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Abstract—IoT-generated data are characterized by its 

continuous generation, large amount, and unstructured format. 
Existing relational database technologies are inadequate to handle 
such IoT-generated data due to the limited processing speed and 
the significant storage-expansion cost. Thus, big data processing 
technologies, which are normally based on distributed file systems, 
distributed database management, and parallel processing 
technologies, have arisen as a core technology to implement IoT-
generated data repositories. In this study, we propose a sensor-
integrated RFID data repository-implementation model using 
MongoDB, the most popular big data-savvy document-oriented 
database system now. Firstly, we devise a data repository schema 
that can effectively integrate and store the heterogeneous IoT data 
sources such as RFID, sensor, and GPS, by extending the event 
data types in Electronic Product Code Information Services 
(EPCIS) standard, a de facto standard for the information 
exchange services for RFID-based traceability. Secondly, we 
propose an effective shard key to maximize query speed and 
uniform data distribution over data servers. Lastly, through a 
series of experiments measuring query speed and the level of data 
distribution, we show that the proposed design strategy, which is 
based on horizontal data partitioning and a compound shard key, 
is effective and efficient for the IoT-generated RFID/sensor big 
data. 
 

Index Terms— Big Data, EPCIS, IoT, MongoDB, RFID, Sensor, 
Supply Chain 

I. INTRODUCTION 
n the last couple of decades, radio-frequency identification 
(RFID) technology has been widely used in logistics, 

manufacturing, defense, environment, health care, agriculture, 
retail, aviation, and information technology. Moreover, the use 
of the Internet of Things (IoT) enabling technologies, including 
RFID, sensors, global positioning systems (GPSs), and 
automated actuators has lately been expanded to production 
management, factory management, quality management, 
logistic management, utility management, and inventory 
management in various industries [1]-[3]. In the manufacturing 
industry, for example, once an RFID tag is attached to 
individual parts or products, their location information can be 
collected in real time, thereby enabling flexible production 
planning and shipment order placement. Furthermore, if quality 
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issues arise, their causes can be analyzed using corresponding 
sensor data collected from the relevant manufacturing facility 
to pinpoint the source of the quality problems. In the food 
industry, safety management of perishable food has been 
extended from production to disposal [4]. IoT technologies like 
RFID sensor tags and GPS have already started to be used for 
freshness management purposes in food supply chains. For 
example, monitoring food quality using the real-time sensor and 
traceability data can support various operational logistic 
decision makings. Even in the logistics and transportation 
industry, IoT technologies are used, to keep pace with the 
international awareness on climate change and environmental 
issues, in order to fulfill the requirements of “green,” “low 
carbon,” and “energy saving” logistics. IoT-generated data on 
fuel consumption, carbon emissions, and engine idling can be 
collected and analyzed in real time in order to plan logistics that 
minimizes carbon emissions. 

IoT-generated data, such as RFID and sensor data, is not only 
constantly generated in real time as the supply chain and the 
manufacturing processes continue, but also provided in a 
variety of data formats. In addition, if several billion tags and 
sensors were connected through the Internet, an unprecedented 
number of transactions and amounts of data would be generated 
[5], [6]. An automotive manufacturing traceability system, for 
instance, has to store hundreds of Giga byte data only for 
handling 30 components of a single vehicle production line as 
illustrated in Section IV. A single automobile is composed of 
around 25,000 parts and the average production cycle time is 
one minute, meaning that a fully-implemented futuristic IoT-
based manufacturing environment, where RFID tags are 
attached to most of the parts and logistics units, will easily 
overwhelm the traditional database systems. Furthermore, the 
databases will be quickly flooded with not only RFID-tracking 
information but also sensor data such as temperature, humidity, 
vibration, pressure, and images collected every other few 
seconds. In this sense, the IoT-generated data in a supply chain 
are definitely “big data”, satisfying the sufficient conditions in 
terms of volume, velocity, and variety of data. 

