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Abstract Clustering algorithms with attribute weighting
have gained much attention during the last decade. How-
ever, they usually optimize a single-objective function that
can be a limitation to cope with different kinds of data,
especially those with non-hyper-spherical shapes and/or
linearly non-separable patterns. In this paper, the multiob-
jective optimization approach is introduced into the kernel-
based attribute-weighted clustering algorithm, in which two
objective functions separately considering the intracluster
compactness and intercluster separation are optimized simul-
taneously. Meanwhile, the sampling operation and efficient
clustering ensemblemethod are incorporatedwith the projec-
tion similarity validity index approach to obtain the clustering
solution, which can effectively reduce the computing time
especially for large data. Experiments on many data sets
demonstrate that, the proposed algorithm in general out-
performs the existing attribute-weighted algorithms and the
computing efficiency for selection of the final solution is
improved by a large margin. Moreover, its merit in terms of
the partition and cluster interpretation tools is shown.
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1 Introduction

Clustering is a method of creating groups of objects based on
similarity degrees of relevant features, which has been used
in many areas such as data mining, pattern recognition and
machine learning. Generally, the problem of clustering, espe-
cially that of the partition-based community, can be posed
as an optimization problem, adopting a cluster validity cri-
teria to be optimized that may represent various properties
of clusters, such as compactness, separation, and connec-
tivity. However, traditional clustering algorithms usually
optimize one cluster validity criteria (cluster compactness),
that may only suit a particular structure of datasets. Recently,
multiobjective clustering (MOC for short) (Mukhopadhyay
et al. 2014) approaches are becoming popular owing to their
obvious superiority to capture diverse characteristics of the
datasets, among which the multiobjective clustering with
automatic k-determination (MOCK for short) (Handl and
Knowles 2007) proposed in 2007 is widely regarded as the
most classical one. After that, a lot of MOC algorithms were
proposed in terms of different aspects, for example, consid-
ering the categorical characteristics of the datasets (Saha and
Maulik 2014; Yang et al. 2015; Mukhopadhyay et al. 2009),
incorporating soft subspace principle (Zhu et al. 2012; Xia
et al. 2013), and being used in the field of image segmen-
tation (Mukhopadhyay and Maulik 2011; Sag and Cunkas
2015; Zhao et al. 2015).

Generally, conventional clustering algorithms treat all
attributes (or features) equally when computing the dis-
tance measurement. This may not be reasonable in some
cases, for instance, the cluster structure in the dataset is
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subject to a subset of features, or different features (sub-
sets of features) contribute differently on the clustering. Sine
the middle of last decade, the attribute weighting based soft
subspace clustering algorithms are prevalent in this regard,
whose major superiority lies in automatically updating the
attribute weights for different classes during the clustering
process. However, most existing attribute-weighted cluster-
ing algorithms commonly utilize the Euclidean distance as
the dissimilarity measure, which may perform poorly for the
datasets with more complex construction (i.e., clusters are
not hyper-spherical and/or linearly separable). Hence several
kinds of clustering methods were proposed to address this
problem, among which the kernel-based ones have attracted
a lot of attention. Recently, some kernel clustering algorithms
with attribute weighting (Ferreira and Carvalho 2014a, b;
Ferreira et al. 2016; Shen et al. 2006; Wang et al. 2016)
have been proposed, which show obvious superiority over
the conventional kernel clustering methods.

In this paper, a novel multiobjective kernel clustering
algorithm with automatic attribute weighting (MOKCW for
short) is proposed, which simultaneously optimizes two
clustering validity criterions considering the intercluster
compactness and the intercluster separation, respectively.
Experiment results show that the proposed method out-
performs the state-of-the-art attribute-weighted clustering
algorithms.Hereby, themain contributions of thiswork could
be summarized as follows.

– A novel kernel-based multiobjective clustering approach
is proposed. To our best knowledge, this is the first
attempt where multiobjective optimization is introduced
into attribute-weighted kernel clustering algorithm.

– In terms of the distance between each pair of centers
and that between each center and the global center, an
effective objective function is defined to measure the
intercluster separation.

– To efficiently obtain the final clustering result from
the non-dominated solutions, an improved projection
similarity validity index (PSVIndex for short) method
incorporated with clustering ensemble (CE for short) and
random sampling is developed.

– Comprehensive results are showed on some benchmark
datasets along with detailed analysis, which obviously
demonstrate the superiority of the proposed method.

Rest of the paper is organized as follows. In Sect. 2, a
brief background about multiobjective clustering, attribute-
weighted subspace clustering, and kernel clustering is pre-
sented respectively, and also the motivation is given. In
Sect. 3, all the details of the proposed algorithm MOKCW
are analyzed. In Sect. 4, experimental studies for the perfor-
mance ofMOKCWalongwith the comparative experimental
results are given, followed by the conclusions in Sect. 5.

2 Related work

2.1 Multiobjective clustering

In general, a multiobjective optimization problem optimizes
several conflicting objective functions in order to obtain a
number of Pareto-optimal solutions. For MOC approaches,
they usually perform search over several cluster validity
indices simultaneously with some major steps, including
encoding the chromosome, developing the clustering objec-
tive functions as well as obtaining the final clustering result
from thePareto-optimal solution set. In termsof chromosome
encoding policies, Garcia-Piquer et al. (2014) analyzed three
most commonly used methods in detail, namely label-based,
prototype-based, and graph-based ones, in which the second
one was thought to be more applicable to large datasets, for
the length of each individual did not rely on the number of
instances. In the existing MOC algorithms, most adopt cen-
troids, a type of prototype, to represent the individuals.

It should be noted that the choice of suitable objective
functions in MOC methods are very important, since they
should be conflicting and beneficial to find the partitional
structure of datasets. Typically, the combination of twoobjec-
tive functions can be found in the literature; for example,
the overall cluster deviation dev and cluster connectedness
conn were utilized in MOCK (Handl and Knowles 2007),
CAOS (clustering algorithms based on multiobjective strate-
gies platform) (Garcia-Piquer et al. 2012, 2014) and some
other methods (Faceli et al. 2009; Li et al. 2014; Prakash and
Singh 2015); two indices Jm and XB (Xie-Beni) in terms of
within-cluster and between-cluster information respectively
were utilized in Saha and Maulik (2014), Zhu et al. (2012),
Saha et al. (2011),Ma et al. (2015), Yang et al. (2011), Zhong
et al. (2013); and the fuzzy compactness π and fuzzy separa-
tion sep that were similar to Jm and XBwere utilized in Yang
et al. (2015), Mukhopadhyay et al. (2009), Mukhopadhyay
andMaulik (2011), inwhich sep canmeasure the intercluster
separation more directly than XB. Besides, some other cou-
ples of objective functions were also appropriate for MOC
approaches, for example, the well-known fuzzy index Jm
and an extension of the overlap and separation index (OSI for
short) (Capitaine and Frlicot 2011) to be named as OS (over-
all overlap-separation) (Wikaisuksakul 2014); the S_Dbw
validity index (Halkidi and Vazirgiannis 2001) was divided
into two terms (Sag and Cunkas 2015), scattering scat (NC)

measuring the compactness of the clusters as well as density
Dens_bw(NC)measuring the separation of the clusters; and
the non-local spatial information derived from images was
introduced into π and sep to formulate two novel fitness
functions (Zhao et al. 2015), obtaining more robust image
segmentation results. Note that, some researchers have estab-
lished MOC models that optimize more than two objective
functions, especially some methods using archived multi-
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objective simulated annealing (AMOSA for short) as the
underlying optimization tool in Saha and Bandyopadhyay
(2013), Saha et al. (2015, 2016), Alok et al. (2016). How-
ever, due to the fact that generally two objective functions
can ensure the performance of MOC algorithms, we do not
detailedly analyze those with over two objective functions.

As per the nature of the multiobjective optimization
algorithms, when the MOC algorithm stops, a set of Pareto-
optimal solutions named as PS are generated, through which
the final clustering solution can be achieved. Some tech-
niques have been proposed by different MOC algorithms,
among which, three types are prevalent: (1) one internal
cluster validity index (CVI for short) is calculated for each
solution and then the one with the best value is selected, like
that inMukhopadhyay andMaulik (2011), Zhao et al. (2015),
Li et al. (2014), Liu et al. (2015); (2) the semi-supervised
methods are used to calculate one external CVI with a frac-
tion of the true class labels as the prior knowledge (Saha et al.
2011, 2013, 2015, 2016; Ma et al. 2015; Wikaisuksakul
2014; Saha and Bandyopadhyay 2013; Alok et al. 2016);
(3) the cluster ensemble strategy is employed to integrate
all solutions of the PS and obtain a particular final solution,
and related works can be found in Saha and Maulik (2014),
Zhu et al. (2012), Coelho et al. (2010), Mukhopadhyay et al.
(2013),Benaichouche et al. (2016). Since no prior class infor-
mation of the real-world data set is got before the clustering
operation, the second type cannot be applied to most real
problems despite their popularity in the literature. In addi-
tion, some other effective methods (Yang et al. 2015; Xia
et al. 2013) have been proposed. In this study, an effective
and efficient method is proposed by incorporating clustering
ensemble into the PSVIndex method to obtain the final clus-
tering solution through PS , thereby reducing the computing
time by a large margin, especially when coping with large
data sets. It can work with any MOC algorithms if the simi-
larities among objects on relevant dimensions are figured out.

