
A Study of the Characteristics of Behaviour Driven 

Development 

Carlos Solís 

Lero, the Irish Software Engineering Research Centre 

University of Limerick 

Limerick, Ireland 

carlos.solis@lero.ie 

Xiaofeng Wang 

Lero, the Irish Software Engineering Research Centre 

University of Limerick 

Limerick, Ireland 

xiaofeng.wang@lero.ie 

 
Abstract—Behaviour Driven Development (BDD) has gained 

increasing attention as an agile development approach in recent 

years. However, characteristics that constituite the BDD 

approach are not clearly defined. In this paper, we present a set 

of main BDD charactersitics identified through an analysis of 

relevant literature and current BDD toolkits. Our study can 

provide a basis for understanding BDD, as well as for extending 

the exisiting BDD toolkits or developing new ones.  

Keywords-Behaviour Driven Development, Test Driven 

Development, Ubiquitous Language, Automated Acceptance 

Testing 

I.  INTRODUCTION 

Behavior Driven Development (BDD) is an increasingly 
prevailing agile development approach in recent years, and has 
gained attentions of both research and practice. It was 
originally developed by Dan North [3] as a response to the 
issues in Test Driven Development (TDD). 

 TDD is an evolutionary approach that relies on very short 
development cycles and the agile practices of writing 
automated tests before writing functional code, refactoring and 
continuous integration [19]. Acceptance Test Driven 
Development (ATDD) [1, 2] is one type of TDD where the 
development process is driven by acceptance tests that are used 
to represent stakeholders’ requirements. ATDD helps 
developers to transform requirements into test cases and allows 
verifying the functionality of a system. A requirement is 
satisfied if all its associated tests or acceptance criteria are 
satisfied. In ATDD acceptance tests can be automated. TDD 
and ATDD are adopted widely by the industry because they 
improve software quality and productivity [21, 22].  

However, many developers find themselves confused while 
using TDD and ATDD in their projects, “programmers wanted 
to know where to start, what to test and what not to test, how 
much to test in one go, what to call their tests, and how to 
understand why a test fails” [3]. Some of the problems of TDD 
and ATDD are that they are focused on verifying the state of 
the system rather than the desired behaviour of the system, and 
that test code is highly coupled with the actual systems’ 
implementation [18, 20]. In addition, in these approaches 
unstructured and unbounded natural language is used to 
describe test cases which are hard to understand [3]. 

BDD is generally regarded as the evolution of TDD and 
ATDD. BDD is focused on defining fine-grained specifications 

of the behaviour of the targeting system, in a way that they can 
be automated. The main goal of BDD is to get executable 
specifications of a system [3, 20]. BDD relies on ATDD, but in 
BDD tests are clearly written and easily understandable, 
because BDD provides a specific ubiquitous language that 
helps stakeholders to specify their tests. There are also various 
toolkits supporting BDD, such as JBehave [4], Cucumber [5] 
and RSpec [6]. 

Currently, the BDD approach is still under development. 
The understanding of BDD is far from clear and unanimous. 
There is no one well-accepted definition of BDD. The 
descriptions of the characteristics of BDD are vague and 
scattered. The supporting tools are mainly focused on the 
implementation phase of the development process, which is a 
mismatch to BDD’s broader coverage of the software 
development lifecycle. Based on these observations, the main 
objective of our study is to identify the characteristics of BDD 
and conceptualize them in an explicit manner, which can serve 
as a basis for understanding the BDD approach, and for the 
development and extension of the BDD supporting tools. 

This paper is structured as follows. Section 2 provides a 
review of the few existing BDD studies. Section 3 describes the 
research approach employed in our study. Section 4 elaborates 
on the identified BDD characteristics and presents a conceptual 
model that encapsulates these characteristics. The last section 
gives the conclusions and future work.  