However, we have many limitations on processing large 
amounts of unstructured data, such as IoT-generated big data, 
using existing relational database (RDB) technologies [7]-[9]. 
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For example, existing technologies use a “scale-up” system 
expansion scheme, which replaces existing equipment with 
higher-performance equipment when the performance degrades 
due to a significant increase in the amount of data. This 
approach is, however, not viable because this requires repeating 
equipment investments, especially in handling the fast-growing 
big data. To overcome this drawback, Not Only SQL (NoSQL) 
database technologies, such as HBase, MongoDB, Cassandra, 
and CouchDB, have been developed. NoSQL technologies can 
store unstructured data because of their easy data schema-
modification capability, and require lower server expansion 
cost than relational databases because of their “scale-out” 
scheme compared to the “scale-up” scheme of RDB’s. Besides, 
NoSQL database systems can process massive input and output 
data efficiently by virtue of the distributed storage and 
processing approach over the multiple data nodes. 

In this study, we propose a sensor-integrated RFID data 
repository-implementation model that can integrate and store a 
large amount of IoT-generated RFID/sensor data collected from 
supply chain processes, and can quickly process and query them. 
To achieve this goal, firstly we design a MongoDB-based 
RFID/sensor data repository that can integrate and store RFID 
and sensor data by referencing event types of Electronic 
Product Code Information Services (EPCIS) [10] in the 
EPCglobal network, which is a de-facto standard for RFID 
information exchange. Secondly, we suggest an effective shard 
key. A shard is a horizontal partition of data in a database, or 
the database server in which the partition is located. A shard 
key is a set of fields to which the partitioning is carried out with 
respect. Therefore cautious selection of a shard key is a critical 
decision in maximizing query speed and uniform data 
distribution over data servers. A combination of fields among 
RFID/sensor event-data fields as a shard key is selected based 
on intensive experiments as well as suggestions in literature. 
Lastly, we verify our suggestions based on simulated data. We 
generate a huge amount of RFID/sensor event data using a 
simulation model on a virtual automotive-parts supply chain for 
our experiments, which verify the sharding performance of the 
proposed RFID/sensor data repository in terms of the amount 
of data, the number of clients, and the number of distributed 
servers. 

II. BACKGROUND 

A. NoSQL 
The term ‘NoSQL’ collectively refers to the database 

technologies which do not abide by the strict data model of 
relational databases. By sacrificing some of the properties (such 
as ACID transactional properties) of relational database model, 
NoSQL databases can achieve higher availability and 
scalability, which are essential requirements for big data 
processing. Unlike relational databases NoSQL databases do 
not need to have a fixed schema with pre-defined data structures 
and constraints to be finalized in an early stage of database 
design. In addition, “shared nothing” architecture of NoSQL 
allows horizontal scaling – replicating and partitioning data 
over many nodes, consequently achieving stable and fast 

read/write operations of massive data [11], [12].  
Strauch et al. [11] classified NoSQL databases into three 

types – key-value stores, document databases, and column-
oriented databases depending on their data models. In a key-
value store, all the data instances are stored in the form of key-
value pair. Document databases are based on the same key 

-value structure as key-value stores, but the values are in the 
form of a more complex data structures called “documents” 
such as XML documents. Unlike the key-value stores, 
document databases generally support secondary indexes and 
multiple-type/nested documents in a database. Column-
oriented databases store data tables as sections of columns of 
data, rather than as rows of data. This type of database is 
efficient when the majority of the database operations are of 
OLAP, which requires intensive column-oriented calculations 
like aggregation. Unlike row-oriented databases, column-
oriented databases can easily add and delete columns. Table I 
shows representative NoSQL database solutions of each type. 

Leavitt [13] pointed out that NoSQL databases will not 
replace relational databases, which are more mature and already 
widely installed, in the near future. However, for some specific 
purposes such as handling unstructured massive data even 
requiring a high level of scalability, NoSQL databases will be a 
better choice. Today we have a wide variety of NoSQL database 
products (of different types as mentioned above) on the market, 
which are built to fit specific purposes. Therefore, NoSQL 
databases will have their own niches, which are even expanding 
rapidly according to growing needs for big data processing in 
various fields. In the near future, NoSQL proponents and 
vendors will focus on developing better application 
compatibility and management tools. As a result, the adoption 
of NoSQL databases will be expedited. As reported in [14], five 
NoSQL products are already included in the top providers of 
operational database management systems in a Gartner’s Magic 
Quadrant report, and MongoDB is the most popular one of them. 