2.2 Attribute-weighted subspace clustering

For most conventional clustering algorithms, attribute
weights are regarded to contribute equally during the clus-
tering procedure, but this is not appropriate in many cases
especially when coping with high-dimensional datasets. In
this regard, several methods have been proposed that auto-
matically assign dissimilar weights to different attributes in
terms of their contribution to clustering, one attribute weight
can get a large value if the distribution on this dimension is
compact. Among them, the weighting k-means (W-k-means
for short) with a vector to represent the global weights for
all clusters (Huang et al. 2005), and the attribute-weighting
clustering algorithm (AWA for short) with a matrix to rep-
resent the local weights for different clusters (Chan et al.
2004) are the earlier methods. Afterward, various methods

have been proposed, like various kinds of soft subspace clus-
tering (SSC for short) algorithms (Xia et al. 2013;Wang et al.
2016; Jing et al. 2007; Gan andWu 2008; Gan and Ng 2015),
the mixed attribute-weighting algorithm (MWKM for short)
(Bai et al. 2011) for high-dimensional categorical data, and
the Minkowski metric weighted k-means (MWK-Means for
short) (Amorim and Mirkin 2012) that utilizes Minkowski
distance to replace the Euclidian distance. Nowadays, the
SSC algorithms have been the most popular ones to cope
with high-dimensional data, amongwhich the fuzzy subspace
clustering (FSC for short) (Gan andWu2008) and the entropy
weighting k-means (EWKM for short) (Jing et al. 2007)
have gained more attention than the others. To overcome the
drawback of earlier SSC algorithms only considering within-
cluster information, the enhanced soft subspace clustering
algorithm (ESSC for short) (Deng et al. 2010) was proposed
using between-cluster information to add a new term in the
distance measurement. However, a new parameter η balanc-
ing the intracluster term and intercluster term was not easily
determined in different cases. The objective function of the
ESSC method is expressed as Eq. (1).

JESSC =
n∑

i=1

K∑

k=1

umki

d∑

j=1

wk j Dk j + γ

K∑

k=1

d∑

j=1

wk j lnwk j ,

s.t. uki ∈ [0, 1],
n∑

i=1

uki = 1, wk j ∈ [0, 1],

d∑

j=1

wk j = 1. (1)

where, v0 j =
∑n

i=1 xi j
n is the global center of thewhole dataset

and then Dkj = (xi j − vk j )
2−η(vk j − v0 j )

2 is the enhanced
dissimilarity measure.

In Huang et al. (2014a), three k-means-type algorithms
were extended by integrating both the intracluster compact-
ness and the intercluster separation, while the latter was
designed in the denominator of the objective function so that
no new parameter was introduced. Among them, the exten-
sion of attribute-weighting clustering algorithm (E-AWA for
short) could achieve the best overall performance, whose
objective function was expressed as Eq. (2) with the global
center v0 as the same as that of Eq. (1).

JE-AWA =
n∑

i=1

K∑

k=1

uki

d∑

j=1

w
β
k j

(xi j − vk j )
2

(vk j − v0 j )
2 ,

s.t. uki ∈ {0, 1},
n∑

i=1

uki = 1, wk j ∈ [0, 1],

d∑

j=1

wk j = 1. (2)
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Although the two methods ESSC and E-AWA are supe-
rior to conventional SSC algorithms, they also have some
drawbacks such as trapping into local optimal. A fuzzy
MOC algorithm named as MOSSC (multiobjective evolu-
tionary algorithm-based soft subspace clustering) (Zhu et al.
2012), and a crisp MOC algorithm named as MOEASSC
(multiobjective evolutionary approach-based soft subspace
clustering) (Xia et al. 2013) both simultaneously optimize
two clustering criterions, leading to high-quality clustering
results. In MOEASSC, two conflicting objective functions
JIn considering intracluster information and JAdd consider-
ing intercluster information are formulated as Eqs. (3) and
(4).

JIn =
n∑

i=1

K∑

k=1

uki

d∑

j=1

wk j (xi j − vk j )
2,

s.t. uki ∈ {0, 1},
n∑

i=1

uki = 1, wk j ∈ [0, 1],

d∑

j=1

wk j = 1. (3)

JAdd =
K∑

i=1

⎛

⎝Awi
/
(Sepi + σ) +

d∑

j=1

wk j logwk j ,

⎞

⎠ (4)

where

Awi =
d∑

k=1

δ jwk j

/ d∑

k=1

δ j , δ j =
{
1, if wk j > 1

/
d

0, else
,

Sepi =
K∑

p=1

d∑

j=1

(vk j − vpj )
2.

Note that, for MOEASSC, the computation equation of
attribute weights is not derived according to the well-known
expectationmaximization (EM)method, like that inZhu et al.
(2012), Jing et al. (2007), Gan and Wu (2008), Deng et al.
(2010), Huang et al. (2014a). They are based on the distance
of the cluster centers and formulated by Eq. (5). A larger Dkj

denotes that the kth cluster is easier to be separated in the j th
dimension, and wk j gets a larger value accordingly.

wk j = exp(Dkj )

/ d∑

l=1

exp(Dkl), (5)

where

Dkj =
K∑

p=1

∣∣vpj − vk j
∣∣.

2.3 Kernel clustering and our motivation

Generally, partition clustering algorithms employ the
Euclidean distance as the dissimilarity measure, which per-
forms well for datasets with hyper-spherical and/or linearly
separable distribution. However, they may perform poorly if
the data structure is more complex (i.e., clusters with non-
hyper-spherical shapes and/or linearly non-separable). To
capture the nonlinear structure in data, some effective meth-
ods are proposed, among which the kernel-based ones have
gained a great deal of attention. They may make the data
become linearly separable by mapping into a space of high
dimension. In the literature, kernel clustering algorithms are
under two main approaches: clustering in feature space such
as KCM-F and KFCM-F (with F standing for the feature
space), in which centers are obtained, and clustering with
kernelization of the metric such as KCM-K and KFCM-K
(with K standing for the kernelization), in which the dis-
tance is computed by means of kernels (Graves and Pedrycz
2010). Note that, for clustering in feature space, there is no
need to directly compute the cluster centers as the kernel
matrix is computed at the beginning of the program. How-
ever, the complexity of computing the matrix is O(Kn2d),
where K , n and d are respectively the number of clusters,
objects and attributes, so that the complexity will become
too high if the value of n is very large. In order to weigh
the importance of different features during the clustering
procedure, the weighted fuzzy kernel clustering algorithm
(WFKCA for short) was proposed (Shen et al. 2006), where
attribute weighting was firstly introduced into kernel clus-
tering method. Recently, some comprehensive works about
kernel clustering with automatic attribute weighting can be
found in Ferreira and Carvalho (2014a, b), Ferreira et al.
(2016). Among them, the hard-type method KCM (Ferreira
and Carvalho 2014a; Ferreira et al. 2016) and fuzzy-type
method KFCM (Ferreira and Carvalho 2014b) under both
situations of the feature space and the kernelization were uti-
lized as the basismethods and various kinds of their enhanced
versions with attribute weighting were proposed. According
to the experiment analysis of these algorithms, the ones using
local adaptive distance are superior to the ones using global
adaptive distance in most cases. Regarding that, generally,
clustering in feature space is not applicable to large datasets,
thereby abandoned by us. Then the methods with kernel-
ization of the metric are merely considered to conduct our
research, whose general function with local automatic fea-
ture weighting is expressed as follows (Ferreira et al. 2016;
Ferreira and Carvalho 2014b).

J =
K∑

k=1

n∑

i=1

umki

d∑

j=1

w
β
k j

∥∥ϕ(xi j ) − ϕ(vk j )
∥∥2, (6)
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where, m=1 and uki ∈ {0, 1} for hard clustering; m > 1
and uki ∈ [0, 1] for fuzzy clustering; attribute weights
wk j (1 ≤ k ≤ K , 1 ≤ j ≤ d) subject to two con-
straints: (1) wk j ∈ [0, 1],∑d

j=1 wk j = 1 and β > 1, or (2)

wk j > 0,
∏d

j=1 wk j = 1 and β = 1.
Note that, the computations of attribute weights are very

different from each other when using the above two con-
straints, which are not given out here as can be found
in Ferreira et al. (2016) concerning hard clustering and
Ferreira and Carvalho (2014b) concerning fuzzy cluster-
ing. In this paper, kernel-based hard clustering methods
are utilized to develop the MOC algorithm. According to
Ferreira et al. (2016), the performances of two algorithms
named as VKCM-K-GP and VKCM-K-LP showed supe-
riority over the others, and the latter one performed even
better. For the method VKCM-K-GP, it subjected to the
constraint that the product of the attribute weights on all
clusters was equal to one, while the later one VKCM-K-
LP having the constraint that the product of the attribute
weights on each cluster was equal to one. Additionally,
the fuzzy kernel-based clustering algorithm VKFCM-K-
LP, which can be seen as the fuzzy version of VKCM-
K-LP, outperformed the others in Ferreira and Carvalho
(2014b).

It is known that the between-cluster information is impor-
tant for finding the true partition as well as the within-
cluster information. Recently, several enhanced clustering
algorithms were proposed by adopting the intercluster sep-
aration in the design of the objective functions to further
improve their performances, including the ESSC method
(Deng et al. 2010), the E-AWA method (Huang et al.
2014a) as well as some other methods (Wu et al. 2005;
Bai et al. 2013; Bai and Liang 2014; Ji and Wang 2014;
Huang et al. 2014b). It deserves noticing that new param-
eters, whose values are hard to be set in different cases,
should be introduced in these methods. However, to our
best knowledge, no method has considered the between-
cluster information among the existing attribute-weighted
kernel clustering algorithms, which may be a limitation to
their performance. In view of the obvious superiority of
MOC methods over single-objective ones that can achieve
more accurate and stable results with no new parameters,
a novel kernel-based clustering algorithm with attribute
weighting under the multiobjective optimization approach,
named as MOKCW, is proposed in this paper. This method
simultaneously optimizes two separate objective functions
considering within-cluster and between-cluster information,
respectively.

3 Kernel-based multiobjective clustering with
attribute weighting

3.1 Multiobjective optimization

In the view of the fact that most partition clustering algo-
rithms can achieve the results by minimizing the objective
functions, here we merely consider minimization problems
with respect to multiobjective optimization. Assuming that
a vector in the decision variable space of d dimensions is
x = [x1, x2, . . . , xd ]T, then the form of multiobjective
optimization problems that optimizes m fitness functions
can be defined as following (Handl and Knowles 2007;
Mukhopadhyay et al. 2009).

min y = F(x) = [ f1(x), f2(x), . . . , fm(x)]T,

s.t.