II. RELATED WORK 

There are very few published studies on BDD, most of 
which take a relatively narrow view of BDD and only treat it as 
a specific technique of software development. This may be a 
reflection of the original vision of BDD as a small, simple 
change from existing TDD practices. Carvalho et al. [8, 9] view 
BDD as a specification technique that “automatically certifies 
that all functional requirements are treated properly by source 
code, through the connection of the textual description of these 
requirements to automated tests”. According to them, BDD 
starts with textual descriptions of the requirements using 
specific keywords that tag the type of sentence, indicating how 
the sentence is going to be treated in the subsequent 
development phases. Since the focus of their work is on the 
higher BDD abstraction level, they mainly focus on the set of 
predetermined tags in BDD that form a simple ubiquitous 
language. Many details of BDD are not treated in their work. 
Similarly, Tavares et al. [7] focus on the implication of BDD as 

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.76

464

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.76

464

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.76

383



a design technique and claim that the aim of BDD is to 
integrate verification and validation in the design phase in an 
outside-in style, which implies thinking early on how the client 
acceptance criteria are before going into the design of each part 
that composes the functionality. They argue that, as BDD is 
strongly based on the automation of specification tasks and 
tests, and it is necessary to have a proper tooling to support it.  

Instead, Keogh [10] embraces a broader view of BDD and 
argues its significance to the whole lifecycle of software 
development, especially to the business side and the interaction 
between business and software development. Keogh attempts 
to unveil the value of BDD using the concepts of Lean 
thinking, such as value stream, pull, and the PDCA (Plan-Do-
Check-Adapt) cycle. In addition, this author argues that BDD 
permits to deliver value by defining behaviour, and it is 
focused on learning by encouraging questions, conversations, 
creative exploration, and feedback. BDD also aids to decouple 
the learning associated with TDD from the word “test”, using 
the more natural vocabulary of examples and behaviour to 
elicit requirements and create a shared understanding of the 
domain. Even though the study in [10] does not provide a 
comprehensive list of the BDD characteristics, it demonstrates 
convincingly that BDD has broader implication to software 
development processes than being just an extension of TDD. 

Lazăr et al. [11] also highlight the value of BDD for 
business domain and the interaction of business and software 
development, claiming that BDD enables developers and 
domain experts speak the same language, and encourages 
collaboration between all project participants. They point out 
two core principles of BDD: 1) business and technology people 
should refer to the same system in the same way; and 2) any 
system should have an identified, verifiable value to the 
business. Based on this view of BDD, they analyze the BDD 
approach and present the main BDD concepts as a domain 
model and a BDD profile. However, their domain model does 
not allow the specification of business value or the recipient of 
that value. As a consequence, it is not possible to relate a 
system or part of it with the business value that it provides, 
which is inconsistent with the second core BDD principle they 
claim. Besides, the BDD profile they build does not take into 
account the relationships among several key concepts of BDD. 

III. RESEARCH APPROACH 

Based on the objective of our study and the review of 
related work, the research question we address in our study is: 
what are the main characteristics of behavior driven 
development? To this end, the research approach employed in 
our study is composed of reviewing relevant literature and 
analysing current BDD toolkits. We started from reviewing the 
BDD literature. As shown in Section 2, the published literature 
on BDD is very limited. It is difficult to identify the concepts 
and characteristics of BDD relying on the BDD literature only. 
To overcome this constraint, we also reviewed the related 

literature including TDD and Domain Driven Development, 
since BDD is a combination of a set of concepts from these 
areas. We used TDD as a baseline to delineate the BDD 
specific characteristics. That is, what we considered the BDD 
specific characteristics are those not reported as TDD’s.  

We analyzed seven current BDD toolkits to verify the BDD 
characteristics identified from the literature and to discover 
anyone we missed. There are more than 40 BDD toolkits listed 
in the BDD Wikipedia page [13] at the moment the toolkits 
analysis was conducted. To choose the suitable BDD toolkits to 
study, we used the Wikipedia list as a checklist and consulted 
one of the BDD mailing lists [23] to decide which BDD 
toolkits in the list were often used by practitioners. As the 
result seven most frequently mentioned toolkits in the 
discussions are included in the analysis. They are: Cucumber 
[5,18] , Specflow [14], RSpec [6,18], JBehave [4], MSpec [15], 
StoryQ [12] and NBehave [16]. We grouped JBehave and 
NBehave under the title of “xBehave Family”, and RSpec and 
MSpec under “xSpec Family”, due to the similarities of the 
toolkits within the same family. Table 1 gives a brief overview 
of the seven toolkits and the versions that we analysed. 

