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Abstract. Fault trees constitute one of the essential formalisms for sta-
tic safety analysis of various industrial systems. Dynamic fault trees
(DFT) enrich the formalism by support for time-dependent behaviour,
e.g., repairs or dynamic dependencies. This enables more realistic and
more precise modelling, and can thereby avoid overly pessimistic analy-
sis results. But analysis of DFT is so far limited to substantially smaller
models than those required for instance in the domain of nuclear power
safety. This paper considers so called SD fault trees, where the user is
free to express each equipment failure either statically, without modelling
temporal information, or dynamically, allowing repairs and other timed
interdependencies. We introduce an analysis algorithm for an important
subclass of SD fault trees. The algorithm employs automatic abstraction
techniques effectively, and thereby scales similarly to static analysis algo-
rithms, albeit allowing for a more realistic modelling and analysis. We
demonstrate the applicability of the method by an experimental evalua-
tion on fault trees of nuclear power plants.

1 Introduction

Fault trees are a very prominent formalism for inductive failure modelling. They
underly safety assessments in a wide spectrum of technical systems, ranging
from nuclear power production [9,17], over chemical and process industry [7] to
automotive and aerospace [14] systems.

A fault tree decomposes the failure potential of a complete system into fail-
ures of its subcomponents, sub-sub-components, and sub-sub-subcomponents,
up to the level of so-called basic events. The latter represent individual equip-
ments, atomic external events, operator errors, etc. These are assumed to be
quantifiable wrt. estimates of failure frequencies or probabilities, achieved by
statistical methods from operation history or simulations or even by engineering
computations. Originally, fault trees describe a static view on a system, we thus
call them static fault trees (SF'Ts). Static fault trees pair simplicity in modelling
with efficiency in analysis techniques.

A particularly effective analysis technique characterises all fault combina-
tions leading to the complete failure of an SFT, and returns their minimal-sized
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representation, in the form of so called minimal cutsets. Even though the num-
ber of minimal cutsets can be exponential in the number of basic events, it is
possible to appropriately employ the cutoff on low probability cutsets to reduce
the size of the problem. This minimal cutset analysis is in daily use for instance
in the safety analyses of nuclear power plants [9,17], where SFTs with several
thousands of basic events are routinely processed, supported by tools such as
SAPHIRE [18] or RISKSPECTRUM [13].

It has been argued [2—4,11,14] that the static system view supported by
SFTs is often very rough (though conservative), in the sense that a more precise
analysis is possible if the fault tree formalism provides support for represen-
tation and analysis of the changes in state of the system in operation. In the
nuclear safety domain, this means that the dynamics of an accident and possible
countermeasures can be detailed. The promised gain in precision is of industrial
relevance, for instance for analyses with longer mission time, such as probabilis-
tic Level 2 [10] (and consequently Level 3) studies in nuclear power plants. After
the Fukushima accident, the interest in analyses studying ‘safe state’ rather than
a fixed mission time has increased. This will increase the need to properly treat
long mission times also within Level 1 [9] probabilistic safety assessment.

Over the years, several kinds of dynamic fault trees have been proposed,
starting with the work of Dugan [2]. However, dynamic analysis techniques need
to implicitly or explicitly explore the state space spanned by the system dynam-
ics. This space tends to be prohibitively large; often it is of exponential size,
relative to the number of basic events. With previous techniques, models with
more than a few hundred basic events are impossible to process. This means
that these approaches cannot be directly applied to large scale industrial fault
tree models such as those of nuclear power plants.

SD fault trees [11] (SD-FTs) have lately been proposed to provide a potential
way forward. They extend SFTs with features to model some parts of the sys-
tem dynamically, without the need to construct the induced state space of the
entire fault tree. This means that it remains possible to utilize efficient solver
technology for SFTs, and combine this with less efficient, but focused analysis
for the dynamic parts. The new features can capture (1) sequential application
of elementary safety functions and (2) repairs of failed components. Basic events
can be considered either static or dynamic. Dynamic dependencies are expressed
via a triggering mechanism, whereby a safety function failure may activate other
safety functions and failed components can be repaired (and thus continue to
perform their function).

