
Performance Evaluation of Energy Saving MAC
Protocols in WSN Operating Systems

Mike Ojo, Davide Adami and Stefano Giordano
Department of Information Engineering

University of Pisa
Via Girolamo Caruso 16 - 56122 Pisa, Italy

mike.ojo@ing.unipi.it; (d.adami; s.giordano)@iet.unipi.it

Abstract—Sensing, computing and communication are the
main features of a wireless sensor network (WSN) which serves a
wide range of applications. Despite its versatility and simplicity,
it brought up various challenges such as limited storage, power
consumption from radio activities, just to mention a few. The dis-
tinguishing traits of sensor networks have a direct impact on their
protocol design at each layer, especially at the Medium Access
Control (MAC) layer since it manages transmission scheduling as
well as duty cycling for energy conservation. To maximize energy
efficiency of WSNs, a critical analysis of the radio duty cycle of
the WSN operating systems were carried out with experimental
evaluation. Moreover, we focus on the energy consumption by
conducting experimental measurements on different platforms
i.e. OpenMote-CC2538 on various operating systems. Results
shows that IEEE 802.15.4e Time Synchronized Channel Hopping
(TSCH) has great impact on the energy consumption with respect
to other radio duty cycles.

Index Terms—Wireless Sensor Networks; Radio Duty Cycle;
Operating Systems; Energy Consumption; Sensor Node; TSCH

I. INTRODUCTION

Over the last decade, there have been tremendous advances
in Micro-Electro Mechanical Systems (MEMS) based technol-
ogy which has led to the rise and development of small shaped,
low cost, low power, wide spread distributed multifunctional
devices. These devices are called sensor nodes with wireless
communication capabilities that interact together to form a
network called Wireless sensor networks (WSN). WSN are
composed of small nodes with sensing, data processing and
communication components [1]. It also enables interaction be-
tween persons or computers and the surrounding environment
which can be used for different types of applications [2]. This
has made WSN to be popular, demanding and indispensable in
different industrial sectors. Moreover, since most sensor nodes
are battery powered, limited battery capacity can constrain the
overall lifetime of the wireless sensor network.

Energy efficiency in wireless sensor networks is a big
challenge and has drawn significant attention to both academic
and industrial areas over the past years as technology solutions
nowadays do not require frequent replacement of batteries.
Also, the replacement of embedded batteries can be a difficult
process once the nodes have been installed due to large
network size and also deployment to hazardous environment.
Hence, it is very necessary to estimate and determine the
energy consumption of a wireless mote before deployment.

In addition to that, sensor nodes need to optimize their energy
usage for network lifetime.

Several efforts in the literature have addressed energy effi-
ciency in sensor networks, through the design of radio duty cy-
cle (RDC) mechanism which schedules the data transmission,
data reception and inactive sleeping periods at regular interval.
The node’s duty cycle is a function of the MAC layer and
has a significant factor in reducing the energy consumption
in wireless sensor networks. We investigate into the RDC
protocols of Contiki [3], RIOT [4], OpenWSN [5] operating
systems (OS) which are perhaps the most recent and well
known systems in the sensor network research community.

The rest of this paper is organized as follows. Section II
discusses the network stack of the WSN operating system used
in our experimental evaluation. Section III describes the radio
duty cycle used in the WSN OS above and it also captures their
comparison illustrating their advantages and disadvantages.
Energy consumption of a mote by using different operating
systems were derived in section IV. Section IV also describes
the results and the comparison and finally we conclude this
paper in Section V along with the discussion of the future
work.

II. OPERATING SYSTEMS

We take a look at the network stack of OpenWSN, Riot and
Contiki Operating system

A. Contiki OS Network Stack

Contiki is an open source, highly portable, multi-tasking
operating system for memory-efficient networked embedded
systems and wireless sensor networks. Contiki OS network
stack is shown in Fig 1a. At the lower layer of the stack
comprises of the Physical layer and the MAC layer. Tradi-
tionally, duty cycling mechanisms are built into the MAC
layer of the operating systems networking stack. Contiki,
however, employs duty cycling tactics in a separate level of the
networking stack known as the RDC layer. Currently, Contiki
provides various RDC protocols that follow the asynchronous
paradigm, which relies heavily on low-power probing and low-
power listening (LPL) such as ContikiMAC [6], X-MAC [7]
etc.

