
Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

An evaluation of combinations of lossy compression and change-detection
approaches for time-series data

Gregor Hollmig, Matthias Horne, Simon Leimkühler, Frederik Schöll, Carsten Strunk,
Adrian Englhardt, Pavel Efros⁎, Erik Buchmann, Klemens Böhm

Karlsruhe Institute of Technology, Karlsruhe, Germany

A R T I C L E I N F O

Keywords:
Time series
Compression
Change detection

A B S T R A C T

Today, time series of numerical data are ubiquitous, for instance in the Internet of Things. In such scenarios, it
is often necessary to compress the data to, say, reduce data-transmission costs, and to detect changes on it.
More specifically, both methods are used in combination, i.e., data is lossily compressed and later
decompressed, and then change detection takes place. There exists a broad variety of compression as well as
of change-detection techniques. This calls for a systematic comparison of different combinations of compression
and change-detection techniques, for different data sets, together with recommendations on how the values of
the various (typically non-linear) parameters should be chosen. This article is such an evaluation. Its design is
not trivial, necessitating a number of decisions. We work out the details and the rationale behind our design
choices. Next to other results, our study shows that the choice of combinations of change detection and
compression algorithm and their parameterization does affect result quality significantly. Our evaluation also
indicates that results are highly contingent on the nature of the data.

1. Introduction

Nowadays, time-series data is ubiquitous. More and more applica-
tions like the Smart Grid or the Internet of Things that produce and/or
process time-series data are proliferating. Such data is often used to
detect certain events and to react to them as soon as possible. In other
words, change-detection methods are indispensable. On the other
hand, because of the many devices generating data, the huge amount
of data and the high data-transfer rates, an efficient compression is
essential. Lossless compression reduces the statistical redundancy of
the data. However, compression rates are relatively low; as an example,
rates of 4 have been reported for smart-meter readings from individual
buildings using the bzip2 algorithm [1]. Lossy compression in turn
yields significantly higher compression ratios than the lossless one. At
the same time, data compressed in this manner is still useful for many
applications. In this study, we focus on lossy compression. Putting
things together, it often is necessary to combine lossy compression1

and change-detection techniques.

Example 1. Smart meters may deliver data to a central analysis
system via a wireless network. To save bandwidth and to reduce

costs, the data is compressed directly on the device. The central data-
analysis system can then do change detection to react to events such
as a sudden increase in overall power consumption.

When combining lossy compression and change detection, several
issues arise. First, lossy compression introduces errors. In particular,
changes can be lost, or new false changes can occur. Therefore a lossy
compression method must be chosen which preserves the change
information as much as possible. Furthermore, different use cases
generate different kinds of time-series data, as we will explain. Thus, it
is necessary to choose a good combination of compression and change-
detection technique per use case. This is difficult due to the large
number of possible combinations. Next, compression as well as
change-detection algorithms usually have several parameters, which
often have non-obvious effects on the outcome. The expectation
typically is that domain experts select the parameter values. This
means that these experts must have a deep insight into the algorithms
used. But even if they have selected the values, it is hard to determine
whether their selection is a good one. To investigate how combinations
of compression and change-detection algorithms perform on different
datasets, a systematic comparison is necessary. This article is such a

http://dx.doi.org/10.1016/j.is.2016.11.001
Received 28 January 2016; Received in revised form 12 November 2016; Accepted 15 November 2016

⁎ Corresponding author.
E-mail addresses: gregor.hollmig@student.kit.edu (G. Hollmig), matthias.horne@student.kit.edu (M. Horne), simon.leimkuehler@student.kit.edu (S. Leimkühler),

schoell@ira.uka.de (F. Schöll), carsten.strunk@student.kit.edu (C. Strunk), adrian.englhardt@student.kit.edu (A. Englhardt), pavel.efros@kit.edu (P. Efros),
erik.buchmann@kit.edu (E. Buchmann), klemens.boehm@kit.edu (K. Böhm).

1 For improved readability we usually refer to compression and later decompression simply as compression.

Information Systems 65 (2017) 65–77

Available online 26 November 2016
0306-4379/ © 2016 Elsevier Ltd. All rights reserved.

MARK

Downloaded from http://iranpaper.ir
http://www.etransteam.com

http://www.sciencedirect.com/science/journal/03064379
http://www.elsevier.com/locate/is
http://dx.doi.org/10.1016/j.is.2016.11.001
http://dx.doi.org/10.1016/j.is.2016.11.001
http://dx.doi.org/10.1016/j.is.2016.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.11.001&domain=pdf

study.
Designing our study has been challenging, partly due to the issues

just mentioned. To illustrate, one of the various design decisions is as
follows: It is difficult to choose the parameterization of the compression
and the change-detection algorithms such that the comparison is fair.
Reusing the parameter values suggested in the original publications
may not be the best option. This is because proper choices of parameter
values depend on the data the algorithms are applied to. Thus, we have
decided to perform an optimization on each dataset that yields the
parameter values that give way to change-detection results after
compression that are closest to some carefully chosen reference point.
This article lists the design questions encountered in the context of our
comparison, together with explanations behind our choices.

In line with these design decisions, we have implemented a frame-
work that can be used for the evaluation of virtually any combination of
compression and change-detection methods. In our specific study, we
examine five compression algorithms like APCA [2] and five change-
detection algorithms like Online-Kernel Change Detection [3] on five
datasets, resulting in 125 possible combinations. We focus on result
quality and leave aside criteria such as runtime performance or total
cost of ownership, which highly depend on specifics of the implemen-
tations and the runtime environment as well as on characteristics of the
underlying optimization framework.

The study shows that, while the choice of the dataset does have a
huge impact on which combination of compression and change-
detection technique performs best, some algorithms like Chebyshev
Approximation [4–6] and Bayesian Online Change Detection [7] yield
good results in many settings. We also observe that a good change
detection is possible even on strongly compressed data. Next, our
results are particularly interesting because studying the algorithms in
isolation (e.g., compression without subsequent change detection) may
yield a different picture. In [8] for instance, competing algorithms have
outperformed Chebyshev Approximation with regard to the compres-
sion ratio. In our context in turn, this algorithm has proven to be
suitable in combination with many change-detection algorithms.

Paper outline: Section 2 describes some application scenarios.
Section 3 explains our design decisions. Section 4 summarizes the
algorithms evaluated. Section 5 describes the experimental setup and
Section 6 presents the results. Section 7 concludes.

2. Application scenarios

In this section we describe two scenarios, with slightly different
perspectives on the importance of compression and change detection.
In the first scenario, compression and change-detection quality are
roughly equally important. In the second one, the benefits of a high
compression ratio tend to exceed those of the change detection.

2.1. Smart grid

The Smart Grid is an intelligent communication network which
monitors and controls a power network. The integration into such
networks of renewable energy producers alters the conventional power
flow [9]. These producers are inconsistent and have performance
peaks, which in turn demand intelligent power distribution systems.

Consider a company which has to manage a power- distribution
network. The company collects, stores and analyzes the data delivered
by the many devices (e.g., smart meters, power plants) in its network.
The data needs to be analyzed in real-time, thus online change
detection is indispensable. To significantly reduce communication
and storage costs, the data must be lossily compressed. Now think of
a sudden increase in power consumption. The company must react as
soon as possible for example by powering up additional power plants.
To this end, it must detect the change in the first place, which is not
only the consumption measured by one single device, but an aggregate
of the entire grid. As a takeaway, we observe that good compression

and high-quality change detection are both very important in this
scenario.