In this paper, we build on the SD-FT concept. We attack the problem that
the focused analysis needed for the dynamic parts may still suffer from state
space explosion, exponential in the amount of dynamic basic events. Indeed, the
algorithm originally developed for the SD-FT formalism [11] is efficient only if
restricting the triggering logic severely in expressiveness. This is rooted in the
fact that the algorithm calculates the dynamic failure probability exactly, which
in turn requires considering all possible accident progression scenarios, including



268 O. Béackstrom et al.

consecutive failures and repairs of components. This becomes quickly infeasible
for increasingly intricate triggering patterns induced by a richer triggering logic.

However, our analysis of real-life safety analysis models has made apparent
that most of these scenarios turn out to be rather unrealistic. This is reflected by
their relatively low probability compared to a few dominating simple scenarios.
The present paper exploits this observation to leap to a generally applicable
method. The crux of this leap lies in abstracting away from unrealistic event
sequences in a controlled manner. This allows us to obtain an over- and under-
approximation, safely bounding the exact value. As a result, the present work
lifts the triggering restrictions in their entirety, enabling efficient analysis of
SD-FTs with arbitrary triggering logic. We present this approach on a mildly
restricted subclass of SD-FTs that limits the shape of dynamic basic events, in
contrast to restrictions on the triggering logic.

As we will demonstrate by means of several examples, the resulting method
scales very well to industrial-size systems, even from the nuclear power domain,
and with high precision guarantees. The restrictions we need to impose on SD-
FTs do not affect their adequacy for the application context as they cover all
standardly used reliability models of basic events.

2 Static and Dynamic Fault Trees

We focus our work on a class of static and dynamic (SD) fault trees, intro-
duced in [11]. Tt allows the modelling of components of the system either stat-
ically or dynamically. The behaviour of dynamic components are modelled via
continuous-time Markov chains.

Definition 1. A failure continuous-time Markov chain (failure CTMC, or
fCTMC) is a tuple C = (S,R,v, F) where S is a finite state space, v is the
initial distribution over S, R : S x S — Ry is the rate matriz, and F C S is
the set of failed states.

At initialisation time, the system chooses a state according to initial distribu-
tion v. The amount of time the system spends in some state s is distributed
exponentially (with the rate parameter of the distribution A = >, ¢ R(s,s’)).
After this delay the system moves from the current state to successor s’ with
probability R(s,s’)/> . cq R(s,5").

The set F' of states of a fCTMC C corresponds to failed states of a component.
The complement set represents properly functioning ones. Failure of the com-
ponent is modelled by transitions from functioning to failed states, and repair -
from failed to functioning. An example f{CTMC is depicted in Fig. 1.

The SD-FT formalism allows one to model redundant back-up components
as well. Whenever a component is failed, its back-up substitute can be used by
the system until the main component gets fixed. This feature is modelled with
the help of triggered CTMCs:
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Definition 2. A triggered CTMC (tCTMC) is a fCTMC with states partitioned
into S W S and with total functions on : S°F — S°™ and off : SO — S°U .
We require F' C S°™ and {s € S | v(s) > 0} C S°F i.e. only an on state can be
considered failed, and only at off states the system can be initialized.

A component represented by a
tCTMC can be either switched on or
off. Figurel displays an example of
a tCTMC. Dashed transitions, repre-
senting the effect of functions on and
off, are called triggering transitions.
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Fig.1. An example fCTMC (left) and

Being currently in an on or off state,
a tCTMC behaves in the same way
as an fCTMC. Triggering transitions

tCTMC (right). Double circles indicate F
states. States ok (left) and off; (right) are
initial.

are ignored unless an external event
arrives (e.g. failure of another component). In this case the tCTMC takes instan-
taneously the corresponding triggering off or on transition.

Definition 3 (SD fault trees [11]). A static and dynamic fault tree (SD-FT)
s a finite directed acyclic graph where its leaves are partitioned into sets By,
called static basic events, and By, called dynamic basic events. Its inner nodes
G are called gates where a distinguished root node is denoted gio,. Additionally,

— each gate is either of type AND or of type OR,

~ each gate g has a set of dynamic basic events trig(g) that are triggered by g,

— each static basic event a is specified by its probability of failing p(a),

— each dynamic basic event a is specified by T (a) which is a tCTMC iff a is
triggered by some gate, and an ordinary fCTMC, otherwise.