Veen et al. [7] compared the read/write performance of an 
SQL database (PostgreSQL) with NoSQL database (Cassandra 
and MongoDB) for the sensor data-storage purpose, and 
concluded that Cassandra is a good choice for relatively bigger 
sensor data, while MongoDB is for smaller sensor data with 
higher priority to the writing performance. Li et al. [15] 
proposed a MongoDB-based data storage architecture with a 
preprocessing mechanism for raw-data classification, and 
defined a query language working for this architecture. Jiang et 
al. [16] suggested an IoT-based data repository framework for 
combining HDFS, MySQL, and MongoDB together. 

 

TABLE I 
CLASSIFICATION OF NOSQL DATABASES [12] 

Key-value stores Document databases Column-oriented 
databases 

Voldemort, 
Riak, 
Redis, 
Scalaris, 
Tokyo Cabinet 

SimpleDB, 
CouchDB, 
MongoDB, 
Terrastore 

BigTable, 
HBase, 
HyperTable, 
Cassandra 

 



 

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 3 

B. MongoDB 
MongoDB, developed by 10gen, is a document-oriented 

NoSQL database that offers high performance and scalability. 
Unlike other NoSQL databases, its data structure is designed 
independently as a document unit so that a schema definition is 
not needed. Moreover, MongoDB uses a scale-out scheme, 
which is flexible against hardware expansion, and supports 
auto-sharding. Thus, the automatic distribution of data over a 
number of servers can be conveniently carried out [17]-[20]. 
Fig. 1 shows the configuration of horizontal data partitioning, 
called sharding, and replica sets to ensure high availability, 
safety, and data consistency. They also enable distributed 
expansion for data processing involving large amounts of data. 
The functions of the MongoDB components are as follows. 
  mongod: This is the primary daemon process for the 

MongoDB system. It handles data requests, manages data 
access, and performs background management operations. 
  mongos: This is a routing service for MongoDB shard 

configurations that processes queries from the application 
layer and determines the location of these data in the shared 
cluster. 
  replica sets: This is a group of mongod processes that 

maintain the same dataset. If the primary mongod is 
unavailable, the replica set will elect a new primary mongod. 
  shard: This stores data. For easy availability and data 

consistency, each shard is a replica set. 
  config server: This server stores the cluster’s metadata. These 

data contain a mapping of the cluster’s dataset to the shards. 
Even distribution of data among shards is controlled by a 

shard key. A shard key is either a single indexed field or an 
indexed compound field that exists in every document. 
MongoDB divides the input data into chunks, logical units of 
stored data, according to the shard key by using either range-
based partitioning or hash-based partitioning. Once the shard 
key is set up, it cannot be modified. Hence, appropriate shard 
key selection is a very important decision factor in the 
MongoDB design.  

There have been various research on the performance of 
MongoDB. Nyati et al. [21] compared the insertion/searching 
performance of MongoDB to MySQL in a single machine, 
showing that MongoDB outperformed MySQL. Kanade et al. 
[22] carried out an experimental comparative study between 

embedding and referencing design patterns, showing that the 
embedding pattern performs better in terms of query response 
time. Liu et al. [23] proposed an algorithm to solve irregular 
distribution of data among distributed storages, and 
demonstrated that the proposed approach can improve the 
throughput   t and read/write response time of the existing 
automatic data distribution. 

C. EPC Information Services (EPCIS) 
EPCIS is an RFID event repository, which is one of the core 

components of the EPCglobal Architecture Framework [10]. It 
helps store RFID event information and share the information 
among supply chain partners. Electronic Product Code (EPC) 
refers to a coding scheme for unambiguous code for the 
designation of physical goods [24]. It can assign codes, 
according to an appropriate coding scheme such as Serialized 
Global Trade Item Number (SGTIN), a Shipment Container 
Code (SSCC), and a Global Returnable Asset Identifier (GRAI), 
to objects depending on the purposes. The EPCIS solutions 
should provide predefined vendor-independent capture/query 
interfaces to receive/supply RFID event data, although the 
vendors can freely implement the services by their own ways. 
Fig. 2 shows a summary of event types and fields of EPCIS 
event data. The schema of a MongoDB-based RFID/sensor data 
repository, extended from these event types, is described in 
Section III.  

