process defined in Section IV.A, 10 million
events were stored in the RFID/sensor data repository

configured as shown in Fig. 11. Table IV, which summarizes
the results, indicates that chunk split did not occur sufficiently
in the case of single shard keys {readPoint} and
{eventType}, as predicted in Section III.D. The reason is that
a few chunks were created as the cardinality of each shard key,
and the chunks were stacked with the event data without
splitting. On the other hand, in the cases of the single shard key
{eventTime}, compound shard key {readPoint,
eventTime}, and compound shard key {eventType,
eventTime}, the chunks were all sufficiently well split.
However, as mentioned in Section III.D, the single shard key
{eventTime} has a disadvantage in that data input is
concentrated in a shard, even though even distribution can be
achieved.

2) Query Performance Test

 In order to evaluate the query response time of the
compound shard key {readPoint, eventTime}
suggested in Section III.D, we compared the response time of
the two databases, which were generated via two candidate
compound shard keys shown in Table IV. The queries used in
this test are fundamental queries, which are frequently used for
object history tracking in a supply chain (see Table V). Other
possible queries such as ‘quantity shipped’ and ‘dwell time’
queries can be derived from these fundamental queries,
meaning that the performance of them are deeply dependent on
that of fundamental queries. Hence, we restrict the experiments
to the fundamental queries. Furthermore, the fields used in the
query (i.e., parentID, epcList, readPoint, and
eventType) were set as index keys.

Fig. 11. Configurations for simulation test.

TABLE III
CANDIDATES FOR SHARD KEY

No. Types Shard Key

1 single {readPoint}

2 single {eventType}

3 single {eventTime}

4 compound {readPoint, eventTime}

5 compound {eventType, eventTime}

TABLE IV
RESULT OF SHARD KEY TEST

 the number of objects the number of chunks

Shard Key Shard #1 shard #2 shard #3 shard #1 shard #2 shard #3

{readPoint} 8,717,756 623,206 566,256 3 2 2

{eventType} 6 9,836,806 70,406 1 1 1

{eventTime} 2,518,689 4,830,775 2,586,389 61 71 61

{readPoint, eventTime} 2,777,360 4,376,540 2,763,953 156 158 155

{eventType, eventTime} 3,454,937 3,892,420 2,559,867 115 122 116

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 11

TABLE V
TEST QUERIES

Query Description Query parameters Query Statement

Q1 Query for event that occurred in a
specific period and a specific place

readPoint,
eventTime

db.collection.find({

readPoint: "readPoint x",

eventTime:{

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"),
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’")

});

Q2 Query for event related to a target
product during a specific period

eventTime,
epcList

db.collection.find({

epcList: "epc x",

eventTime:{

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"),
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’")

});

Q3 Query for object ID contained in a
specific case at specific time

eventType,
eventTime,
parentID

db.collection.find({

parentID: "epc x",

eventType: “AggreationEvent”,

eventTime:{

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"),
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’")

});

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 12

Using the simulation model, we generated 100 million
objects and compared the response time of two compound shard
key cases. Every time the number of stored objects reaches a
multiple of 20 million, 10 clients access mongos simultaneously
and query Q1, Q2, and Q3 30 times each; then, the average
response times were recorded. Fig. 12 shows the test results.
For Q1, as the number of data increases, the response time of
the database with the compound shard key {readPoint,
eventTime} got remarkably faster than the database with the
other compound shard key {eventType, eventTime}
while they show similar performance for Q2 and Q3.

These two shard key tests confirm that the compound shard

key {readPoint, eventTime} proposed in this paper
guarantees evenly distributed data and is advantageous in query
performance.

D. MongoDB vs. MySQL Performance Test
This test simply compares the suggested MongoDB-based

RFID/sensor data repository with MySQL-based RFID/Sensor
data repository (as a representative relational database).
MySQL-based repository complies with Fosstrak EPCIS data
schema descripted in Section III.A. For this test, we configured
a Mongo-DB based repository which has one shard, and a
MySQL-based repository on a single machine. In common with
the query performance test in Section IV.C, we used three
queries (Q1, Q2 and Q3), and measured the response time in the
same way. For a fair comparison, the fields used in the query
(i.e., readPoint, eventTime, epcList, and parentID)
were all indexed in both MongoDB and MySQL.