SD-FT can be considered as a spe-
cific subclass of BDMPs [4], albeit at ’
the price of dropping the distinction
between static and dynamic events.
In fact it is this distinction that we
exploit to conquer and intertwine sta-
tic and dynamic analysis steps effec-
tively.

Without loss of generality, we
assume that each dynamic basic event
is triggered by at most one gate.
The case of multiple triggering gates
J1,92,---gr can be reduced to only
one by adding an OR gate over
91,92, - - -, gk, and making only this OR gate triggering. We also require that
there are no cyclic dependencies in the triggering structure. Scenarios excluded
by this requirement are exactly “deadlocks” situations where none from a group
of several dynamic events can fail before all others have failed.

Pump system fails ‘

fails in fails fails in

to start operation to start operation

OB ORNORNO

Fig. 2. An example of a SD fault tree.

fails
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Ezxample 1. Figure2 depicts an example SD-FT. Dynamic basic events b and d
are denoted by double circles, and their CTMCs are given in Fig. 1 (non-triggered
for b and triggered for d). Failure of pump 1 triggers the event d from the pump
2, depicted by the dashed edge.

Behaviour of a SD-FT. At time zero each static event a either fails with
probability p(a) or succeeds with probability 1—p(a). Dynamic events randomly
choose their initial states according to their initial distributions and proceed as
described above. Failures and repairs of basic events instantaneously propagate
up through the SD fault tree according to the rules of Boolean logic. We call a
gate failed or functioning, if the logic beneath the gate is failed or functioning.
Whenever a triggering gate becomes failed, or gets repaired, it instantaneously
triggers the corresponding triggered basic events, which each instantaneously
take a transition labelled by on or off, respectively.

Semantics. For the formal definition of the SD-FT semantics we refer to [11].
Informally, it is given in terms of a product Markov chain Cpr = (S, R, v, F). To
this end, first, each static basic event a is represented as an equivalent Markov
chain. It consists of only two states ok and fail, has no transitions between them,
and v(fail) = p(a). Then, the product Markov chain is built over the product
state space of all its basic events. Transitions between states occur according to
parallel interleaving, i.e. only one basic event can transit at a time. The failure
state set F of the Cpr is formed by those states in which failures of the respective
components jointly induce a failure of the top gate.

Probability of Failure. We are interested in the probability of the top gate
of the fault tree F'T to fail within some fixed time horizon ¢. We will denote
this value as p(F'T). This value corresponds to the reachability property [1] of
the product Markov chain Cpr, which is the probability of the Markov chain to
reach the set of goal states F within time ¢. Thus

p(FT) = Pre,., [ReachgtF}

3 SD-FT Analysis

Existing Techniques. An effective computational method for SD-FT analysis
has been proposed in [11], albeit with restrictions: The price of the computation
speed is paid by severe constraints on the triggering logic. These constraints
exclude, for instance, multiple dynamic basic events in different subtrees below
OR gates or any occurrence of dynamic basic events in subtrees of AND gates.
Furthermore, for nested triggering, they enforce that all dynamic events under
a (nested) triggering gate are triggered by the same trigger. Relinquishing any
of these constraints makes the algorithm not scale well. For regular industrial
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systems the application of this algorithm is therefore limited. However, the algo-
rithm will be our natural reference for comparison in the experimental evaluation
in Sect. 4.

A More General and More Efficient Approach. In order to successfully apply SD-
FTs to real world applications we thus need a more general and more efficient
approach. In this section we present a new simple and efficient algorithm for
solving SD-FTs. The approach overcomes constraints on the triggering logic in
their entirety. It uses abstractions so as to cope with the state space explosion
problem. In doing so, it introduces a reasonable and controllable error margin,
and comes at the price of mildly restricting tCTMCs appearing as triggered
basic event behaviours. These restrictions are not prohibitive at all with respect
to models currently used in practice. This is rooted in the lack of available
statistical data. Models of basic events that are used in real world application
need the data of failure and/or repair rates for a specific component. These
values are gathered statistically and so far are mostly available for very simple
basic events, like those depicted in Fig. 1. Due to this, designing a finer model
of a basic event is in most cases not possible.