{
gi (x) ≤ 0, i = 1, 2, . . . , p,
h j (x) = 0, j = 1, 2, . . . , q,

(7)

where, gi (x) ≤ 0, i = 1, 2, . . . , p are p inequality con-
straints, and h j (x) = 0, j = 1, 2, . . . , q are q equality
constraints.

Assuming two variables u = [u1, u2, . . . , ud ]T and
v = [v1, v2, . . . , vd ]T in the d dimension space, if and
only if: ∀i ∈ {1, . . . , d}, F(ui ) ≤ F(vi ) ∧ ∃ j ∈
{1, . . . , d}, F(u j ) < F(v j ), then it can be said that u
Pareto dominates v, namely u ≺ v. If there exists no vec-
tor x such that x ≺ x∗, x∗ is called non-dominated solution,
and a set named as PS is comprised of all x∗, whose fit-
ness values constitute the set named as PF . In this study,
the well-known non-dominated sorting genetic algorithm-
	 (NSGA-	 for short) (Deb et al. 2002) is used as the
underlyingoptimization tool,which can effectively copewith
various kinds of multiobjective optimization problems. It
consists of some steps such as: chromosome representation;
selection, crossover,mutation operations; the non-dominated
sorting with crowding distance estimation; and the elitism
strategy which is typically distinct from other multiobjec-
tive optimization algorithms. However, it deserves noting
that,MOKCWuses the different solution selection of Pareto-
optimal front and mutation step as described in Sect. 3.4.

3.2 Objective functions

According to Sect. 2.1, the objective functions are important
to MOC, here Jc and Fs are respectively formulated mea-
suring the compactness and dispersion of the data partition.
In terms of the first index, namely compactness, we employ
the objective function expressed as Eq. (6), and VKCM-K-
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LP is the best algorithm using this function, and hence the
constraint that the product of the attribute weights on each
cluster is equal to one with β=1. Note thatm=1 is set for hard
clustering, the first function Jc is shown as Eq. (8), the same
to that of VKCM-K-LP, where n is the number of objects, d
is the number of attributes, and K is the number of clusters
known before clustering.

Jc =
K∑

k=1

n∑

i=1

uki

d∑

j=1

wk j
∥∥ϕ(xi j ) − ϕ(vk j )

∥∥2,

s.t. uki ∈ {0, 1},
n∑

i=1

uki = 1,

wk j > 0
d∏

j=1

wk j = 1. (8)

In Eq. (8),
∥∥ϕ(xi j ) − ϕ(vk j )

∥∥ is the kernel distance
between object xi and cluster center vk on the j th dimen-
sion, which is generally expressed as Eq. (9), and κ(xi j , vk j )
is the kernel metric.
∥∥ϕ(xi j ) − ϕ(vk j )

∥∥2 = κ(xi j , xi j ) − 2κ(xi j , vk j )

+ κ(vk j , vk j ) (9)

Examples of commonly used kernel functions are Gaus-

sian, given by κ(xi j , vk j ) = e−(xi j−vk j )
2
/
2σ 2

j , σ j > 0,
polynomial of degree d, given by κ(xi , xk) = (γ xTi xk + θ)d ,

γ > 0, θ > 0. In this paper, Gaussian kernel, the
most commonly used in the literature as well as used in
Ferreira and Carvalho (2014a, b), Ferreira et al. (2016) is
employed to develop the functions. Besides, the benchmark
method:VKCM-K-LP andVKFCM-K-LPuseGaussian ker-
nel (Ferreira and Carvalho 2014a; Ferreira et al. 2016),
which should be implemented here to have fair compar-
ison. Thus, κ(xi j , xi j ) = 1 and

∥∥ϕ(xi j ) − ϕ(vk j )
∥∥2 =

2(1 − κ(xi j , vk j )). The computations of cluster center vk j ,
feature weight wk j and partition allocation uki are respec-
tively shown as Eqs. (10), (11), and (12) (Ferreira et al. 2016).

vk j =
∑n

i=1 ukiκ(xi j , vk j )xi j∑n
i=1 ukiκ(xi j , vk j )

(10)

wk j =
{∏d

l

(∑n
i=1 uki‖ϕ(xil) − ϕ(vkl)‖2

)}1/d

∑n
i=1 uki

∥∥ϕ(xi j ) − ϕ(vk j )
∥∥2

(11)

uki =
{
1, ϕ2(xi , vk) ≤ ϕ2(xi , vh), 1 ≤ h ≤ K
0, else

(12)

where,

ϕ2(xi , vk) =
d∑

j=1

wk j
∥∥ϕ(xi j ) − ϕ(vk j )

∥∥.

In terms of between-cluster information, the second objec-
tive function is defined based on XB, a well-known internal
CVI, which has been widely used for someMOCmethods in
Saha andMaulik (2014), Zhu et al. (2012), Saha et al. (2011),
Ma et al. (2015), Yang et al. (2011), Zhong et al. (2013) and
its extension with prototypes in kernel space is expressed as
follows.

XB=
∑n

i=1
∑K

k=1 u
2
ki‖ϕ(vk) − ϕ(xi )‖2
n × Ds

, (13)

where,

Ds = min
t 
=k

‖ϕ(vk) − ϕ(vt )‖2.

As it can be seen from Eq. (13), the denominator of XB
mainly employs a term Ds measuring the separation of clus-
terswith theminimumdistance between eachpair of different
centers. However, in some cases, this index is not applicable
as it may present unstable results (Wu et al. 2014), especially
when two centers are allocated closely in the real partition,
and a solution that can detect this case will be dropped by
computing XB. To alleviate this problem, a novel CVI named
asWu-and-Li index (WLI for short)was proposed inWuet al.
(2014), whose equation was shown as following.

WLI = WLn

2 × WLd
, (14)

where,

WLn =
∑K

k=1

∑n
i=1 u

2
ki‖vk − xi‖2∑n
i=1 uki

,

WLd = 1

2

(
min
t 
=k

‖vk − vt‖2 + mediant 
=k ‖vk − vt‖2
)

.

As we can see from Eq. (14), the denominator of WLI
mainly employs two terms considering both the minimum
and themedian distances between each pair of centers, which
can partially allow the existence of closely allocated centers
to some extent. Except for the distance between each pair
of cluster centers, the distance between each cluster center
and the global center (the mean value of the entire data set)
is also important to measure the separation of clusters, such
as the mechanism of ESSC and E-AWA. Hence, we define
a new term Ds2 that can effectively measure the separation
index by the kernelization of weighted distance between K
cluster centers and the global center, which is expressed as
following.

Ds2 =
K∑

k=1

d∑

j=1

wk j
∥∥ϕ(vk j ) − ϕ(v0 j )

∥∥2 (15)
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In this paper two terms Ds in Eq. (13) and Ds2 are simul-
taneously used to develop the denominator of the second
objective function Fs . Commonly, Ds2 is smaller than Ds

owing to the attribute weighting, the mean value of them like
the term WLd of WLI expressed as Eq. (14) is unreason-
able for most cases because the result is very close to Ds /2.
Hence, we employ the product of Ds and Ds2 as the denom-
inator of Fs , and also employ Jc as the numerator, which
is similar to the forms of XB and WLI . Note that, the term
Ds included in Eq. (13) is expressed as Ds1 here to be eas-
ier distinguished from Ds2, and hence Fs is represented as
Eq. (16). As described before, in Saha and Maulik (2014),
Zhu et al. (2012), Saha et al. (2011), Ma et al. (2015), Yang
et al. (2011), Zhong et al. (2013), some MOC methods uti-
lized Jm andXB as the objective functions that are conflicting
owing to the separation measurement in the denominator of
XB, despite the numerator of the later is similar to the former.
Here, Jc and Fs have the same property, and the effectiveness
of Fs will be discussed and confirmed in the later Sect. 5.2.2.

Fs = Jc
Ds × Ds2

= Jc
Ds1 × Ds2

(16)

3.3 Chromosome encoding and initialization

Amixed chromosome encoding strategy is adopted to repre-
sent each individual, where the first half is the centers and the
second half is the weights so that the objective functions can
be computed easily by decoding. Here, an individual vector
can be represented as x = (v11, . . . , v1d ,. . . , vK1, . . . , vKd ,
w11, . . . , w1d ,. . . , wK1, . . . , wKd), whose length is 2×K ×
d. In the initialization step, the dataset is randomly parti-
tioned into K clusters and the partition matrix U can be
got afterward, then the cluster centers are computed by
vk j = (

∑n
i=1 uki xi j )

/∑n
i=1 uki , 1 ≤ k ≤ K , 1 ≤ j ≤ d.

In order to generate a more widely distributed region for the
attribute weights of the initial population, half of its members
are wk = (1, . . . , 1), 1 ≤ k ≤ K , while another half are
generated by using Eq. (17).

wk j =
{∏d

l

(∑n
i=1 uki (xil − vkl)

2)
}1/d

∑n
i=1 uki (xi j − vk j )

2 (17)

3.4 Genetic operations: selection, crossover, and
mutation

Selection: The chromosome selection is a process of choos-
ing the individuals for reproduction. There are several selec-
tion methods such as tournament selection, roulette wheel
selection, steady state selection, rank selection and elitism,
amongwhich the first two aremost popular (Deb et al. 2002).
In the tournament selection, the chromosomes are randomly

Fig. 1 The one-point crossover of the chromosomes

selected from the large population at first, then they com-
pete against each other and the one with higher fitness based
on nondominance rank and crowding distance is selected for
next generation. While for the roulette wheel selection, the
chromosomes are selected based on the probability distribu-
tion of their fitness values, and those with higher probability
values will be more likely to be selected for reproduction.

In this study, the roulette wheel method is adopted. The
main reason is that different probability can be obtained,
which gives all of chromosomes an opportunity to be chosen.
For each individual, it will be selected by using a probability
computedwith the following rank-based evaluation function.

F(xi ) = α(1 − α)irank−1 (18)

where xi represents the i th chromosome, irank is the rank
of xi that to be lower for better chromosome, and α is a
parameter indicating the selective pressure of the algorithm.
Accordingly, the individual with a lower rank value will be
selected with a higher probability.