The test result is shown in Fig. 13. For Q1 and Q2, MongoDB
outperforms MySQL. For Q1 in particular, MongoDB
demonstrates a very stable and low response time constantly.
On the other hand, for Q3, MySQL is about twice faster than
MongoDB. Because Q1 and Q2 are more frequently used
queries than Q3 in real practice, MongoDB-based RFID/Sensor
data repository will be a better choice even if only the query
performance is taken into account. Moreover, if a MongoDB-
based repository utilizes multiple shards (unlike this
experiment), it will demonstrate higher performance as shown
in the following section.

E. Sharding Performance Test
The objective of this test is to confirm whether an increase in

the number of shards improves query performance. To this end,
this test compared the response time per shard composition (one
shard, two shards, and three shards) according to an increase in
(1) the size of data volume (we call it volume test) and (2) the
number of clients (we call it throughput test). The shard key was
set to {readPoint, eventTime}, and the fields used in the query
were also all indexed.

Fig. 12. Result of query performance test (between two compound shard keys).

Fig. 13. Result of MongoDB vs. MySQL performance test.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 13

1) Volume Test
 We generated 100 million objects using the simulation

model, and recorded the average response time among each
cluster which configured with one, two, and three shards. Fig.
14 shows the test results. For Q1 and Q3, the number of shards
had practically no effect on the response time. Further, there
was practically no effect on the search speed owing to the fact
that readPoint and parentID were indexed and the value
they can take is significantly smaller than epcList. On the
other hand, with respect to Q2, the case of three shards shows a
response that is around 214 ms faster in the early stages and
around 7,059 ms faster in the later stages, as compared to the
case of two shards. In addition, the case of three shards shows
a response time that is around 5,600 ms faster in the early stages
and around 21,000 ms faster in the later stages, as compared to
the case of one shard. Therefore, an increase in the number of
shards is confirmed to improve query speed.

2) Throughput Test
 This test compares the response time by shard configuration

according to the increase in the number of clients. In this test,
the average response times for Q1, Q2, and Q3 were recorded
by fixing the data storage volume at 100 million events and
changing the number of simultaneously querying clients to 1, 5,
10, 15, and 20. Fig. 15, which summarizes the test results,
shows that as the number of querying clients increases, clusters
with more shards show better performance. Particularly, in the
case of Q2, when the number of simultaneously querying
clients is 20, the case of three shards shows a response time that
is 20,000 ms faster, as compared to that of two shards, and
45,000 ms faster, as compared to that of one shard.

From the above two tests, it is confirmed that a large
improvement in performance can be realized with an increase
in the number of shards when a field having various values, i.e.,
a field having a large search space, is queried to search for
documents stored in the database and when the number of
simultaneously querying clients is large.

V. CONCLUSION
RFID and sensor technologies are undoubtedly the core

technologies of future IoT. Many researchers [32-35] have
studied various research issues on integrating RFID and sensor
technologies. At present, efforts are being made to integrate
these two technologies on the same IoT platform in different
fields. Unlike conventional studies that provide IoT platforms
at the architecture level only, this study proposed an
implementation model of an RFID/sensor data repository on
the basis of MongoDB. Furthermore, based on logistic process
simulation of automotive parts, the proposed RFID/sensor data
repository was empirically validated in terms of even
distribution of data and query speed.

Our study is based on a typical manufacturing supply chain
scenario. Although it is quite representative, there are still
exceptional situations, in which the proposed design would not
work effectively. For example, if a specific type of event other
than ObjectEvent such as AggregationEvent, which
holds boxing and de-boxing information, is intensively queried,
we may have to reconsider our choice of the shard key. In
addition, we consider the query response time as the only
performance metric. However, there are some possibilities that

Fig. 14. Result of volume test.