The literature review and toolkits analysis were interwoven 
steps. After reviewing several studies and drawing up an initial 
set of the BDD characteristics, we analysed one toolkit at a 
time using the set of characteristics and recorded how the 
toolkit supported them. If we found a characteristic in the 
toolkit that was not in the initial list, we went back to the 
literature to understand if it could be considered a BDD 
characteristic, and decided if the initial list should be extended 
accordingly. This process was repeated for each toolkit. 

IV. THE CHARACTERISTICS OF BDD 

Based on the broad view of BDD we hold which covers the 
whole range of software development activities, including 
requirements eliciting, analysis, design and implementation. 
We have identified six main characteristics of BDD from the 
literature review and toolkits analysis.  

A. Ubiquitous Language 

The concept of “ubiquitous language” is at the core of 
BDD. A ubiquitous language is a language whose structure 
comes from a domain model. It contains the terms which will 
be used to define the behavior of a system [17]. A ubiquitous 
language based on the business domain enables customers and 
developers speak the same language without ambiguity. 

Creating a ubiquitous language for a project is crucial since 
it should be used throughout the development lifecycle. A 
dictionary is specified at the beginning of the project. Most 
vocabulary of the ubiquitous language should come from the 
analysis phase. However, new words can be inserted at any 
time of the development phases. Creating the ubiquitous 
language needs to involve anyone (domain experts and 

TABLE I. THE BDD TOOLKITS ANALYSED IN OUR STUDY 

xBehave Family xSpec Family  

JBehave NBehave RSpec MSpec 
StoryQ Cucumber SpecFlow 

Programming language supported Java C# Ruby C# C# Ruby, Java, Groovy, C#, etc. C# 

Version analysed 3.1.2 0.4.5 2.3 5.1  2.0.4 0.10.0 1.5 

 

465465384



developers) who will use the language. In the design and 
implementation phases, developers will use the language to 
name classes and methods.  

BDD itself also includes a pre-defined simple ubiquitous 
language for the analysis process, which is domain 
independent. It is used to structure user stories and scenarios. It 
will be explained in more detail in the “Plain Text Description 
with User Story and Scenario Templates” section.  

None of the toolkits we analysed supports the creation of a 
specific ubiquitous language for a project.  

B. Iterative Decomposition Process 

It is often difficult for developers to find a starting point to 
communicate with customers during requirements gathering. 
Customers need some business value to be realized by a 
software project. Business value is generally difficult to 
identify and made explicit. Therefore in BDD the analysis 
starts with identification of the expected behaviours of a 
system, which are more concrete and easy to identify. The 
system’s behaviours will be derived from the business 
outcomes it intends to produce. Business outcomes are then 
drilled down to feature sets. A feature set splits a business 
outcome into a set of abstract features, which indicate what 
should be done to achieve the business outcome. Feature sets 
are derived from discussions between customers and 
developers on business outcomes. They need to be associated 
explicitly to the business outcomes they help achieve. 
Sometimes, one feature set may contain sub feature sets.  

Considering that business outcomes are the starting point of 
BDD process, it is necessary for customers to specify the 
priority of the business outcomes so that developers know 
which set of features is more important to be developed first. 

A feature is subsequently realised by user stories. User 
stories provide the context of the features delivered by a 
system. User stories are user-oriented. User stories describe the 
interactions between users and a system. There are three 
questions that should be clarified by a user story: 

• What is the role of the user in the user story? 

• What feature does the user want? 

• What benefit can the user gain if the system provides 

the feature? 

For one user story, there may be different versions in 
different contexts. The specific instances of a user story are 
called scenarios. Scenarios should describe specific contexts 
and outcomes of the user story, which should be provided by 
customers. Scenarios in BDD are used as acceptance criteria. 

The decomposition process described above should be 
iterative, which implies barely enough up-front analysis. The 
analysis at one level can stop if it is enough for the 
implementation even if there are still something potential to be 
unveiled. None of the toolkits we studied supports the iterative 
decomposition process.  

