
J. Parallel Distrib. Comput. () –

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Combinatorial auction-based allocation of virtual machine instances
in clouds
Sharrukh Zaman, Daniel Grosu ∗
Department of Computer Science, Wayne State University, 5057 Woodward Avenue, Detroit, MI 48202, USA

a r t i c l e i n f o

Article history:
Received 4 March 2012
Received in revised form
25 September 2012
Accepted 10 December 2012
Available online xxxx

Keywords:
Cloud computing
Combinatorial auction
Virtual machine allocation
Resource allocation

a b s t r a c t

Most of the current cloud computing providers allocate virtual machine instances to their users through
fixed-price allocation mechanisms. We argue that combinatorial auction-based allocation mechanisms
are especially efficient over the fixed-price mechanisms since the virtual machine instances are assigned
to users having the highest valuation. We formulate the problem of virtual machine allocation in clouds
as a combinatorial auction problem and propose two mechanisms to solve it. The proposed mechanisms
are extensions of two existing combinatorial auction mechanisms. We perform extensive simulation
experiments to compare the two proposed combinatorial auction-based mechanisms with the currently
used fixed-price allocation mechanism. Our experiments reveal that the combinatorial auction-based
mechanisms can significantly improve the allocation efficiency while generating higher revenue for the
cloud providers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing enables individuals and small to medium
enterprises satisfy their computational needs with no orminimum
upfront costs of acquiring hardware and software. On the other
hand, cloud providers benefit by commercializing their huge
computing resources through the cloud computing platform.
A cloud computing platform abstracts the underlying physical
resources from the users by providing them with the view of
virtualmachines (VMs). This enables easymanagement andpricing
of the resources. Currently, the majority of cloud providers price
their computing resources based on the ‘size’ of the VM instances
offered. They define different types of VM instances by specifying
the number and speed of processors, the memory size, the
bandwidth allocation, etc. There are two ways to ‘purchase’ the
VM instances: pay as you go and long term contract. In both cases
users pay fixed prices per unit of time for using the resources; the
only difference is that by committing to a long term contract they
usually pay less per unit of time for using the same resource.

We argue that the currently used fixed-price schemes for
allocation and pricing of resources have several drawbacks. First,
they are not economically efficient [26], that is, they cannot
guarantee that the user who values a bundle of VM instances the
most gets it. Second, fixed prices do not necessarily reflect the
equilibrium prices that arise frommarket demand and supply. This

∗ Corresponding author.
E-mail addresses: sharrukh@wayne.edu (S. Zaman), dgrosu@cs.wayne.edu

(D. Grosu).

may lead to lower than optimal revenue for the service providers.
Finally, since in cloud computing platforms resources are sold
for a period of time, it is desirable that user requests be evenly
distributed throughout the day. In general, the current fixed-price
methods do not provide users with incentives for demand shaping
(i.e., selecting their execution time-frames in such a way that the
system load is balanced over time). It is possible to modify a fixed-
price mechanism so that it provides such incentives by setting
up different fixed prices at different times of the day based on
historical demand. This needs statistical analysis and adjustment
of prices as the demand pattern changes making it hard to achieve
dynamic price adjustment.

The inefficiencies in solving the resource allocation problem
in clouds mentioned above can be best addressed by employing
auction-based mechanisms. Among different types of auctions,
the combinatorial auctions are the most suitable for solving the
VM pricing and allocation problem in clouds. In combinatorial
auctions, the participants bid for bundles of items rather than
individual items [10]. This enables bidders to express their
valuations in a more meaningful way, especially when the items
they require are complementary to each other. To illustrate this, let
us consider the following example. A cloud service provider offers
‘small’ and ‘large’ VM instances. Suppose a user wants to deploy
a three-tier web application on the cloud. The application needs a
database server, an application server, and two web servers. The
database and application servers are heavy weight and therefore
the user prefers large instances for them. The web servers are light
weight and can be hosted on two small instances. Thus, a user
needs to run an applicationwhich requires two small and two large
VM instances. It is moremeaningful for her to be able to bid for the

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.12.006

http://dx.doi.org/10.1016/j.jpdc.2012.12.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:sharrukh@wayne.edu
mailto:dgrosu@cs.wayne.edu
http://dx.doi.org/10.1016/j.jpdc.2012.12.006

2 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

entire bundle she needs rather than bidding for each VM instance
separately. Bidding for each VM instance separately involves the
risk of ending up acquiring just a subset of her required set of VM
instances. Themotivation behind ourwork is that by designing and
deploying combinatorial auction-based mechanisms for allocating
VM instances, the cloud providers can guarantee fairness to their
users as well as enjoy higher revenues and a balanced load on
their systems over time. Load balancing over time is actually a
side-effect of using auctions for allocating VM instances. Users
with lower valuations for the VM instances will choose a time-
frame that does not conflict with that of ‘high valuation users’. For
example, if large businesses request resources during the daytime,
individual users may consider that the nighttime slots are more
suitable for them, thus balancing the load of the system over time.

Application of auctions, however, is not entirely new to
the cloud computing community. After allocating computing
resources for the long-term and on demand users, Amazon
EC2 sells the remaining virtual machines (instances) through an
auction called Spot Instances [2]. In this auction, the bidders specify
their demand (i.e., the number and the type of instances) and the
maximum price they are willing to pay. Amazon periodically runs
the auction with active bidders to determine the current price
and then users with bids higher than that price are provided with
their desired instances. All users pay the same price per instance
which is computed by the auction. A user getting the allocation
may be terminated at a later point if the auction-determined price
goes beyond her bid. This approach is different from combinatorial
auctions because one single price is determined based on market
supply and demand (i.e., equilibrium) and all bidders pay the
same price per item regardless of how much they value the
item. On the other hand, in combinatorial auctions, each winning
bidder’s payment is calculated based on her and other bidders’
valuations. Another important difference is that the Spot Instances
auction does not support bidding on bundle of instances, while
combinatorial auctions were specifically designed to work with
such bundles. From Amazon’s initial effort of using auction-based
allocation, it is reasonable to expect that cloud providers will
be interested in more efficient allocation and pricing schemes
in the near future. Combinatorial auctions will clearly be one
of the most desirable allocation schemes in this regard. This is
supported by their successful application in various fields ranging
from selling wireless spectrum to transportation procurement for
large industries [10].

1.1. Our contribution

We formulate the problem of allocating VM instances in clouds
as a combinatorial auction problem. The objective of this problem
is to efficiently allocate VM instances of several types to several
users requesting a set of VM instances of different types. To
solve this problem, we propose two combinatorial auction-based
allocation mechanisms. These two mechanisms are obtained by
extending the mechanisms proposed by Archer et al. [5] and
Lehmann et al. [16]. The mechanism proposed by Archer et al. [5]
considers a combinatorial auction problem where a user can
include at most one item of a particular type in her requested
bundle. We relax this condition to allow users requesting more
than one item of a given type. Also, the mechanism proposed by
Archer et al. [5] is suitable for combinatorial auctions with many
types of items where each type of items has few instances. We
extend themechanismso that it canbe applied to theVMallocation
problemwhere there are few types of items andmany instances of
each type.

The other mechanism we propose is an extension of the greedy
mechanism proposed by Lehmann et al. [16]. This mechanism
determines the allocation based on the valuation of the users

and the total number of items they request. We extend the
mechanism proposed by Lehmann et al. [16] so that it considers
the relative sizes of the VM instances and show that the properties
of the original mechanism are maintained. We compare the
two proposed combinatorial auction-based mechanisms with the
fixed-price based allocation mechanism used by Microsoft in
their Windows Azure platform [18]. We investigate the relative
performance of these three allocation mechanisms by performing
extensive simulation experiments.We also consider variants of the
fixed-price mechanism in which the fixed prices are different at
different times of the day. We compare the performance of these
mechanisms with that obtained by our proposed mechanisms
as well. The experiments show that the proposed combinatorial
auction-based mechanisms clearly outperform the fixed-price
mechanism in terms of resource utilization, generated revenue,
and allocation efficiency. We analyze the results and provide
recommendations on where to use the proposed mechanisms.

1.2. Related work

The use of auctions in computing dates back to 1968 when
Sutherland [24] proposed allocating the processor time in a sin-
gle computer via auctions. Gagliano [13] also investigated the
allocation of computing resources through auctions, where the
tasks themselves are provided enough intelligence to calculate the
bid that is necessary to get the required resources. Recently, re-
searchers investigated various market-based models for resource
allocation in computational grids. Wolski et al. [28] compared
commodities markets and auctions in grids in terms of price
stability and market equilibrium. Gomoluch and Schroeder [15]
simulated a double auction protocol for resource allocation in
grids and showed that it outperforms the conventional round-
robin approach. Das and Grosu [11] proposed a combinatorial
auction-based protocol for resource allocation in grids. They con-
sidered a model where different grid providers can provide dif-
ferent types of computing resources. An ‘external auctioneer’
collects this information about the resources and runs a combi-
natorial auction-based allocation mechanism where users partic-
ipate by requesting bundles of resources. The major difference
between the present work and the one presented in [11] is that we
are considering allocating VM instances of a single cloud provider
whereas Das and Grosu [11] considered the problem of allocating
different types of physical resources from multiple grid providers.
Garg et al. [14] designed a double auction-based meta-scheduler
for grids, which schedules grid jobs into different clusters that
improves both user utility and system performance when com-
pared to traditional meta-schedulers. The differences between the
market-based mechanisms designed for grids and those designed
for clouds are mainly related to their underlying resource alloca-
tion model. Clouds allocate resources in terms of VM instances
while traditional grids allocate physical resources directly without
involving virtualization. The market-based mechanisms are more
suitable for clouds since they are designed tomake profit by selling
services while traditional grids were designed mainly for sharing
resources and not for making profits by selling resources.