Our algorithm is built upon the ideas of static fault tree analysis and is
centred around the notion of minimal cutsets. A set of basic events C' is a cutset
if whenever all of the basic events in C are simultaneously in a failed state then
the top gate is failed as well. A cutset C is minimal if there is no smaller cutset
contained in C. For instance, in Example 1 the set C' = {a, b, c} is a cutset, while
C = {a,c} is a minimal cutset (MCS). A failure probability of a cutset p(C) :=
Pre,r [ReachgtF(C)}, where F(C) are those states of the product CTMC Cprp

in which all events from C are failed. The set of minimal cutsets L(FT) of a
tree FT represents exactly the failure scenarios of a system, i.e. ReachS'F =

Ucerrr) ReachS'F(C). Thus, p(FT) = Pre,.,. Ucerrr ReachgtF(C)} and
can be computed via minimal cutsets and the inclusion-exclusion principle.

Due to the scale of systems, computation of the failure probability of a
fault tree becomes rarely feasible. Instead, a value called rare event approz-
imation [14] with a cutoff is usually targeted. This quantity is defined by
Prea(FT) = 3 cyser P(C). Here ¢* is called a cutoff constant. In static fault
tree analysis it is usually set to values in the order of 10719, We call a MCS C
relevant if p(C) > ¢*. Following the best practices, we as well approximate the
value pyeq (FT) rather than p(FT) in our analysis.

We will introduce now a subclass of triggered CTMCs that allows efficient
analysis. It mildly restricts the structure of tCTMCs without sacrificing expres-
siveness.

Definition 4 (Simple SD-FT). A SD fault tree is simple if the tCTMC of
each triggered dynamic basic events satisfies the following:

~ R(s,8) >0« 5,8 €S ors,s’ € S
— both on o off and off o on are identities;
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~ the projection of the tCTMC on S°™ (or equivalently S°) has one of the
shapes depicted in Fig. 3 with k >0 and l > 1;
— for any two states Soi and Son, such that sog = off (Son) (or equivalently

Son = 0N(Sof)):

SoffsSon € S\F — R(so, succ(sopr)) < R(Son, succ(son))
SoffySon € F — R(sofr, succ(sopr)) = R(Son, succ(Son)),

i.e. the rate of failing is higher when the component is turned on, than when
it is off, and, analogously, the rate of repair is lower.

This definition in particular naturally allows for models that return to a stable
configuration (on repair or similar). An example of a simple SD-FT is the tCTMC
depicted in Fig. 1.

Remark. The correctness of our
algorithm is rooted in properties
of open Interactive Markov Chains
(oIMCs) [5]. Nowadays, oIMC analysis
has scalability issues, but it might ben-
efit from recent advances in the field
of Continuous Time Markov Decision
Processes [6]. In this way, our app-
roach can be lifted to the general
class of tCTMCs, possibly retaining its
effectiveness.

3.1 Quantification of a SD-FT Fig. 3. Two possible shapes of CTMCs of
triggered BE of a simple SD-FT. States

Let FT be a simple SD-FT and ¢* filled with black denote failed states and
be our cutoff constant. As mentioned the non-filled ones are functioning.
before, we target the approximation of

the value prea(FT) := 32 05+ P(C). To quantify this value we need a list of
relevant cutsets and a procedure to quantify the value p(C) for each relevant
cutset C. To efficiently obtain the list of relevant cutsets we can proceed in the
same way as presented in [11]. To this end we use the MOCUS algorithm [§],
which returns the set of relevant cutsets L.« as well as the bound & on the error
introduced by the cutoff ¢*. We will thus skip this step and in the following
concentrate on the algorithm to quantify each relevant cutset.

