
Short Survey

A survey of application level multicast techniques

C.K. Yeoa,*, B.S. Leea, M.H. Erb

aSchool of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, Singapore S 639798
bSchool of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, Singapore S 639798

Received 26 April 2003; revised 8 March 2004; accepted 13 April 2004

Available online 4 May 2004

Abstract

Application level multicasting is increasingly being used to overcome the problem of non-ubiquitous deployment of IP multicast across

heterogeneous networks. To the best of our knowledge, this paper is among the first papers [A comparative study of application layer

multicast protocols, Unpublished report; IEEE Network, January/February, 2003] to provide a comprehensive survey of most of the various

milestone research work in application level multicast in terms of both breadth and depth. The paper classifies them into different broad

categories based on their topology design, service model and architecture to facilitate better understanding of their contributions and discuss

their merits and limitations. As these techniques vary widely in their goals, designs, performance evaluation metrics and evaluation

strategies, it is impossible to quantify their relative performance. However, this paper is able to provide a comparative insight into their

performance through the use of a set of evaluation metrics identified to be common to the techniques and are directly related to their

performance and whose data can be derived and inferred from their designs. The metrics used here include scaleability measured intuitively

in terms of the size of the multicast receivers it can support, the protocol efficiency in terms of the quality of data paths, control overheads,

amount of state information to be maintained at each member node and failure tolerance.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Application level multicast; Overlay; Self-configurable tree; Mesh

1. Introduction

IP multicast [1–3] has been regarded as an efficient

delivery mechanism for best-effort, large-scale, multi-point

content delivery over the Internet as it is inherently

bandwidth efficient and scaleable unlike point-to-point

unicast delivery protocol. It also has built-in robustness as

it does not depend on any central sources such as reflectors

or mirrors for data propagation. However, IP multicast is not

without its drawbacks as cited by the authors in Ref. [4].

Today’s IP multicast is limited to ‘islands’ of network

domains under single administrative control or local area

networks, even though multicast has been implemented in

many commercial routers. Most Internet Service Providers

(ISP) are reluctant to enable it in their domains in order to

reduce router load and to protect against unwanted traffic.

This lack of ubiquitous multicast support more than a

decade after its introduction thus limits the development of

multicast applications, which in turn reduces the incentive

for the network operators to enable multicast.

Simple Multicast [5], Express [6] and Source Specific

Multicast [7] offer some alternate schemes to partially

address the above problems by simplifying or improving

multicast delivery in terms of address allocation and access

control. Nevertheless, they lacked an installed base as they

all require substantial changes to the network infrastructure

having the same dependency on routers as their traditional

IP multicast counterpart. The multicast deployment hurdles

remain unresolved. There is therefore a need to provide an

efficient delivery solution for multipoint communication

which is ubiquitous and entails neither IP multicast support

in the routers nor modifications in the network

infrastructure.

Application level multicast solution is emerging as a

fundamental technique to circumvent the problems of

non-ubiquitous deployment of multicast across hetero-

geneous networks to enhance wide-area service scaleability,

performance and availability [8–26]. It offers accelerated

deployment, simplified configuration and better access

control at the cost of additional (albeit small) traffic load

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.04.003

Computer Communications 27 (2004) 1547–1568

www.elsevier.com/locate/comcom

* Corresponding author. Tel.: þ65-6790-4587; fax: þ65-6792-6559.

E-mail address: asckyeo@ntu.edu.sg (C.K. Yeo).

http://www.elsevier.com/locate/comcom

in the network through an overlay-based approach.

The general approach to building an application level

multicast architecture involves tracking network character-

istics and building appropriate topologies by having the end

users to self-organize into logical overlay networks for

efficient data delivery. Data delivery is accomplished via a

data delivery tree which can either be the overlay itself or is

embedded in the overlay. The overlay must be capable of

failure detection and attempts to match the underlying

network topology. Since the overlay abstracts away

the details of multipoint message forwarding through the

network and implements them at the end users, application

level multicast is also popularly termed as end-system

multicast or host multicast.

There are many ways to classify the myriad application

level multicast (ALM) techniques. Here, we can broadly

group them according to overlay topology design (Section 2),

service model (Section 3) and architecture (Section 4) to

provide a systematic insight into the contributions by the

different researchers. Section 5 presents the performances of

the various systems while Section 6 summarizes their

properties and concludes this survey paper.

2. Classification by overlay topology design

Overlay is an integral part of application level multicast

solution as it is the underlying mechanism effecting

multipoint communication. The nodes in the overlays can

be logically organized into two topologies, namely,

the control topology and the data topology. Control

topology carries control data such as heartbeat messages,

refresh messages, network probes and probed data while

data topology comprises the actual data delivery paths to the

multipoint destinations. Nodes in the control topology may

not necessarily be the members of the multicast group.