The default Contiki MAC layer is a CSMA/CA mechanism
that places outgoing packets on a queue. Packets from the

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



(a) Contiki OS (b) OpenWSN OS (c) RIOT OS

Fig. 1: Network Stack of Contiki, OpenWSN and RIOT operating systems

queue are transmitted in order through the RDC layer. The
RDC layer in turn transmits the packets through the radio link
layer which are IEEE 802.15.4 compliant. The MAC layer will
retransmit packets until it sees a link layer acknowledgement
from the receiver. If a collision occurs, the MAC layer does a
linear back-off and retransmits the packet. Outgoing packets
have a configurable threshold for the maximum number of
transmissions. Outgoing IPv6 packets flow from the IPv6 layer
to the 6LoWPAN layer for header compression and frag-
mentation and moreover, the 6LoWPAN layer sends outgoing
packets to the MAC layer. ContikiRPL [8] implements the
RPL protocol, as specified in version 18 of the IETF RPL draft
[9]. The ContikiRPL implementation separates protocol logic,
message construction and parsing, and objective functions into
different modules. In addition, ContikiRPL does not make
forwarding decisions per packet, but sets up forwarding tables
for IPv6 layer and leaves the actual packet forwarding to IPv6.
Contiki uses CoAP which enables interoperability at the appli-
cation layer through RESTful Web services but with a lower
cost in terms of bandwidth and implementation complexity
than HTTPbased REST interfaces. Unlike HTTP over TCP,
CoAP uses UDP. This makes it possible to use CoAP in one-
to-many and many-to-one communication patterns.

B. OpenWSN Network Stack

OpenWSN project’s goal is to construct and provide a com-
plete protocol stack based on open-source implementations
of Internet of Things standards while being hardware inde-
pendent. OpenWSN uses IEEE 802.15.4e Time Synchronized
Channel Hopping (TSCH) as its Medium Access Control MAC
which is an amendment to the well-known and widely used
IEEE 802.15.4-2001 standard. The IEEE 802.15.4e standard
presents time-slotted channel hopping that achieves ultra-high
reliability through frequency agility; and low-power through
tight time synchronization. IEEE 802.15.4e TSCH is located
at the foundation of the protocol stack as shown in figure
1b. Synchronization accuracy directly relates to power con-
sumption, and can vary from microseconds to milliseconds,

depending on the hardware and implementation.
Due to the constraints of the IEEE 802.15.4e TSCH frames,

the IPv6 header does not fit, thus the use of a mechanism
to translate the addresses from IPv6 to something lighter is
mandatory. OpenWSN like most WSN OS uses the IETF
6LoWPAN for this purpose as shown in figure 1b. OpenWSN
implements a low-power border router (LBR), a device that sits
between the mesh and an Internet connection for the purpose
of a full IPv6 header which is required to support functionality
on the Internet. The LBR inflates 6LoWPAN headers to
normal IPv6 header on packets leaving the mesh and compacts
the IPv6 headers on incoming packets. Furthermore, it is
mandatory to use a protocol that will find the multi-hop path
connecting the nodes in the network with a small number of
destination nodes, this functionality is achieved with the use
of IETF RPL [9] protocol. Finally, on the upper layers we see
both TCP and UDP with HTTP and CoAP respectively, with
the CoAP over UDP being the most used combination due to
the constraint resources.

C. RIOT OS Network Stack

RIOT is a real-time, multithreading, open source operating
system aiming to ease development across a wide range of
IoT devices. It enables programmers to develop applications
on typical IoT devices, with no learning curve (assuming
prior experience with POSIX and Linux). It bridges the
gap between OSs for WSNs and traditional full-fledged OS
currently running on internet hosts.

RIOT OS Network Stack is shown in figure 1c. At the
bottom of the stack consists of IEEE 802.15.4 complaint radio
such as OpenMote-CC2538, Atmel SAM R21 etc. RIOT pro-
vides a TCP/IP network stack support for resource-constrained
devices using 6LoWPAN and RPL as well as full support for
IPv6, UDP, TCP and CoAP as shown in figure 1c. CoAP seeks
to apply the same application transfer paradigm and basic
features of HTTP to constrained networks, while maintaining a
simple design and low overhead. CoAP uses UDP as transport
protocol. This choice would enable CoAP to have a low

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



impact on the limited bandwidth of the 802.15.4 wireless links.
However, since UDP is an unreliable protocol, CoAP has to
implement its own mechanisms in order to guarantee reliability
to those applications that use it.