Crossover: It is assumed that the product of the attribute
weights on each cluster should be equal to one, hence the
range of these weights are not in the interval (0,1) and the
differences among them are relatively notable. Thus, there
is no variance of attribute weights during the crossover and
mutation operation. Here, the one-point crossover method is
used and only the first half part of each couple of chromo-
somes are performed in this process, as shown in Fig. 1.

Mutation: During the mutation process, a change is made
to each gene of the first half part of chromosomes selected
with the probability Pm , then a random number ξ in the inter-
val [0,1] with uniform distribution can be used to make the
change with the procedure representing as below.

xnewi j =
{
l j + r j × ξ, if rand j < Pm,

xoldi j , otherwise,
(19)

where, r j (1 ≤ j ≤ d) is the range of the jth dimension of
the dataset, if the max value of the j th dimension is u j , the
min value of that is l j , then r j = u j − l j , and also r j ∈ [0, 1]
if the dataset is normalized before the clustering process.

3.5 The procedure of the proposed algorithm

Our proposed algorithm MOKCW is summarized in Fig. 2.
The parameters included are total generation number Tmax,
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Fig. 2 Flowchart of the proposed algorithm MOKCW

population size N , number of clusters K , mutation probabil-
ity Pm . In the flowchart, V ,W , andU respectively represents
cluster center matrix, attribute weight matrix, and partition
matrix. In the end of MOKCW, a non-dominated solution
set PS is obtained, and through each one of the set a cluster-
ing result can be achieved. It deserves to note that, for each
generation, the kernelized adaptive distances are computed
twice, where the first time is needed due to the change of
each individual by genetic operations.

3.6 Obtain the final clustering solution

As discussed above, the final clustering solution should be
obtained through PS when the proposed algorithmMOKCW

stops, and some popular methods have been introduced in
Sect. 2.1. As a matter of fact, the internal CVI is usually
similar to the objective functions adopted in this study to
some extent, we could not use the first method owing to
the bias to the construction of data. As the distribution of
non-dominated solutions produced in this study is diverse,
there is no need to retain the information of all solutions,
and thus cluster ensemble may not generate a desirable final
solution. Besides, the semi-supervised based method cannot
be utilized for most real problems as there is no any priori
information of the data partition labels. Therefore, an effec-
tive and stable method based on similarity among objects on
relevant dimensions is used in this paper, which has also been
used in MOEASSC. However, it should be pointed that the
equation of PSVIndex in Xia et al. (2013) was not strictly
formulated, whose appropriate formula could be shown as
following.

PSV Index =
K∑

l=1

⎛

⎝
nl∑

i=1

nl∑

j=1, j 
=i

SPDis(i, j)

⎞

⎠, (20)

where,

SPDis(i, j) =
d∑

s=1

log(
∣∣Projectis − Project js

∣∣ + 1.0).

(21)

In Eq. (21), Projectis denotes the projected interval of
the i th point on the sth dimension, namely projection coor-
dinate. For example, the interval [0,1] is evenly divided into
10 segments, namely totalSeg = 10, and then projected coor-
dinate in the interval [0,0.1) is 1, while that in the interval
[0.9,1] is 10. Commonly, the objects in the same class have
similar projection coordinates leading to a small SPDis
value, and hence the best solution can be chosen by the
smallest PSVIndex. According to Eq. (20), the time com-
plexity of selection step is O(NK P2d), P=max(nl ), and
nl(1 ≤ l ≤ K ) denotes the number of objects of the lth clus-
ter. If the data size is large, then P should be large as well,
and this method will be time-consuming. In order to improve
its efficiency when coping with relatively large data, an effi-
cient cluster ensemble (CE) method with random sampling
strategy is employed here and incorporated into PSVIndex
that is named as PSVIndex + CE. Due to the fact that a sub-
set of the dataset can also get a small PSVIndex value if
the clustering result of the whole dataset is similar to the
true partition, the sampling rate ns% can be given a small
value (i.e., no more than 20%), which will lead to a reduc-
tion in computation complexity by a large margin. However,
the result may be unreliable if the PSVIndex value is cal-
culated by merely one subset. Generally, cluster ensemble
methods can improve the quality and robustness of results,
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it consists of generating a set of clusterings from the same
dataset and combining them into a final clustering (Strehl
and Ghosh 2003). Hereby, we adopt five different subsets to
obtain five solutions, and then merge them into one solution
as the final result by using the CE method. In this paper, two
efficient hypergraph-based CE approaches, namely MCLA
(Strehl andGhosh2003) andHGBF(Fern andBrodley2004),
are utilized to conduct this procedure, whose time complex-
ity are respectively O(nK 2r2) and O(nKr), where r is the
number of solutions, such that r = 5 here. Besides, two
otherCEapproachesCSPAandHGPAproposed inStrehl and
Ghosh (2003) are not adopted because the efficiency and/or
the performance of them are dissatisfactory in the literature.
In a word, the procedure of PSVIndex + CE is described as
Algorithm 1.

Algorithm 1 PSVIndex + CE

(1) The first part:
for t=1 to 5 do
Get subset St by sampling the ns% of the dataset S;
for j=1 to N do
Get the cluster labels of St according to the j th partition result,
and calculate the PSV Index j value according to Eq. (20);

end for
Obtain the best solution with a index value l(t) by
min j PSV Index j , and the clustering partition of S is P(t);

end for
(2) The second part:
Step1 Randomly keep one solution P(τ )(1 ≤ τ ≤ T ) if there is a
group consisted of several solutionswith the same index value l(t)(1 ≤
t ≤ 5), and calculate the size ξ (τ) of each corresponding group, then
T partition results can be achieved.
Step2 If T=1, namely only one solution exists, thus the single partition
P is the clustering result.
Step3 If T=2, let the l(�)th one by � = maxτ ξ

(τ)(τ = 1, 2) to be
the final solution and the partition P(�) is the clustering result.
Step4 IfT ≥ 3, combine the T partition vectorswith class labels of the
dataset to constitute a new matrix, through which the final clustering
result is achieved by using the CE method MCLA or HGBF.

Among the traditional clustering methods, most have
specified the number of clusters to be equal to the known
number of classes so that certain privileged information about
the dataset should be available, which is cheating for unsu-
pervised learning.

Recently, two papers (Jos-Garcła and Gmez-Flores 2016;
Hancer and Karaboga 2017) about the survey of focus-
ing on determination of cluster number present relatively
comprehensive approaches, where the evolutionary com-
putation (EC) based clustering, either single-objective or
multiobjective approaches, are popular due to the global
search potential, and some typical MOC methods can be
found in Handl and Knowles (2007), Zhao et al. (2015),
Wikaisuksakul (2014), Saha and Bandyopadhyay (2013),
Mukhopadhyay et al. (2013). For the multiobjective clus-

tering algorithms, the encoding scheme plays a crucial role
in both computational and clustering performance, and the
centroid-based scheme is utilized in most cases, such as that
inZhao et al. (2015),Wikaisuksakul (2014), Saha andBandy-
opadhyay (2013),Mukhopadhyay et al. (2013), for the length
of individuals generated by this scheme is not usually very
long that may efficiently improve the computational perfor-
mance of applied EC operators on the individuals. In this
case, the variable-length individuals with the specified range
of K from Kmin to Kmax are generated. For theMOCmethods
with variable-length individuals, if two objective functions
are utilized with an increasing number of K , a trade-off
between them is required to partition data for the appropriate
number of clusters. However, in our experimental study of
the two objective functions Jc and Fs , they are not conflict-
ing when the values of K increase for most datasets. Also, it
deserves noticing that the values of attributeweights decrease
as the values of K increase, hence the objective functionswill
achieve a smaller valuewith a large K , and the corresponding
individual will be survived with a large probability. Thus, it
can be concluded that the variable-length encoding strategy
may not be effective for MOKCW.

In this study, a two-step method named as the PSVIndex-
gap statistic that can identify the appropriate number of
clusters is utilized in this paper, which is also utilized for
MOEASSC in Xia et al. (2013) and the effectiveness has
been confirmed. We have developed an improved version
of PSVIndex combined with the clustering ensemble strat-
egy, and the PSVIndex-gap statistic is still suitable for our
method. In the first stage, the MOKCW algorithm was car-
ried out with each value of K , K = 1, 2, . . . , Kmax, and then
a solution with the minimum value of PSVIndex (denoted
as PSVIndexC ) was recorded. In the second stage, the gap
statistic method developed in Tibshirani et al. (2001) was
modified to identify the number of clusters as the same as
that in Xia et al. (2013), by which the within-cluster disper-
sion was replaced by the PSVIndex that was unbiased to the
two objective functions proposed in MOKCW. The detailed
process is described as below:

Step1: Generate B reference datasets for each value of
K as described in Tibshirani et al. (2001), and
the MOKCW is utilized to cluster each one, and
then the minimum values of PSVIndex for differ-
ent K can be obtained and denoted as PSVIndex∗

Cb,
C = 1, 2, . . . ,Cmax , b = 1, 2, . . . , B. Afterward,
the gap statistical values are calculated by

Gap(C) =
B∑

b=1

log(PSVIndex∗
Cb)

/

B − log(PSV IndexC ) (22)
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Step2: The mean value of PSVIndex∗
Cb is calculated as

l = ∑B
b=1 log(PSVIndex

∗
Cb)

/
B, and the standard

deviation is computed by

sdC =
[

B∑

b=1

{log(PSVIndex∗
Cb) − l}2

/
B

]1/2

(23)

then sC = sdC
√
1 + 1

/
B. After that, the suitable

number of clusters is the smallest one that satisfies
Gap(C) ≥ Gap(C + 1) − sC+1.

3.7 Time complexity

The worse-case time complexity of the proposed method
MOKCW is O(TmaxNnKd + NK P2d), where the param-
eters have all been described in the above context with
no repeated definitions, and then the detailed analysis is
addressed below.