Recently, researchers investigated the economic aspects of
cloud computing from different points of view. Wang et al. [27]
studied different economic and system implications of pricing
resources in clouds. Altmann et al. [1] proposed a marketplace for
resources where the allocation and pricing are determined using
an exchange market of computing resources. In this exchange,
the service providers and the users both express their ask
and bid prices and matching pairs are granted the allocation.
Risch et al. [21] proposed a testbed for cloud services designed
for testing different mechanisms. They deployed the exchange
mechanism proposed by Altmann et al. [1] on this platform.

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 3

An exchange requires that providers and users submit asks and
respectively bids to the exchange mechanism which uses them
to match users to providers. In this paper we are considering a
combinatorial auction mechanism run by a single cloud provider
instead of an exchange mechanism run by a federation of clouds.

The tool CloudCmp [17] was developed to assist users in
choosing the appropriate service providers based on the user’s
requirements. Buyya et al. [8] proposed an infrastructure for
auction-based resource allocation across multiple clouds. Re-
searchers also investigated whether cloud solutions are econom-
ically feasible for all kinds of computing needs. Walker et al. [25]
proposed a model to determine the benefits of acquiring storage
services from clouds. Chohan et al. [9] showed how to accelerate
MapReduce jobs using Spot Instances. They also analyzed the per-
formance gain and the cost effectiveness of this approach. Ben-
Yehuda et al. [7] analyzed the pricing of Amazon EC2 and claimed
that it is not market-driven. They showed that the prices are ran-
domly generated considering a hidden reserve price that is not
driven by supply and demand.

The complexity of solving the combinatorial auctions, specif-
ically the winner determination problem, was first addressed
by Rothkopf et al. [22]. Sandholm [23] proved that solving
the winner determination problem is computationally hard.
Rothkopf et al. [22] and Sandholm [23] used the technique of prun-
ing the search tree to devise approximation algorithms. Anders-
son et al. [4] proposed an integer programming based solution to
the winner determination problem.

Zurel and Nisan [30] also presented an efficient algorithm for
combinatorial auctions. Lehmann et al. [16] studied combinatorial
auctions with single-minded bidders and devised a greedy
mechanism for combinatorial auctions. In this paper, we extend
this mechanism in order to solve the problem of VM allocation
and pricing in clouds. Archer et al. [5] considered another case
of single-minded bidders where multiple identical copies are
available for different types of items. They provided a mixed
integer programming based algorithm for winner determination
and showed theoretically that their solution performs better
than generalized solutions for this special case. We extend this
mechanism such that it can be used to solve the VM allocation and
pricing problem we consider in this paper. A detailed survey on
combinatorial auctions can be found in [12]. Cramton et al. [10]
provides good foundational knowledge on this topic.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we
formally define the VM instance allocation problem. In Section 3,
we present the mechanisms we consider for solving the VM
allocation problem. In Section 4, we describe the experimental
results. In Section 5, we conclude the paper and present possible
directions for future research.

2. Virtual machine allocation problem

The cloud providers set different configurations of VM instances
that the users can request. A user requests VM instances of
different types and pays the cloud provider for the time she uses
them. Usually, the prices for different types of instances for short-
term use are fixed by the cloud providers in advance. Another
possibility is that a user sets up a long-term contract if she requires
the resources for a long period of time, in which case she may
obtain them for a lower price. Here we consider the problem of
efficient allocation and pricing of VM instances for short-term use.

In Fig. 1, we provide a high-level representation of the VM
instance allocation system we consider in this paper. The cloud
provider has several VM instances of different types available

Fig. 1. VM instance allocation in clouds: system model.

for allocation and runs a combinatorial auction-based mechanism
to allocate them to users. The auction mechanism consists of
three steps. First, the mechanism collects ‘bids’ from the users,
which comprise the number of different types of VM instances a
user requests and the price she offers for that bundle. Then, the
mechanism computes the allocation and the payment based on the
collected bids and the availability of resources. Finally, users who
get the allocation pay the cloud provider and obtain access to the
resources they requested.

We define the Virtual Machine Allocation Problem (VMAP)
as follows. Assume that the allocation and prices are decided
periodically by a given mechanism. Let the interval between two
such decisions be ‘one unit of time’. VMAP considers allocating the
VM instances for one unit of time. Assume that a cloud provider
has m different types of virtual machines VM1, . . . ,VMm. The
relative computing capabilities (based on number and speed of
CPUs, memory, etc.) of these VMs are characterized by a vector
w = (w1, . . . , wm), where wi ∈ R+, i = 1, . . . ,m. We also
assume that w1 = 1 and w1 ≤ w2 ≤ · · · ≤ wm. To illustrate this,
we consider the types of instances currently offered by Microsoft
Azure Platform: Small (CPU 1.6 GHz, Memory: 1.75 GB, Storage:
225 GB), Medium (CPU 2 × 1.6 GHz, Memory: 3.5 GB, Storage:
490 GB), Large (CPU 4 × 1.6 GHz, Memory: 7 GB, Storage: 1 TB),
and Extra large (CPU 8 × 1.6 GHz, Memory: 14 GB, Storage: 2
TB). In this example, VM1, VM2, VM3, VM4 are the Small, Medium,
Large, and respectively Extra large VM instances. Theweight vector
characterizing the VM instances isw = (1, 2, 4, 8).

Let us assume that ki copies of VMi instances are available for
allocation at a given instance of time, i = 1, . . . ,m. There are n
users u1, . . . , un, each requesting a set (bundle) of VM instances
and revealing how much she values that particular set. That is, a
user uj is requesting VMs from the cloud provider by placing a bid
Bj = (r j1, r

j
2, . . . , r

j
m, vj), where r ji ∈ {0, 1, . . . , ki} is the number

of instances of type VMi user uj requires in her bundle and vj is
her valuation for this bundle, i.e., themaximum price she is willing
to pay for using the requested VMs for one unit of time. Here we
consider the users to be single-minded bidders. A single-minded
bidder uj desires only a specific bundle of items Sj, and values that

4 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

bundle at vj. Thus, uj has the following valuation function for a
bundle S [16],

v(S) =

vj if Sj ⊆ S
0 otherwise. (1)

We would like to mention that the assumption of single-
minded bidders does not limit the users to express more
flexible requirements. Our model assumes that auctions are run
periodically and that bidders will request only one bundle in
a given auction. Since the auctions are run periodically, a user
may choose to revise her bid based on the previous auction
outcome and her preference. For example, suppose that the time
interval between consecutive auctions is one hour. If a user needs
a particular bundle for five units of time and her deadline to
complete the job is ten hours, she needs to win five auctions
within ten hours. She may choose to bid the same value until
her job is finished, or she may choose to start with a low bid
and raise it when the deadline is approaching. Users executing
parallel applicationsmaywant to request asmany VM instances as
possible to finish their jobs quickly. In this case, they could start by
bidding for the largest possible bundle they can afford and if not
successful, adjust the requested bundle size for the next auction.
If a user must require continuous allocation of resources, she may
continue bidding increasing values in order to increase her chances
of winning every auction.

The goal of the VM allocation problem, given the set of users U
and their bids, is to determine the set of winners W ⊆ U and the
price the winners have to pay to the cloud provider. User uj is a
winner (i.e., uj ∈ W) if she receives her requested bundle of VM
instances. The price user uj pays to the cloud provider is denoted
by pj. We formally define the VM allocation problem as follows:
Virtual Machine Allocation Problem (VMAP)

Determine the set of winners,W ⊆ U , and payment pj for each
user uj, j = 1, . . . , n, such that
j:uj∈W

r ji ≤ ki i = 1, . . . ,m (2)

0 ≤ pj ≤ vj if uj ∈ W (3)

pj = 0 if uj ∉ W . (4)

The constraint in Eq. (2) ensures that the users are allocated atmost
ki instances of VMi. Eqs. (3) and (4) ensure that the winners pay at
most their valuations and the losers do not pay at all.

Note that VMAP does not have an objective function. The
most reasonable objective function would be to maximize the
cloud provider’s revenue, but very little is known about revenue
maximization in the context of combinatorial auctions [20].
Combinatorial auctions are usually designed to maximize the
sum of the bidders’ valuations, i.e., max

n
j=1 vj. Since valuation

is a measure of willingness to pay, maximizing the sum of
the valuations usually generates more revenue for the resource
provider than a fixed-price allocation does. On the other hand,
given the prices of each type of VM instance, a fixed-price
allocation mechanism does not have an objective function to
maximize. Therefore, VMAP is formulated here as a feasibility
problem with the constraints that are to be satisfied by all types
of solutions. We shall introduce other constraints and/or objective
functions when we discuss the proposed mechanisms for solving
VMAP.