Quantification of Failure Probability of a MCS. As observed in [11], the
failure probability p(C) of a MCS C can be exactly expressed by the failure
probability of a smaller SD-FT FT ¢, which we will call representative tree for
C. Tt is constructed as follows:

BuildRepTree(C)
1. Add to FT¢ a new top AND gate with all basic events from C' as inputs.
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2. To track which gates we model in F'T' ¢, label all gates of F'T as missing.
3. While FT¢ has a basic event that is in F'T triggered by a missing gate g:
(a) Calculate minimal cutsets C1, ..., Cy of the subtree of g.
(b) Model in FT ¢ the gate g by a new OR gate that has as inputs new gates
g1, - - ., gr where each g; is an AND gate over basic events from C;.
(In this process, copy to F'T¢ all the newly referred basic events.)
(c) Label g as not missing.
4. Finally, having modelled all triggering gates, add to F'T ¢ all the trigger edges,
i.e. between a basic event b and gate g if g triggers b in F'T.

Lemma 1. p(C) = p(FT¢)

In order to quantify p(C') one can construct the semantical CTMC of the fault
tree F'T'¢ and apply a numerical algorithm for the reachability analysis on it [1].
However, the size of the fault tree F'T ¢« depends on the triggering structure of
FT and in the worst-case can be as large as F'T, rendering the direct analysis
of the semantical CTMC infeasible. For comparison, 100 dynamic basic events
translates into 2190 states of the product CTMC, when modern tools for CTMC
analysis (e.g. PRISM) can handle up to 240 states at most. We will later show
in the experimental evaluation section that this growth problem is not an exotic
corner case, but is a real problem even for simple real world models. Our app-
roach instead avoids the explosion by building conservative over- and under-
approximations of the value p(C). In this way we sacrifice precision but retain
expressiveness and efficiency.

Over- and Under-Approximations of the MCS Failure Probability.
We aim at decreasing the size of the state space by reducing the amount of
basic events of F'T'¢ and simplifying its triggering structure. Intuitively, we shall
replace some of the dynamic basic events with trivial static ones, which are
failed either always or never (for over- and under-approximations respectively).
This will allow us to cancel out not only a number of dynamic basic events,
but also some of the triggering gates completely, thereby significantly simplify-
ing the analysis. We do so in a way that controls the error introduced by this
replacement.

We need to differentiate between immediate and nested triggering gates, with
respect to a cutset C'. Immediate gates are those that trigger some BE from C
directly, while nested gates trigger basic events indirectly through a sequence of
failures and triggering of other gates. We will also introduce two new static basic
events: €510,y With probability 0 and efqs; with probability 1. Intuitively, esow
never fails, while e, is failed from the beginning.

We will now define the procedure that allows us to obtain an abstraction of the
representative tree of a cutset. Let C be a cutset, the variable dir € {over,under}
denotes the direction of abstraction (over- or under-approximation). The list of
basic events to be cancelled out is called an abstraction sequence. The procedure
we present is applicable for an arbitrary abstraction sequence. Later in this
section we will present heuristics for obtaining abstraction sequences for over
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and under-approximations, that we used in our experiments. In the following,
whenever we perform an operation on a cutset (or a list of cutsets) we assume an
equivalent operation to be performed on its representative tree and vice versa.

AbstractTree(C, ¢*)

1. Using the BuildRepTree procedure, build the representative tree of C'. In step
3(a) of BuildRepTree instead of using the set of cutsets of a gate g, use the
set of relevant cutsets L.« (g). The value L.« (g) and the cutoff error bound
€4 can be obtained in the same way as described above using the MOCUS
algorithm;

2. If dir = over add to L.-(g) the set {b._, eqst } Where b, is a new static basic
event with probability Egl;

3. Choose an abstraction sequence A = (by,G1)(b2,G2) ... (bn,Gy), where b; is
a non-triggered basic event of F'T ¢ and G; is a set of gates;

4. Repeatedly for i = 1..n:

(a) for each gate g € Gj, for each cutset Cy € L.+ (g) replace all occurrences
of b; by esiow if dir = under, and by efqs; if dir = over?;

(b) remove from L.(g) cutsets that have become non-minimal (propagate
these changes into the tree by removing respective gates);

Remark. Notably, after step 4(b) one can still perform a number of further reduc-
tions of the state-space of FT'¢. For instance whenever an event b is replaced
with egpo, all the cutsets containing b can be immediately removed, since they
will never fail. As a result of this procedure we obtain new trees FTc and F1T¢
for over- and under-approximations.