(1) Computation time of Jc and Fs are both O(NnKd).
(2) For each generation, crossover and mutation operations

require O(2NKd) and O(PmNKd) time, respectively.
(3) Non-dominated sorting requires O(MN 2) time, where

M=2 is the number of objective functions.
(4) The selection step to obtain the clustering solution

requires O(NK P2d), P=max(nl) time.

Generally K ismuch smaller than n, and thus the complex-
ity ofMOKCW is dominated by the computation of objective
functions and selection step. The number of generations
is Tmax so that the total complexity of MOKCW becomes
O(TmaxNnK D + NK P2d) if PSVIndex is utilized and that
can also be O(TmaxNnK D + NK (ns P)2d) if PSVIndex +
CE is utilized.

4 Partition and cluster interpretation

To evaluate the overall heterogeneity of the data, the intra-
cluster and intercluster data heterogeneity, and the contribu-
tion of each attribute to the cluster formation, etc., the indexes
for partition and cluster interpretation are needed, and an
approach introduced in Chavent et al. (2006) is generally
valid even when the overall dispersion dose not decompose
into the overall dispersion within clusters plus the over-
all dispersion between clusters. Also, it has been adapted
suitably in Ferreira and Carvalho (2014a, b), Ferreira et al.
(2016) to different types of kernel-based attribute cluster-
ing algorithms, respectively, where the detailed analysis can
be found and the definitions of overall and within clusters
dispersion measures, as well as their corresponding decom-

positions according to clusters, attributes, and both clusters
and attributes are utilized for our method.

The overall heterogeneity of all n data points is measured
by the overall dispersion, with Eq. (6) replacing the clus-
ter centroids vi by the overall centroid v, and the general
equation for both hard and fuzzy clustering algorithms (i.e.,
VKFCM-K-LP and VKCM-K-LP) with the constraint that
the product of the attribute weights on each cluster is equal
to one is formulated as (citer12,r13)

T =
K∑

k=1

n∑

i=1

umki

d∑

j=1

wk j
∥∥ϕ(xi j ) − ϕ(v j )

∥∥2 (24)

where the constraints of membership are respectively: (1)
m = 1 and uki ∈ {0, 1} for hard clustering; (2) m > 1 and
uki ∈ [0, 1] for fuzzy clustering.

As can be observed from Eq. (24), T measures how dis-
persed the patterns are with respect to the overall centroid.
In this paper, as described above, the Gaussian kernel is
employed so that the updated equation of the overall cluster
centroid v = (v1, v2, . . . , vd), which minimizes the overall
dispersion T , is expressed as Eq. (25). Note that, the detailed
proof can be found in Ferreira et al. (2016), Ferreira and
Carvalho (2014b), and hence we do not give out the analysis.

v j =
∑K

k=1 wk j
∑n

i=1 u
m
kiκ(xi j , v j )xi j

∑K
k=1 wk j

∑n
i=1 u

m
kiκ(xi j , v j )

(25)

In the above equation, the constraints of membership uki
are similar to that of Eq. (24), where the first one is used for
VKCM-K-LP and the second one for VKFCM-K-LP. As can
be seen from Eq. (24), the overall dispersion T decomposes
according to attributes (T = ∑d

j=1 Tj ) and according to

clusters (T = ∑K
k=1 Tk), as well as according to clusters

and variables (T = ∑K
k=1

∑d
j=1 Tkj ). And also, the overall

heterogeneity within cluster given in Eq. (6) is measured by
thewithin-cluster dispersion similarly,which can decompose
according to variables (J = ∑d

j=1 J j ), and according to

clusters (J = ∑K
k=1 Jk), as well as according to clusters and

variables (J = ∑K
k=1

∑d
j=1 Jk j ).

Note that, T and J means the overall dispersion without
clustering and after clustering, respectively; Tj and J j means
the attribute-specific overall dispersion without clustering
and after clustering concerning the j-th attribute, respec-
tively; Tk and Jk means the cluster-specific overall dispersion
without clustering and after clustering, respectively; Tkj and
Jk j respectively means the cluster–attribute-specific overall
dispersion without clustering and after clustering concern-
ing the j-th attribute. It can be easily seen that: T ≥ J ,
Tk ≥ Jk(k = 1, 2, . . . , K ), Tj ≥ J j ( j = 1, 2, . . . , d) and
Tkj ≥ Jk j (k = 1, 2, . . . , K , j = 1, 2, . . . , d).
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The overall heterogeneity index is measured by the differ-
ence between T and J normalized by the T :

Q(P) = T − J

T
= 1 − J

T
(26)

The overall heterogeneity index concerning the j-th
attribute is measured by the difference between Tj and J j
normalized by Tj :

Q j (P) = Tj − J j
Tj

= 1 − J j
Tj

(27)

For the cluster-specific overall dispersion after cluster-
ing, the relative contribution of the cluster Pk to the overall
within-cluster dispersion J is given by J (k) = Jk

/
J , k =

1, 2, . . . K . For the cluster-specific overall dispersion with-
out clustering, the quality of a cluster Pk is measured by the
difference between Tk and Jk normalized by Tk :

Q(Pk) = Tk − Jk
Tk

= 1 − Jk
Tk

(28)

The quality of a cluster Pk concerning the j-th attribute is
measured by the difference between Tkj and Jk j normalized
by Tkj :

Q j (Pk) = Tkj − Jk j
Tk j

= 1 − Jk j
Tk j

(29)

The above indexes all take their values from the interval
[0,1], and the value closer to 1 denotes a better result with
respect to each aspect of the partition/cluster quality while
that close to 0 denotes a poor quality.Additionally, it deserves
noticing that the usefulness of the aforementioned partition
and cluster interpretation has been shown in Ferreira et al.
(2016), Ferreira and Carvalho (2014b) with the application
on the benchmark datasets.

5 Experiment study

5.1 Datasets and parameter setting

In this section, the performance of MOKCW is evaluated
by conducting experiments on several benchmark datasets,
which is also compared with that of three SSC algorithms
ESSC (Deng et al. 2010), E-AWA (Huang et al. 2014a),
MOEASSC (Xia et al. 2013) described in Sect. 2.2, and
the kernel-based attribute-weighted algorithms VKCM-K-
LP (Ferreira et al. 2016), a crisp version of clusteringmethod,
andVKFCM-K-LP (Ferreira and Carvalho 2014b), the fuzzy
version. Among them only MOEASSC is a multiobjective
method and the others are single-objective ones. For ESSC

Table 1 The characters of the datasets

Datasets K d n Datasets K d n

Iris 3 4 150 Abalone 3 8 4177

Wine 3 13 178 WFRN 4 4 5456

Newthyroid 3 5 215 SVMguide1 2 4 7089

Breast 6 9 106 Thyroid 3 6 7200

Vertebral 3 6 310 Waveform 3 40 5000

Bupa 3 6 345 Magic 2 10 19,020

WDBC 2 30 569 Occupancy 2 5 20,560

Image 7 16 2310 Shuttle 7 9 43,500

Seismic 2 4 2584 5Gaussians 5 2 100,000

and E-AWA, we adopt k-means++ (Arthur and Vassilvit-
skii 2007) to find some points as the initial centers that are
apart from each other for the sake of reducing unfavorable
impact of initialization. We do not include in our experi-
ments other SSC algorithms like EWKM (Jing et al. 2007),
FSC (Gan and Wu 2008) because MOEASSC has already
been shown superiority over them, and other kernel-based
feature weighted clustering algorithms like VKCM-K-LS,
VKCM-K-GP (Ferreira et al. 2016) as well as VKFCM-K-
LS, VKFCM-K-GP (Ferreira and Carvalho 2014b) because
VKCM-K-LP or VKFCM-K-LP has already been shown to
outperform all of them. The experiments are conducted on
a computer with Intel Core i7-4770, CPU 3.40 GHz and 16
GB RAM by using MATLAB2010.

All the algorithms considered in this paper are applied to
18 data sets: 16 are real-life data sets obtained from the UCI
Machine Learning Repository, namely Iris, Wine, Newthy-
roid, Breast, Vertebral, Bupa, WDBC, Image, Seismic,
Abalone, WFRN, Thyroid, Waveform, Magic, Occupancy,
Shuttle; one data set SVMguide1 obtained from the LIBSVM
(Chang andLin 2011) library; and one data set 5Gaussian uti-
lized in Ferreira et al. (2016) that is larger than the others.
These data sets are mostly adopted in Ferreira and Carvalho
(2014a, b), Ferreira et al. (2016) and also widely used in the
literature to evaluate the clustering performance.As shown in
Table1 the data sets considered are briefly described, where
K is the true number of classes, d and n are, respectively, the
number of features and objects. For most SSC algorithms,
the experiments are conducted on the data sets standardized
into the interval [0,1] (denoted as “Standardization”), which
can alleviate the uneven impact of different attributes’ ranges
on updating the weights. However, the experiment is con-
ducted on the data sets without standardization (denoted as
“None”) in Ferreira et al. (2016), and conducted on both the
non-standardized and standardized versions of the data sets
in Ferreira and Carvalho (2014b). In this paper, the cases of
none and standardization are both considered to make amore
comprehensive analysis, and the standardization is based on
the minimum and maximum values of each attribute.
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Table 2 Parameter settings of all algorithms

Algorithms Parameter setting

ESSC m = min(n,D−1)
min(n,D−1)−2 , γ = 100, η = 0.1

E-AWA β = 8

MOEASSC Pc = 0.5, Pm = K/D, σ = 10−7

VKFCM-K-LP m = 2

MOKCW Pm = 0.1, α = 0.1

As the ESSC method is sensitive to the parameters shown
in Eq. (1), in which γ and η are respectively selected from
a set containing several numbers (Deng et al. 2010), but the
best parameters for different datasets can be hardly set with-
out any prior knowledge. To make a fair comparison, each
parameter is given one value according to the suggestion
in related works. The total iteration number of all single-
objective algorithms is 100, while they can stop in advance
if J t−1 − J t ≤ 10−9, where t denotes the iteration times.
For the twoMOC algorithms, the population size is N = 20,
the total generation is Tmax = 40. Other parameters of all
algorithms are set as shown in Table2, and it deserves noting
that there is no parameter in VKCM-K-LP. The term 2σ 2

is important to the Gaussian kernel employed in this paper,
and we utilize the same value of VKCM-K-LP set in Fer-
reira et al. (2016). The average of the 0.1 and 0.9 quantiles of∥∥xi j − xk j

∥∥2, i 
= k, j = 1, . . . , d are assigned for the terms
2σ 2

j ( j = 1 . . . , d). For relatively large datasets Abalone,
WFRN, SVMguide1, Thyroid, Waveform, PSVIndex + CE
described in the Sect. 3.6with the sampling rate 10%, namely
ns = 10, is used to obtain thefinal clustering result of both the
two MOC approaches. Moreover, for datasets Magic, Occu-
pancy, Shuttle, and 5Gaussians that are even more larger,
PSVIndex + CE with the sampling rate 5%, namely ns = 5,
is adopted. But for other relatively small datasets, we utilize
PSVIndex to obtain the final solution. In both PSVIndex and
PSVIndex + CE, totalSeg = 20 is adopted to calculate the
projection coordinates.