3. Virtual machine allocation mechanisms

In this section, we present three mechanisms that solve
VMAP. The first, called FIXED-PRICE, is the fixed-price mechanism
currently used by several cloud service providers [3,19]. The next

Algorithm 1 FIXED-PRICE Mechanism
1: {Phase 1: Receive requests from users}
2: for j = 1, . . . , n do
3: Receive (r j1, . . . , r

j
m, vj) from user uj

4: end for
5: {Phase 2: Allocation}
6: Sort users according to their time of placing the request, from earliest

to latest.
(Here we assume u1, u2, . . . , un as the order.)

7: InitializeW ← ∅
8: for j = 1, . . . , n do
9: Fj ←

m
i=1 r

j
i fi

10: if (vj ≥ Fj) and
11: (r ji +

uj′∈W

r j
′

i ≤ ki, i = 1, . . . ,m) then
12: W ← W ∪ {uj}

13: end if
14: end for
15: {Phase 3: Payment}
16: if uj ∈ W then
17: User uj pays, pj = Fj
18: else
19: User uj pays, pj = 0
20: end if

two mechanisms are the proposed combinatorial auction-based
mechanisms, CA-LP (Combinatorial Auction-Linear Programming)
and CA-GREEDY (Combinatorial Auction-Greedy). CA-LP is an
extended version of the mechanism proposed by Archer et al. [5].
The mechanism proposed by Archer et al. [5] solves a problem
similar to VMAP by using linear programming relaxation and
randomized rounding. We extend that mechanism so that it is
able to solve VMAP. CA-GREEDY is an extension of the mechanism
proposed by Lehmann et al. [16]. The mechanism proposed by
Lehmann et al. [16] provides the best achievable approximate
solution1 for combinatorial auctions with single-minded bidders.
However, this is a general purpose mechanism that does not
assume any relative importance of the items being allocated. We
extend this mechanism by incorporating the weights of different
types of VMs as described in Section 2. We now describe each
mechanism in detail.

3.1. FIXED-PRICE mechanism

The FIXED-PRICE mechanism presented in Algorithm 1 defines
a fixed-price vector f = {f1, . . . , fm}, where fi is the price a user
has to pay for using one instance of VMi for one unit of time. The
mechanism allocates VM instances to the users in a first-come,
first-served basis until the resources are exhausted. It also makes
sure that in order to get the requested bundle, the valuation of
user uj is at least Fj, where Fj is the sum of the fixed prices of each
VM instance in her bundle (line 10). It also makes sure that the
allocation does not exceed the number of available VM instances of
each type (line 11). The set of users receiving the requested bundle
is denoted by W . A user pays the sum of the fixed-prices of each
VM instance in her allocated bundle.

3.2. Combinatorial auction-based mechanisms

The general combinatorial auction problem can be informally
stated as determining the allocation and prices of bundle of items
such that the sum of the user’s valuations is maximized. In a
combinatorial auction, user valuations are expressed on bundles
of items rather than on individual items.

1 Lehmann et al. [16] showed that the approximation ratio achieved by their
proposed mechanism cannot be further improved unless NP = ZPP.

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 5

A desired property of a combinatorial auction mechanism is
truthfulness. A mechanism is truthful if the participants benefit the
most when they reveal their true valuations to the mechanism. A
participant’s benefit in a combinatorial auction is expressed by her
utility, which is defined as the difference between the valuation
she receives from the resource allocation and the price she pays
to the mechanism. An ideal truthful mechanism determines the
optimal allocation that maximizes the sum of the valuations and
computes payments such that each participant maximizes her
utility only by reporting her true valuation to the mechanism. A
truthful mechanism helps the bidders in that they do not need
to compute a complex strategy or assume other users’ strategies
while making their bids. They just need to bid their true valuations
for the bundle since bidding any other value will not improve their
utility.

Thewinner determination problem of combinatorial auctions is
an NP-hard problem [23]. Therefore, research has been conducted
to find approximate solutions to combinatorial auctions. In order to
obtain a truthful approximation mechanism that solve the winner
determination problem, few issues need to be addressed [6]. The
approximation algorithm needs to be monotone. In a monotone
allocation algorithm, a bidder can only increase her chance of
getting her requested bundle by reporting a higher valuation or
by requesting fewer items in her bundle. A monotone allocation
algorithm allows finding the so called critical value of a winning
bidder, which is the minimum she needs to bid in order to
get her requested bundle. In a truthful mechanism a winning
user has to pay her critical value to the mechanism. For some
combinatorial auction problems, randomization is involved in the
winner determination and/or the payment calculation algorithm.
In that case, the goal of the resulting mechanism is to ensure
that the participants maximize their expected utility by bidding
their true values. Such mechanisms are truthful in expectation. We
discuss the useful properties of our proposed mechanisms in the
next subsections.

The proposed mechanisms are intended to be run periodically,
each time considering the bids placed by the users during that
period. It is assumed that users place their bids until they have
been allocated their requested resources for enough units of time
to execute their job to completion, or it becomes obvious that their
job cannot be completed by a deadline. We also assume that the
VM instances are statically provisioned, that is, the cloud provider
has already provisioned a given number of VM instances of each
type and only these instances are available for allocation.

3.2.1. CA-LP mechanism
Archer et al. [5] considered a combinatorial auction problem

similar to VMAP. The difference is that in their case bidders can
request at most one copy of each item type (i.e., r ji ∈ {0, 1}),
whereas in the VMAP, users can request multiple copies of each
type of item (i.e., r ji ∈ {0, 1, . . . , ki}). We modify the winner
determination algorithm of the original mechanism such that
it is able to solve VMAP. The algorithm for the calculation of
payment is kept the same as in [5] because it maintains its
properties when applied to VMAP with the modified winner
determination algorithm.We present it here for completeness. The
CA-LP mechanism is given in Algorithm 2.

CA-LP involves solving the linear program given by Eqs. (5)–(7).
The objective of the linear program is to find a vector of ‘fractional
allocations’ x = {x1, . . . , xm} that maximizes the sum of the users’
valuations (Eq. (5)). In line 6, the total number of available VMi
instances is reduced to k′i , which is then used in the constraint
in Eq. (6). This constraint limits the allocation of VMi instances
to k′i . Using k′is instead of kis in this constraint helps reducing
the probability of over allocating the VMs during the randomized
rounding performed in lines 9–15. This constraint is amodification

Algorithm 2 CA-LP Mechanism
1: {Phase 1: Collect Bids}
2: for j = 1, . . . , n do
3: Collect bid Bj = (r j1, . . . , r

j
m, vj) from user uj

4: end for
5: {Phase 2: Winner Determination}
6: Set k′i ← (1− ϵ)ki, where 0 < ϵ < 1, i = 1, . . . ,m
7: Solve the following linear program

max
n

j=1

xjvj (5)

subject to
n

j=1

xjr
j
i ≤ k′i, i = 1, . . . ,m (6)

0 ≤ xj ≤ 1, j = 1, . . . , n (7)
8: InitializeW ← ∅
9: for each user uj, taken in descending order of xj do
10: Generate a random number yj ∈ [0, 1]
11: if (yj ≤ xj) and
12: (r ji +

j′ :uj′∈W

r j
′

i ≤ ki, i = 1, . . . ,m) then
13: W ← W ∪ {uj}

14: end if
15: end for
16: {Phase 3: Payment (same as in [4])}
17: for each user uj ∈ W do
18: Perform binary search for v′j in the range [0, vj]

(i) Set valuation of uj as v′j in Equation (5);
(ii) Solve the LP, let x′j be the fractional allocation computed for uj;
(iii) Until a v′j is found such that, setting valuation of uj less than v′j
generates x′j < yj and setting the valuation greater than v′j
generates x′j > yj. This v′j is the ‘critical value’.

19: pj ← v′j
20: end for
21: for each user uj /∈ W do
22: pj ← 0
23: end for

of the constraint used in themechanism presented in [5] by letting
r ji take any value rather than only 0 and 1. The next constraint
(Eq. (7)) bounds the fractional allocation values between 0 and 1.

Lines 9–15 implement the randomized rounding where user uj
is selected as a winner with probability xj, if this allocation does
not violate any constraint in Eq. (6). This operation is executed in
order of decreasing xj so that if there is a violation in the constraint,
the user assigned a lower xj is not included in the set of winners
W . This step is another modification of the winner determination
algorithm presented in [5]. In the original algorithm, users are
first included in W with a probability of xj and if constraint (6) is
violated for any item, all users requesting that item are excluded
fromW . This method is suitable for auctions wheremany different
types of items are sold and each type of item has only a few copies.
But in the context of VMAP, this approach will significantly affect
the allocation since each type of VM has many copies and there
are only a few different types of VMs. For example, let a cloud
provider offer four types of virtual machines, 500 instances of each
type. Suppose that after rounding, VM1 becomes over allocated.
The mechanism proposed by Archer et al. [5] discards all the users
that request any instance of VM1 in her bundle. This results in 500
unsold VM instances. The other VMs requested by those users are
also deallocated. This is the reason we cannot use the original
winner determination algorithm proposed by Archer et al. [5] to
solve VMAP.

The payment is calculated in lines 17–23. For eachwinning user
uj, CA-LP computes uj’s critical payment as follows. It performs a
binary search in the range [0, vj], where vj is the reported valuation
of uj. For each v′j ∈ [0, vj], it solves the linear program given in

6 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

line 7 until it finds theminimum v′j that yields xj ≥ yj (line 18). This
v′j is the critical value for user uj because reporting a valuation less
than v′j will not allow her to win the bid, and therefore v′j is what
she has to pay. However, a losing user pays zero (lines 21 and 22).
Note that the payment computation phase of CA-LP is the same as
in the original mechanism.