Le et al. [25] proposed a Cassandra-based column-family 
style EPCIS repository, and showed that it outperforms 
MySQL-based implementation in terms of response time, 
throughput, and flexibility. Li et al. [26] implemented an EPC 
discovery service (DS), which is one of the core information 
services along with EPCIS, using HBase. The proposed DS 
successfully provides even nested traceability information 
using a recursive discovery algorithm. Gomes [27] proposed an 
IoT infrastructure with an EPCIS module, which is based on 
NoSQL repository and works in a cloud virtual machine 
environment. Byun and Kim [28] implemented a MongoDB-
based EPCIS architecture, and compare the query response time 
performance with Fosstrack EPCIS (a highly referenced open 
source EPCIS implementation) and Cassandra-based EPCIS, 
and demonstrated it performs better. However, they did not 
address an optimal design of MongoDB schema, and the 
proposed architecture does not completely conform to the 
EPCIS standard. 

 
Fig. 1. MongoDB sharding architecture (edited from [18]). 
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Fig. 2. Four event types of EPCIS (edited from [29]). 
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III. MONGODB-BASED RFID/SENSOR DATA 
REPOSITORY 

In this section, we describe the design of our RFID/sensor 
data repository in consideration of the MongoDB design pattern 
as well as the process for selecting an optimal shard key. With 
reference to the database schema of a well-known open-source 
EPCIS, we propose a MongoDB schema, which combines 
RFID and sensor data. Furthermore, we select an optimal 
compound shard key according to the theoretical guidelines 
suggested in previous literature. 

A. Relational Database Schema for EPCIS Event Types  
Fosstrak [30], which is an open-source RFID software 

platform project, provides an EPCIS implementation based on 
MySQL, which is one of the popular relational database 
systems. Fig. 3 shows the ObjectEvent schema of the 
Fosstrak EPCIS. Since EPCIS event fields may have multiple 
values, such as epcList, childEPCs, 
bizTransactionList, and extensions, a field table 
with multiple values and event tables are normalized with one-
to-many or many-to-many relationships to overcome 
addition/deletion/update anomalies. The 
AggregationEvent, TransactionEvent, and 
QuantityEvent are also designed in the same manner. 

According to the EPCIS standard, every event has an 
extension point, to which additional data members can be 
attached. Therefore, we can easily store additional information 
from the various IoT data sources, such as sensors, GPS’s, and 
other intelligent devices.  

 

B. MongoDB for EPCIS Implementation  
As explained in Section III.A, EPCIS events are represented by 

structured data types, which have even one-to-many or many-
to-many relationships among them. That means we cannot use 
simple key-value stores for the purposed of RFID/sensor data 
repository. On the other hand, RFID/sensor data repository are 
used mainly for event tracking or search queries rather than any 
type of column-wise aggregation operations as in OLAP, 
meaning that column-oriented databases are not preferable to 
document databases either. In these senses, the document 
database is right choice for representing RFID/sensor data 
repository. Furthermore, the queries between EPCIS and 
accessing applications are all in the form of XML messages so 
that data transformation processes are unnecessary. Among 
document databases, MongoDB is the most popular NoSQL 
database according to [31]. 

C. Design of MongoDB-based RFID/sensor data repository  
The design patterns of the MongoDB data model fall into two 
categories: embedding and referencing, as shown in Fig. 4. 
Embedding is a scheme in which other documents related to a 
given document are embedded as a sub-document, whereas 
referencing is a scheme where related documents are separated 
into other collections (such as tables in RDBs). In the 
referencing scheme, a specific field in the referencing collection 
is to be set as a link to the referenced collection, as a foreign 
key does in RDBs [19], [20].  

As an EPCIS event consists of logically-related entities (such 
as bizTransactionList and extension) which have one-
to-many or many-to-many relationships, we need to decide 
whether to include the entities in an event collection (i.e., 
embedding) or to separate them physically into other 
collections (i.e., referencing). The decision is basically a matter 
of which is more important between data integrity (plus storage 
saving) and query performance. In this study, we propose an 
embedding scheme-based RFID/sensor data repository because 
RFID/sensor data are basically raw data that, once stored, is 
rarely modified. This means that the data have no possibility of 
modification/deletion anomalies and therefore, no need to 
perform normalization. Moreover, as 
bizTransactionList and extension entities are optional 
members of each event, which is a weak relationship, there is 
no reason to separate them physically into additional collections. 
In addition, the embedding scheme, which does not carry out 
normalization, is appropriate for a large RFID/sensor data 
repository, which requires faster read and write performance. 
Fig. 5 shows the embedding scheme-based design of the 
proposed RFID/sensor data repository. The eventType field 
was added to distinguish four different event types. The entities 
who has multiple values like epcList and childEPCs are 
defined as array-type members, while 
bizTransactionList and extensions are embedded 
as subdocument-type members.  