Lemma 2. p(FT¢) < p(C) < p(FTc)

Depending on the chosen abstraction sequence, FT ¢ and FT ¢ can be of a much
smaller size than the original F'T'¢, making it possible to apply the efficient
CTMC analysis we discussed above directly to product CTMCs constructed
separately for FT« and FT¢. Let F and F be failed states of FT¢ and FT¢,
and let & be the error bound used by the CTMC algorithm. We thus define the
over- and under-approximations as follows:

(FT¢) = Prcﬂ [Reachgt(E)]

=p
P (C):=p(FT¢c) +€ = Pre [ReachS'(F)] + ¢’

! This is to compensate for the cutoff error bound ¢,.

2 Whenever the event b; belongs to a cutset of a gate g & G, we create a copy of b; and
direct all the transitions from gates g to b; to the new basic event. Thus whenever
b; is abstracted in gates g € G;, it is not abstracted away in gates g € G;.
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The Abstraction Sequence Heuristic. The abstraction sequence that one
decides to use in the above procedure affects directly the error introduced by the
approximation. We will now describe the heuristics for selecting an abstraction
sequence that we find reasonable in practice and that we used for the experi-
ments.

For nested gates, we abstract all basic events in an arbitrary order yielding
Lo (9) = {{efast}} and Lo+ (9) = {{estow}}*. As regards immediate gates, we
use different heuristics for over- and under-approximations. We first introduce
two new measures €V (b;) > 1 and £9(b;) > 1 of the impact of abstracting event
b; away. These measures are based on the notions of risk increase(decrease)
factor [16]. The closer these values are to 1 the smaller is the loss of precision
due to reduction of the respective event. We therefore aim at abstracting such
events.

Let err > 0 be an allowed error parameter, z € {O,U}. We assign each G;
to be the set of all immediate triggering gates. The following procedure applies
to both over- and under-approximation (by using respective x):

1. Enumerate all the basic events b from FT¢ except for those in C by their
ascending €”(b). The £7(b) needs to be re-evaluated for every element in the
sequence as abstracting all previous events changes the FT¢;

2. Stop once reducing the next basic event according to the given order would

make the error  [] &%(b) exceed err + 1;
reduced b

Remark. As a result of applying these abstraction sequences one may obtain a
lot of cutsets of a specific shape. Those are either singleton cutsets, or pairs of
the form {b,b;},{b,b;}. In order to further reduce the state space one can add
another abstraction step that lumps such cutsets together, while preserving the
property of being an over- or under-approximation. We indeed defined such a
lumping procedure for the class of dynamic basic events whose CTMC has one
of the shapes depicted in Fig. 3, and used it in our experiments

4 Experimental Evaluation

This section presents the empirical evaluation of our approach. Since our focus
is on an efficient approach that integrates well with the industrial practice, we
do not consider small or medium-size synthetic examples whose homogeneous
structure would enable to study model size vs. solution time tradeoffs. Instead
we prefer to present results for realistic models from industrial practice, therefore
serving as a proof of concept.

As an implementation of the MOCUS algorithm we use RISKSPECTRUM [13],
and resort to the PRISM tool [12] for the reachability analysis of the CTMCs.
All the intermediate processing, mainly reductions and conversions, were imple-
mented as Python scripts. All experiments are carried out on a single Intel Core

3 Reduction of a triggered basic event is possible due to reduction of its triggering
gate.
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i7-4790 with 32 GB of RAM. The following abbreviations will appear through-
out the section: BE, DynE and Trigk denote the overall number of basic events,
dynamic basic events, respectively triggered events in a given SD-FT. The num-
ber of relevant minimal cutsets is denoted as RelMCS.

Models. We evaluate our approach on four simple and two larger reactor mod-
els. These are derived from models representing analyses built by safety engi-
neering experts with all the modelling power that static fault trees offer. For
each of these original models, a static top value pgsi: can be computed (by
RISKSPECTRUM) characterizing the state-of-the-art failure frequency estimate
of the analysed scenario. We obtained SD-FT models from these static ones by
adding dynamic features offered by SD-FT formalism in a realistic manner. For
all the dynamic basic events we use repair rate 0.1, which is approximately in
the order of magnitude of real component repair rates. We use the static values
Dstat as reference values for comparison in our experiments.