RIOT implements a microkernel architecture. In addition,
RIOT add native support for C/C++. Advantages of the
RIOT architecture this include: (i) high reliability and (ii) a
developer-friendly Application Program Interface (API). The
modular microkernel architecture of RIOT makes it robust
against bugs in single component.

III. RADIO DUTY CYCLE

Duty cycle is considered the most essential technique
among other energy conservation technique due to its
flexibility of implementation that does not require special
capabilities of sensor node platforms and are suitable for
any type of applications. Nodes turn their radios off for
most of the time and wake up periodically to check for
incoming packets. An efficient power-saving mechanism for
WSN nodes thus relies on finding the better-tradeoff between
minimizing the RDC while keeping networking efficiency at
the highest level. This is achieved by MAC/RDC protocols.
In this section we will investigate the RDC protocols in
OpenWSN, Contiki and RIOT operating systems.

A. RDC in CONTIKI

In this section, we take a look at the radio duty cycle used
in Contiki and we make a comparison between them using
experimental results. The RDC (Radio Duty Cycle) layer is
the most important layer of the stack in the Contiki OS. This is
because it is responsible for the period during which the nodes
are inactive and also responsible for the time that the packets
must be transmitted, as well as ensuring that the node will be
active when packet arrives. The main protocols at this layer
are: (1) ContikiMAC (2) X-MAC (3) Low Power Probing.

1) ContikiMAC: ContikiMAC is a RDC protocol that re-
peatedly transmits a full data packet until it is acknowledged
by the receiver. The frame destination field allows to reduce
overhearing: a node that is not the destination of the frame can
immediately go back to sleep. In the opposite case the receiver
acknowledges the correct reception of the frame. When an
ACK is received, the sender stops sending the data frame and
the transmission is successful. A transmission will fail if no
ACK is received after a duration equal to a wake-up interval. In
this case, it is the responsibility of the above layers to schedule
a retransmission. Broadcast transmissions are achieved in the
same way than unicast, except that no data-ACKs are expected.

2) X-MAC: The X-MAC is a RDP protocol older than
ContikiMAC and more energy intensive. It uses a preamble
to achieve timing synchronization and maximum throughput
for the data exchange. Moreover, X-MAC uses addressing and
structure of the frames of the 802.15.4 protocol which makes
it 802.15.4 compatible. X-MAC sends a stream of short-sized
preambles (strobes) to wake up receivers. Nodes turn off the
radio for most of the time to reduce idle listening. They wake

Fig. 2: Chart of ContikiMAC RDC

Fig. 3: Chart of X-MAC RDC

up shortly at regular intervals to listen for strobes. When a
receiving node wakes up and receives a strobe destined to it,
it replies with an acknowledgment indicating that it is awake.
After receiving the ACK, the sender transmits the data packet.

3) LPP: Low Power Probing (LPP) is a power-saving MAC
protocol where receivers periodically send small packets, so
called probes, to announce that they are awake and ready to
receive a data packet. After sending a probe, the receiver keeps
its radio on for a short time to listen for data packets. A node
willing to send a packet turns on its radio waiting for a probe
from a neighbor it wants to send to. On the reception of a probe
from a potential receiver, the node sends an acknowledgment
before the data packet.

4) Other RDC Protocols: There are other RDC protocols
for Contiki such as CX-MAC; NullRDC. CX-MAC is a RDC
protocol, based on X-MAC. The basic difference between CX-
MAC and X-MAC is that the former is not as strict as latter
in terms of timing, which makes CX-MAC appropriate for

Fig. 4: Chart of LPP RDC

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



Fig. 5: Duty cycle of IEEE 802.15.4eTSCH in OpenWSN

a broader set of radio platforms. NullRDC uses the Framer
functions for header creation/parsing. It does not save energy
and works as a pass-through layer that only transmits a
packet and returns the results of such transmission (success
or collision).

Experimental Results
In this experiment, we present some numerical results show-

ing the performance of the most famous RDCs of ContikiOS
namely ContikiMAC, X-MAC, LPP based on their duty cycle
as shown in figure 2,3,4 respectively. In the simulation, we
consider Zolertia Z1 board [10] as the hardware with a random
topology laid in a WSN network. We made use of 31 nodes
with node 1 (Z1−1) indicating as the server and the remaining
30 nodes (Z1−2...31) as clients. We made use of a firmware
based on IPv6 and RPL for UDP packet transmission with a
transmission interval of 1s. The duration of each simulation
was 10mins. The results shows that contikiMAC provides
the lowest RDC compared to X-MAC and LPP denoting a
drastically reduced energy consumption state.