We now summarize the changes we made to the original
mechanism by Archer et al. in order to be able to solve VMAP.
First, we relaxed the problem formulation to allow users to request
multiple VM instances of the same type in their bundles. This is
important in order to provide the user with more flexibility of
bidding. The other modification is significant in terms of resource
utilization. The original mechanism discards all bids that include a
conflicting item. This approach is suitable only in the cases where
the auction involves many item types where the number of each
type of items is very small. The cloud providers usually offer only
a few item types (VM instance types), and a large number of
items of each type. Keeping the original approach would result in
poor utilization of resources, and thus, we modified the allocation
function to address this issue and at the same time maintain the
truthfulness property.

Archer et al. [5] proved that the original mechanism is truthful
in expectation. We claim that CA-LP maintains this property.

Theorem 1. CA-LP mechanism is truthful in expectation.

Proof. In order to prove that an approximation mechanism is
truthful, we need to prove that its winner determination algorithm
is monotone and that the payment calculated for a winning user is
her ‘critical payment’, i.e., the minimum she needs to bid to obtain
her requested bundle.

It is shown in [5] that the xj values determined by solving the
LP in line 7 are monotone with respect to the user valuations, i.e., a
user uj can increase her probability of winning by increasing her
valuation. We now show that the randomized rounding step of
CA-LP maintains the monotonicity of allocation. We can have two
different cases in the randomized rounding step (lines 11–15),
j:xj>0

r ji ≤ ki, ∀i ∈ {1, . . . ,m} (8)

or
j:xj>0

r ji > ki, ∃i ∈ {1, . . . ,m}. (9)

Eq. (8) represents the condition at which each user uj having
yj ≤ xj is guaranteed to get her requested bundle. Therefore, the
probability of user uj to be finally included in the set of winners is
exactly xj and the allocation is monotone.

On the other hand, when Eq. (9) holds for some i, we divide the
users into two groups as follows. First, let us assume that x1, . . . , xn
are in decreasing order. Now, let l be the largest index forwhich the
following equation holds.
j∈{1...l},xj>0

r ji ≤ ki, ∀i ∈ {1, . . . ,m}. (10)

Therefore, a user uj, j ≤ l, will be included in the winners list
with probability xj, which in turn is monotone with respect to her
valuation.

Now, a user uj, l < j ≤ n, will get her allocationwith probability
xj if

r ji +

j′<j,uj′∈W

r j
′

i ≤ ki, ∀i ∈ {1, . . . ,m} (11)

Table 1
CA-LP example.

j r j1 r j2 vj xj yj uj ∈ W pj

1 0 4 0.74 0 0.43 N 0
2 3 4 7.62 0.85 0.32 Y 3.65
3 4 1 6.02 0.62 0.61 N 0
4 1 3 7.54 1 0.74 Y 2.01
5 2 1 5.94 1 0.14 Y 3.49
6 1 0 0.97 0 0.95 N 0

i.e., there are enough resources available to fulfill user uj’s request
after determining the winners among u1, . . . , uj−1. Therefore, the
probability of user uj winning her bundle is given by:

Pr

r ji +

j′<j,uj′∈W

r j
′

i ≤ ki,∀i ∈ {1, . . . ,m}

 xj. (12)

The probability given by Eq. (12) decreases as j increases (i.e., xj
decreases). User uj can increase her probability of winning
by reporting a higher valuation. Therefore, the allocation is
monotone with respect to her valuation, although it is not directly
proportional to xj.

Considering the above two cases, we claim that the allocation
algorithm of CA-LP determines the set of winners with a
probability that is monotone with respect to the user valuations.

The payment calculated by CA-LP is the critical value that
is the minimum a user must bid to get her requested bundle
allocated. Her reported valuation only helps decide whether she
will be a winner, but she has to pay this critical value when she
wins, no matter how large her valuation is. Because of these and
following the results given in [5] the CA-LP mechanism is truthful
in expectation. �

Example 1. We show the execution of CA-LP for a small VMAP
instance illustrated in Table 1. In this VMAP instance, six users
are placing their bids and the cloud provider has two types of VM
instanceswith eight available copies for each type of instance. Each
row of the table represents a user. The first four columns list the
user index j, the requested number of VM instances of type 1 (r j1)
and type 2 (r j2), and the user’s valuation (vj). For example, user u1’s
bid is B1 = (0, 4, 0.74) specifying a request for zero instances of
type VM1 and four instances of type VM2, and a valuation of 0.74
for this bundle. Column xj shows the fractional allocation values
for each user computed by the LP. The next column is the random
value (yj) used to decide the allocation. We see that users u2, u3,
u4, and u5 have higher xj than the corresponding yjs. But it is
not possible to allocate the requested bundles to all these users,
because that will exceed the number of available VMs of both
types. Therefore, we first eliminate u3 from the set ofwinners since
x3 is the minimum among these xjs. After this elimination, the set
of winners satisfies all constraints. We show the final allocation
decision in the column titled ‘uj ∈ W ’, where ‘Y ’ means the bundle
is allocated and ‘N ’ means the bundle is not allocated.

The values in the yj column are also used in payment calcul-
ation. For example, the amount bidder u4 will pay to the resource
provider is determined by solving the LP with different valuations
of u4. Here, we perform a binary search between zero and 7.54
(i.e., v4) to find out the valuation v′4 and solve the LP to find a new
x′4, such that x′4 < y4 (i.e., x′4 < 0.74) for valuations smaller than
v′4 and x′4 > y4 for valuations greater than v′4. We find that for
v′4 = 2.0138, x′4 = 0.82 > 0.74 and for v′4 = 2.0129, x′4 = 0 <
0.74. The search ends here by deciding the payment p4 = 2.0129,
which is shown rounded to two decimal digits in Table 1. We
show the payment for all users in column pj. Thus, users u2, u4
and u5 obtain their requested bundles and pay 3.65, 2.01, and 3.49,
respectively.

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 7

Algorithm 3 CA-GREEDY Mechanism
1: {Phase 1: Collect Bids}
2: for j = 1, . . . , n do
3: Collect bid Bj = (r j1, . . . , r

j
m, vj) from user uj

4: end for
5: {Phase 2: Winner Determination}
6: W ← ∅;
7: for j = 1, . . . , n do
8: sj ←

m
i=1 r

j
iwi

9: end for
10: re-order users such that

v1/
√
s1 ≥ v2/

√
s2 ≥ . . . ≥ vn/

√
sn

11: for j = 1, . . . , n do
12: if for all i = 1, . . . ,m, r ji +

uj′∈W

r j
′

i ≤ ki then
13: W ← W ∪ uj
14: end if
15: end for
16: {Phase 3: Payment}
17: for all uj ∈ W do
18: W ′j ← {ul : uj /∈ W ⇒ ul ∈ W }
19: l←minimum index inW ′j
20: if W ′j ≠ ∅ then
21: pj ← (vl/

√
sl)
√
sj

22: else
23: pj ← 0
24: end if
25: end for
26: for all uj /∈ W do
27: pj ← 0
28: end for

3.2.2. CA-GREEDY mechanism
Lehmann et al. [16] proposed a

√
M-approximationmechanism

for combinatorial auctions with single-minded bidders where the
total number of items that need to be allocated is M . We extend
this mechanism by redefining M to be the weighted total number
of VM instances, i.e.,M =

m
i=1 kiwi. Here we define the ‘size’ sj of

the bundle in bid Bj requested by user uj as sj =
m

i=1 wir
j
i , while

in the original mechanism, sj is defined as sj =
m

i=1 r
j
i , i.e., the

total number of items requested in Bj. Our CA-GREEDYmechanism
is given in Algorithm 3.

CA-GREEDY determines the winners by first ranking the users
in decreasing order of their ‘bid density’ (i.e., v1/

√
s1) and then

greedily allocating them starting from the top of the list. Before
allocating a new bundle the mechanism verifies that the new
allocation does not exceed the number of available VM instances
of each type (lines 11–15). The payment pj a winner uj pays is
calculated by multiplying

√
sj with the highest bid density among

the losing bidders who would win if uj would not be a winner
(lines 17–24). That is, the winner pays the critical value.

Our mechanism differs from the mechanism proposed by
Lehmann et al. [16] in the way the bid density is calculated. The
original mechanism computes sj as the total number of items in
Bj, while in our case we consider sj to be the weighted sum of
the number of VM instances requested in Bj. Another difference
is in the way our mechanism verifies if the capacity is exceeded
for each type of VM instance (line 12). These two differences are
significant because the original problem formulation assumes that
each item is of different type and that different types of items do
not have any relative importance to the auctioneer. In our setting
a cloud provider allocates different types of VM instances, which
have different characteristics and are valued differently by the
cloud provider. Thus, we associate a weight to each VM instance
type in order to reflect these differences. In line 12, the original
mechanism needs to check whether there is a common item in
the bundle of the user that is currently being allocated and the

Table 2
CA-GREEDY example.

j r j1 r j2 vj sj vj/
√
sj uj ∈ W pj

1 0 4 0.74 8 0.26 N 0
2 3 4 7.62 11 2.3 N 0
3 4 1 6.02 6 2.46 Y 5.63
4 1 3 7.54 7 2.85 Y 0.69
5 2 1 5.94 4 2.97 Y 4.6
6 1 0 0.97 1 0.97 Y 0

ones that are already in the set of winners. Since there are lots of
VM instances of the same type, we changed this and check if the
number of instances of each type allocated to the winning bidders
does not exceed the number of available instances of each type.
We claim that CA-GREEDY has the same approximation ratio as the
original greedy mechanism and it is truthful as well.