Simple Reactor Models. These

models are variations of a toy Table 1. Model characteristics.

example of a probabilistic safety BE | DynFE | TrigE | RelMCS
assessment model of a boiling water  Simple reactor | 40| 13 7 | Various
reactor. We always calculate a core InD-1{3000|220 |168 3164
damage consequence, which is a IND-2 {2215 599 12196042

typical Level 1 analysis with a 24h

time horizon. The size of these models is tiny relative to real-life models. Their
common characteristics are presented in Table1 (first row), the variants differ
in the triggering logic:

TwoTrains models a system with two redundant trains of separate equipment,
such as pumps, diesel engines, SWS (Service Water System), and CCW
(Component Cooling Water System). The second train is triggered when-
ever the first pump fails;

Diesel is a system where the two diesel engines are redundant per train. One
diesel engine is enough to make the respective train function properly;

SWS+Diesel adds redundancy for SWS systems in addition and similar to the
diesel engine redundancy;

CCW+SWS+Diesel supports redundancy for CCW, SWS, and diesel engines.

Industrial-size Reactor Models. These are two slightly adapted core damage con-
sequence analysis cases from two different real-life probabilistic safety assessment
models. We will further refer to them as IND-1 and IND-2. Table 1 shows some of
the core characteristics of the models. The most significant adaptations concern
(1) switching off the common cause failure treatment and (2) updating failure
data for some static basic events. We have added dynamic dependencies between
components which in reality represent redundant systems (such as pumps) where
only a subset of components has to run in order to guarantee the safety func-
tion. Triggering gates were chosen in a way that can be considered induced by
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Table 2. Runtime experiments for simple reactor models performed with err = 1.

T Trrism | RelMCS | AvDynE | AvTrighk | AvAdd | MazSet | #Set~g | [11]
TwoTRrAINS | 07:01 | 06:49 | 15061 4.8 0.1 0.2 15 818 >4h
DieseL | 30:04 | 29:53 | 10389 4.8 0.09 0.21 27 586 >4h
SWS+DIESEL | 23:16 | 23:07 8007 4.8 0.09 0.20 27 501 >4h
CCW+SWS+DIESEL | 15:42 | 15:34 5145 4.9 0.1 0.23 27 456 >4h

a convenient modelling methodology. We chose gates corresponding to failures
of complete systems and we did not simplify the logic under triggering gates
by remodelling. All basic events with the mission time reliability model under
the gates corresponding to the triggered systems were considered dynamic and
triggered. Such a modelling requires only a high level understanding of dynamic
relations between systems and components and knowledge about which gates
model failures of these systems.

Experiments. In all the experiments we analyse a mission time of 24 h. The
precision of time bounded reachability (computed by the PRISM tool) is set to
10~7. In the tables presented, AvDynE (respectively AvTrigE) denotes the average
amount of dynamic (respectively immediately triggered) events per cutset. When
we report runtime, we use, unless otherwise stated, min:sec as format, and use T'
for overall runtime, and Tpgsy for the fragment thereof needed by PRrISM. Value
AvAdd denotes the average amount (over all cutsets C) of basic events, both
static and dynamic, that have not been abstracted from FT¢ (excluding the
events from C itself). MazSet refers to the maximum (over all cutsets) amount
of basic events in a cutset tree that have been left after all abstractions, and
#Set~g shows the amount of cutsets, whose representative trees contain more
than 8 basic events.

In order to evaluate our approach we use three measures: runtime, achieved
accuracy and accuracy gain compared to a static analysis. To estimate the latter,
we use the ratio of over-approximation p,., to the value ps ¢ described above.
This ratio can be expected to be lower than 1, since modelling the dynamics
brings more accuracy and thus less pessimism. The runtime of the static analysis
step is not reported. It was in the order of seconds for all experiments performed,
given that the cutsets were precomputed by RISKSPECTRUM.