 
Fig. 3. ObjectEvent schema of Fosstrak EPCIS (revised from [30]) 
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Fig. 4. Embedding vs. referencing  

 
Fig. 5. MongoDB-based RFID/sensor data repository schema.  
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As explained in Section III.A, every EPCIS event can add 
extension fields, called “extensions.” This member has 
mandatory fields - fieldName, prefix, and values. As 
shown in Fig. 6, sensor data and GPS data can be added to an 
RFID event with the corresponding sensor type, prefix of name 
space, and sensor value. 

Fig. 7 shows a document stored in the proposed MongoDB-
based RFID/sensor data repository in XML format. This 
document is the basic unit of data, in which an EPCIS receives 
and supplies RFID/sensor events through capture and query 
interfaces respectively. 

D. Selection of Shard Key   
A shard key should be determined to divide input data into 

chunks effectively, and to distribute data through the shard 

evenly. An ideal shard key is a compound key of two fields, in 
which the first should have a moderately coarse-grained 
cardinality and the other should be a more fine-grained field 
with higher cardinality [17], [19]. Once selected as a shard key, 
the field is to be indexed too. Thus, the choice of a field as a 
shard key should also involve considering whether it is 
frequently used in queries as criteria. 

Two fields - eventType and readPoint - are the only 
ones with finite cardinality among MongoDB-based 
RFID/sensor event member fields. The readPoint field is 
appropriate as the first part of the compound shard key, in the 
sense that each readPoint, which represents a point where 
an object is recognized, is identified by a unique ID. Once a 
logistic process in business is defined, all the objects will pass 
through almost the same (finite) set of readPoints. Note that 
readPoint is optional in theEPCIS event schema. In order to 
use readPoint as a shard key, implementers should define 
readPoint as a Non-Null field having a finite set of values 
in developing RFID/sensor systems. 

On the other hand, the eventType field neither has 
appropriately grained cardinality (it has only four as shown in 
Fig. 2) nor is frequently used in queries compared to 
readPoint. Actually, the most commonly used criteria in 
queries are of what (epc), when (eventTime), and where 
(readPoint). As the second part of the compound shard key, 
a high-cardinality field is desirable. Two candidates are 
eventTime, which records event time, and epcList, which 
represents the ID of an object. The eventTime field is 
characterized by an increasing value whenever an event occurs, 
while the epcList field assigns a new ID whenever a new 
object appears. Thus, both of them can be viewed as high-
cardinality and fine-grained key. However, due to the 
MongoDB characteristics that an array-type field cannot be a 
shard key, epcList cannot be considered as a shard key. 
Hence, eventTime should be selected as the second part of 
the compound shard key. 

It is true that even if eventTime, which is a high-
cardinality and fine-grained key, is chosen as a single shard key, 
data can be evenly split into shards. However, in this case, 
RFID/sensor data currently being generated will be headed to a 
specific server in a row, causing congestions. Another problem 
can occur when readPoint, which has a moderate level of 
cardinality, is adopted as a single shard key, such that it cannot 
guarantee uniform data distribution and chunk split upon 
continuous data accumulation. Such a situation can occur when 
the cardinality of reappoint is too low compared to the number 
of events generated. As shown in Fig. 8, if the number of 
possible values of readPoint is five, only five chunks can be 
formed, and no more splits occur even if a large amount of event 
data is accumulated as time goes. 

Consequently, in this study, we adopt the compound shard 
key {readPoint, eventTime} as the optimal shard key. As 
shown in Fig. 9, a chunk is created per readPoint. Once the 
number of objects in a single chunk increases, a chunk can be 
split further according to eventTime, hence ensuring uniform 

 
Fig. 6. Example of extensions containing sensor data. 

 
Fig. 7. Example of XML format for RFID/sensor event. 