Hence the control topology is a superset of the data

topology. It is the norm for most techniques to adopt the tree

structure for the data topology as it is simple to build and is

efficient. Control topology may assume a separate physical

structure in the form of a mesh where the nodes in the

topology possess higher connectivity or it may share the

same structure as the data topology. Depending on

the approaches adopted, the resulting overlay topology

can be classified into three distinct flavours: Tree,

Mesh-Tree and Embedded Structure. Table 1 summarizes

the topology design of the different proposals. Tree and

Mesh-Tree design can be collectively grouped as topology-

aware design while Embedded Structure is generally

grouped under the topology-agnostic category with some

exceptions as shown in Table 1. Network topology-aware

design uses active measurements to infer network properties

and to make an informed choice in constructing an efficient

data topology to match the physical network topology as

close as is practically possible. Topology-agnostic approach

ignores network characteristics. Hence topology-aware

algorithms have the advantage of minimizing the ineffi-

ciencies of overlays but do so at the cost of increased

management overhead and potentially poor scaleability

compared to its agnostic counterpart.

2.1. Tree

Group members self-organize themselves into a tree by

explicitly picking a parent for each new group. Nodes on the

tree may establish and maintain control links to one another

in addition to the links provided by the data tree. As such,

the tree, with these additional control links constitutes the

control topology in a tree structure. This approach is simple

and is capable of building efficient data delivery trees.

However, the tree building algorithm must prevent loops

and handle tree partition as the failure of a single node may

cause a partition of the overlay topology.

Application Layer Multicast Architecture (ALMA)

[24–26] aims to provide best-effort multicast delivery

service for real-time data streaming with the goals of

reducing latency and data loss. ALMA’s data topology

consists of self-configuring source specific trees while its

control topology comprises the data delivery trees, a

centralized directory server (DS) which is the common

rendezvous point for all members, refresh exchanges among

a subset of members as well as updates to the DS. Hence the

DS does not take part in the actual data delivery. New

member queries the DS for a list of potential parents. For the

earlier version of ALMA, a new member will pick the node

that is closest to itself in terms of network distance

approximated as Round Trip Time (RTT), to be the parent.

For the improved version, ALMA is the first to incorporate

loss rate with RTT as dual performance metrics to optimize

the data tree [50]. Loss rate is prioritized over RTT as it

directly affects the perceived quality of the received data.

Hence, the potential parent is one which has a very low if

not nil loss rate that is closest in RTT terms to a joining

member. Unlike the improved version of Narada [10] which

uses RTT and bandwidth as performance metrics, loss rate is

used instead of bandwidth as the former can be implicitly

estimated while data is being received by each member

while the latter requires intrusive active end-to-end

measurements. This involves transferring data for a period

Table 1

Classification by overlay topology design

Topology-aware Topology-agnostic

Tree Mesh and tree Embedded structure Embedded structure

ALMA Kudos Bayeux ALM-CAN

ALMI Narada NICE ALM-DT

BTP Scattercast SCRIBE

HM Yoid

OMNI

Overcast

TBCP

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681548

of time using the underlying transport protocol at a rate

bounded by the source rate between members, thereby

incurring high overhead and latency. Members provide

periodic updates to the DS of their current loss rates.

Member-to-member RTT is collected via end-to-end

measurements. Gossip-style algorithm (used initially in

the Clearinghouse project [29] to maintain database

consistency and have since been used to achieve fault

tolerance and detection [30,31]) is used to improve the data

tree as well as to facilitate partition recovery when a

member leaves the tree. Each member will periodically try

to find a better parent by exchanging loss rates and RTT data

with a set of gossip candidates. These gossip candidates as

well as the spiraling with their ancestors and siblings also

serve as a ready list of potential parents which nodes can

turn to recover from a partition. An example of the gossip

and spiraling mechanisms is shown in Fig. 1. In the worst

case scenario where all potential parents fail, the node can

turn to the DS to request for a new list as a last recourse.

State data maintained at each node is minimal as unlike HM

[21], information of all members on its path to the source is

not maintained and neither does it need to maintain state for

the entire membership (such as Narada). Hence ALMA

incurs much less overhead where data maintenance and

refreshing are concerned, keeping only a small subset of

information pertaining to its parent, children, grandchildren

and gossip candidates. ALMA makes use of a level number

for loop detection. Members update their level number each

time they change a new parent to reflect their hierarchy from

the source.

Application Level Multicast Infrastructure (ALMI) [14]

provides a multicast middleware which is implemented

above the socket layer. ALMI is tailored towards support of

multicast groups of relatively small size (several tens) with

many-to-many service mode. It employs a central controller

to create a minimum spanning tree (MST) which consists of

unicast connections between end hosts. Latency between

members is used as the link cost of the MST thereby

optimizing the ALMI overlay for low latency data delivery.