Theorem 2. CA-GREEDY is a truthful mechanism that computes a
√
M-approximate solution to VMAP, where M =

m
i=1 kiwi.

Proof. Themechanism proposed by Lehmann et al. [16] is an
√
M-

approximation mechanism that solves the general combinatorial
auction problem, where M is the total number of items. In the
case of VMAP, M =

m
i=1 kiwi. According to the definition of

w, wi is the number of VM1 instances equivalent to one VMi
instance. Therefore, in VMAP, M is the total number of equivalent
instances of VM1 that are available. The mechanism proposed by
Lehmann et al. [16] provides a

√
M-approximation solution when

there are M items in total, therefore the CA-GREEDY mechanism
also generates an

√
M-approximation solution to the VMAP.

Now, we show that the winner determination algorithm of CA-
GREEDY is monotone and the payment calculated for a winner
is the critical value. From line 10 of the mechanism, it is clear
that a user can increase her chance of winning by increasing her
bid. Also, a user can increase her chance to win by decreasing
the weighted sum of the items. For example, a user requesting
two small and two large VM instances will be higher in the order
than a user requesting one small and three large instances for
the same valuation, although the numbers of VMs requested are
the same. Therefore, the winner determination algorithm of CA-
GREEDY is monotone with respect to user bids considering the
relative computing capacities of different types of VMs. Finally, a
winning bidder uj pays the minimum amount she has to bid to
win her bundle, i.e., her critical value. This is done by finding the
losing bidder ul who would win if uj would not participate in the
auction. User uj’s minimum bid density has to be at least equal
to the bid density of user ul for winning her bundle. Therefore,
her critical valuation is (vl/

√
sl)
√
sj, which is the payment

calculated by CA-GREEDY. Thus, the CA-GREEDY mechanism has
a monotone allocation algorithm and charges the winning bidders
their critical payment. We conclude that CA-GREEDY is a truthful
mechanism. �

Example 2. In Table 2, we show the allocation and payment
computation obtained by CA-GREEDY for the same instance of
VMAPwe used in Example 1. Herewe also assume thatw1 = 1 and
w2 = 2, i.e., one instance of VM2 is two times more powerful than
one instance of VM1. There are eight available instances of each
type of VM. In Table 2, the first four columns represent the user
index, the number of VMs of each type in their bundle and their
valuation for that bundle. The value in the column titled ‘sj’ is the
weighted sum of the total number of VM instances in a bundle. The
next column, titled ‘vj/

√
sj’, gives the relative valuation of users

with respect to the weighted bundle size, that is the ‘bid density’.

8 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

To determine the set ofwinners, we include users in descending
order of vj/

√
sj in the set of winners unless the inclusion violates

the constraint that only eight copies of each type of VM can be
allocated. User u5 is the first winner and we allocate two copies
of type VM1 and one copy of type VM2 to her. The next user
to get an allocation is u4, thus three instances of type VM1 and
four instances of VM2 are allocated so far. Next, u3 is selected for
allocation, raising the total VM allocation to seven for VM1 and five
for VM2. We see that the next user in the order is u2, but allocating
u2 requires three instances of type VM1 and four of type VM2,
whereas there is only one instance of type VM1 and three instances
of type VM2 remaining. Therefore, u2 is not included in the set of
winners. User u6, is next in the order not violating the constraints,
thus she is included in the set of winners. So far, eight instances
of VM1 and five instances of VM2 are allocated, leaving only three
VM2 instances not allocated. The last user, u1, cannot obtain her
allocation since she requests four instances of VM2.

We show the payment calculation for user u4 as an example.
If u4 is not a winner, there will be one and six instances of VM1
and VM2 to be allocated. The first non-winning user with respect
to the order is u2, but the number of VM instances available is not
enough to allocate u2. But the other remaining user, u1’s request
can be fulfilled when u4 is not a winner. Therefore, u4’s payment
is calculated by multiplying u1’s bid density value by

√
7. Since no

such user could be found for u6, u6’s payment is zero.
Here, we note that the total revenue generated by CA-LP is 9.15

and that generated by CA-GREEDY is 10.92. However, it is not
guaranteed that CA-GREEDY will always generate higher revenue
than CA-LP. The payment of the CA-LP mechanism depends on
both the randomvariables yj generated during the allocation phase
and the competition among the bidders. On the other hand, the
payment determined by the CA-GREEDYmechanism depends only
on the competition among the bidders. In the example, we see that
the highest four bid densities are between 2.3 and 2.97, where 2.3
is the bid density of user u2, which is highest among the losing bids.
Since this value is close to the winning bids, the winning bidders
need to pay more to win their bundles. However, in a different
scenario the CA-LP mechanism may generate higher revenues.

4. Experimental results

We perform simulation experiments with different instances
of VMAP. We solve these problems by employing the three
mechanisms presented above.We compare the results and discuss
the applicability of these mechanisms under different scenarios.

4.1. Experimental setup

The simulation for one instance of VMAP runs for five
simulation days. During each simulation, a maximum of N =
100, 000 users are generated. Groups of users are created five
times an hour, i.e., every twelve minutes. Therefore, an average
of about 167 users are generated every twelve minutes. We add
a deviation randomly chosen from [−20%,+20%] to this number
to determine the actual number of users generated at a particular
time. We invoke all three mechanisms every hour, with all the
users generated during that hour and all users from previous time
slots that are still active. An active user is one whose task has
not been finished or the task deadline has not been reached. Each
mechanism computes the allocation and pricing for the next one
hour time-frame and keeps track of the users’ status separately.
Wewould like to emphasize here that each run of themechanisms
computes the allocation and payment of a given user for only one
time slot and not for all the time slots required for the user’s task
to complete execution. The user will need to participate in andwin
several auctions in order to complete her task.

Users are of three categories: type-1, type-2, and type-3. Type-
1 users are the most demanding, type-3 the least, and type-2
users fall in between. User demands are characterized by four
factors: number of requested VMs, valuation, duration for which
the bundle is requested, and a deadline by which the task has to
be finished. For example, type-1 users request more VMs than the
other two types of users, request the VMs for longer periods of
time, have the highest valuations, and have stricter deadlines than
the others. Also, each category of users are generated at particular
times of the day. A simulation day is divided into three periods:
peak (8am–4pm), off-peak (4pm-midnight), and night (midnight-
8am). Type-1 users are generated (and hence submit their bids)
during the peak hours only. Type-2 users submit bids only during
peak and off-peak hourswhile type-3 users submit bids at any time
of the day. To compare with real life scenarios, we can roughly
consider that type-1 users are the big corporations, type-2 are the
large and medium businesses, and type-3 are the small businesses
and individual users.

We assume that the cloud provider offers four types of VM
instances: small, medium, large, and huge (VM1, VM2, VM3,
and VM4). We set their relative weights to w = (1, 2, 4, 8) and
their fixed prices to f = (0.12, 0.24, 0.48, 0.96). This corresponds
to the fixed-price model used in Microsoft’s Windows Azure
Platform [18]. We call this vectors a linear price vector since fi =
0.12 · wi, for i = 1, . . . , 4. Each user uj’s bid is a 5-tuple (r j1,
r j2, r

j
3, r

j
4, vj), where r ji is the number of requested instances of

VMi and vj is her valuation. User uj’s task is characterized by
the tuple (tj, dj), where tj is the duration for which the resources
are requested and dj is the time by which uj’s job needs to be
completed.

To generate user bids, first the type of the user is randomly
chosen from the user distribution. Then, random numbers are
generated from the ranges [rmin, rmax

], [0, vmax
], and [tmin, tmax

]

and assigned to r ji , vj, and tj, respectively. These values are then
scaled with a factor associated with the category of user. For
example, the scale factors for r ji s are given by the vector ρ.
Therefore, after generating r ji values from the given range, they are
multiplied by ρ1 to determine the actual value when the user is
of type-1. To illustrate this, suppose we generate some r ji = 5 for
user uj and ρ = (2, 1.5, 1). Now, the actual r ji value of users of
type-1, type-2, and type-3 will be 5 × 2 = 10, 5 × 1.5 ≈ 8, and
5, respectively. Similarly, the elements of vector λ give the scaling
factors for valuation of different types of users. After generating
a random number within the range [0, vmax

], we multiply it with
the entry in λ corresponding to the type of the generated user.
Similarly, vectors τ and δ denote the factors for scaling the time
required and the deadline. The deadline is determined by selecting
a random number, scaling it, and then adding the result to tj. We
list all simulation parameters in Table 3.

To create different instances of VMAP, we vary the parameters
that affect the user distribution, demand, and payment resulting
from the allocation. Thus, we choose four different distributions
of type-1, type-2, and type-3 users given by the following tuples:
(10%, 40%, 50%), (20%, 30%, 50%), (20%, 40%, 40%), and (30%, 30%,
40%). We consider four values of vmax, 1, 2, 5, and 10, which
give four ranges of valuations (0–1), (0–2), (0–5), and (0–10). We
also vary the number of available VM instances and the factors
that distinguish bids of different types of users. Table 3 lists
the parameters, their description, and the range of values they
take. Combining all these values with each other, our simulation
experiment simulated 768 different instances of VMAP.