2.2. Internet of things

Internet of Things (IoT) refers to large networks of small or
embedded devices, which communicate wirelessly. For many IoT
entities, energy optimization is a primary constraint, as they are
powered by batteries or use energy harvesting methods like micro
solar panels. Thus, wireless data transmission often is the biggest factor
regarding energy consumption, as the power required to transmit data
increases quadratically or even with the power of 4 with the distance
between sender and receiver [10]. The power consumption of data
compression in turn increases only linearly with the size of the
data.Thus, it is reasonable to send data that is lossily compressed over
a distance. Detecting changes is often computationally heavy (e.g.,
overall computational complexity Bayesian Online Change Point
Detection is  n()5 , where n is the length of the sequence under
consideration [7]) and should be performed on the central unit; it
therefore has to take place on compressed and later decompressed data
[11]. Now consider a home automation system, where a central control
unit can adapt the heating when several temperature or humidity
sensors detect a change in the weather. Online change detection is
needed to react in short time. This specific scenario benefits more from
a high compression ratio than from better change detection, in contrast
to the previous scenario.

3. Design decisions

Designing the comparison study envisioned is challenging; in
particular, there are various design decisions that one must address.
Fig. 1 is an overview of our study framework. The framework takes as
input a dataset and ground-truth change points. It then uses these
change points to derive optimal parameters for the change-detection
methods used. It subsequently uses an adequate error measure to
evaluate the impact of compression on the changes in the dataset. This
is in order to obtain an optimal combination of compression ratio and
change-detection quality. In the following, we describe the important
design alternatives and the rationale behind our choices. Even though
the subsequent subsections will introduce them explicitly, Table 1 lists
the basic notions we use and their definitions.

Dataset and ground-truth
change-points
(Section 3.1)

Computation of benchmark
change points
(Section 3.2)

Evaluation of compression
impact

(Section 3.4)

Optimal parameters for
change detection

(Section 3.3)

Error measure
(Section 3.5)

Optimal combination of
compression ratio and

change-detection quality

Fig. 1. Overview of evaluation framework.

G. Hollmig et al. Information Systems 65 (2017) 65–77

66

Downloaded from http://iranpaper.ir
http://www.etransteam.com

3.1. Training data

The evaluation envisioned can take place on the complete dataset or
on a subsequence. We see two advantages in using a subsequence. The
first one is that the parameter optimization is quicker. Second, we can
do so to validate the hypothesis that it is sufficient to run this
optimization on a data subsequence, and the result also performs well
on the complete dataset or on any other data of the same kind. This is
important, because we focus on online algorithms that do not operate
on complete datasets, but on streams of data.

3.2. Benchmark change points

To assess the quality of change-detection methods, it is very
common to compare the detected change points with a ground truth.
This however raises at least two issues. First, ground-truth metadata
can diverge from the detectable changes. To illustrate, the heart-rate
dataset PAMAP2 comes together with the information when exactly a
test person has changed his activity. The heart naturally takes some
time to adapt to new activities. Second, most change-detection algo-
rithms can only detect specific kinds of changes. ADWIN for instance is
specialized on changes of mean values. In other words, comparing to a
ground truth evaluates the suitability of the change-detection algorithm
for the dataset. Thus, rather than comparing to a ground truth, we let
the change-detection method identify change points on the specific
dataset without any compression, and we use these change points as
our benchmark, dubbed benchmark change points. Compression is
only used in the actual comparison study, i.e., when looking for change
points on the compressed data. We call the change points identified on
the compressed data comparison change points.

3.3. Parametrization

The result quality and performance of change-detection and
compression algorithms depend on their input parameters. In parti-
cular, setting the parameters of the change-detection algorithm when
comparing alternatives is intricate. One option is to use the parameters
recommended in the underlying publications. But this ignores char-
acteristics of the data the algorithms run on. An alternative is to use the
parameter values that give way to good results on the data currently
examined. If so, these values obviously need to be found, and this is not
trivial. We for our part pursue this option nevertheless, as follows. We
use an optimization technique to find those parameter values. This
requires a reference point. Despite the limits mentioned in the previous
paragraph this reference point is the ground truth. I.e., that optimiza-
tion minimizes the distance between it and the result of the change-
detection algorithm without compression.

3.4. Multi-objective optimization

With a focus on result quality, optimizing change-detection and

compression algorithms in combination has two objectives: low error
rate of change detection and good compression ratio. In general, there
are several kinds of methods to perform optimization with multiple
objectives. One approach is to derive a single value, using for example a
weighted sum. This is easy to implement, but finding appropriate
weights highly depends on the specific use case (see Section 2) and is
notoriously difficult. A more sophisticated, but at the same time more
costly approach is multi-objective optimization, resulting in a Pareto
frontier. We have chosen this second option because it is more
informative.

3.5. Error measure

Finding good parameter values requires a measure for the change-
detection error. One can use a relatively simple measure, such as the
number of correctly detected change points. An alternative is to
calculate individual errors for paired changes, misses and false
positives, and one can further refine this using application-specific
weights. While this is markedly more complex, it also provides more
insight. Because we aim to compare change points in detail, we choose
the latter option. We use a framework providing that functionality, the
MILTON distance measure [12]. We note that [12] does not feature a
systematic comparison of combinations of change detection and lossy
compression techniques nor a discussion of respective setups.

4. Fundamentals

In this section we review the compression and change-detection
algorithms covered in our study (Table 2). We also review two
evolutionary algorithms. We then say how we quantify the deviation
of change points. To make the distinction between the different
categories of algorithms more obvious, we prefix the original acronyms
accordingly: C for compression, D for change detection and O for
optimization. Here we can only provide informal summary descriptions
of those algorithms, but the publications describing them contain
detailed explanations. They also specify the respective parameters.
Further information as well as code is available on the project website.3

4.1. Compression methods

A broad review of the literature has resulted in the following
categories of model-based compression algorithms: constant,
straight-line or polynomial model compression. For each category we
have chosen at least one representative, typically one which has
received a lot of coverage in the scientific literature. Other points
behind our choices of compression methods are as follows: First, we
concentrate on methods that use the uniform norm (L∞-norm), which,
in contrast to, say, L2, enables an error guarantee on each value
compressed. Second, we are interested in the best compression (not
segmentation) of the time series. We thus leave aside several well-
known data-segmentation algorithms.

Adaptive Piecewise Constant Approximation (C_APCA) [2] adds
data points to an adaptive window until the difference between the
maximal and minimal value within this window exceeds a given
threshold. Each window then is compressed by summarizing the data
points as the arithmetic mean of its maximal and minimal value.
Although C_APCA is a data representation, the underlying algorithm
can be regarded as a compression method [8].

Slide Filter (C_SF) [13] makes use of several straight-line functions
which approximate a set of data points. It starts by computing the
values of these functions for a window consisting of two data points.
Then more points are added to the window, while the functions which
do not fulfill the error threshold anymore are left aside. This is

Table 1
Basic notions.

Notion Definition

Change point Point in time when a change occurs
Ground-truth change point Real change point present in the data
Benchmark change point Point in time determined as change by change-

detection algorithm
Compression ratio Ratio between the size of the compressed data and

the size of the original data
Change-detection quality Measure of the effectiveness of a change-detection

algorithm

2 http://www.pamap.org/demo.html, May 18, 2015. 3 https://dbis.ipd.kit.edu/2434.php

G. Hollmig et al. Information Systems 65 (2017) 65–77

67

Downloaded from http://iranpaper.ir
http://www.etransteam.com

continued until only one function remains. This remaining function
then is the approximation of the window.