C. Plain Text Description with User Story and Scenario 

Templates 

In BDD plain text descriptions of features, user stories and 
scenarios are not in a random format. Pre-defined templates are 

used in specifying them. The templates are defined using a 
simple ubiquitous language that BDD provides. Typically user 
stories are specified using the following template [3]: 

[StoryTitle] (One line describing the story) 

As a [Role] 

I want a [Feature] 

So that I can get [Benefit] 

The user story title describes an activity that is done by a 
user in a given role. The feature provided by the system allows 
the user to perform the activity, and after performing the 
activity the user obtains a benefit. Using this template, one can 
clearly see what feature the system should support and why it 
should be supported by the system. Developers know which 
system behaviour they have to implement, and with whom to 
analyse and discuss the feature. In addition, users have to think 
if they really need a feature, since they should be able to 
describe what benefit they will obtain using the feature.  

The template for writing scenarios is as below: 

Scenario 1: [Scenario Title] 

Given [Context] 

And [Some more contexts]…. 

When [Event] 

Then [Outcome] 

And [Some more outcomes]…. 

Scenario2: [Scenario Title] …. 

A scenario describes how the system that implements a 
feature should behave when it is in a specific state and an event 
happens. The outcome of the scenario is an action that changes 
the state of the system or produces a system output. We use the 
term Action instead of System Outcome indicated in [3] because 
an Action can represent any reactive behavior of the system.  

For both, user story and scenario templates, the descriptions 
in square brackets should be written in the ubiquitous language 
defined in the project. What’s more, they are mapped to tests 
directly, which means the names of classes and methods should 
also be written in the ubiquitous language. 

The user story templates used in four toolkits we analysed: 
JBehave, NBehave, SpecFlow and Cucumber, are slightly 
different than the original one proposed by Dan North. They all 
have the three elements for defining the role, feature, and 
benefit of a user story. But they use different words and order.  

However, they do not change the semantics and goals of the 
user story template. Meanwhile, all four toolkits provide a 
scenario template which follows the structure described 
previously. In contrast, the xSpec Family and StoryQ do not 
provide any of the templates since they are focused on the 
implementation phase only. However, RSpec is usually used 
together with Cucumber which does provide them. 

D. Automated Acceptance Testing with Mapping Rules 

BDD inherits the characteristic of automated acceptance 
testing from ATDD. An acceptance test in BDD is a 
specification of the behavior of the system, it is an executable 
specification which verifies the interactions (or behavior) of the 
objects rather than their states [3, 20].  

466466385



Developers will start from scenarios produced in one 
iterative decomposition process. Scenarios will be translated to 
tests which will drive the implementation. A scenario is 
composed of several steps. A step is an abstraction that 
represents one of the elements in a scenario which are: 
contexts, events, and actions. The meaning of them is: in a 
particular case of a user story or context C, when event X 
happens, the answer of the system should be Z. One step is 
mapped to one test method. In order to pass a scenario, it is 
necessary to pass all the steps. Each step follows the process of 
TDD which is “red, green, refactoring” to make it pass.  

In BDD all scenarios should be run automatically, which 
means acceptance criteria should be imported and analysed 
automatically. The classes implementing the scenarios will read 
the plain text scenario specifications and execute them. In other 
words, BDD allows having executable plain text scenarios. 

Mapping rules provide a standard for mapping from 
scenarios to test code (specification code). There are variations 
of mapping rules in the toolkits we studied. In JBehave, a user 
story is a file containing a set of scenarios. The name of the file 
is mapped to a user story class. Each scenario step is mapped to 
a test method that is located using an annotation describing the 
step, and usually the test method has the same name as the 
annotation text. The class containing the step methods does not 
need to have the name of the scenario 

Cucumber can be integrated with tools like RSpec which 
allow executing behaviour driven specifications. Cucumber 
uses regular expressions to perform the mappings. The names 
of the steps defined in the plain text scenarios should match 
(using a regular expression) those of the methods in RSpec. In 
the xSpec Family and StoryQ instead there are no applied 
mapping rules due to their focus on implementation phase 
therefore they lack of functionality for analysis. 