In addition to the above set of experiments, we perform six
sets of experiments with 768 VMAP instances each—by varying
only one of the parameters listed above. We create two sets of
such experiments by setting N , the maximum number of users

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 9

Table 3
Simulation parameters.

Parameter Description Value(s)

m Types of VMs 4
k1, . . . , km Available VMs of each type 500, 1000, 2000
w Relative weight of VMs (1, 2, 4, 8)

f Fixed-price vector
(.12, .24, .48, .96)
(.12, .22, .39, .70)
(.12, .26, .58, 1.28)

φ Fixed-price factor vector
(1, 1, 1)
(3, 2, 1)
(4, 2, 1)

N Maximum number of users 100,000, 50,000, 10,000
n Number of users in an auction Varies

rmin, rmax Min. & Max. VM instances of each
type in a bundle

0, 5

vmax Maximum valuation 1, 2, 5, 10

tmin, tmax Min. & Max. execution time 1, 10

dmin, dmax Min. & Max. deadline 2, 10

π Distribution of users

(10%, 40%, 50%),
(20%, 30%, 50%),
(20%, 40%, 40%),
(30%, 30%, 40%)

ρ Scale factor for bundle size (2, 1.5, 1),
(3, 2, 1)

λ Scale factor for valuation (2, 1.5, 1),
(3, 2, 1)

τ Scale factor for execution time (2, 1.5, 1),
(3, 2, 1)

δ Scale factor for deadline (0.5, 0.67, 1),
(0.33, 0.5, 1)

to 50,000 and 10,000, respectively. From these experiments we
try to evaluate the VM allocation mechanisms for various degrees
of user demands. In the next two sets of experiments, we set
N = 100, 000 and consider two different fixed-price vectors f as
follows. A sublinear price vector with prices for instance VMi given
by fi = 0.12 · (wi)

0.85, which corresponds approximately to f =
(0.12, 0.22, 0.39, 0.70); and a superlinear price vector with prices
for instance VMi given by fi = 0.12 · (wi)

1.15, which corresponds
to f = (0.12, 0.26, 0.58, 1.28). Since the FIXED-PRICE mechanism
heavily depends on the fixed prices of the VM instances, these
experiments let us determinewhether the fixed-price vector affect
the performance of the proposed mechanisms.

Finally, we vary the fixed-price vectors during the peak and off-
peak hours of the day to examinewhether they can generate higher
revenue by capturing the higher demands during these times. This
is accomplished by introducing the fixed-price factor vector φ. This
is a 3-vector containing factors that are used as multipliers for the
fixed-price vector during different hours of the day. For example,
φ = (3, 2, 1) indicates the fixed prices of each type of VM instance
will be multiplied by 3 during the peak hours, by 2 during the
off-peak hours, and by 1 during night hours. If the fixed price-
vector is f = (0.12, 0.22, 0.39, 0.70) then the prices for the four
types of VM instances during peak hours are given by (0.36, 0.66,
1.17, 2.1). In the regular case, φ = (1, 1, 1), that is, the prices
for VM instances are the same for all periods of the day. In our
experiments we use two price factor vectors (3, 2, 1) and (3, 2, 1),
that is, we consider that during peak hours the prices are four,
and respectively three times higher than during the night hours,
while the prices during off-peak hours are two times higher than
the prices during night hours. This will allow us to investigate the
effect of taking into account the demand when establishing prices
for the fixed-price mechanisms. Table 3 lists these price vectors.

Fig. 2. Overall performance of the mechanisms with linear fixed-price vector
(.12, .24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 100,000 users. The
plot is drawn at log10 scale.

4.2. Analysis of results

The experimental results show that the proposed combinatorial
auction-based mechanisms have clear advantages over the fixed-
price mechanism for solving the VMAP. Here we discuss their
overall performance and then investigate the effect of different
parameters on various performance metrics such as generated
revenue, utilization, runtime, and the number of users served by
the system.

First, we present the average performance of the mechanisms
in Figs. 2–5. All the plots in these figures are represented using
a logarithmic scale. The fixed price mechanism used in these
experiments assumes the same fixed price for all the periods
of the day, that is, the fixed price factor vector φ = (1, 1, 1).
In Fig. 2 we present the summary of the experiments with
100,000 users and the linear price vector. We see that CA-LP
outperforms the other two mechanisms in all the metrics except
the running time. Here the running time is the average timeneeded
to run one auction simulation. About 8% of the 100,000 users
could complete their tasks while running the CA-LP mechanism.
We also see that the overall utilization of the resources and
the revenue generated are the best for CA-LP. This is because
the linear program has as objective maximizing the sum of the
valuations, which eventually generates higher revenue by utilizing
as many machines as possible while satisfying the constraint
given in Eq. (6). Utilizing more machines allocates more users and
therefore more users can finish their tasks. On the other hand,
the CA-GREEDY mechanism allocates users based on their relative
valuation. Therefore, it cannot always utilize resources as much
as CA-LP can. But the running time of the CA-LP is prohibitively
high because the payment calculation involves repeated solving
of the linear program. The FIXED-PRICE mechanism obviously has
the lowest running time because it only allocates users on a first-
come, first-served basis. The CA-GREEDY mechanism has very low
running time compared to CA-LP since its only major computation
is to sort the list of users.

In Figs. 3 and 4, we show the summary of the results for
experiments with 50,000 and 10,000 users and linear price vector.
First, we observe that each of the mechanisms serves higher
percentage of users, generates lower revenue, and utilizes less
resources as the number of users decreases. This trend with
decreasing demand is natural for any allocation mechanism. We
further observe that the rank of the mechanisms in terms of
all the metrics remain the same regardless of the total number
of participants. Also note that compared to the FIXED-PRICE
mechanism, the increase in served users is much higher for CA-
LP and CA-GREEDY. This is due to the fact that FIXED-PRICE only

10 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

Fig. 3. Overall performance of the mechanisms with linear fixed-price vector
(.12, .24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 50,000 users. The
plot is drawn at log10 scale.

Fig. 4. Overall performance of the mechanisms with linear fixed-price vector
(.12, .24, .48, .96), fixed-price factor vector φ = (1, 1, 1), and 10,000 users. The
plot is drawn at log10 scale.

considers those users who bid at least the fixed value, while
the auctions determine allocations based on the market demand
and supply. For the same reason, the utilization of the machines
decreases at a slower rate in the case of combinatorial auction-
based mechanisms than in the case of the fixed-price mechanism.
However, the gap between the total revenue generated reduces
when there are less participants, as the auction-basedmechanisms
generate less revenue when there is less competition.

In Fig. 5a and b, we summarize the results of the experiments
with 100,000 users and sublinear and superlinear fixed-price

vectors, respectively. By comparing themwith the results in Fig. 2,
we see that the onlymechanismaffected is FIXED-PRICE,which can
serve more users and utilize more resources when the price vector
is sublinear. However, in this case the total revenue decreases as
users pay less than what they pay in the case of a linear price
vector. Naturally, we see the opposite trend for the superlinear
price vector. We can conclude that we cannot improve the overall
quality of the allocation generated by the FIXED-PRICEmechanism.
By changing the price vectorwe can only improve onemetricwhile
sacrificing another.

We now investigate different performance metrics by varying
other simulation parameters, while setting the total number of
users to 100,000 and using the linear price vector. In Fig. 6a, we
show the revenue generated for different ranges of user valuations.
We see that low user valuations most adversely affect the FIXED-
PRICEmechanism. This is because it does not allocate the requested
bundles to users having valuations below the fixed-price range.
On the other hand the combinatorial auction mechanisms can
generate higher revenues because they determine the payments
from the user valuations. The revenue increases at the same rate
from valuation ranges (0–1) to (0–5). Then, for the valuation
range (0–10), we see a sharp rise in revenue generated by the
auctionmechanisms, while the FIXED-PRICEmechanism’s revenue
does not increase that much. This is because the price for an
average-sized bundle is 4.5 according to the fixed prices we set.
FIXED-PRICE mechanism’s revenue is bounded by the fixed prices,
therefore it cannot take advantage of higher user valuations.
As shown in Fig. 6b, our experiments reveal that the rate of
resource utilization obtained by the auction-based mechanisms
is not affected by the valuation ranges. The utilization obtained
by the FIXED-PRICE mechanism increases as the valuation range
increases, and it is lower than that obtained by combinatorial
auction mechanisms for all the ranges of valuations except for
the (1–10) range.

In Fig. 7, we show the average revenue and resource utilization
generated by the mechanisms when different values of the scale
factors for valuation (λ) and deadline (δ) are used. As a reminder, a
scale factor for valuation (or, the price factor) represents howmuch
more a bundle is valued by a types 1 and 2 user than a type 3 user.
For example, λ = (2, 1.5, 1) denotes the case where on average
a type-1 user bids twice the value than a type-3 user and a type-2
user bids around 1.5 times higher than a type-3 user. When λ =
(3, 2, 1), these multiplication factors become 3 and 2, respectively
andmeaning that those users’ demands are even higher than those
of type-3 users. Similarly, a deadline factor says how strict is the
deadline of type 1 and type 2 users compared to that of type 3
users.We consider four possible combinations of these two factors,
which we denote as Ratio 1, . . ., Ratio 4 in Fig. 7. We show the

a b

Fig. 5. Overall performance of themechanismswith 100,000 users and (a) sublinear fixed-price vector (.12, .22, .39, .70); (b) superlinear fixed-price vector (.12, .26, .58, 1.28).
The fixed-price factor vector φ = (1, 1, 1). The plot is drawn at log10 scale.