Fig. 15. Result of throughput test.

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 14

growing data might lower the writing speed, due to the nature
of the embedding model.

Therefore, we need to investigate the optimal design of
MongDB based EPCIS implementation, which can work for
other non-trivial query requirements in the future. In addition,
it is necessary to make a further comparative study amongst
document-based NoSQL database alternatives (not only
MongoDB) from the viewpoint of RFID/Sensor big data
processing. Our ultimate goal of this research trail is to propose
a performance model of the MongoDB-based RFID/sensor data
repository, which can support the shard-extension planning.

REFERENCES
[1] E. Ilie-Zudor, Z. Kemeny, F. Blommestein, L. Monostori, and A. Meulen,

“A survey of applications and requirements of unique identification
systems and RFID technique,” Comput Ind, vol. 62, pp. 227-252, 2011.

[2] L. D. Xu, W. He, and S. Li, “Internet of things in industries: a survey,”
IEEE T Ind Inform, vol. 10, no. 4, pp. 2233-2243, 2014.

[3] J. Mitsugi, T. Inaba, B. Pátkai, L. Theodorou, J. Sung, T. S. López, D. Kim,
D. McFarlane, H. Hada, Y. Kawakita, K. Osaka, and O. Nakamura,
Architecture Development for Sensor Integration in the EPCglobal
Network, Auto-ID Labs White Paper, WP-SWNET-018, 2007.

[4] Y.-S. Kang, H. Jin, O. Ryou, and Y.-H. Lee, "A simulation approach for
optimal design of RFID sensor tag-based cold chain systems," J. Food
Eng, vol. 113, pp. 1-10, 2012.

[5] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented
data storage framework in cloud computing platform,” IEEE T Ind Inform,
vol. 10, no. 2, pp. 1443-1451, May 2014.

[6] D. E. O’Leary, “‘Big Data’, The ‘Internet of things’ and the ‘internet of
signs’,” Intell. Syst. Account. Finance Manag., vol. 20, pp. 53-65, 2013.

[7] J. S. Veen, B. Waaij, and R. J. Meijer, “Sensor data storage performance:
SQL or NoSQL, Physical or Virtual,” in Proc. 5th IEEE Cloud, pp. 431-
438, 2012.

[8] A. Castiglione, M. Gribaudo, M. Lacono, and F. Palmieri, “Exploiting
mean field analysis to model performances of big data architectures,”
Future Gener Comput Syst., vol. 37, pp. 203-211, 2014.

[9] G. Noorts, J. Engel, J. Taylor, D. Roberson, R. Bacchus, T. Taher, and K.
Zdunek, “An RF spectrum observatory database based on a hybrid storage
system,” in Proc. IEEE Dyspan, pp. 114-120, October 2012.

[10] EPCglobal Inc., EPC Information Services (EPCIS) version 1.0,
EPCglobal ratified specification, Available:
http://www.gs1.org/gsmp/kc/epcglobal/epcis.

[11] C. Strauch, U. L. S. Sites, and W. Kriha, “NoSQL databases,” Lecture
Notes, Stuttgart Media University, 2011.

[12] R. Cattell, "Scalable SQL and NoSQL data stores," Sigmod Rec., vol. 39,
no. 4, pp. 12-27, 2011.

[13] N. Leavitt, “Will NoSQL databases live up to their promise?” Computer,
vol. 43, no. 2, pp. 12-14, 2010.

[14] D. Feinberg, M. Andrian, and N. Heudecker, "2013 Gartner Magic
quadrant for operational database management systems," Gartner Research
Note, Oct. 21, 2013.

[15] T. Li, Y. Liu, Y. Tian, S. Shen, and W. Mao, “A storage solution for
massive Iot data based on NoSQL,”. In Proc. IEEE GreenCom, pp. 50-57,
November 2012.

[16] L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-oriented
data storage framework in cloud computing platform,” IEEE T Ind Inform,
vol. 10, no. 2, pp. 1443-1451, 2014.