E. Readable Behaviour Oriented Specification Code 

BDD suggests that code should be part of the system’s 
documentation, which is in line with the agile values. Code 
should be readable, and specification should be part of the code. 

 The names of methods have to indicate what methods 
should do. The names of classes and methods should be written 
in sentences. Code should describe the behaviours of objects. 
The application of mapping rules help produce readable 
behaviour oriented code. It ensures that class names and 

method names be the same as user story titles and scenario 
titles. Besides, those names should be in the ubiquitous 
language defined in a project.  

StoryQ and the xSpec Family provide APIs that allow 
developers to specify user stories and scenarios as behaviour 
driven code. They help structure the code, and make it more 
readable. JBehave and NBehave also help write scenarios as 
code and make code readable by means of annotations. 
SpecFlow generates the scenarios as NUnit tests. In contrast, 
Cucumber is not focused on the implementation level thus does 
not support this characteristic. 

F. Behaviour Driven at Different Phases 

The BDD characteristics we have discussed in the previous 
sections demonstrate that behaviour driven happens at different 
phases of software development using the BDD approach. At 
the initial planning phase, behaviours correspond to business 
outcomes. At the analysis phase, business outcomes are 
decomposed into a set of features which capture the behaviour 
of the targeting system. Besides, behaviour driven is also 
embodied at the implementation phase. Automated Acceptance 
testing is an integral part of the implementation in the BDD 
approach. Testing classes are derived from scenarios and their 
names follow a set of mapping rules. In this way, a class name 
specifies what the class should do or what the behaviour of the 
class is. Developers are encouraged to think of the behaviour of 
the component that they are developing, and the roles and 
responsibilities of other objects it interacts with. 

The toolkits we analysed do not allow defining business 
outcomes or features, that is, there is no support to behaviour 
driven at the planning phase. At the analysis phase, some of 
them support the definition of user stories and scenarios using 
the BDD templates. In addition, they provide mapping rules in 
order to execute the acceptance tests from plain text scenarios. 
For instance, the xBehave Family, SpecFlow, and RSpec 
combined with Cucumber, provide such support.  In contrast, 
most of them do permit to write scenarios as code directly, only 
Cucumber does not. 

Table 2 summarizes the support of the seven BDD toolkits 
to the seven BDD characteristics. Figure 1 is a conceptual 
model, specified as UML class diagram that synthesizes the 
concepts and relationships presented in the seven BDD 
characteristics.  

TABLE II.  THE BDD CHARACTERISTICS SUPPORT FROM THE SEVEN BDD TOOLKITS 

xBehave Family xSpec Family 
Support of the BDD Characteristics 

JBehave NBehave RSpec MSpec 
StoryQ Cucumber SpecFlow 

Ubiquitous language definition × × × × × × × 

Iterative decomposition process × × × × × × × 

User story template √ √ × × × √ √ Editing plain text 

based on Scenario template √ √ × × × √ √ 

Automated acceptance testing with mapping rules √ √ × × × √ √ 

Readable behaviour oriented specification code √ √ √ √ √ × √ 

Planning × × × × × × × 

Analysis √ √ × × × √ √ 

Behaviour driven 

at different 

phases Implementation √ √ √ √ √ x √ 

Note:  √ – The toolkit supports the BDD characteristic, × – The toolkit does not support the BDD characteristic 

467467386



V. CONCLUSIONS 

BDD is a combination of several approaches, including 
ubiquitous language, TDD and automated acceptance testing. It 
optimizes the connections of these approaches to make the 
most out of each single approach. In this study we identified six 
BDD characteristics through literature review and toolkits 
analysis. Our study shows that these characteristics are 
interlinked. Therefore these characteristics should be embraced 
in a holistic way in a software development project to get the 
full potential benefits of the BDD approach. We also find that 
the BDD toolkits studied mainly focused on the 
implementation phase of a software project and provide limited 
support to the analysis phase, and none to the planning phase. 
We also presented a conceptual model of BDD based on the 
results of our study, to provide a more explicit and formal 
description of the BDD concepts and their relationships.  