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 11

a b

Fig. 6. Effect of valuation ranges (with 100,000 users) on (a) revenue; (b) VM utilization.

a b

Fig. 7. (a) Revenue and (b) VM utilization vs. ratios of price and deadline factors. Ratio is defined as a set of ((price-factor), (deadline-factor)) values. Ratio 1 =
((2, 1.5, 1), (.33, .5, 1)), Ratio 2 = ((2, 1.5, 1), (.5, .67, 1)), Ratio 3 = ((3, 2, 1), (.33, .5, 1)), Ratio 4 = ((3, 2, 1), (.5, .67, 1)).

revenue generated in different such scenarios in Fig. 7a. Ratios 1
and2 are for theprice factors (2, 1.5, 1) andRatios 3 and4 are for the
price factors (3, 2, 1). We see that the combinatorial auction-based
mechanisms are capable of generating higher revenues when the
types 1 and 2 bidders bid more, but the fixed-price mechanism
cannot increase the generated revenue that much. However, we
see that deadline factors do not have much effect on the outcome,
as evident from similar values shown for different deadline factors
but the same valuation factor (e.g., Ratios 1 and 2). From Fig. 7b we
see that these factors have almost no effect on machine utilization
achieved by the combinatorial auctions. But utilization is increased
a little for the FIXED-PRICE mechanism with higher valuation
factors.

We now examine how the three mechanisms deal with differ-
ent types of users. Recall that type-1 users are themost demanding
and type-3 users are the least demanding. First, we show the
percentage of users who could complete their tasks in Figs. 8–
10. We refer to these users as the served users. In these figures
we show the results from three different sets of experiments,
with 100,000, 50,000, and 10,000 users and the linear price vector.
In Fig. 8, where the total number of users is 100,000, we observe
that the FIXED-PRICE mechanism serves type-3 users the most.
This is because it only considers the order in which users arrive.
Type-1 and type-2 users have shorter deadlines and therefore leave
the system if they do not get the allocation within a few allocation
events. On the other hand, type-3 users have longer deadlines, and
therefore they are active longer and eventually get the allocation
once the users that entered the system earlier finish their tasks.

Fig. 8. Percentage of served users for simulations with 100,000 users.

CA-LP also served more users of type-3 than users of other types,
yet it served more users compared to the FIXED-PRICE mechanism
in every category. Here we see a nice property of CA-GREEDY that
is, it serves more type-1 users than the other mechanisms. It also
serves more users of type-1 than other user types. This is because
CA-GREEDY makes decisions based on the bid densities, which are
on average the highest for type-1 users.

Now comparing Fig. 8with Figs. 9 and 10, we see that for 50,000
users the CA-GREEDYmechanismmaintains its feature of serving a
higher percentage of more demanding users than less demanding

12 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

Fig. 9. Percentage of served users for simulations with 50,000 users.

Fig. 10. Percentage of served users for simulations with 10,000 users.

users. But for 10,000 users, the percentage of served users of type 3
is higher than the ones corresponding to the other two types of
users. This is because for the reduced demand, type 1 and type 2
users cannot occupy most of the resources as they do for the cases
with higher number of users. Also, recall that type 1 and type 2
users request larger bundles and are active during peak hours and
off-peak hours only. On the other hand, type 3 users are generated
any time of the day. Therefore, the type 3 users get more space
for occupying the resources facing less competition from the other
users. Also, their bundle size is smaller compared to the other users
and therefore a higher number of users can be served using the
same amount of resources. On the other hand, in the case of CA-
LP, we see almost the same trend (although at a different scale) in
terms of serving the three types of users. Hence, we can conclude
that CA-GREEDY is a better choice in terms of fairness and the
handling of demand and supply in the market.

In Figs. 11–13 we plot the percentage of users that could
only partially complete their tasks. First, we observe that the
FIXED-PRICE mechanism has the least number of partially served
users in all three cases. This is because of its inherent first-come,
first-served policy. These plots also reveal that the percentage
of partially served users increases in the case of CA-LP and CA-
GREEDY when fewer users participate. Such effect is natural to
auction mechanisms; a user must be denied the resources once
another user with a higher bid arrives in an already saturated
market for resources. However, if the consequences of having jobs
partially completed is very important in some systems, it may be
better to consider FIXED-PRICE as the allocation mechanism. The
combinatorial auction-based mechanisms we propose can also be

Fig. 11. Percentage of partially served users for simulations with 100,000 users.

Fig. 12. Percentage of partially served users for simulations with 50,000 users.

Fig. 13. Percentage of partially served users for simulations with 10,000 users.

improved by incorporating somepenalty for partially finished jobs.
In the simulations we consider that the bids are generated once
and a user submits the same bid until she gets her job done or her
deadline is reached. In practice, a user is an interactive entity and
can adapt her bid depending on the value and urgency of her job
and the current market demand. Creating an automated bidding
agent to participate in the combinatorial auctions could also be an
interesting research direction that could eventually decrease the
number of partially served users.

Now we present the average resource utilization obtained by
the three mechanisms during different periods of time of the day.

S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () – 13

Fig. 14. Utilization of resources during different periods of time (100,000 users).

Fig. 15. Overall performance of the mechanisms with fixed-price factor vector
φ = (3, 2, 1) and 100,000 users. The plot is drawn at log10 scale.

Recall that in the experiments, we divided a day between peak
(8am–4pm), off-peak (4pm-midnight), and night (midnight-8am)
hours. Also, Type-1 users are generated during the peak hours,
Type-2 users during the peak and off-peak hours, and Type-3 users
can place their bids any time of the day. In Fig. 14, we see that the
resource utilization is around 95% for CA-LP for each period of the
day. The utilization achieved by CA-GREEDY is very close to that of
CA-LP for all three periods. The proposed mechanisms are able to
effectively balance the load of the system over time. The utilization
obtained by FIXED-PRICE is about 56% and 59% during peak and off-
peak hours and it falls below 50% during night. Since FIXED-PRICE
is a first-come-first-servedmechanism, it cannot free up resources
that are being used by Type-3 users when in the morning Type-1
users start placing their requests. Since Type-1 users have shorter
deadlines, by the time some resources are freed up, some users
have already left the system. Therefore, the utilization obtained by
FIXED-PRICE is far below that obtained by CA-LP and CA-GREEDY.
At night, the utilization further drops because only the Type-3
users request computing resources.

All the above experiments considered the FIXED-PRICE mecha-
nism with a fixed-price factor vector φ = (1, 1, 1). We now show
the results obtained by considering different fixed-price factor vec-
tors,φ. This is equivalent to considering different prices at different
times of the day and it will allow us to investigate the effect of in-
creasing the prices during high demand hours on the performance
of the mechanisms. The combinatorial auction-based mechanisms
dynamically determine the prices of the VM instances. Since de-
mand varies during peak, off-peak, and night hours, we multiply
the fixed prices with different values based on the time of the day.
The results presented in Fig. 15, are obtained when we multiply

Fig. 16. Overall performance of the mechanisms with fixed-price factor vector
φ = (4, 2, 1) and 100,000 users. The plot is drawn at log10 scale.

the fixed-price vector by 3 for the peak hours, by 2 for the off-peak
hours, and by 1 for the night hours. This correspond to a fixed-price
factor vector φ = (3, 2, 1). We see that when compared to the
results presented in Fig. 2, the percentage of served users when
employing the FIXED-PRICE mechanism has decreased from 5.5%
to 3.8% and the utilization of VM instances has decreased from 54%
to 34%. This is expected, since more users are being rejected allo-
cation during peak and off-peak hours due to the increase in the
fixed-prices. However, the revenue generated by the FIXED-PRICE
mechanism remains at almost the same level. This shows that ad-
justing the fixed-price vector in anticipation of higher demandmay
not improve much the overall efficiency. At higher prices, fewer
users are served and resources are under-utilized leading to no sig-
nificant impact on the generated revenue. Fig. 16 shows the re-
sults obtained when we changed the fixed-price factor vector to
φ = (4, 2, 1), i.e., we multiply the fixed-price vector by 4 during
the peak hours, by 2 during the off-peak hours and by 1 during
night hours. Here we observe that while serving fewer users and
utilizing less resources, the FIXED-PRICE mechanism also obtains
lower revenue. We conclude that it is possible to control the be-
havior of fixed-price mechanisms by updating the fixed-price vec-
tor based on observation or statistical data about the demands. But
combinatorial auction-based mechanisms compute the price dy-
namically, therefore no matter how the demand changes, they are
able to obtain an efficient allocation and pricing.