5.2 Experiment result and analysis

To evaluate the performance of the clustering results of all
algorithms andmake a overall comparison, threewell-known
external CVIs accuracy (Acc) and rand index (RI) (Huang
et al. 2005), as well as normalized mutual information (NMI)
(Deng et al. 2010) are adopted here. They all take their val-
ues from the interval [0,1], in which 1 indicating the perfect
match between the clustering result and the true partition,
whereas the value close to 0 indicates a result found by
chance, and thus the larger values they are the better cluster-
ing result achieved. All algorithms considered in this paper
are executed 20 times independently, and their performances

are compared in terms of the means and the standard devi-
ations of Acc, RI, NMI shown in Tables3 and 4. For each
data set, since in some cases the best performance obtained
is similar to the second one, thereby the best and the second
best values obtained by the proposed method MOCKW on
each performance metric is marked respectively, if existed.
Besides, ifMOEASSC is applied to the data setswithout stan-
dardization, some features with very large ranges are abound
to get too large weight values according to the computa-
tion of weights expressed in Eq. (5), resulting in a very poor
clustering performance. Thus, results of MOEASSC on non-
standardized data sets are not shown in Tables3 and 4. Also,
note that, in Ferreira et al. (2016) the experimental result is
the best case selected among several executions on each data
set, and hence the true comprehensive performance of differ-
ent kernel clustering methods cannot be concretely evaluated
in comparison.

5.2.1 Clustering performance of the algorithms

It can be firstly observed from Tables3 and 4 that, in
some cases, VKCM-K-LP obviously outperforms ESSC, E-
AWA, and VKFCM-K-LP among the four single-objective
attribute-weighted clusteringmethods, which is an important
motivation for us. By comparing the two single-objective
kernel method, namely VKCM-K-LP and VKFCM-K-LP,
the former shows superiority over the later, especially
for datasets Newthyroid, Seismic, WFRN, Occupancy and
Shuttle. Moreover, in most cases, the proposed approach
MOKCW can obtain the best result or the second best result
on the three indices under both the “none” situation and
the “standardization” situation. In some cases MOKCW is
beaten, for instance, by VKCM-K-LP on dataset Iris (none);
by E-AWA on dataset Vertebral (none), Thyroid (both none
and standardization) and Occupancy (none); by MOEASSC
on dataset Wine, Seismic(standardization), and 5Gaussians;
by ESSC on dataset Magic. But note that for some cases
of them, the difference is just on a small margin. As we
can observe that the performance ranking results of each
approach on the three indices are very similar, which can
be also found in Xia et al. (2013), Ferreira et al. (2016),
Deng et al. (2010), Huang et al. (2014a). However, in some
cases this phenomenon does not occur, such as that for dataset
Breast, the proposed method get the best Acc and RI values,
but VKCM-K-LP get the best NMI value; for dataset Verte-
bral, E-AWA is shown obvious superiority over MOKCWon
Acc, but vice verse onNMI. Also, for datasets Bupa, Thyroid,
Waveform, Shuttle, the inconsistence of the three indices can
be found, as NMI is usually disaccord with Acc and RI.

We can also observe from Tables3 and 4 that the overall
performance of ESSC under the “none” situation is worse
than that under the “standardization” situation, especially
for data sets Iris, Wine, Thyroid, WDBC, Waveform. And
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Table 5 Average performance
rankings of different algorithms
on all datasets regarding Acc,
RI, and NMI

Algorithms None Standardization

Acc RI NMI Acc RI NMI

ESSC 4.6 (5) 4.5 (5) 4.4 (5) 4.6 (6) 3.9 (4) 3.9 (5)

E-AWA 3.2 (4) 3.2 (4) 3.1 (4) 3.8 (5) 4.2 (5) 3.6 (4)

MOEASSC – – – 3.7 (4) 4.3 (6) 4.1 (6)

VKCM-K-LP 2.7 (2) 2.6 (2) 2.4 (2) 3.5 (3) 3.0 (2) 3.2 (2)

VKFCM-K-LP 2.8 (3) 2.8 (3) 3.0 (3) 3.2 (2) 3.2 (3) 3.5 (3)

MOKCW 1.5 (1) 1.7 (1) 2.0 (1) 1.7 (1) 1.5 (1) 2.1 (1)

even for data sets Seismic, Occupancy, 5Gaussians, it can-
not work normally. Meanwhile, this phenomenon occurs in
E-AWA for datasets Breast, WFRN and SVMguide1 as well.
But for the algorithms VKCM-K-LP and VKFCM-K-LP,
the performances under both the “none” situation and the
“standardization” situation are close to each other for most
datasets, obvious differences can be found by VKCM-K-
LP on data sets SVMguide1 and Occupancy, as well as by
VKFCM-K-LPondataset Shuttle. For instance,when regard-
ing dataset SVMguide1, VKCM-K-LP performs unsteadily
with a relatively large standard deviation value 0.087 under
the “none” situation, while a small standard deviation value
0.002 is get under the “standardization” situation. To analyze
our 20 groups of experiment results on dataset SVMguide1
(none) in detail, the values of Acc, RI, NMI by VKCM-
K-LP are most near 0.857, 0.756, 0.499 respectively, but
two groups are near 0.574, 0.511, 0.024 respectively. The
proposed method MOKCW performs very steadily on this
dataset, and Acc, RI, NMI can get small standard deviations
that are 0.005, 0.008, 0.011 respectively. Meanwhile, the
Acc, RI, NMI values of MOKCW have increased by 8.56%,
12.04%, 29.93% compared to that of VKCM-K-LP under the
“none” situation.

Table5 shows the average performance rankings of all
methods on the 18 datasets regardingAcc,RI,NMI computed
from Tables3 and 4, making a more evident comparison.
Also, Fig. 3 shows the histogram of mean values of the three
indices in comparison for different algorithms. As can be
observed from both Table5 and Fig. 3, the performance of
our proposedmethod is obvious superior to that of the others,
whichever index considered. Additionally, the performance
of MOEASSC is not as better as that in Xia et al. (2013),
where some complex datasets considered in this paper are
not included, and also, it may be owing to the computation
of attribute weights expressed by Eq. (5) that does not allow
good results for these datasets. For instance, the clustering
results of MOEASSC on WFRN, Thyroid and Occupancy
are abnormal, but it needs noticing that MOEASSC shows
obvious superiority for data sets Seismic and 5Gaussians.

Tables6 and 7, also computed from Tables3 and 4, show,
respectively, the percentage of times that each algorithm

Different indices
Acc RI NMI

M
ea

n 
va

lu
e

0.4

0.5

0.6

0.7

0.8
ESSC
E-AWA
MOEASSC
VKCM-K-LP
VKFCM-K-LP
MOKCW

Fig. 3 Mean values of Acc, RI, and NMI using different algorithms in
the 18 datasets under the “standardization” situation

obtained the best performance rankings (first or second)
under the “none” situation and the “standardization” situ-
ation. It can be noticed from these tables that the MOKCW
algorithm appeared among the best performingmethodswith
an obvious superiority than the others.

Asmentioned before, the proposedmethodMOKCWper-
forms very steadily on dataset SVMguide1 (none), while the
VKCM-K-LP approach don’t. This is not a specific case,
also existing in other approaches. Generally, the clustering
performance not only lies in the precision, but also depends
on the stability. Figure4 shows the box-plots of RI along
with the mean values for different algorithms on all datasets
(standardization) considered in this paper, which can ana-
lyze the statistical distribution in detail. We can analyze the
stability according to the ranges of upper and lower bounds
for different algorithms, also the two bounds are capable to
indicate the clustering precision performance. The proposed
method MOKCW generally has smaller ranges indicating
better stability than that of VKCM-K-LP, especially for
datasets Vertebral, Bupa, WFRN, Thyroid, and Occupancy.
Moreover, higher bounds got by MOKCW indicating better
clustering precision. Thus, we can conclude that the incor-
poration of multiobjective optimization into VKCM-K-LP is
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Table 6 Percentual of best performance rankings (first or second) under
the “None” situation

Algorithms Acc RI NMI

ESSC 11.11 (5) 11.11 (5) 11.11 (5)

E-AWA 22.22 (4) 27.78 (4) 33.33 (4)

MOEASSC – – –

VKCM-K-LP 38.89 (3) 33.33 (3) 44.44 (2)

VKFCM-K-LP 50.00 (2) 55.55 (2) 44.44 (2)

MOKCW 88.89 (1) 88.89 (1) 77.78 (1)

Table 7 Percentual of best performance rankings (first or second) under
the “Standardization” situation

Algorithms Acc RI NMI

ESSC 16.67 (6) 16.67 (5) 16.67 (6)

E-AWA 27.78 (2) 27.78 (3) 44.44 (2)

MOEASSC 22.22 (5) 16.67 (5) 22.22 (4)

VKCM-K-LP 27.78 (2) 27.78 (3) 22.22 (4)

VKFCM-K-LP 27.78 (2) 33.33 (2) 27.78 (3)

MOKCW 83.33 (1) 88.89 (1) 77.78 (1)

very effective, leading to an improvement of the clustering
performance by a large margin.