Control topology takes the form of unicast connections

between each member and the controller. The central

controller receives updates from each member and period-

ically re-computes the MST. Routing information of the

MST is then communicated to all the members. Ideally,

since the MST is centrally computed, it will be loop-free.

However, due to the losses and delays in obtaining updates

from members and disseminating the different versions

of MST to members, loops and partitions may occur.

To prevent these problems, version number is assigned to

each version of MST. Members maintain a cache of the

different versions of the routing tables and only route

packets with tree versions contained in the cache. If a packet

with a newer tree version is received, it will re-register with

the controller to receive the new MST. ALMI multicast trees

have been shown [14] to be close to source-rooted multicast

trees in efficiency with low performance tradeoff albeit with

higher control overheads due to the maintenance of the

different tree versions.

Banana Tree Protocol (BTP) [22] uses a receiver-based,

self-organizing approach to build a shared group data tree. It

is designed for distributed file sharing applications. The first

host to join the group becomes the root of the tree.

Subsequent new member learns of the root node and joins

the tree. There is no special algorithm to prevent tree

partition except for the affected node to rejoin the tree.

The tree is incrementally optimized for low delay by

allowing a node to switch to a sibling if the latter is closer to

the node than its current parent. The proximity metric used

can be the round-trip-time (RTT) between the two nodes

obtained from pinging each sibling. The siblings’

information maintained in each node is updated by the

node’s parent. Fig. 2 shows how sibling switching can lower

tree cost. To prevent loops from forming during switching

as a result of simultaneous switching in the case of Fig. 3

and outdated information shown in Fig. 4, two conditions

must be fulfilled. First, a node will reject all attempts at

switching if it is itself in the process of switching parents.

Second, a node must include its current parent information

Fig. 1. An example of gossip and spiral mechanisms in ALMA. C10 gossips

with C5, C6, C7, C8 while it spirals with its grandparent C1.

Fig. 2. Sibling switching to lower tree cost in BTP [22]. Tree cost is lowered

from 6 in (a) to 4 in (b) after node A switches to node B.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1549

in its switch request so that the potential parent can verify

that they are indeed siblings.

Host Multicast (HM) [21] aims to provide best-effort

multicast delivery service to applications and be compatible

with IP multicast to the furthest extent possible. It automates

the interconnection of IP multicast enabled islands and

provides multicast to multicast-incapable end hosts via

unicast tunnels. Multicast islands are connected via UDP

tunnels between the Designated Members (DM) where

each island elects a DM. The architecture is shown in Fig. 5.

The data distribution tree is a shared tree where any member

in the group can be a source. HM uses a distributed tree

building protocol which scales to the number of group

members (OðNÞ where N is the group size). As shown in

Fig. 6, a new member H discovers the root A of the shared

tree through the Rendezvous Point (RP). H then sets A as a

potential parent and requests for the list of A’s children.

Among A and A’s list of children, H picks the closest one.

The distance metric used is the member-to-member RTT

and is collected via end-to-end measurements by HM. In

this case, D is a new potential parent. H repeats the process

down the tree and finds the next potential parent F. In the

next iteration, if H finds that F remains the closest to itself, it

issues a join request. If F has not breached its degree bound

for the number of children, he will accept H’s request.

Otherwise, H will backtrack by one level and repeat its

search. Each member in HM has to maintain information

about all members on its path to the root. To improve the

data tree, each member will periodically try to find a closer

parent by reinitiating the join process from some random

member on its root path. HM uses loop detection and

resolution mechanism instead of loop avoidance.

Loop detection is easily effected as members know its

entire root path. To recover from tree partition problem,

each member can rejoin anyone in its root path or in its

cache. The cache is built up during the initial process when

the member ‘walks’ down the tree.

Overlay Multicast Network Infrastructure (OMNI) [23]

constructs a single-source overlay tree from a set of service

nodes called multicast service nodes (MSN) deployed in the

network as shown in Fig. 7. It is targeted at media-streaming

applications. The root MSN is connected to the source.

OMNI aims to minimize average latency of the entire

overlay tree. Similar to HM, each MSN maintains state for

all its tree neighbours, its ancestors and the overlay path

from the root to itself. If the minimum out-degree of a MSN

is two, and the number of MSNs in the group is N, then it

maintains state for at most Oðdegree þ log NÞ other MSNs.

The root path is also used for loop detection during tree

optimizations. The overlay tree building procedure com-

prises an off-line initialization phase before data delivery

commences and the dynamic self-organizing process during

data delivery. In the offline phase, the root MSN shown as A

in Fig. 7 measures and sorts the list of MSNs in increasing

order of unicast latencies from itself. It then builds a tree

always choosing the nearest MSN to itself at each level of

the tree. In other words, in Fig. 7, D–F are further from A in

latency terms than B and C. This centralized approach

involves OðNÞ latency measurements.