In summary, we can conclude that combinatorial auction-based
allocation and pricing mechanisms are more desirable over the
fixed-price based ones currently employed by cloud providers.
CA-LP is a better choice when the objective is to obtain higher
revenue and higher utilization of resources. However, we have to
limit the application of CA-LP to systems with small number of
users, because otherwise the execution time will be prohibitive.
This is because the CA-LP involves solving a linear program
whose number of unknowns increases with the number of users
participating in the auction. In addition to this, in order to compute
the user’s payments, CA-LP needs to solve one linear program for
each user, thus the execution time increases very fast with the
number of users. CA-LP can be a good choicewhen auctions are run
at longer intervals. On the other hand, CA-GREEDY can be applied
to cloud systems with any number of users being able to generate
high revenue and resource utilization with very low execution
time. CA-GREEDY is a better choice when the objective of VMAP
is to maximize the social welfare. It is also worth mentioning that
the CA-LP mechanism is designed for bidders with known bundles
(i.e., bundles that are known to the auctioneer) [5]. Therefore, this
mechanism is vulnerable to manipulation by users who bid for
unknown bundles in the hope of obtaining a better allocation or
price. On the other hand, CA-GREEDY is a truthful mechanismwith

14 S. Zaman, D. Grosu / J. Parallel Distrib. Comput. () –

respect to both valuations and the bundles requested. Considering
all the above aspects, we recommend using the CA-GREEDY
mechanism for solving general purpose VM allocation problems in
clouds.

5. Conclusion

We investigated the applicability of combinatorial auction-
based mechanisms for allocation and pricing of VM instances
in cloud computing platforms. We proposed two combinatorial
auction-based mechanisms for solving the problem of allocating
VM instances in clouds. We compare their performance with
that obtained by a currently used fixed-price mechanism. We
perform extensive simulation experiments and conclude that
combinatorial auction-based mechanisms are clearly a better
choice for VM allocation in clouds. Based on experimental data
and on the theoretical properties of themechanisms, we alsomake
recommendations that the CA-GREEDY mechanism should be the
choice for general purpose VM instance allocation problems while
the CA-LP mechanism can be reserved for special scenarios. Future
work includes the deployment of the proposed mechanisms on
an experimental cloud computing testbed and the development of
other market-based VM allocation protocols.

Acknowledgments

This paper is a revised and extended version of [29] presented
at the 2nd IEEE International Conference on Cloud Computing
Technology and Science (IEEE CloudCom 2010). The authors wish
to express their thanks to the editor and the anonymous referees
for their helpful and constructive suggestions, which considerably
improved the quality of the paper. This workwas supported in part
by NSF grants DGE-0654014 and CNS-1116787.

References

[1] J. Altmann, C. Courcoubetis, G.D. Stamoulis, M. Dramitinos, T. Rayna, M. Risch,
C. Bannink, GridEcon: a market place for computing resources, in: Proc.
Workshop on Grid Economics and Business Models, 2008, pp. 185–196.

[2] Amazon, Amazon EC2 spot instances, URL http://aws.amazon.com/ec2/spot-
instances/.

[3] Amazon, Amazon EC2 pricing, URL http://aws.amazon.com/ec2/pricing/.
[4] A. Andersson, M. Tenhunen, F. Ygge, Integer programming for combinatorial

auction winner determination, in: Proc. Fourth Int’l Conf. on Multi-Agent
Systems, 2000, pp. 39–46.

[5] A. Archer, C. Papadimitriou, K. Talwar, E. Tardos, An approximate truthful
mechanism for combinatorial auctions with single parameter agents, Internet
Mathematics 1 (2) (2005) 129–150.

[6] A. Archer, E. Tardos, Truthful mechanisms for one-parameter agents, in: Proc.
42nd IEEE Symp. on Foundations of Computer Science, 2001, pp. 482–491.

[7] O.A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, D. Tsafrir, Deconstructing
amazon EC2 spot instance pricing, in: Proc. 3rd IEEE Int’l Conf. on Cloud
Computing Technology and Science, CloudCom 2011, 2011.

[8] R. Buyya, R. Ranjan, R.N. Calheiros, InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services, in: Proc.
10th Int’l Conf. on Algorithms and Architectures for Parallel Processing, 2010,
pp. 13–31.

[9] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, C. Krintz, See spot
run: using spot instances for MapReduce workflows, in: Proc. 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, 2010.

[10] P. Cramton, Y. Shoham, R. Steinberg, Combinatorial Auctions, The MIT Press,
2005.

[11] A. Das, D. Grosu, Combinatorial auction-basedprotocols for resource allocation
in grids, in: Proc. 19th Int’l Parallel and Distributed Processing Symp., 6th
Workshop on Parallel and Distributed Scientific and Engineering Computing,
2005.

[12] S. de Vries, R.V. Vohra, Combinatorial auctions: a survey, INFORMS Journal on
Computing 15 (3) (2003) 284–309.

[13] R.A. Gagliano, M.D. Fraser, M.E. Schaefer, Auction allocation of computing
resources, Communications of the ACM 38 (6) (1995) 88–102.

[14] S.K. Garg, S. Venugopal, J. Broberg, R. Buyya, Double auction-inspired meta-
scheduling of parallel applications on global grids, Journal of Parallel and
Distributed Computing (2012) (submitted for publication).

[15] J. Gomoluch, M. Schroeder, Market-based resource allocation for grid
computing: a model and simulation, in: Proc. 1st Int’l Workshop on
Middleware for Grid Computing, 2003, pp. 211–218.

[16] D. Lehmann, L.I. O’Callaghan, Y. Shoham, Truth revelation in approximately
efficient combinatorial auctions, Journal of the ACM 49 (5) (2002) 577–602.

[17] A. Li, X. Yang, S. Kandula, M. Zhang, CloudCmp: shopping for a cloud made
easy, in: Proc. 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, 2010.

[18] Microsoft, Windows Azure FAQ. URL
http://www.microsoft.com/windowsazure/faq/.

[19] Microsoft, Windows Azure offers. URL
http://www.microsoft.com/windowsazure/offers/.

[20] N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory,
Cambridge University Press, 2007.

[21] M. Risch, J. Altmann, L. Guo, A. Fleming, C. Courcoubetis, The GridEcon
platform: a business scenario testbed for commercial cloud services, in: Proc.
Workshop on Grid Economics and Business Models, 2009, pp. 46–59.

[22] M.H. Rothkopf, A. Pekec, R.M. Harstad, Computationallymanageable combina-
torial auctions, Management Science 44 (8) (1998) 1131–1147.

[23] T. Sandholm, Algorithm for optimal winner determination in combinatorial
auctions, Artificial Intelligence 135 (1–2) (2002) 1–54.

[24] I.E. Sutherland, A futures market in computing, Communications of the ACM
11 (6) (1986) 449–451.

[25] E. Walker, W. Brisken, J. Romney, To lease or not to lease from storage clouds,
IEEE Computer 43 (4) (2010) 44–50.

[26] R.Wang, Auctions versus posted-price selling, TheAmerican Economic Review
83 (4) (1993) 838–851.

[27] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, L. Zhou, Distributed systems meet
economics: Pricing in the cloud, in: Proc. 2nd USENIXWorkshop onHot Topics
in Cloud Computing, HotCloud’10, 2010.

[28] R. Wolski, J.S. Plank, J. Brevik, T. Bryan, Analyzing market-based resource
allocation strategies for the computational grid, The International Journal of
High Performance Computing Applications 15 (3) (2001) 258–281.

[29] S. Zaman, D. Grosu, Combinatorial auction-based allocation of virtual machine
instances in clouds, in: Proc. 2nd IEEE Int’l Conf. on Cloud Computing
Technology and Science, CloudCom 2010, 2010, pp. 127–134.

[30] E. Zurel, N. Nisan, An efficient approximate allocation algorithm for
combinatorial auctions, in: Proc. 3rdACMConf. on Electronic Commerce, 2001,
pp. 125–136.

Sharrukh Zaman received his Bachelor of Computer Sci-
ence and Engineering degree from Bangladesh University
of Engineering and Technology, Dhaka, Bangladesh. He is
currently a Ph.D. candidate in theDepartment of Computer
Science,Wayne State University, Detroit, Michigan. His re-
search interests include cloud computing, distributed sys-
tems, game theory and mechanism design. He is a student
member of the IEEE.

Daniel Grosu received his Diploma in engineering (auto-
matic control and industrial informatics) from the Tech-
nical University of Iasi, Romania, in 1994 and his M.Sc.
and Ph.D. degrees in computer science from the Univer-
sity of Texas at SanAntonio in 2002 and 2003, respectively.
Currently, he is an associate professor in the Department
of Computer Science, Wayne State University, Detroit. His
research interests include distributed systems and algo-
rithms, resource allocation, computer security and topics
at the border of computer science, game theory and eco-
nomics. He has publishedmore than 70 peer-reviewed pa-

pers in the above areas. He has served on the program and steering committees of
several international meetings in parallel and distributed computing. He is a senior
member of the ACM, the IEEE and the IEEE Computer Society.

http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/pricing/
http://www.microsoft.com/windowsazure/faq/
http://www.microsoft.com/windowsazure/offers/

	Combinatorial auction-based allocation of virtual machine instances in clouds
	Introduction
	Our contribution
	Related work
	Organization

	Virtual machine allocation problem
	Virtual machine allocation mechanisms
	FIXED-PRICE mechanism
	Combinatorial auction-based mechanisms
	CA-LP mechanism
	CA-GREEDY mechanism

	Experimental results
	Experimental setup
	Analysis of results

	Conclusion
	Acknowledgments
	References