From the simulation results, ContikiMACs average duty-
cycle is 8.73% while X-MAC provides an average duty-cycle
of 26.22%. This means we have a 17.49% reduction on duty-
cycle using ContikiMAC with a large impact on the energy
consumption of the nodes. Finally, the Low Power Probing
RDC achieved a duty-cycle of 28.35% which makes it the
least energy consumption oriented RDC.

B. RDC in OpenWSN
In OpenWSN, the IEEE 802.15.4e MAC makes RDC a part

of the standard. It defines three RDCs namely receiver-initiated
RIT (Receiver Initiated Transmission); a sender-initiated CSL
(Coordinated Sampled Listening); and a synchronous TSCH
(Time-Synchronized Channel Hopping). TSCH is mostly used
because of its special capabilities providing ultra-low power
and reliability.

Furthermore, we carried out an experiment in order to
calculate the duty-cycle of IEEE 802.15.4e TSCH in the Open-
WSN using the OpenMote microcontroller with OpenBase and
OpenBattery boards. In our experimental setup, we made use

9 OpenBattery boards (the maximum number of nodes that a
sink can handle) and one OpenBase board. The firmware used
was the out-of-the-box OpenWSN firmware and only RPL
messages were exchanged during the experiment as shown
using the oscilloscope in figure 5. This provided us with
an average duty cycle of 2.3% that gives a remarkable low
impact of energy consumption on WSN. A comparison with
ContikiMAC RDC shows that the sink node in ContikiMAC
has a duty-cycle of 99.63% while the sink node in OpenWSN
has 3.2%.

C. RDC in RIOT

In RIOT OS, there is no MAC/RDC layer implemented
on the network stack but the duty cycle mechanism is part
of the IEEE 802.15.4 MAC standard. However, it still lacks
high-performance MAC / RDC layer protocols. RIOT OS is
suitable for implementing high performance MAC / RDC
protocols, thanks to its real-time features (especially hardware
timers management).

IV. ENERGY CONSUMPTION MEASUREMENTS
AND RESULTS

There have been tremendous advancement in the
development of different areas in WSN but regrettably
the energy densities of the batteries did not follow the same
trend. In order to ensure the expected lifetime in a WSN, it
is important to properly define the work-flow of the nodes,
evaluating and measuring their energy consumption. Such
evaluation may provide feedback during application design
phase, consenting to improve the overall energy efficiency
[11]. The energy consumption profiling of a node is also
an important stage in the deployment of a WSN, since it
consents to properly configure the duty-cycle and the number
of transmissions as a function of the available energy. There
are several methods to estimate the energy consumption
of a WSN node, including theoretical estimation, direct
measurements and usage of simulation tools [12].

Theoretical estimation relies on the abstraction of the
network, including the surrounding environment [13]. It can
simplify the modeling procedure, but they cannot accurately
represent the inherent complexity of sensor networks. The
accuracy in providing a realistic model is limited in describing
the environment, moreover the trade/off between latency, cost
and portability essentially limits models to testing.

Direct measurements on the other hand offer the best
accuracy on energy consumption measurement estimation
and evaluation, and widely used. It is feasible and all the
functions are set correctly, also no inaccurate presumption is
made. Direct measurements can be carried out on hardware
using power meters, oscilloscope or specific instrumentation
under fixed conditions.

Usage of simulation tools such as AVOVRA etc. can
also be used to measure the energy consumption of a
WSN node. By using simulation tools, various scenarios of
the real environment can be modeled. In this section, we

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



V1 V2

Vcc

R1

Oscilloscope

Load

Fig. 6: Measurement Setup with an Oscilloscope

will demonstrate the power/energy consumption of a WSN
node with experimental evaluation focusing on the direct
measurement.

A. Experimental Setup

The measurement presented in this paper were done with an
OpenMote platform which includes a CC2520 radio module
and a cortex-M3 microcontroller. OpenMote-CC2538 [14]
board features 4LEDS with an operational voltage of the
platform to be 3.6V. Openmote platform consists of an Open-
Battery which provides power and basic sensing capabilities.
It is powered by a 2 AAA batteries, it also contains a three
sensors: a temperature/humidity sensor (SHT21), a 3-axis
accelerometer (ADXL346) and a light sensor (MAX44009).
A very common series insertion of a small resistance (10Ω)
is connected with the device to measure the consumed current
as shown in figure 6. An oscilloscope was used to measure
the current generating very accurate measurements that can be
used to visualize all the steps of data transmission. This setup
allows us to monitor the power consumption when different
components of the board are active, and its time dependence.
A key role in the reliability of such measurement is played by
the oscilloscope, the tolerance on the shunt resistor value, the
stability of the supply voltage, and the measurement rate, that
should be compatible with the analyzed phenomena.