Chebyshev Approximation (C_CHEB) [4–6] tries to represent fixed
size windows by a linear combination of Chebyshev polynomials up to a
given dimension. If the approximation deviates more than the given
error threshold, it stores the original data instead.

Wavelet (C_WAVE) [14] uses a discrete wavelet transform (DWT)
to compress time series. The data goes through a low-pass filter and a
bandpass filter to construct the corresponding continuous wavelet
function. We deploy the existing MATLAB implementation that
handles all lengths of time series, including those that are not powers
of two.

Piecewise Polynomial Algorithm (C_PPA) [15] proposes a method
which combines several compression methods. The goal of the algo-
rithm is to approximate the data in a piecewise manner so that the
compression ratio is maximized. It keeps adding data points to the
current window until the error threshold is not met anymore. It then
compresses this window using the best compression algorithm out of
several ones.

4.2. Change detection techniques

Our study covers change-detection techniques of the following
important categories: sequential analysis, maximum-likelihood estima-
tion, kernel based techniques and Bayesian analysis techniques. Again,
we have chosen one representative for each category.

Adaptive Windowing (D_ADWIN)4 [16] uses a sliding window
which is partitioned into buckets. Each bucket can contain several data
points; it does so by storing their number and an aggregate of their
values. Each time a data point is added to the window, it is put into a
new bucket. When a certain number of buckets is reached, the two
oldest buckets are merged. If the difference of the average values of two
neighboring buckets exceeds a dynamic threshold, a change is reported
and the last bucket is dropped. This dynamic threshold is computed for
each comparison of two buckets. It depends on the difference of the
numbers of data points of the two buckets.

Event Detection (D_ED) [17] is based on maximum likelihood
estimation. It examines a data window to which data points are added
step by step. In each step, it determines if the window can be split into
two significantly different segments. Each segment then is approxi-
mated by fitting a model to it, and the error between the model and the
data is determined. The point which minimizes this error for both
segments is reported as change point. The models used are derived
from base classes such as algebraic polynomials, radial, wavelet or
Fourier. We for our part have chosen algebraic polynomials, just as in
[17].

ChangeFinder (D_CF) [18] describes a two-stage algorithm which
combines outlier detection and change detection. In a first stage, the
algorithm learns an auto regressive (AR) model from a given time
series. For each data point of the time series, a score is obtained by
calculating the loss, be it the logarithmic one or the quadratic one. An
outlier results in an isolated high score, while changes manifest
themselves as series of high scores. Smoothing the scores removes
the outliers. The smoothed values from the first AR model are then
used to learn another AR model in the second stage of the algorithm.
The scores of the second model describe the probability for data points
being change points.

Online Kernel Change Detection (D_OKCD) [3] uses one-class
support vector machines for change detection. For each data point of
the time series, the immediate past subset xt,1 and the immediate future
subset xt,2 are mapped into a feature space. A kernel method is used; it
ensures that the mapped input space is a subset of a hypersphere with
radius one, centered at the origin of the feature space. Support vector
classification then finds hyperplanes in the feature space which
separate the training vectors Φ x()t,1 and Φ x()t,2 from the center of the
hypersphere. To decide whether a change point is present, the authors
introduce a dissimilarity measure in feature space:

D
c c

c p c p
=

+
,H

t t

t t t t

,1 ,2
⌢

,1 ,1
⌢

,2 ,2
⌢

(1)

where ct,1 and ct,2 are the centers of the hypersphere sections
intersected by the hyperplanes, and pt,1 and pt,2 are two points where
the hyperplanes intersect the hypersphere. The arc represents the arc
distance between the two points. If the dissimilarity measure exceeds a
given threshold, a change point is reported.

Bayesian Online Changepoint Detection (D_BOCD) [7] uses a
Bayesian approach. It divides a time series into partitions and assumes
that for each partition there is an i.i.d. probability distribution of the
data values. Thus, the change points are the boundaries between the
partitions. For each new data point, the algorithm estimates the
probability distribution since the last change point and then computes
the probability that the new point belongs to this distribution. When
this probability drops suddenly, a change is reported.

To summarize our selection of change-detection algorithms, we first
repeat that they are based on different models. See Table 3 for key
characteristics. Second, the algorithms have different runtimes and
memory requirements. For instance, with W being the length of the
current window, DADWIN has  W(log()) runtime and memory re-
quirements, while DED has  W()2 runtime and  W() memory
requirements.

At first sight, it might be interesting to study the influence of the
parameter values of the change-detection methods as well. However,
with five change-detection methods, five compression schemes and (as
we will explain later) five different data sets, the space of configurations
to examine has 125 elements already. Adding several other dimensions
to it would exceed the scope of this study. Finding meaningful ways to
narrow down this extended space is future work.

4.3. Optimization techniques

On the technical level, some decisions like choosing an optimization
algorithm have been necessary as well. We for our part use evolu-
tionary algorithms. NSGA-II [19] is our choice for multi-objective
optimization. Calculating benchmark change points needs only single-
objective optimization (see Change Point Baseline in Section 3), which
leads us to the faster O_SOEA algorithm.

Single Objective Evolutionary Algorithms (O_SOEA) start with a
random set of problem solutions, referred to as initial population. The
objective is to identify individuals, i.e., solutions, with low fitness. In
each generation step, the individuals are sorted by their fitness, and
two parents are randomly selected from among the top τ percent. They

Table 2
Overview of algorithms and their abbreviations.

Compression Algorithms
C_APCA Adaptive Piecewise Constant Approx. [2]
C_SF Slide Filter [13]
C_CHEB Chebyshev Approximation [4–6]
C_WAVE Wavelet Approximation [14]
C_PPA Piecewise Compression Algorithm [15]
Change Detection Algorithms
D_ADWIN Adaptive Windowing [16]
D_ED Event Detection from time series data [17]
D_CF ChangeFinder [18]
D_OKCD Online Kernel Change Detection [3]
D_BOCD Bayesian Online Changepoint Detection [7]
Optimization Algorithms
O_SOEA Single Objective Evolutionary
O_NSGA-II Non-Dominated Sorting Genetic [19]

4 More specifically, we use ADWIN2, which is often referred to as ADWIN.

G. Hollmig et al. Information Systems 65 (2017) 65–77

68

Downloaded from http://iranpaper.ir
http://www.etransteam.com

create two children by crossing over, and these children are mutated
with a certain probability. Additionally a new random individual is
introduced in each generation. The three newly created individuals
replace the three individuals with the worst fitness. The algorithm
terminates after a certain number of generations, or when the fitness
falls below a certain threshold.

Non-dominated Sorting Genetic Algorithm [19] is an evolutionary
optimization algorithm with multi-objective support (O_NSGA-II). It
approximates a Pareto-optimal frontier over several generations. It
starts with an initial, random population, and each generation cate-
gorizes the individuals into fronts, sorts the individuals within these
fronts and uses the best individuals to create a new population, which
then are added to the population of the next generation. More
specifically:

1. An individual belongs to a front if there does not exist another
individual in this current or in any previous front dominating it. An
individual x dominates another individual y if and only if x is never
inferior to y in any objective and x is superior to y in at least one
objective.

2. For the sorting within the fronts, a so-called density value is
assigned to each individual. It quantifies the density of solutions
surrounding this individual.

3. The best individuals are chosen based on front and density. They are
used to create a new population by means of recombination and
mutation.

After several generations, the first front typically is a nearly Pareto-
optimal frontier.