 

1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JSEN.2015.2483499, IEEE Sensors Journal

Sensors-12398-2015 8 

distribution of data. Moreover, as both the readPoint and 
eventTime fields are core keys for object and environment 
tracking, they help improve the query performance in addition 

to the benefits of uniform distribution of data. In Section IV, we 
verify the appropriateness of our shard key selection and the 
scalability of a MongoDB-based RFID/sensor data repository 
through experiments. 

 
Fig. 8. Chunks that cannot be split. 

 
Fig. 9. Well-split chunks by shard key as readPoint and eventTime. 
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IV. EXPERIMENTAL EVALUATION  
In order to validate our proposed design, we carried out a 

series of experiments using sample data set, which was 
generated based on a realistic supply chain model as 
summarized in Table II. The first experiment compares data 
distribution levels and query performance of different shard key 
choices in order to validate our choice of shard key. The second 
experiment compares query performance of MongoDB-based 
repository with MySQL-based repository on a single machine 
in order to check if our choice of database (i.e., NoSQL) 
outperforms a representative relational database (like MySQL). 
The last experiment checks whether an increase in the number 
of MongoDB shards improves query performance.  
 

A. Supply Chain Scenario   
To generate a large volume of RFID/sensor data, we assume 

an automotive supply chain comprising three module 
manufacturers along with nine part suppliers. Three module 
manufacturers produce chassis modules, cockpit modules, and 
front-end modules respectively. In general, chassis module, 
cockpit module, and front-end module consist of about 100, 130, 
and 30 components (or parts) respectively. We assumed only a 
small portion of important parts is traced using RFID/sensor 
tags. They are suspension, power steering, and brake for the 

chassis module; instrument panels, cowl crossbars, and 
ventilation systems for the cockpit module; and headlamps, 
radiator assemblies, and front bumper beams for the cockpit 
module. We also assume that the detailed internal logistic 
processes of each part supplier are divided into two types - 
molding type and assembly type, as shown in Fig. 10, and 
simulation parameters such as production rate, processing time, 
and transportation time are identical for convenience. In 
addition, the temperature data in all the processes and the GPS 
data during the transportation stage are assumed to be produced 
in 10-second intervals. According to the defined process model 
and parameters, around 100 million events were generated over 
two simulation months, which require about 200 GB of 
MongoDB storage.  

TABLE II 
EXPERIMENTS 

No Test Name Metrics Comparison Targets 

1 Shard key test distribution 
level 

different shard-key choices 

  response 
time 

two compound shard-key choices 

2 MongoDB vs. MySQL 
performance test 

response 
time 

MongoDB-based repository vs. 
MySQL-based repository  

3 Sharding performance 
test 

response 
time 

MongoDB-based repositories  
with different no. of shards 

 

 
Fig. 10. Supply chain process model. 
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B. Test Environment  
To generate the simulation data, we set up a cluster of three 

server machines with same specifications, as shown in Fig. 11. 
Three servers are configured as shards for storing data, and one 
server is used as a mongos and config server. Client programs 
for storing and querying data are situated in the same network 
with mongos, and the tests were conducted in a wired network 
connection.  

C. Shard Key Test  
This test aims to validate whether the compound shard key 

{eventType, eventTime} proposed in Section III.D 
guarantees an even distribution of data and better query 
performance. In addition, a comparison between a single shard 
key and a compound shard key in terms of evenness of data 
distribution was made. Table III summarizes the candidates for 
shard key to compare.  
1) Distribution Level Test 

 According to the process defined in Section IV.A, 10 million 
events were stored in the RFID/sensor data repository 

configured as shown in Fig. 11. Table IV, which summarizes 
the results, indicates that chunk split did not occur sufficiently 
in the case of single shard keys {readPoint} and 
{eventType}, as predicted in Section III.D. The reason is that 
a few chunks were created as the cardinality of each shard key, 
and the chunks were stacked with the event data without 
splitting. On the other hand, in the cases of the single shard key 
{eventTime}, compound shard key {readPoint, 
eventTime}, and compound shard key {eventType, 
eventTime}, the chunks were all sufficiently well split. 
However, as mentioned in Section III.D, the single shard key 
{eventTime} has a disadvantage in that data input is 
concentrated in a shard, even though even distribution can be 
achieved. 