5.2.2 Study of the objective functions, attribute weighting
and the execution time

As described in Sect. 3.2, the second objective function Fs
of MOKCW is the extension of XB, it utilizes both the
kernelization of the distances between each pair of dif-
ferent centers and the weighted distances between cluster
centers and the global center to measure the dispersion of
partition result. To analyze this adjustment, here the ker-
nel MOC approach simultaneously optimizing Jc expressed
as Eq. (8) and XB expressed as Eq. (13) is named as
MOKCW2. We have carried out MOKCW2 on all the data
sets in this paper considered under both the “none” and the
“standardization” situation and compared the results with
that of MOKCW in terms of Acc, RI and NMI. Figure5
shows the line chart for Acc comparison of MOKCW and
MOKCW2 on all data sets considered in this study. We can
observe that MOKCW performs better than MOKCW2 as
a whole, in some cases such as Breast, Vertebral, WFRN,
SVMguide1, Thyroid and Waveform, the superiority of
MOKCW is obvious especially under the “none” situa-
tion. Therefore, it can be concluded that our improved
objective function Fs is more beneficial to the evolution
procedure ofMOC,which can produce better clustering solu-
tions.

In Shen et al. (2006), Zhou et al. (2016), the investi-
gation about the distribution of four attributes of the Iris
dataset was conducted as well as showing four features of
its 150 members, which aimed at giving an intuitive under-
standing of the physical properties of the attribute weight
assignment. The results showed that attribute 3 and attribute
4 of dataset Iris are more compact in each cluster, thus
they should be more important and contribute much more
than other two attributes in clustering. This can also be
verified by Table8 here, in which attribute weights of Iris
are obtained by four algorithms MOEASSC, VKCM-K-LP,
VKFCM-K-LP, and MOKCW. Each algorithm is indepen-
dently executed 10 times and the mean value for each case
is recorded. Note that, the constraints of weights for MOE-
ASSC are wk j ∈ [0, 1],∑d

j=1 wk j = 1, while that for the

other three methods are wk j > 0,
∏d

j=1 wk j = 1. Besides,
since the clustering performance of ESSC and E-AWA on
Iris are undesirable and unstable according to Table3 and
Fig. 4, the attribute weights obtained are not presented in
Table8. It can be observed that attribute 3 and attribute
4 have higher weights than attribute 1 and attribute 2 for
each attribute-weighted clustering algorithm, especially for
VKCM-K-LP and MOKCW that can achieve higher cluster-
ing accuracy.

It should be pointed that MOEASSC and MOKCW need
more execution time compared to single-objective clustering
algorithms owing to the multiobjective optimization proce-
dure, which has been a problem for all MOC methods. Also,
during each generation of MOKCW, the kernelized adaptive
distances need to be computed twice to update the child pop-
ulation. Table9 shows the runtime of different algorithms
considered in this paper, it is clearly observed that MOE-
ASSC and MOKCW indicate larger results especially for
datasets with large size, which represents a worse time effi-
ciency. Hence, the MOC approaches cannot be used for time
strict cases. It should be noted that, for single-objective clus-
tering algorithms, usually they will stop in advance so that
the total iterations are less than 100; for example, sometimes
only near 10 iterations are needed. However, the two MOC
methods will stop until Tmax generations are executed that
is worthless in some cases, and thus we should do some
research about the stop criterion to reduce unnecessary time
cost.

5.2.3 Experiments on obtaining the best solution and
cluster number

For some larger datasets, the method PSVIndex + CE
described in Sect. 3.6 is used to obtain the final cluster-
ing result. Table10 shows the performance of three meth-
ods PSVIndex, PSVIndex+MCLA and PSVIndex+HGBF for
datasets WFRN, SVMguide1, Thyroid, Occupancy, Shut-
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Fig. 5 The comparison of MOKCW and MOKCW2 on Acc. a None,
b standardization. Note The horizontal ordinates of 1–18 respectively
denotes datasets from Iris to 5Gaussians with the same order as shown
in Fig. 4

tle, and 5Gaussians. Each method has been executed 50
times, and then the average values of Acc, RI, NMI, and
runtime are computed. It should be noted that different
results of MOKCW on dataset Abalone, Waveform, Magic,
and Occupancy are always the same, and hence the cor-
responding values are not shown in Table10. Among the
50 executions, the cases of T ≥ 3 are respectively 37,
29, 33, 21 and 24 times for WFRN, SVMguide1, Thy-
roid, Shuttle, and 5Gaussians. The two PSVIndex + CE
methods perform similarly, whose index values are a lit-
tle better than that of PSVIndex. As described in Sect. 3.7,
the computing complexity of PSVIndex, HGBF, MCLA
is respectively (NK (ns P)2d), O(Knr), O(nK 2r2). Com-
monly K is small and r is 5 in this paper, hence the
computing time of the two CE methods are short compared
with PSVIndex such that can be ignored. Table11 shows
the runtime for selection methods (PSVIndex and PSVIndex
+ CE) in comparison, with which the two MOC methods
are conducted on datasets Abalone, WFRN, SVMguide1,
Thyroid,Waveform,Magic, Occupancy, Shuttle, and 5Gaus-

Table 8 Attribute weight assignment of different weighted clustering
algorithms on Iris dataset

Algorithm Cluster x1 x2 x3 x4

MOEASSC 1 0.224 0.204 0.279 0.293

2 0.202 0.143 0.321 0.334

3 0.239 0.147 0.289 0.324

VKCM-K-LP 1 0.163 0.018 33.72 9.850

2 0.220 0.149 3.004 10.15

3 0.203 0.231 3.681 5.795

VKFCM-K-LP 1 0.458 0.147 4.438 3.346

2 0.601 0.471 1.857 1.905

3 0.552 0.603 1.984 1.513

MOKCW 1 0.164 0.018 33.73 9.847

2 0.220 0.149 3.011 10.16

3 0.202 0.226 3.661 5.987

sians. We can observe that the runtime obtaining the final
clustering solution using PSVIndex + CE has been decreased
by a large margin especially for some larger datasets
Magic, Occupancy, Shuttle, and 5Gaussians, which indi-
cates a very obvious efficiency superiority. For instance,
MOEASSC and MOKCW respectively needs 12012.8 and
9464.27 s conductedon5Gaussians usingPSVIndex,whereas
149.822s and 118.057s are needed using PSVIndex +
CE.

Table12 shows the result of the number of clusters by
using the PSVIndex-gap method for 5 times, where the result
of Score K is the most frequently achieved one out of the 5
values and the value in the brackets denotes the time of find-
ing the true number. As dataset 5Gaussians with merely two
attributes can be drawn directly and the number of clusters
can be determined, it does not need to be conducted on with
the PSVIndex-gap method. For datasets Iris, Wine, Newthy-
roid, Vertebral, SVMguide1, Magic, and Occupancy, we can
always obtain the score K values that are equal to the true
K values of Table1. Meanwhile, the true number of clusters
can be obtained in most cases for datasets Bupa, Waveform,
Thyroid so that the score K values are also equal to the true K
values. However, wrong number of clusters are obtained for
datasets Breast, WDBC, Image, Seismic, Abalone, WFRN,
and Shuttle, despite the fact in some cases the correct num-
ber of clusters is obtained. This phenomenon also occurred
in Xia et al. (2013) as the theoretical explanation cannot be
provided. It maybe owing to the fact that the performances of
the clusteringmethod on these datasets are not very desirable
to achieve the true result, except for dataset WDBC. Gener-
ally, the PSVIndex-gap method is suitable for both MOKCW
and MOEASSC to check the correct number of clusters, but
also it needs to be further improved to achieve more accurate
results.
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Table 9 Runtime of different
algorithms (s)

Datasets ESSC E-AWA MOEASSC VKCM-K-LP VKFCM-K-LP MOKCW

Iris 0.090 0.013 0.475 0.056 0.067 1.145

Wine 0.058 0.020 0.579 0.072 0.121 1.786

Thyroid 0.042 0.019 0.611 0.077 0.127 1.299

Breast 0.169 0.020 0.561 0.059 0.268 1.890

Vertebral 0.082 0.022 0.839 0.128 0.149 1.557

Bupa 0.158 0.028 0.957 0.085 0.226 1.661

WDBC 0.068 0.018 3.199 0.558 0.788 4.533

Image 2.973 0.174 14.421 1.217 7.221 22.067

Seismic 0.419 0.033 2.146 1.608 2.126 2.903

Abalone 1.309 0.072 5.332 0.896 2.381 9.041

WFRN 1.176 0.089 6.464 1.119 1.603 7.948

SVMguide1 0.914 0.035 12.419 0.667 0.719 8.534

Thyroid 1.058 0.116 8.535 0.922 2.038 15.108

Waveform 2.006 0.594 20.427 2.007 13.313 59.836

Magic 3.342 0.302 6.421 1.517 3.029 54.693

Occupancy 0.459 0.163 23.795 0.448 2.841 26.081

Shuttle 58.082 6.934 213.891 25.423 29.872 221.364

5Gaussians 25.101 2.076 185.805 1.032 4.831 183.232

Table 10 Validity index results by different selection methods

Datasets Methods Acc RI NMI

WFRN PSVIndex 0.592 0.719 0.385

PSVIndex+MCLA 0.592 0.721 0.389

PSVIndex+HGBF 0.593 0.722 0.39

SVMguide1 PSVIndex 0.899 0.819 0.585

PSVIndex+MCLA 0.908 0.833 0.606

PSVIndex+HGBF 0.905 0.828 0.598

Thyroid PSVIndex 0.468 0.413 0.137

PSVIndex+MCLA 0.482 0.418 0.146

PSVIndex+HGBF 0.478 0.419 0.148

Shuttle PSVIndex 0.658 0.664 0.377

PSVIndex+MCLA 0.663 0.670 0.386

PSVIndex+HGBF 0.662 0.671 0.385

5Gaussians PSVIndex 0.978 0.984 0.966

PSVIndex+MCLA 0.978 0.984 0.967

PSVIndex+HGBF 0.976 0.983 0.964

5.2.4 Partition interpretation and cluster interpretation:
the SVMguide1 data set

In order to show that how much the developed clusters are
different from those produced by other methods, the parti-
tion and cluster interpretation indices introduced in Sect. 4
are utilized, and we consider the previous results obtained
with the application of the VKCM-K-LP, VKFCM-K-LP,
and MOKCW on the SVMguide1 dataset.