4.4. Measure for quantifying the impact of lossy transformations on
subsequent change detection (MILTON)

An important constituent needed for a study such as ours is a
measure quantifying the difference of two time series containing
change points cp and cp. dMILTON is such a measure [12]. It categorizes
the changes as paired changes (PC), false positives (FP) and misses
(MISS). Paired changes are changes which occur in both time series
and are mapped to each other. False Positives are change points which
occur incp but not in cp, while misses are change points occurring in cp
but not incp. For each of these categories an error is calculated (errPC,
errFP, errMISS). These errors then are combined into a total one:

d cp cp errPC errMISS errFP
PC MISS

(,) = + +
| | + | | + 1MILTON (2)

We explain our parametrization of MILTON in Section 5.

5. Experiment setup and initialization

In the following, we first present our framework (Section 5.1),
followed by a summary of our notation (Section 5.2). We then describe
the datasets used (Section 5.3). Our evaluation consists of three phases

which were build on each other, as shown in Fig. 2. Phase 0 finds
optimal parameters for a change-detection algorithm on a subsequence
of an uncompressed dataset, to provide benchmark-change points
(Section 5.4). Phase 1 (Section 5.5) uses the benchmark-change points
to find good parameters of the compression and change-detection
algorithms for any combination of dataset, compression algorithm and
change-detection algorithm. This brings up the question under which
circumstances the parameters found on a subsequence are also well
suited for the complete dataset. We study this question, i.e., the validity
and applicability of good parameters on complete datasets, in Phase 2
(Section 5.6).

We have additionally performed an experiment with a time series
orders of magnitude larger than those we used in the phases described
above. The goal of this experiment has been to show that our frame-
work can handle long time series as well.

5.1. Framework

For the experimental evaluation we have designed and implemen-
ted a flexible generic framework which supports the different algo-
rithms and is extensible to test further algorithms. We have integrated
existing implementations whenever available. For C_APCA, C_SF and
C_CHEB we have used the implementations of [8].5 The source code
for D_ADWIN6 and D_BOCD7 is publicly available as well. For the
wavelet compression we use a method from [14], which is part of the
MATLAB libraries. We also reuse existing implementations of C_PPA
andMILTON. We have implemented the remaining algorithms (D_ED,
D_CF and D_OKCD) in MATLAB following the original publications,
and they can be downloaded from our web page. Our framework
handles algorithm implementations in C, C++, C#, R, MATLAB or
Java.

The framework allows to define jobs for each experiment. A job
consists of the algorithms chosen for compression, change detection
and optimization, together with their parameters. It also includes the
dataset and reference change points. Jobs cover the workflow of the
experiments depicted in Fig. 2. To distribute the work among several
machines, the jobs are stored in a database where any free node can
poll an open job. The results are then stored in the database as well.

Table 3
Key characteristics of change-detection algorithms.

Algorithms Key characteristics

D_ADWIN Uses adaptive windowing
Fast and memory efficient

D_ED Uses maximum likelihood estimation
Fits models (polynomials) to data

D_CF Works in two stages using autoregressive models
Combines outlier detection and change detection

D_OKCD Partitions and maps data in feature space
Uses support vector machines clasification

D_BOCD Online algorithm
Estimates probability distributions

Fig. 2. Overview of the experiments.

5 lsirwww.epfl.ch/benchmark/, May 18, 2015.
6 https://github.com/abifet/adwin, May 18, 2015.
7 hips.seas.harvard.edu/content/bayesian-online-changepoint-detection, May 18,

2015.

G. Hollmig et al. Information Systems 65 (2017) 65–77

69

Downloaded from http://iranpaper.ir
http://www.etransteam.com

5.2. Notation

In this paper x t t n() ∈ , = 1, 2,…, is a real-valued one-dimen-
sional time series. cd θ(·)cd stands for a change-detection algorithm
with parameters θcd. By applying it to a time series x, we get
cp t t n() ∈ {0, 1}, = 1, 2,…, where

⎧⎨⎩cp t t() = 1 if is a change point
0 otherwise. (3)

We further define a transformation trans θ(·)trans with parameters
θtrans. This method takes the input time series x and creates the time
series  x t t n() ∈ , = 1, 2,…, , where each value x t() is the result of a
compression and subsequent decompression step:

x trans x θ= ()trans (4)

Δcr is the compression ratio:

Δ sizeof compresseddata
sizeof originaldata

=cr
(5)

Note that size_of_compressed_data cannot be derived from x . This is
because it does not represent the compressed data. We summarize our
notation in Table 4.

5.3. Datasets

For the experiments we use artificial datasets as well as real world
datasets, see Figs. 3 and 4.

5.3.1. Synthetic datasets
We have generated the artificial datasets in line with earlier work

[18,20]. Our rationale here is to have well-defined change points of the
types that are most frequent in reality, namely changes in mean or
variance. We use an autoregressive function similar to the one in [20]
which generates change points at every 200th point of time. This is in
contrast to the real-world datasets below where changes occur irregu-
larly. In the Rising Mean dataset we increase the mean of normally
distributed noise by 1 at every change point. The Variance Change
dataset alters the variance of the noise between 1 and 3 at a change
point. The rationale is to study the behavior of the algorithms under
another kind of change. For the additional experiment regarding long
time series (Section 6.4), we used a time-series (Long) of one million
points, which is much longer than the other time-series we used (e.g.,
100 times larger than REDD). The time series we generated contains
changes of random size at random points in time. Algorithms 1, 2 and 3
contain the pseudo code generating this data, the companion web page
contains it as MATLAB code.

Algorithm 1. Rising mean.

μ ← 0, σ ← 1

x (0) ← 0, x (1) ← 0
for t ← 2 to t lengthof dataset= do

x t x t x t N μ σ
t mod

μ μ
if then

end

() ← 0.6· (− 1) − 0.5· (− 2) + (,)
200 = 0

← + 1

2

end

Algorithm 2. Variance change.

μ ← 0, σ ← 1
x (0) ← 0, x (1) ← 0
for t ← 2 to t lengthof dataset= do

x t x t x t N μ σ
t mod

σ σ
if then

end

() ← 0.6· (− 1) − 0.5· (− 2) + (,)
200 = 0

← 4 −

2

end

Algorithm 3. Long.

nbchanges ← 100
σ = 1
changetimes generaterandomvalues nbchanges← ()
changesizes generaterandommeans nbchanges← ()
for t ← 1 to t nbchanges= do

k t to k changetimes t
x k N μ changesizes t σ

for do

end

← = (+ 1)
() ← (= (),)2

end

5.3.2. Real-world datasets
Unfortunately, we are not aware of any large real-world dataset that

is labeled so that it can be used in quality experiments on change
detection. One reason is that, in real-world datasets, defining change
points unambiguously is not possible in general. Data containing
change-point annotations by hand as metadata exists nevertheless,
and we use such data from different fields: EEG data, heart rate
monitoring and electricity data. To account for real-world datasets with
complex change points, we have included two additional datasets from
the electricity domain. Here, instead of metadata annotated by hand,
we have used an established change point detection method to obtain
ground-truth change points. This is because changes are more diverse
and irregular than with the simpler real-world data sets, so we deem
intellectural annotations less reliable. Next, for the same reason, we
expect subsequences of the complex data sets to differ from one
another by much. Hence, we only use the complete complex datasets
in our evaluation. We thus differentiate between simple real-world
datasets and complex ones, as follows.

Simple real-world datasets: The EEG dataset8 has been captured
while the subject was opening and closing his eyes; this leads to a
noticeable peak. We have removed a one-value outlier at 898 by
interpolating the neighboring values to get more stable change-detec-
tion results.