The results of our study indicate several potential venues 
for future research. Our study shows that most of the toolkits 
lack the support of the BDD characteristics related to the 
planning and analysis phases. Therefore one future study could 
extend an existing BDD toolkit or develop a new one based on 
the proposed conceptual model. The new toolkit will provide 
support to the software development activities that need 
collaboration between business and development team. 
Another future study could extend and implement additional 
mapping rules. The existing mapping rules in the BDD toolkits 
only map user stories and scenarios to code. Feature sets might 
be mapped to namespaces or packages too, where the test 
classes of a scenario can be located. 

ACKNOWLEDGMENT 

This work was supported, in part, by Science Foundation 
Ireland grant 03/CE2/I303_1. We would like to thank Keyang 
Xiang for his assistance in the evaluation of the tools. 

REFERENCES 

[1] K. Beck. Test-Driven Development. By Example. Addison Wesley,  
2003. 

[2] L. Koskela. Test Driven: TDD and Acceptance TDD for Java 
Developers, Manning Publications,  2007. 

[3] D. North, Introducing BDD, 2006. Available at: 
http://dannorth.net/introducing-bdd [Accessed December 13, 2010]. 

[4] JBehave, http://jbehave.org/ [Accessed December 13, 2010] 

[5] Cucumber, http://cukes.info/ [Accessed December 13, 2010] 

[6] RSpec, http://rspec.info/ [Accessed December 13, 2010] 

[7] H.P. Tavares, G. Guimarães Rezende, V. Mota, R.  Soares Manhães, R., 
and R. Atem De Carvalho, A tool stack for implementing Behaviour-
Driven Development in Python Language, CoRR, 2010. 

[8] R. Carvalho, R. Soares Manhães,  and F.L. de Carvalho, Filling the Gap 
between Business Process Modeling and Behavior Driven Development,  
CoRR, 2008. 

[9] R. Carvalho, F.L. De Carvalho, and R. Soares, Mapping Business 
Process Modeling constructs to Behavior Driven Development 
Ubiquitous Language, CoRR, 2010. 

[10] E. Keogh, BDD: A Lean Toolkit. In Processings of Lean Software & 
Systems Conference, Atlanta, 2010. 

[11] I. Lazăr, I., S. Motogna, and B. Pârv, Behaviour-Driven Development of 
Foundational UML Components. Electronic Notes in Theoretical 
Computer Science 264, no. 1 (August): 91-105, 2010. 

[12] StoryQ, http://storyq.codeplex.com/ [Accessed December 13, 2010] 

[13] Behaviour Driven Development (BDD), 
http://en.wikipedia.org/wiki/Behaviour_driven_development [Accessed 
December 13, 2010] 

[14] SpecFlow, http://www.specflow.org/ [Accessed February 13, 2010] 

[15] Mspec, https://github.com/machine/machine.specifications [Accessed 
February 13, 2010] 

[16] NBehave, http://code.google.com/p/nbehave/ [Accessed December 13, 
2010] 

[17] E. Evans. Domain -Driven Design: Tackling Complexity in the Heart of 
Software. Addison-Wesley Professional, 2003. 

[18] D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, D. North. The RSpec 
book: Behaviour Driven Development with RSpec, cucumber and 
friends, Pragmatic Bookshelf, 2010. 

[19] D. Janzen, D.H. Saiedian, test-driven development: concepts, taxonomy, 
and future directions, Computer, vol.38, no. 9, pp. 43-50, Sept, 2005. 

[20] D. Astels, A new look at test driven development, 
http://techblog.daveastels.com/files/BDD_Intro.pdf [Accessed 
December 13, 2010]. 

[21] D. Janzen and H. Saiedian. Does Test-Driven Development Really 
Improve Software Design Quality?. IEEE Software. vol. 25, no. 2, 2008.. 

[22] A. Gupta and P. Jalote. An Experimental Evaluation of the Effectiveness 
and Efficiency of the Test Driven Development. In Proc. of Empirical 
Software Engineering and Measurement , 2007, pp.285-294. 

[23] BDD google mailing list, 
http://groups.google.com/group/behaviordrivendevelopment [Accessed 
December 13, 2010. 

 
Figure 1. BDD conceptual model. 

468468387