 
2) Query Performance Test  

 In order to evaluate the query response time of the 
compound shard key {readPoint, eventTime} 
suggested in Section III.D, we compared the response time of 
the two databases, which were generated via two candidate 
compound shard keys shown in Table IV. The queries used in 
this test are fundamental queries, which are frequently used for 
object history tracking in a supply chain (see Table V). Other 
possible queries such as ‘quantity shipped’ and ‘dwell time’ 
queries can be derived from these fundamental queries, 
meaning that the performance of them are deeply dependent on 
that of fundamental queries. Hence, we restrict the experiments 
to the fundamental queries. Furthermore, the fields used in the 
query (i.e., parentID, epcList, readPoint, and 
eventType) were set as index keys. 

 
Fig. 11. Configurations for simulation test. 

TABLE III 
CANDIDATES FOR SHARD KEY 

No. Types Shard Key 

1 single {readPoint} 

2 single {eventType} 

3 single {eventTime} 

4 compound {readPoint, eventTime} 

5 compound {eventType, eventTime} 

 

TABLE IV 
RESULT OF SHARD KEY TEST 

 the number of objects the number of chunks 

Shard Key Shard #1 shard #2 shard #3 shard #1 shard #2 shard #3 

{readPoint} 8,717,756 623,206 566,256 3 2 2 

{eventType} 6 9,836,806 70,406 1 1 1 

{eventTime} 2,518,689 4,830,775 2,586,389 61 71 61 

{readPoint, eventTime} 2,777,360 4,376,540 2,763,953 156 158 155 

{eventType, eventTime} 3,454,937 3,892,420 2,559,867 115 122 116 
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TABLE V 
TEST QUERIES 

Query Description Query parameters Query Statement 

Q1 Query for event that occurred in a 
specific period and  a specific place 

readPoint, 
eventTime 

db.collection.find({ 

readPoint: "readPoint x", 

eventTime:{  

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"), 
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’") 

}); 

Q2 Query for event related to a target 
product during a specific period 

eventTime, 
epcList 

db.collection.find({ 

epcList: "epc x", 

eventTime:{  

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"), 
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’") 

}); 

Q3 Query for object ID contained in a 
specific case at specific time 

eventType, 
eventTime, 
parentID 

db.collection.find({ 

parentID: "epc x", 

eventType: “AggreationEvent”, 

eventTime:{  

$gte:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’"), 
$lt:ISODate("yyyy-MM-dd’T’HH:mm:ss’Z’") 

}); 
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Using the simulation model, we generated 100 million 
objects and compared the response time of two compound shard 
key cases. Every time the number of stored objects reaches a 
multiple of 20 million, 10 clients access mongos simultaneously 
and query Q1, Q2, and Q3 30 times each; then, the average 
response times were recorded. Fig. 12 shows the test results. 
For Q1, as the number of data increases, the response time of 
the database with the compound shard key {readPoint, 
eventTime} got remarkably faster than the database with the 
other compound shard key {eventType, eventTime} 
while they show similar performance for Q2 and Q3. 

These two shard key tests confirm that the compound shard 

key {readPoint, eventTime} proposed in this paper 
guarantees evenly distributed data and is advantageous in query 
performance. 

 

D. MongoDB vs. MySQL Performance Test  
This test simply compares the suggested MongoDB-based 

RFID/sensor data repository with MySQL-based RFID/Sensor 
data repository (as a representative relational database). 
MySQL-based repository complies with Fosstrak EPCIS data 
schema descripted in Section III.A. For this test, we configured 
a Mongo-DB based repository which has one shard, and a 
MySQL-based repository on a single machine. In common with 
the query performance test in Section IV.C, we used three 
queries (Q1, Q2 and Q3), and measured the response time in the 
same way. For a fair comparison, the fields used in the query 
(i.e., readPoint, eventTime, epcList, and parentID) 
were all indexed in both MongoDB and MySQL. 

The test result is shown in Fig. 13. For Q1 and Q2, MongoDB 
outperforms MySQL. For Q1 in particular, MongoDB 
demonstrates a very stable and low response time constantly. 
On the other hand, for Q3, MySQL is about twice faster than 
MongoDB. Because Q1 and Q2 are more frequently used 
queries than Q3 in real practice, MongoDB-based RFID/Sensor 
data repository will be a better choice even if only the query 
performance is taken into account. Moreover, if a MongoDB-
based repository utilizes multiple shards (unlike this 
experiment), it will demonstrate higher performance as shown 
in the following section. 