The heart-rate dataset comes from the (PAMAP) project. More
specifically, we use the outdoor dataset of Subject 2. It contains
activities like sitting, walking, running or playing soccer. Since the
data has been captured with 100 Hz, which is way above the resolution
of the heart-rate monitor, we have reduced the dataset by using every
hundredth data point, in order to reduce the data volume and the huge
runtime of some of the change-detection algorithms.

We also use the REDD energy-consumption data9. It records the

Table 4
Symbols used and their meaning.

Symbol Meaning

x Original time series
x Compressed time series
cpground Gound truth change points

cp Benchmark change points on x
cp Comparison change points on x
Δcr Compression ratio
PC Number of paired changes
FP Number of false positives
MISS Number of missed changes
errPC Total error of paired changes
errFP Total error of false positives
errMISS Total error of missed changes

8 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State, May 18, 2015.
9 http://redd.csail.mit.edu/, May 18, 2015.

G. Hollmig et al. Information Systems 65 (2017) 65–77

70

Downloaded from http://iranpaper.ir
http://www.etransteam.com

power consumption of a house broken down into different electrical
consumers. For our evaluation we have selected Channel 17 of House 1,
which is the lighting in one of the rooms. This is because the lighting is
relatively independent of other household appliances.

Table 5 shows the lengths of the subsequences we have selected
according to the Training Data design decision. For the EEG dataset
the segment is slightly larger than for the other data. This is because
the ground-truth change points are farther apart.

Complex real-world datasets: The REDD_ALL dataset is a complex
version of the REDD dataset (Fig. 4). Here, we have selected the per-
minute aggregated power consumption of one of the households of the
REDD dataset. As motivated earlier, we have annotated this data using
the Student change-detection algorithm from the cpm R-package [21].

We have obtained the CREST dataset by using the high-resolution
energy demand model from [22] (Fig. 4). The model simulates

appliance use and home occupancy in order to obtain data with
characteristics similar to real-world household power consumption.
As in the case of the REDD_ALL dataset, we have used the Student
change-detection algorithm from the cpm R-package to annotate
ground-truth change points.

5.4. Phase 0: benchmark change point computation

Recall that Phase 0 is not an experiment in its own right, but an
initialization step. It is described next. As stated under Benchmark
Change Points in Section 3 on Design Decisions, we do not use the
ground-truth change points as reference for our evaluation. Instead we
use benchmark change points by minimizing the MILTON distance to
the ground truth:

Fig. 3. Plots of excerpts of all datasets including ground truth. Top row shows real world datasets: EEG, PAMAP and REDD (from left to right); bottom row shows the artificial datasets:
Rising Mean, Variance Change and Long.

Fig. 4. Plots of excerpts of real-world complex datasets including ground truths: above REDD_ALL, below CREST.

G. Hollmig et al. Information Systems 65 (2017) 65–77

71

Downloaded from http://iranpaper.ir
http://www.etransteam.com

d cd x θ cparg min ((),)
θ

MILTON cd ground
cd (6)

To this end, we use an O_SOEA. Table 6 shows its parameterization.
We have executed the further phases only for combinations of

change-detection techniques and datasets which lead to acceptable
results. We deem a result acceptable if the number of paired changes
exceeds the one of false positives and the one of misses, so that most of
the original change points are found. To facilitate a comparison,
Table 5 lists the MILTON distance against the ground-truth change
points. ‘-’ stands for results that have not been accepted. Most
algorithms have found a parametrization on Rising Mean and
Variance Change. The D_ADWIN and Variance Change combination
does not have a result, because D_ADWIN only finds changes of mean
values [16]. As expected, some change-detection algorithms do not
perform well on some real-world datasets. This is because their ground
truth is based on secondary observations that do not necessarily cause
a change in the data at exactly the same time.

5.5. Initialization of phase 1: evaluation of compression impact

An important goal of our evaluation is to determine an optimal set
of parameters which preserves the change points cp found before
compression as much as possible while maximizing the compression at
the same time. This is a multi-objective optimization problem with the
objectives d cp cp(,)MILTON and compression ratio Δcr, where
  cp cd x θ= ()cd . The parameter space consists of the parameters for the
compression and the change-detection algorithm: θ θ θ= (,)trans cd . To
evaluate the algorithms we study all possible combinations on each
dataset.

To find optimal parameter sets we use an adaptation of NSGA-II

described in the next paragraph. See Table 6 for the parameterization
of NSGA-II. The weighting functions for the errors in the MILTON
distance are important as well. See again Table 6, with functions
similar to [12]. In a nutshell, these functions f f f f(, , ,)TIME SCORE MISS FP
determine the weight given to the different kinds of errors caused by
compression. In our case, for example, a shift in time of a change
(fTIME) is weighted proportionally to its absolute value.

The parameters of the change-detection and compression algo-
rithms have a range of validity which must be kept during the
optimization. Therefore we modify NSGA-II to calculate its random
values in the range ϕ ϕ[,)min max during the initialization of the popula-
tion and for mutations. For some parameters we have reduced this
range even further to reduce the search space and to speed up the
optimization process. Tables 7 and 8 list the parameters and the ranges
we have selected. An additional modification is the distinction between
float and integer parameters. Random values for the float parameters
are calculated as ϕ ϕ r ϕ ϕ′ = + ·(−)min max min , where r is an equally
distributed random number in [0; 1). For integer parameters this
value is then rounded: ϕ ϕ′ = ⌊ ′⌋.

The result of this phase is a Pareto frontier that represents the best
possible trade-offs between compression ratio and the preservation of
change points. Each individual consists of the MILTON distance, the
compression ratio and the root-mean-square error (RMSE) calculated
for the corresponding set of compression and change-detection para-
meters. To select an individual of this frontier suitable for a specific
application scenario, a fitness is calculated:

fitness α d cp cp α Δ= · (,) + (1 −)·MILTON cr (7)

where α is a parameter to weigh the addends. Note that α is used only
to select an individual in the result set after the optimization is
finished. This provides a lot of freedom and flexibility during the
evaluation.

5.6. Initialization of Phase 2: complete datasets

Section 3 has explained the necessity to evaluate the best perform-
ing combination of compression and change detection on a subse-
quence but also on the complete dataset. The details of the experi-
mental setup when it comes to the complete dataset are as follows: The
parameters for a specific α of the Phase 1 experiment are applied to the
complete dataset. For the Rising Mean dataset, we have divided the ϵ
threshold by 10, because it depends on the global maximum that is 10
times higher on the complete Rising Mean dataset. As a reference, we
use the parameters computed in Phase 0 (Section 5.4) on the complete

Table 5
Overview of datasets with their corresponding MILTON distance of initial parameter calculation, where CP| | is the number of change points in the whole dataset and CP| |Seg in the
segment.

Name Length CP| | Segment CP| |Seg dMILTON

D_ADWIN D_ED D_CF OKCD D_BOCD

Rising mean 10,000 49 1000 4 2.006 1.049 1.009 0.202 0.003
Variance Change 10,000 49 1000 4 – 2.822 0.833 0.422 0.217
REDD 10,000 144 1000 10 2.365 – 0.104 – 0.464
PAMAP 2280 13 1000 6 1.018 – – 1.041 0.791
EEG 14,979 23 1500 3 0.27 0.272 – 1.287 0.017

Table 6
List of parameters for the optimization algorithms, fitness function and MILTON
distance with their corresponding values used for our experiments.