Since embedded systems usually operate at constant supply
voltage, power consumption measurements can be carried out
indirectly, by measuring and monitoring the absorbed current.
Then, by measuring the voltage drop V2 − V1 across the
resistor, current I can be measured indirectly, using Ohms
law, as shown in the equation below. The power measured
is the multiplication of the absorbed current and the constant
voltage supply. Thus, the energy consumed for a specific time
duration, can be easily calculated as shown in applying the
following equation below.

I =
∆V

R1
=

V2 − V1

R1
(1)

E = P × t =
(
I × V ) × t (2)

Fig. 7: A tree topology using OpenMote-CC2538

TABLE I: States of TX/RX slots in IEEE 802.15.4eTSCH

Tx Rx
TxDataOffset RxDataOffset

TxDataPrepare RxDataPrepare
TxDataReady RXDataReady
TxDataDelay RxDataListen

TxData RxData
RxAckOffset TxAckOffset

RxAckPrepare TxAckPrepare
RxAckReady TxAckReady
RxAckListen TxAckDelay

RxAck TxAck
TxProc RxProc
Sleep Sleep

B. Results and Discussions

This section measures the power consumption of OpenMote
platform main modules in various operating systems. The main
objective of this section is to provide consolidated information
extracted from these measurements in useful and practical
manner to facilitate a modeling approach.

1) Energy Consumption in OpenWSN: Several measure-
ments are presented in order to highlight the energy con-
sumption of the examined board in different scenarios. At
first, we determine the power consumption using OpenWSN
operating system with OpenMote boards (both OpenBase and
OpenBattery) as shown in figure 8. We made use of a tree-
topology with 9 motes (open battery) and one OpenBase
boards acting as the sink (DAGRoot) shown in figure 7. The
power consumption of the 4 LEDs in OpenBase and and the
sensors in OpenBattery also have their effect on the overall
power consumption. Figure 8a shows an idle listening slot
in which the radios wake up to listen for transmission. Then
it sleeps back since there are no transmissions. In the active
slots with 10ms as the slot duration, the motes transmits RPL
messages to the sink and waits for an ACK packet from the
sink as shown in figure 8b. Figure 8c shows the open battery
motes receiving the RPL messages. The different states of the
10ms slot duration used are shown in table 1. The power
consumption measurements consider the following different
radio states :receive/listen, transmission under different trans-
mission power thresholds and idle state as presented in table
2. The TX and RX state measurements confirm the respective
upper and lower limits presented in the TI-CC2538 datasheet.
During packet transmission, the current consumes 22mA and
during reception, it consumes 21mA.

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



(a) idlelistening (b) tx (c) rx

Fig. 8: Current drawn of OpenMote-CC2538 running the OpenWSN protocol stack

2) Energy Consumption in Contiki: We measure the energy
consumption of the OpenMote with OpenBattery using Contiki
operating system. In this experiment we made use of a simple
UDP network topology with 9 clients and one sink. We made
use of the 6LoWPAN netstack combined with ContikiMAC
and CSMA. ContikiMAC is an asynchronous protocol and the
duty cycle of the sink must be around 100% because the sinks
radio is always on. Figure 9 shows when the motes sends
RPL messages to the sink. The Clear Channel Assessments
(CCAs) are shown in the figure is to determine if the channel
is ready and able to receive data, so that the transmitter may
start sending. When the motes is about to transmit a packet,
it performs a CCA in two consecutive slots. If the channel
is found to be idle in both these slots, the node goes ahead
with its transmission. Otherwise, the node attempts CCA again
after a random backoff, which it repeats a certain number of
times before reporting an access failure to the upper layer. The
results for the power consumption in the sink is 0.14572W
while the average power consumption on the normal motes is
0.10404W.

3) Energy Consumption in RIOT: We measured the energy
consumption of the sink using the Border Router. In this
experiment we measured the energy of a simple UDP network
topology with 9 clients and one sink. The measurement
showed that the radio of the sink is always on with a 100%
duty-cycle. The energy consumption of the RIOT Border
Router is 0.1534W while the average energy consumption of
the motes is 0.1092W.