E. Sharding Performance Test  
The objective of this test is to confirm whether an increase in 

the number of shards improves query performance. To this end, 
this test compared the response time per shard composition (one 
shard, two shards, and three shards) according to an increase in 
(1) the size of data volume (we call it volume test) and (2) the 
number of clients (we call it throughput test). The shard key was 
set to {readPoint, eventTime}, and the fields used in the query 
were also all indexed. 

 
Fig. 12. Result of query performance test (between two compound shard keys).  

            

 
Fig. 13. Result of MongoDB vs. MySQL performance test.  
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1) Volume Test  
 We generated 100 million objects using the simulation 

model, and recorded the average response time among each 
cluster which configured with one, two, and three shards. Fig. 
14 shows the test results. For Q1 and Q3, the number of shards 
had practically no effect on the response time. Further, there 
was practically no effect on the search speed owing to the fact 
that readPoint and parentID were indexed and the value 
they can take is significantly smaller than epcList. On the 
other hand, with respect to Q2, the case of three shards shows a 
response that is around 214 ms faster in the early stages and 
around 7,059 ms faster in the later stages, as compared to the 
case of two shards. In addition, the case of three shards shows 
a response time that is around 5,600 ms faster in the early stages 
and around 21,000 ms faster in the later stages, as compared to 
the case of one shard. Therefore, an increase in the number of 
shards is confirmed to improve query speed.   

2)  Throughput Test  
 This test compares the response time by shard configuration 

according to the increase in the number of clients. In this test, 
the average response times for Q1, Q2, and Q3 were recorded 
by fixing the data storage volume at 100 million events and 
changing the number of simultaneously querying clients to 1, 5, 
10, 15, and 20. Fig. 15, which summarizes the test results, 
shows that as the number of querying clients increases, clusters 
with more shards show better performance. Particularly, in the 
case of Q2, when the number of simultaneously querying 
clients is 20, the case of three shards shows a response time that 
is 20,000 ms faster, as compared to that of two shards, and 
45,000 ms faster, as compared to that of one shard.  

From the above two tests, it is confirmed that a large 
improvement in performance can be realized with an increase 
in the number of shards when a field having various values, i.e., 
a field having a large search space, is queried to search for 
documents stored in the database and when the number of 
simultaneously querying clients is large.  

V. CONCLUSION 
RFID and sensor technologies are undoubtedly the core 

technologies of future IoT. Many researchers [32-35] have 
studied various research issues on integrating RFID and sensor 
technologies. At present, efforts are being made to integrate 
these two technologies on the same IoT platform in different 
fields. Unlike conventional studies that provide IoT platforms 
at the architecture level only, this study proposed an 
implementation model of an RFID/sensor data repository on 
the basis of MongoDB.  Furthermore, based on logistic process 
simulation of automotive parts, the proposed RFID/sensor data 
repository was empirically validated in terms of even 
distribution of data and query speed. 

Our study is based on a typical manufacturing supply chain 
scenario. Although it is quite representative, there are still 
exceptional situations, in which the proposed design would not 
work effectively. For example, if a specific type of event other 
than ObjectEvent such as AggregationEvent, which 
holds boxing and de-boxing information, is intensively queried, 
we may have to reconsider our choice of the shard key. In 
addition, we consider the query response time as the only 
performance metric. However, there are some possibilities that 

 

 
Fig. 14. Result of volume test. 

 

 

 
Fig. 15. Result of throughput test. 
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growing data might lower the writing speed, due to the nature 
of the embedding model.  

Therefore, we need to investigate the optimal design of 
MongDB based EPCIS implementation, which can work for 
other non-trivial query requirements in the future. In addition, 
it is necessary to make a further comparative study amongst 
document-based NoSQL database alternatives (not only 
MongoDB) from the viewpoint of RFID/Sensor big data 
processing. Our ultimate goal of this research trail is to propose 
a performance model of the MongoDB-based RFID/sensor data 
repository, which can support the shard-extension planning. 
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