Algorithm Parameter Value

O_SOEA Population size 100
Exit fitness 0.001
Max. generations 500
Mutation rate 0.2
Mutation change 0.4
Selection pressure τ 0.4

O_NSGA-II Population size 500
Exit fitness 0.001
Max. generations 10
Mutation rate 0.2
Mutation change 0.4

Fitness Weight α 0.5

MILTON f Δ()TIME t Δ| |t

f Δ()SCORE s 0

f s()MISS s(+ 1)2

f s()FP s

Table 7
List of parameters for all compression algorithms and the ranges of the optimization.

Algorithm Parameter Min Max Type

All methods Threshold ϵ 0 0.3 float
C_CHEB Segment length 4 x| | int
C_WAVE Max. level 1 10 int
C_PPA Max degree 2 5 int

G. Hollmig et al. Information Systems 65 (2017) 65–77

72

Downloaded from http://iranpaper.ir
http://www.etransteam.com

dataset. Then the MILTON distance dMILTON, compression ratio Δcr
and RMSE are calculated.

6. Results

This section first describes and discusses our results of the Phase 1
experiments and then presents the results of Phase 2 on the complete
data. As an initial, exemplary illustration, Fig. 5 visualizes the data
transformation in the different phases for the combination REDD,
D_BOCD and APCA. The top plot, although not the focus of our study,
shows the raw data with ground-truth change points as vertical straight
lines. The middle plot shows the benchmark change points calculated
in Phase 0. The bottom plot shows the change points on the
compressed data with the best result parameters of Phase 1.
Comparing the top plot to the middle plot, we can see that D_BOCD
fails to detect two changes and incorrectly identifies two other ones.
Taking benchmark change points as a reference when run on the
compressed data, i.e., comparing the middle plot to the bottom plot,
D_BOCD fails to detect two changes. Thus, the decrease in the
performance of D_BOCD on compressed data is small in this case,
compared to its performance on the original data.

6.1. Phase 1—results

The results of the Phase 1 experiments are Pareto frontiers. To
illustrate, Fig. 6 shows a sample of the Pareto frontiers on the Variance
Change dataset. Each plot contains all compression techniques for one
change-detection algorithm, except for D_ADWIN, which is not
applicable to this dataset (see Section 5.4). There is not any frontier
dominating all other frontiers, therefore no single best solution exists.
Dependent on the dataset and parameter α, different combinations of
change-detection and compression algorithm yield the best result.

We observe that comparing the large number of Pareto frontiers
produced by our experiments is difficult. Thus, we select the individuals
with the lowest fitness (see Eq. 7) of each Pareto frontier for different
values of α and compare their MILTON distance and compression ratio
in Figs. 7 and 8.

Earlier we have described two scenarios (SmartGrid, IoT) where an
approach such as ours is indispensable if one wants to find a good
combination of compression and change-detection algorithms. These
scenarios have different requirements. We therefore examine the
Pareto frontiers for two different α values, α = 0.5 for the Smart
Grid, and α = 0.05 for IoT. For each solution on the Pareto frontier

we calculate a fitness value using the respective α value. We have
chosen the parametrization with the lowest fitness that indicates the
best result for the scenario. We get a triple (fitness, MILTON distance,
Δcr) for each experiment. See Figs. 7 and 8 for the MILTON distance
and Δcr values, for α = 0.5 and α = 0.05. For several datasets, some
change-detection algorithms (e.g., D_ED on REDD) did not detect any
changes or have given very poor results. We therefore did not include
them in Figs. 7 and 8. Fig. 8 contains the results only on the Variance
Change dataset. The reason is that for two datasets (EEG and PAMAP)
the results for both values of α are identical, while for the other two
they are very similar. The MILTON distance is the value above the
horizontal axis, the compression ratio is below. (For both dMILTON

and Δcr , lower values are better.) Using the corresponding value of α,
the value of the fitness can be retrieved. For instance, for Fig. 7
α(= 0.5), it is the average of dMILTON and Δcr . For this value of α, the
best combinations of compression and change-detection algorithm for
each dataset are as follows.

Synthetic datasets:

• Rising mean: D_BOCD with C_APCA clearly is the best solution.
This is because it achieves a MILTON distance of almost zero and
also has the best compression ratio.

• Variance change: The best fitness is obtained with D_BOCD and
C_CHEB, closely followed by D_BOCD and C_PPA, although the
compression ratio is not optimal.

Simple real-world datasets:

Table 8
List of parameters for all change detection algorithms and the ranges of the optimization.

Algorithm Parameter Min Max Type

D_ADWIN M 2 10 Int
δ 0 1 Float

D_ED δ 0 1 Float
p 1 200 Int
MSet* 0 5 Int

D_CF T 3 10 Int
k 2 10 Int
r 0 0.4 Float

D_OKCD m1 2 200 Int
m2 2 200 Int
ν 0.2 0.8 Float
η 0 1 Float
σ 0 1 Float

D_BOCD μ0 0 2 Float
κ0 0 5 Float
α0 0 5 Float
β0 0 5 Float
λ >0 500 Float

* In our case MSet specifies the maximum degree of the polynomials for the
approximation (cf. Section 4.2).

Fig. 5. D_BOCD and C_APCA on REDD. Top down: raw data with ground-truth change
points, result of benchmark-change point computation, best result of change detection
with compression α(= 0.5).

G. Hollmig et al. Information Systems 65 (2017) 65–77

73

Downloaded from http://iranpaper.ir
http://www.etransteam.com

• REDD: D_CF with C_SF is the best combination. This is because it
has a close-to-zero MILTON distance and a very good compression
ratio.

• PAMAP: The best algorithms are D_BOCD and C_CHEB, mainly
because of the low MILTON distance. D_BOCD with C_WAVE also
performs very well.

• EEG: D_BOCD with C_SF clearly is optimal.

Overall D_BOCD performs very well on all datasets, be they
synthetic, be they real, and is only beaten once by D_CF. We have
made further noteworthy observations:

• A MILTON distance larger than 3 means that no change points have
been found after compression. Thus, D_CF on Rising Mean and
D_ADWIN on the EEG data do not work at all.

• The Variance Change dataset has relatively high compression ratios.
This is because the changes in variance are difficult to compress,
especially on combinations D_OKCD with C_PPA and D_ED with
C_CHEB.

• The REDD dataset is easy to compress while keeping the change
points, because of its very sharp edges and low signal-to-noise ratio.
It therefore has the lowest average fitness of all datasets.

Comparing the results for α = 0.05 (Fig. 8) to the ones above, the
compression ratios are smaller. However, the MILTON distances are

Fig. 6. Pareto frontiers for D_ED, D_CF, D_OKCD and D_BOCD (from top to bottom)
on the Variance Change dataset.

Fig. 7. Overview of the best solutions for α = 0.5 on each combination of compression
algorithm, change detection algorithm and dataset.

G. Hollmig et al. Information Systems 65 (2017) 65–77

74

Downloaded from http://iranpaper.ir
http://www.etransteam.com

higher. Both effects are expected. On the Variance Change dataset, the
results with the lowest MILTON distance for α = 0.5 has a very high
compression ratio. For α = 0.05, those combinations yield a much
lower compression ratio.

On PAMAP and EEG the solutions for α = 0.5 and α = 0.05 are the
same. The best results for α = 0.05 from Rising Mean and REDD Data
are identical to those from α = 0.5. This is because their low compres-
sion ratios are not reduced further. Some of the other results have
slightly lower compression ratios.

Our takeaway is that our experiments do indeed help to find
solutions for specific use cases. The results of this phase also show
that the quality differs a lot between different combinations in the same
setting. Thus it is very important to be able to study different
combinations using a setup as elaborate as ours.