[17] K. Banker, MongoDB in Action, Manning Publications Co, 2011.
[18] T. Sasaki, NoSQL core guide for big data era, RoadBook, 2011.
[19] R. Copeland, MongoDB Applied Design Patterns, O'Reilly Media, Inc.,

2013.
[20] K. Chodorow, MongoDB: the definitive guide, O'Reilly Media, Inc., 2013.
[21] S. S. Nyati, S. Pawar, and R. Ingle, “Performance evaluation of

unstructured NoSQL data over distributed framework,” In Proc. IEEE
ICACCI, pp. 1623-1627, August 2013.

[22] A. Kanade, A. Gopal, and S. Kanade, “A study of normalization and
embedding in MongoDB,” In Proc. IEEE IACC, pp. 416-421, Febuary,
2014.

[23] Y. Liu, Y. Wang, and Y. Jin, “Research on the improvement of MongoDB
Auto-Sharding in cloud environment,” In Proc. 7th IEEE ICCSE, pp. 851-
854, July 2012.

[24] F. Thiesse, C. Floerkemeier, M. Harrison, F. Michahelles, and C. Roduner,
“Technology, standards, and 4eal-world deployments of the EPC network,”
IEEE Internet Comput., vol. 13, no. 2, pp. 36-43, 2009.

[25] T. D. Le, S. H. Kim, M.H. Nguyen, D. Kim, S. Y. Shin, K. E. Lee, and R.
da Rosa Righi, “EPC information services with No-SQL datastore for the
Internet of Things,” In Proc. IEEE RFID, pp. 47-54, April 2014.

[26] M. Li, Z. Zhu, and G. Chen, “A scalable and high-efficiency discovery
service in IoT using a new storage schema,” In Proc. IEEE COMPASC, pp.
754-759, 2013.

[27] M. M. Gomes, R. D. R. Righi, and C. A. da Costa, “Future directions for
providing better IoT infrastructure,” In Proc. UbiComp, pp. 51-54,
September 2014.

[28] J. Byun, and D. Kim, “Oliot EPCIS: New EPC information service and
challenges towards the Internet of Things,” In Proc. IEEE RFID, pp. 70-
77, April 2015.

[29] Y.-S. Kang and Y.-H. Lee, "Development of generic RFID traceability
services," Comput Ind, vol. 64, no. 5, pp. 609-623, 2013.

[30] Fosstrak EPCIS Architecture Guide, Available:
https://code.google.com/p/fosstrak/wiki/EpcisArchitectureGuide.

[31] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL database: new era of
database for big data analytics – classification, characteristics and
comparison,” Ijdta, vol. 6, no. 4, pp. 1-14, 2013.

[32] L. Zhang and Z. Wang, “Integration of RFID into Wireless Sensor
Networks: Architectures, Opportunities and Challenging Problems,” In
Proc. the 5th International Conference on Grid and Cooperative
Computing Workshops (GCCW '06), pp. 463-469, 2006.

[33] J. Mitsugi, T. Inaba, B. Pátkai, L. Theodorou, J. Sung, T.S. López, D. Kim,
D. McFarlane, H. Hada, Y. Kawakita, K. Osaka and O. Nakamura,
“Architecture Development for Sensor Integration in the EPCglobal
Network,” Auto-ID Labs, White Paper WP-SWNET-018, 2007.

[34] H. Liu, M.B.a.A. Nayak and I. Stojmenovic, “Taxonomy and Challenges
of the Integration of RFID and Wireless Sensor Networks,” IEEE Network,
vol. 22, no. 6, pp. 26-35, 2008.

[35] A. Al-Fagih, F. Al-Turjman, W. Alsalih and H. Hassanein, “A Priced
Public Sensing Framework for Heterogeneous IoT Architectures,” IEEE
Trans. Emerg. Topics Comput. - Special Issue on Cyber-Physical Systems,
vol. 1, no. 1, pp. 133-147, 2013.