Table 11 Runtime of obtaining the clustering solution by PSVIndex
and PSVIndex + CE (s)

Datasets Algorithms PSVIndex PSVIndex + CE

Abalone MOEASSC 43.662 2.414

MOKCW 28.879 1.294

WFRN MOEASSC 73.279 3.925

MOKCW 49.422 2.621

SVMguide1 MOEASSC 191.037 9.593

MOKCW 175.293 8.908

Thyroid MOEASSC 117.014 5.874

MOKCW 85.060 4.421

Waveform MOEASSC 114.813 5.907

MOKCW 59.499 3.086

Magic MOEASSC 1565.56 19.381

MOKCW 1137.72 14.116

Occupancy MOEASSC 1723.75 21.526

MOKCW 1634.43 20.342

Shuttle MOEASSC 2469.25 30.674

MOKCW 1943.79 24.157

5Gaussians MOEASSC 12012.8 149.822

MOKCW 9464.27 118.057

Firstly, the partition interpretation is taken into consid-
eration, hence the overall heterogeneity index Q(P) given
by Eq. (26) and the overall heterogeneity index concerning
the j-th attribute Q j (P) given by Eq. (27) are adopted. The
partitions provided by the VKCM-K-LP, VKFCM-K-LP and
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Table 12 Results of the number of clusters by the PSVIndex-gap
method

Datasets Score K Datasets Score K

Iris 3 (5) Abalone 2 (1)

Wine 3 (5) WFRN 2 (1)

Newthyroid 3 (5) SVMguide1 2 (5)

Breast 2 (0) Thyroid 3 (3)

Vetebral 3 (5) Waveform 3 (4)

Bupa 3 (4) Magic 2 (5)

WDBC 4 (0) Occupancy 2 (5)

Image 4 (0) Shuttle 3 (0)

Seismic 3 (2) 5Gaussians –

Table 13 Quality of the partition concerning single attributes (Q j (P))
for SVMguide1 dataset (%)

Algorithm x1 x2 x3 x4

VKCM-K-LP 88.16 93.97 79.23 86.29

VKFCM-K-LP 92.30 92.46 79.20 85.64

MOKCW 88.09 94.65 77.37 87.14

MOKCW take the values of Q(P) as respectively 89.23%,
89.48% and 90.42%, which means that MOKCW outper-
forms the other two methods with respect to the quality of
partition. Also, we can conclude that the set of attributes
has the average discrimination power of all attributes that is
relatively high, which can separate the dataset into homoge-
neous clusters well. For the index Q j (P), as observed from
Table13, the discriminate power of attribute x2 is higher than
the average discriminate power for both algorithms VKCM-
K-LPandMOKCW,and thediscriminate powers of attributes
x1 and x2 are higher than the average discriminate power for
the algorithm VKFCM-K-LP.

Then, we take the cluster interpretation into consideration,
hence the index J (k) measuring the relative contribution of
the cluster Pk to the overall within-cluster dispersion J , the
index Q(Pk)measuring the quality of a cluster Pk , as well as
the index Q j (Pk) measuring the quality of a cluster Pk con-
cerning the j-th attribute are adopted. Table14 indicates the
J (k) and Q(Pk) values for theVKCM-K-LP,VKFCM-K-LP
and MOKCW. It can be concluded that, for the three algo-
rithms, cluster 2 is more heterogeneous according to J (k),
while cluster 1 has a better quality index according to Q(Pk).

Table15 indicates the Q j (Pk) values for the three algo-
rithms VKCM-K-LP, VKFCM-K-LP, and MOKCW, that is
the cluster heterogeneity index of each attribute. We can
observe that, the qualities of cluster 1 concerning attributes
x1 and x2 are much better than the other cases for all the
three algorithms. Moreover, it should be pointed that a larger
Q j (Pk) value compared to Q(Pk) value means that the j-th

Table 14 Cluster heterogeneity indexes for the SVMguide1 data set
(%)

Algorithm Cluster Cardinal J (k) Q(Pk)

VKCM-K-LP 1 3848 37.30 94.19

2 3241 62.70 78.15

VKFCM-K-LP 1 4042 43.84 92.92

2 3047 56.16 83.06

MOKCW 1 3603 33.33 95.40

2 3486 66.67 77.11

Table 15 Cluster heterogeneity indexes of the attributes for the
SVMguide1 data set (%)

Algorithm Cluster x1 x2 x3 x4

VKCM-K-LP 1 95.03 97.59 70.19 73.24

2 33.18 41.74 82.40 89.38

VKFCM-K-LP 1 96.79 97.03 70.00 69.88

2 74.86 72.73 84.86 91.35

MOKCW 1 95.30 98.09 71.20 65.88

2 35.02 42.33 80.45 89.14

attribute characterizes the cluster Pk. For all the three algo-
rithms, comparing the value of Q j (Pk) in Table15 with the
value of Q(Pk) in Table14, it can be concluded that attribute
x1 and x2 characterize cluster 1, whereas cluster 2 is charac-
terized by attributes x3 and x4.

5.2.5 Statistical significance test

To verify that the result is statistically significant when
comparing different clustering approaches, the Wilcoxon
rank-sum test has been conducted at the 5% significance
level, through which the p values can be calculated. In this
study, the p values for RI comparison of MOKCW and other
algorithms at a time are represented in Table16. As a null
hypothesis, it is assumed that there are no significant differ-
ences between RI of the two groups (a group corresponding
to MOKCW and another corresponding to some other algo-
rithms), whereas the alternative hypothesis is that there is a
significant difference in the mean values of the two groups.

Note that as this is a multiple comparison test, we have set
the p values threshold to 0.01 (0.05/5) according to Bonfer-
roni inequality to achieve an overall 5% significance level.
Table16 shows that most p values reported are less than
0.01, which is a strong evidence against the null hypothesis.
Hence we can conclude that the better RI values produced
are statistically significant and have not occurred by chance.
Similar results are obtained for Acc and NMI comparisons of
MOKCW and other algorithms, establishing the significant
superiority of the proposed method.
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Table 16 The p values for RI
comparison between MOKCW
and other methods produced by
the Wilcoxon rank-sum test

Datasets ESSC E-AWA MOEASSC VKCM-K-LP VKFCM-K-LP

Iris 7.6468E−009 7.9334E−009 4.6827E−010 Same 4.6827E−010

Wine 7.6187E−009 Same 1.0742E−008 Same 7.6187E−009

Newthyroid 6.8159E−009 4.5378E−008 4.7442E−009 2.2741E−005 4.7442E−009

Breast 3.4037E−005 3.7020E−005 5.6122E−004 Same Same

Vertebral 7.9919E−009 Same 6.7193E−008 1.0265E−004 1.5124E−008

Bupa 0.0066 Same Same 0.0039 6.2860E−008

WDBC 6.1036E−009 2.8920E−008 3.0773E−008 0.0068 Same

Image Same 9.2709E−005 Same Same Same

Seismic 3.1034E−009 1.7750E−008 1.4868E−008 Same 3.2853E−008

Abalone 8.0065E−009 2.9334E−007 6.7478E−008 Same Same

WFRN 6.7956E−008 Same 6.7860E−008 4.5979E−004 6.1004E−008

SVMguide1 8.0065E−009 2.8636E−008 6.4034E−008 2.9458E−008 8.0065E−009

Thyroid 8.0065E−009 1.6439E−007 6.6438E−008 Same 6.7478E−008

Waveform 7.7176E−009 Same 6.5970E−008 1.0959E−006 0.0036

Magic 7.9919E−009 3.9533E−008 1.3239E−007 7.9919E−009 1.9415E−008

Occupancy 1.9169E−007 2.3837E−007 6.7956E−008 0.0013 1.1981E−006

Shuttle 2.8322E−008 6.7288E−008 6.7098E−008 Same 1.7643E−007

5Gaussians 2.0387E−008 1.2490E−005 0.0031 0.0083 6.9462E−005

6 Conclusion

In this paper, a new clustering method named as MOKCW is
developed, in which the main innovation lies in three effec-
tive aspects. The first one is the introduction ofmultiobjective
optimization into feature weighted kernel clustering algo-
rithms, which is the first attempt to our best knowledge. In
terms of the optimization viewpoint, the second contribution
is owing to a novel objective function Fs , where the dis-
tance between each pair of centers and that between each
center and the global center are computed as the denomina-
tor term to measure the intercluster separation. In order to
cope with large datasets, we develop a novel method named
as PSVIndex + CE to efficiently obtain the final clustering
solution by incorporating the clustering ensemble strategy
into the original PSVIndex approach, which is the third con-
tribution.

The performances of all methods considered in this study
are evaluated through comprehensive experiments carried
out with eighteen benchmark datasets, and the results indi-
cate that our proposed method performed far better than the
state-of-the-art methods. Meanwhile, the usefulness of Fs
is demonstrated in terms of the overall clustering precision,
while that ofPSVIndex +CE is demonstrated in terms of time
efficiency especially regarding large datasets. Moreover, an
application with the SVMguide1 dataset shows the merit of
the partition and cluster interpretation tools.

There are some scopes of future research to extend the
proposed method. To effectively reduce the runtime, other
faster algorithm can be utilized as the underlying optimiza-

tion tool. It is possible that somemore suitable criterions will
be further investigated, and we may develop novel objective
functions that are capable of getting clustering result close to
the true partition. Furthermore, some other possible applica-
tions of the proposed method to more complicated tasks will
be investigated.
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