Influence of Model Parameters. We first want to estimate the effect of different
parameters of the model itself on the running time of our algorithm. To do
this we performed experiments on all the simple reactor models. These models
share the same value of parameters BE, DynE and Trigk and differ mainly in
their triggering logic. Each of the relevant cutsets contains at least one dynamic
event. Table2 summarizes the results of this experiment. As we can see, the
existing algorithm from [11] is not competitive. The runtime of our algorithm
is influenced by the maximum size of cutsets as well as the amount of large
cutsets. More concretely, even though the amount of relevant cutsets for the
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Table 3. Experiments with varying parameter err on TWOTRAINS, where pstar =
5.836344 - 107°.

err | T p., X 10° | §,., X 10° | AvAdd | MaxSet | #Set=g | P,oy/Dstat
3 06:46 | 4.5747 4.6017 0.19 15 755 0.78
2 06:52 | 4.5769 4.6017 0.20 15 764 0.78
1 07:01 | 4.5848 4.6017 0.20 15 818 0.78
0.1 |12:05]|4.5927 4.6016 0.21 15 818 0.78
0.01 |24:30 | 4.5961 4.6012 0.27 15 818 0.78
1073 38:10 | 4.5966 4.6012 0.34 15 818 0.78
107* | 38:47 | 4.5966 4.6012 0.34 15 818 0.78
1077 | 38:46 | 4.5966 4.6012 0.34 15 818 0.78

Table 4. Experiments with varying parameter err for IND-1, where psit = 3.037881 -
1078,

err | T p . X 108 Drea X 10% | AvAdd | MazSet | #Set>s Dyea/ Pstat

20 |05:50{2.4790 2.5760 0.26 16 306 0.84

10 |06:58 | 2.4790 2.4915 0.34 16 531 0.82
07:01 |2.4790 2.4915 0.35 16 589 0.82
27:54 | 2.4798 2.4847 0.43 23 846 0.81

1 >6h | 2.4802 N/A 0.58 63 870 N/A

Table 5. Experiments with varying parameter err for IND-2, where psir = 7.342436 -
1077,

err | T (hrsiminsec) | p X 107 | B,,, x 107 | AvAdd | MazSet | #Set=s | P,y /Pstat

20 |02:16:10 4.8934 6.0541 0.05 14 103561 |0.82

10 | 02:16:06 4.8934 6.0541 0.05 14 103561 |0.82
03:01:27 4.8934 4.9301 0.1 14 107249 |0.67
03:01:25 4.8934 4.9301 0.1 14 107249 |0.67

1 03:01:27 4.8934 4.9301 0.1 14 107249 |0.67

model TWOTRAINS is higher than for DIESEL, the runtime on the latter model is
notably higher due to the values MazSet and #Set~g. As apparent from Table 2,
the dominant portion of runtime is taken by the PRISM processing. In further
experiments we therefore do not report this value separately, and instead show
only the overall running time of the algorithm.

Influence of Parameter err. Parameter err is the only parameter of the heuristic
that we use for reductions. We performed various experiments to evaluate the
effect of it on the running time and accuracy of our algorithm. Tables 3, 4 and 5
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show results of the experiments on one of the simple models and on both the
industrial-size models. One can see that, as expected, with the increase of accu-
racy (decrease of err) the amount of added basic events increases as well. This in
turn enlarges the state space of the product CTMC, what explains the increase
of the running time. On the other hand, the abstractions become more and more
precise. We achieved a gain of 22 % on the simple model, 19 % on IND-1 and 33 %
on IND-2 compared to the static value pstq¢. In some cases higher precision seems
to come with slightly lower running time, e.g. in Table 5. This however is an arte-
fact of runtime measurement inaccuracy, the actual computations performed are
identical.

5 Concluding Comparison with Related Work

We have presented a generic analysis and approximation scheme for fault trees
combining static and dynamic features. The key innovation is the use of bounding
approximations for the underlying dynamic behaviour. The method enables to
trade precision against runtime in an effective manner, so as to make it an
industrial-scale dynamic safety analysis method.

Other available methods for solving fault trees with dynamic features suffer
from either scalability or expressiveness issues [11,15]. Approaches with compa-
rable expressiveness include Dynamic Fault Trees [2,3], Boolean Driven Markov
Processes [4] and others. Analysis support for these models is limited to fault
trees with at most 300 dynamic basic events, which is far from the sizes that
one usually encounters in the nuclear safety domain. We have reported here on
successful experiments for models with up to 600 dynamic basic events contained
inside SD-FTs with several thousands of basic events in total.
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