The most energy efficient WSN operating system using the
OpenMote platform is OpenWSN because of IEEE 802.15.4e
TSCH implementation at its MAC layer as seen from the
experiment. The radio in both OpenBase and OpenBattery
is switched on only when it is necessary, which makes the
average RDC of OpenWSN to be 2.5% and translates to
0.0882W and 0.09252W in the idle listening state for both
OpenBase and OpenBattery respectively. Furthermore, the
power consumption in OpenWSN using OpenMote is low
as 0.10296W in the RX and 0.10584W in the TX. On the
other hand using Contiki with ContikiMAC yields an average
RDC with power consumption of 0.14572W for OpenBase and
0.10404W for OpenBattery. Moreover, the radio of the sink is

TABLE II: Average Power Consumption of the motes

OpenWSN OpenBase OpenBattery
IdleListen 0.0882W 0.09252W

Rx 0.1029W 0.1029W
Tx 0.10584W 0.10584W

Fig. 9: Current drawn of OpenMote-CC2538 running the Contiki OS
stack

always on while the rest of the nodes switched their radios on
only to transmit packets for a finite time. With RIOT OS on
OpenMote, the power consumption achieved in OpenBattery
is 0.1092W making it the least energy efficient among others
described.

V. CONCLUSION

We provided a critical analysis of the radio duty cycle of
each with experimental evaluation. The duty cycle can be
designed appropriately by inspecting the network topology and
settings nodes close to the sink node to have more activity.
The RDC have serious impact on the power consumption of
the WSN nodes. Moreover, since many factors influences the
energy consumption in wireless sensor networks, we presented
the design and implementation of an efficient measuring
setup based on a well-known WSN platform, able to provide
accurate measurements concerning the current demands of

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



the mote. A sufficient number of experiments were carried
out aiming to evaluate the Wireless Sensor Network power
consumption under specific scenarios using various operating
systems. It was observed that the IEEE 802.15.4e TSCH has
great impact on the power consumption on the motes in
relation to other radio duty cycles.

VI. ACKNOWLEDGMENT

This work has been partially supported by the PRA 2016
research project 5GIOTTO funded by the University of Pisa.

REFERENCES

[1] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding,
C. Stasch, S. Liang, and R. Lemmens, “New generation sensor
web enablement,” Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer networks,
vol. 38, no. 4, pp. 393–422, 2002.

[3] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki-a lightweight
and flexible operating system for tiny networked sensors,” in
Local Computer Networks, 2004. 29th Annual IEEE Interna-
tional Conference on. IEEE, 2004, pp. 455–462.

[4] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt,
“Riot os: Towards an os for the internet of things,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE
Conference on, April 2013, pp. 79–80.

[5] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly,
Q. Wang, S. Glaser, and K. Pister, “Openwsn: a standards-based
low-power wireless development environment,” Transactions on
Emerging Telecommunications Technologies, vol. 23, no. 5, pp.
480–493, 2012.

[6] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson,
and N. Finne, “The announcement layer: Beacon coordination
for the sensornet stack,” in Wireless sensor networks. Springer,
2011, pp. 211–226.

[7] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac:
a short preamble mac protocol for duty-cycled wireless sensor
networks,” in Proceedings of the 4th international conference
on Embedded networked sensor systems. ACM, 2006, pp. 307–
320.

[8] N. Tsiftes, J. Eriksson, and A. Dunkels, “Low-power wire-
less ipv6 routing with contikirpl,” in Proceedings of the 9th
ACM/IEEE International Conference on Information Processing
in Sensor Networks. ACM, 2010, pp. 406–407.

[9] T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy
networks,” 2012.

[10] W. Zolertia, “platform, z1 datasheet.”
[11] A. Prayati, C. Antonopoulos, T. Stoyanova, C. Koulamas, and

G. Papadopoulos, “A modeling approach on the telosb wsn
platform power consumption,” Journal of Systems and Software,
vol. 83, no. 8, pp. 1355–1363, 2010.

[12] A. Moschitta and I. Neri, “Power consumption assessment in
wireless sensor networks,” ICT-Energy-Concepts Towards Zero-
Power Information and Communication Technology, 2014.

[13] J. Alonso, S. Gómez, M. Alejandrez, M. Gil, and N. Navarro,
“Experimental measurements of the power consumption for
wireless sensor networks,” Computer Architecture Department
Universitat Politècnica de Catalunya June, vol. 26, 2006.

[14] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “Openmote:
Open-source prototyping platform for the industrial iot,” in Ad
Hoc Networks. Springer, 2015, pp. 211–222.

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077