We have carried out further experiments to illustrate the influence
of α on the fitness function. As a reminder, α is not used in the
optimization process. It is used to select an individual in the result after
the optimization is finished. Fig. 9 shows the value of the fitness
function depending on α for the combination of D_BOCD and C_CHEB
on the REDD dataset. The crosses in the figure represent the cases
where a different individual is chosen, since its fitness now is the
minimal one. We see that there are three such cases and four
corresponding individuals overall. Thus, by choosing an appropriate
α based on the requirements of the application scenario, we can flexibly

adjust the choice of the individual for any values of dMILTON and Δcr
in order to, say, eliminate the possible dominance of one over the other.

Lessons learned: Finally, we have found some general heuristics
regarding the change-detection algorithms, as follows:

• D_ADWIN performs well on the Rising Mean and the REDD
datasets. These datasets contain sharp and sudden changes. In
contrast, D_ADWIN performs worst on PAMAP and EEG, where
changes are of a different nature. Here, compressing the data makes
changes practically undetectable for D_ADWIN.

• All in all, D_BOCD has a stable performance on all datasets and

Fig. 8. Solutions for α = 0.05 on variance change.

Fig. 9. Fitness vs. α for D_BOCD and C_CHEB on the REDD dataset.

Table 9
Comparison of dataset excerpts (left) and complete datasets (right) using the same parameters.

Combination dMILTON Δcr RMSE Fitness |PC| |FP| |MISS|

Best fitnesses
Rising Mean: C_APCA, D_BOCD 0.000|0.674 0.010|0.011 0.827|0.690 0.010|0.342 4|48 0|3 0|9
Variance Change: C_CHEB, D_BOCD 0.181|1.716 0.316|1.031 1.559|0.000 0.249|1.374 5|75 1|39 0|40
REDD: C_SF, D_CF 0.001|0.957 0.041|0.048 4.449|4.479 0.021|0.503 11|126 0|9 0|37
PAMAP: C_CHEB, D_BOCD 0.177|0.476 0.039|0.039 4.585|4.873 0.108|0.258 6|13 1|3 0|1
EEG: C_SF, D_BOCD 0.038|3.104 0.030|0.017 14.95|17.305 0.034|1.560 3|9 0|30 0|1
Best generalization
Rising Mean: C_APCA, D_ED 0.021|0.432 0.014|0.018 0.698|0.669 0.035|0.225 4|43 0|1 0|5
Variance Change: C_SF, D_CF 0.681|0.580 0.194|0.182 2.153|2.422 0.435|0.762 7|56 2|5 1|8
REDD: C_WAVE, D_CF 0.083|0.244 0.213|0.207 0.921|1.021 0.255|0.225 11|155 1|8 0|8
EEG: C_PPA, D_BOCD 0.772|1.919 0.005|0.002 36.01|43.65 0.333|0.960 3|10 3|21 0|0

Table 10
Overview of the best solutions for α = 0.5 on each combination of compression algorithm,
change detection algorithm and complex real-world dataset.

Compression algorithm Change-detection algorithm Δcr dMILTON

REDD_ALL
D_ADWIN C_APCA 0.02083 58.2486
D_ADWIN C_CF 0.01875 6.4055
D_ADWIN C_CHEB 0.2861 3.8407
D_ADWIN C_PCA 0.1097 5.2491
D_ADWIN C_WAVE 0.0851 6.9779
D_BOCD C_APCA 0.01389 62.4420
D_BOCD C_CF 0.0141 16.3038
D_BOCD C_CHEB 0.1410 0.5881
D_BOCD C_PCA 0.671 1.9527
D_BOCD C_WAVE 0.0747 5.4674

CREST
D_ADWIN C_APCA 0.0167 50.1308
D_ADWIN C_CF 0.0094 6.6849
D_ADWIN C_CHEB 0.2826 4.1020
D_ADWIN C_PCA 0.0051 20.3947
D_ADWIN C_WAVE 0.1114 5.1926
D_BOCD C_APCA 0.0375 52.0951
D_BOCD C_CF 0.0094 17.9635
D_BOCD C_CHEB 0.3770 2.9814
D_BOCD C_PCA 0.0088 39.5499
D_BOCD C_WAVE 0.0625 4.7573

Fig. 10. Pareto front for the Long time series.

G. Hollmig et al. Information Systems 65 (2017) 65–77

75

Downloaded from http://iranpaper.ir
http://www.etransteam.com

most compression algorithms. In the case where it performs worse
than other algorithms, it does so only slightly. We therefore
conclude D_BOCD to be a rather robust algorithm in compression
scenarios.

• The performance of D_ED and D_CF strictly depend on the dataset,
and it is hard to find characteristics of the datasets for which these
algorithms perform well. For instance, D_CF gives the best results
on the REDD dataset, while it performs the worst on the Rising
Mean dataset, although we think that these datasets are rather
similar.

6.2. Phase 2—results

As explained in Section 5.6, we apply the parameters of the results
from Phase 1 to the complete data. For every set we choose the
combination with the lowest fitness. We expect that those parameter
sets will achieve the same quality of results, mainly in terms of stable
ratios between PC, FP and MISS, as on the subsequence datasets. Since
dMILTON grows quadratically for the number of FP and linearly for the
one of MISS (see Table 6), it is hardly comparable on the complete
dataset. On the other hand, we expect that the compression ratio stays
constant.

Table 9 shows our results. We do not discuss these specific results
separately for synthetic and simple real-world datasets because results
are similar regardless of the nature of the data. This means that the
characteristics of simple real-world change points do not influence the
results of Phase 2. We also do not include results for the PAMAP
dataset because none of the results corresponds to a good general-
isation on this dataset. In contrast to our expectation, there are
disproportionally more FPs and misses than on small sets. From
EEG we conclude that three change points are not sufficient to train
the change detection properly. The O_NSGA-II overfits the parameters
on the training data. To avoid this, we have also tested the other
combinations which do not show the best but nevertheless good fitness.
The lower part of Table 9 shows that these parameters yield results on
the complete dataset which are as good as the ones on the excerpts. On
REDD for instance, ChangeFinder detects eleven times as many change
points but only eight times as many FPs. In contrast to Section 6.1,
D_BOCD performs best in only two out of five cases. In every case the
compression ratio differs only slightly. To sum up, we can say that the
results from a short subsequence can be used on the complete dataset
without losing quality. However, it is necessary to rely on several
results from Phase 1 to find the ones adapting best.

6.3. Complex real-world datasets

Table 10 is an overview of the best solutions for α = 0.5 on the
combinations of all compression algorithms and D_ADWIN and
D_OBCD for the complex real-world datasets. Results are in most
cases similar for both datasets. The combinations with the best fitness
for REDD_ALL and CREST are obtained with D_BOCD, and C_CHEB
and C_WAVE, respectively. This confirms the result obtained with
synthetic and simple real-world datasets, where D_BOCD has had a
stable performance.

We also notice that, for certain combinations of compression and
change-detection algorithms, results are much worse than for the
previous datasets. As an example, D_ADWIN and C_APCA obtains a
MILTON distance of around 58 in the best case, which is around one
order of magnitude higher than for all other combinations. Apparently,
this is because compressing complex real-world changes using simple
polynomials such as constant functions does alter changes significantly.

6.4. Experiment with long time series

The goal of this experiment is to use our framework with a time
series significantly bigger than the ones we used in Phases 1 and 2 and

show that our framework is applicable to such time series as well. We
use one combination of a compression and change detection algorithm
on the Long time series, resulting in the Pareto front in Fig. 10. As
expected, we obtain sets of trade-off solutions. These are useful to
choose adequate parameters for the compression depending on the
requirements of the application scenario.

7. Conclusions

In many situations, compression and change-detection methods
must be used in combination. In such a setting however, a number of
questions are unclear, e.g.: Which combination is best for a given
scenario? How to find a good parameterization of compression and
change-detection algorithms when these are used together? How well
can we trade compression ratio against change-detection quality? This
article has featured a comprehensive experimental evaluation that
addresses these questions.

A study such as ours requires a number of non-trivial design
decisions. This article has listed the important issues, together with the
respective options and our rationale behind the ‘winner’ alternatives.

An important insight is that the overall picture is very differen-
tiated. Result quality highly depends on the dataset. For instance, the
change-detection method ChangeFinder is the best performing algo-
rithm on REDD, but the worst performing one on the Rising Mean
dataset. Our platform has turned out to be an appropriate tool to find
good parameterizations, at least if the dataset inspected is sufficiently
representative and large.

When data is compressed, the intention always is to decompress it
later and use it in some way. Change detection is one kind of data
usage, but other kinds of usage obviously abound and are important as
well. Just think of the plethora of different stream-mining approaches
which have been proposed in the recent past. Generalizing the work
described here to other kinds of usage is important and is part of our
future work.

References

[1] M. Ringwelski, C. Renner, A. Reinhardt, A. Weigel, V. Turau, The hitchhiker's guide
to choosing the compression algorithm for your smart meter data, in: IEEE
International on Energy Conference and Exhibition (ENERGYCON), 2012.

[2] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality
reduction for indexing large time series databases, ACM SIGMOD Record 30
(2001) 2.

[3] F. Desobry, M. Davy, C. Doncarli, An online kernel change detection algorithm,
IEEE Trans. Signal Process. 53 (2005) 8.

[4] Y. Cai, R. Ng, Indexing spatio-temporal trajectories with chebyshev polynomials, in:
Proceedings of the 2004 ACM SIGMOD.

[5] A.F. Cheng, S Edward Hawkins III, L. Nguyen, C.A. Monaco, G.G. Seagrave, Data
compression using Chebyshev transform (2007).

[6] A. Arion, H. Jeung, K. Aberer, Efficiently maintaining distributed model-based
views on real-time data streams, in: Global Telecommunications Conference
(GLOBECOM 2011), IEEE, Texas, Houston, USA

[7] R.P. Adams, D.J.C. MacKay, Bayesian online changepoint detection, arXiv preprint
arXiv:0710.3742, (2007).

[8] N.Q.V. Hung, H. Jeung, K. Aberer, An evaluation of model-based approaches to
sensor data compression, IEEE Trans. Knowl. Data Eng. 25 (2013) 11.

[9] Communication Networks for Smart Grids, Computer Communications and
Networks, Springer, London, 2014.

[10] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor
networks, IEEE Commun. Mag. 40 (2002) 8.

[11] D. Miorandi, S. Sicari, F.D. Pellegrini, I. Chlamtac, Internet of things: vision,
applications and research challenges, Ad Hoc Netw. 10 (2012) 7.

[12] P. Efros, E. Buchmann, A. Englhardt, K. Böhm, How to quantify the impact of lossy
transformations on change detection, in: Proceedings of the 27th International
Conference on Scientific and Statistical Database Management, 2015.

[13] H. Elmeleegy, A.K. Elmagarmid, E. Cecchet, W.G. Aref, W. Zwaenepoel, Online
piece-wise linear approximation of numerical streams with precision guarantees,
Proceedings of the VLDB Endowment, vol. 2(1), 2009.

[14] M. Vishwanath, The recursive pyramid algorithm for the discrete wavelet trans-
form, IEEE Trans. Signal Process. 42 (1994) 3.

[15] F. Eichinger, P. Efros, S. Karnouskos, K. Böhm, A time-series compression
technique and its application to the smart grid, VLDB J. 24 (2015) 2.

[16] A. Bifet, R. Gavaldà, Learning from time-changing data with adaptive windowing,
in: Proceedings of the 2007 SIAM International Conference on Data Mining,

G. Hollmig et al. Information Systems 65 (2017) 65–77

76

Downloaded from http://iranpaper.ir
http://www.etransteam.com

http://refhub.elsevier.com/S0306-16)30026-sbref1
http://refhub.elsevier.com/S0306-16)30026-sbref1
http://refhub.elsevier.com/S0306-16)30026-sbref1
http://refhub.elsevier.com/S0306-16)30026-sbref2
http://refhub.elsevier.com/S0306-16)30026-sbref2
http://refhub.elsevier.com/S0306-16)30026-sbref3
http://refhub.elsevier.com/S0306-16)30026-sbref3
http://arXiv:0710.3742
http://refhub.elsevier.com/S0306-16)30026-sbref4
http://refhub.elsevier.com/S0306-16)30026-sbref4
http://refhub.elsevier.com/S0306-16)30026-sbref5
http://refhub.elsevier.com/S0306-16)30026-sbref5
http://refhub.elsevier.com/S0306-16)30026-sbref6
http://refhub.elsevier.com/S0306-16)30026-sbref6
http://refhub.elsevier.com/S0306-16)30026-sbref7
http://refhub.elsevier.com/S0306-16)30026-sbref7
http://refhub.elsevier.com/S0306-16)30026-sbref8
http://refhub.elsevier.com/S0306-16)30026-sbref8

Society for Industrial and Applied Mathematics.
[17] V. Guralnik, J. Srivastava, Event detection from time series data, in: SIGKDD,

1999.
[18] J. Takeuchi, K. Yamanishi, A unifying framework for detecting outliers and change

points from time series, IEEE Trans. Knowl. Data Eng. 18 (2006) 4.
[19] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic

algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2), 2002

[20] Y. Kawahara, M. Sugiyama, Change-point detection in time-series data by direct
density-ratio estimation, in: Proceedings of the 2009 SIAM International
Conference on Data Mining, Society for Industrial and Applied Mathematics.

[21] R. Killick, I. Eckley, Changepoint: an r package for changepoint analysis, J. Stat.
Softw. 58 (2014) 1–19.

[22] I. Richardson, M. Thomson, D. Infield, C. Clifford, Domestic electricity use: a high-
resolution energy demand model, Energy Build. 42 (2010) 1878–1887.

G. Hollmig et al. Information Systems 65 (2017) 65–77

77

Downloaded from http://iranpaper.ir
http://www.etransteam.com

http://refhub.elsevier.com/S0306-16)30026-sbref9
http://refhub.elsevier.com/S0306-16)30026-sbref9
http://refhub.elsevier.com/S0306-16)30026-sbref10
http://refhub.elsevier.com/S0306-16)30026-sbref10
http://refhub.elsevier.com/S0306-16)30026-sbref11
http://refhub.elsevier.com/S0306-16)30026-sbref11

	An evaluation of combinations of lossy compression and change-detection approaches for time-series data
	Introduction
	Application scenarios
	Smart grid
	Internet of things

	Design decisions
	Training data
	Benchmark change points
	Parametrization
	Multi-objective optimization
	Error measure

	Fundamentals
	Compression methods
	Change detection techniques
	Optimization techniques
	Measure for quantifying the impact of lossy transformations on subsequent change detection (MILTON)

	Experiment setup and initialization
	Framework
	Notation
	Datasets
	Synthetic datasets
	Real-world datasets

	Phase 0: benchmark change point computation
	Initialization of phase 1: evaluation of compression impact
	Initialization of Phase 2: complete datasets

	Results
	Phase 1—results
	Phase 2—results
	Complex real-world datasets
	Experiment with long time series

	Conclusions
	References