Fig. 3. Simultaneous switching creates loop in BTP [22]. A tries to switch to

B, while B is trying to switch to C and the latter is attempting to switch to A.

Fig. 4. Switching with outdated information creates loop in BTP [22].

Suppose B switches to C and then A switches to B. If information has not

been updated in C and A and C then switches to A, a loop is formed.

Fig. 5. Host multicast architecture [21].

Fig. 6. Join process in host multicast [21].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681550

The key feature of OMNI’s overlay tree is that it accords

a dynamic priority to the different MSNs based on the size

of its service set (i.e. the number of clients it serves)

and iteratively optimizes the overlay tree. The dynamic

self-organizing process is illustrated in Fig. 8. At its initial

configuration, the overlay latency from MSN 0 to MSN x is

59 ms (Panel 0). As the number of clients increases to 7 and

then to 9, the importance of MSN x increases accordingly.

It first changes its parent to MSN 6 (Panel 1) reducing its

overlay latency to 54 ms and subsequently to the root MSN

(Panel 2) with latency of 51 ms. Thereafter, the number of

clients reduces and x migrates down the tree while other

MSNs with larger client sizes move up. To adjust the

overlay to changing latencies, each MSN performs periodic

swapping among themselves if such swapping can reduce

their current average latency. This swapping is strictly local

in the sense that it is confined to within two levels of each

other. OMNI also uses simulated annealing to probabil-

istically swap one MSN with a random member not within

the two levels to allow the overlay to reach a global minima

in terms of latency.

Overcast’s [11] objective is to maximize bandwidth to

the source for all members potentially at the expense of

delay increase. It aims to provide scaleable and reliable

single-source multicast. It builds a source specific overlay

tree which spans proxies nodes deployed across the network

called overcast nodes. Overcast’s tree building algorithm

proceeds by placing a new node as far away from the root as

possible without sacrificing bandwidth to the root. The new

overcast node first contacts the root of the group. The root

thereby becomes the current node. Similar to HM the node

will obtain a list of children from the current node.

However, unlike HM which measures the latency between

itself and the list (including the root), it measures the

bandwidth instead. The bandwidth is measured by

observing the download time of 10 Kbytes of data. If the

bandwidth through any of the children is about as high as

the direct bandwidth to the current node, then one of these

children becomes the current node and a new round of

testing commences. In the case of multiple suitable children,

the child closest (in terms of network hops) to the joining

member is chosen. If no child is suitable, the search for a

parent ends with the current node.

Overlay Tree Building Control Protocol (TBCP) [28]

aims to provide an efficient and distributed protocol to build

control data delivery trees for application level multicasting.

It builds overlay trees which are explicitly constrained in

that the host fixes an upper-limit on the number of children it

is willing to support. The root of the overlay tree is the main

sender. It tries to build as good a tree as possible on the

outset given the partial knowledge of group membership

and restricted network topology information. A new

member will be bootstrapped to the root via some

well-known registry. Similar to HM and Overcast, the

new member will be given a list of its children. The new

node will measure the rtt between itself and the given list

and the root and send the measured data to the root. The root

will test all local configurations to select the one which is

optimal. This will require testing of OððN þ 1Þ!Þ

configurations where N is the number of children belonging

to the root. Fig. 9 shows the possible configurations tested

by the root (P) when new member M attempts to join the

tree rooted at P with members C1, C2 and C3. If the last

configuration is the most optimal, M will be joined to P and

C3 will be redirected to start a join procedure with M

assuming the earlier role of P. There is no special

mechanism to recover from node failure.

2.2. Mesh-tree

The mesh-tree approach is a two-step design to the

overlay topology. It is common for group members to first

distributedly organize themselves into an overlay control

Fig. 7. OMNI architecture [23].

Fig. 8. Dynamics of OMNI as the number of clients change at MSNs. MSN 0 is the root, MSNs 0, 2 and 6 had out-degree bound of 2 each and MSNs 7 and x had

out-degree of 3 each. The number of clients being served by MSNs is varied. The relevant unicast latencies (ms) between MSNs are as follows: l0;2 ¼ 29;

l0;6 ¼ 25; l0;7 ¼ 42; l0;x ¼ 51; l2;x ¼ 30; l6;2 ¼ 4; l6;7 ¼ 18; l6;x ¼ 29 and l7;x ¼ 29: cx indicates the number of clients at MSN x which changes with time. The

time axis is not drawn to scale [23].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1551

topology called the mesh. A routing protocol runs across

this control topology and defines a unique overlay path to

each and every member. Data distribution trees rooted at

any member is then built across this mesh based on some

multicast routing protocols, e.g. DVMRP. Compared to tree

only design, mesh-tree approach is more complex. How-

ever, it has the advantages of avoiding replicating group

management functions across multiple (per-source) trees,

providing more resilience to failure of members, leveraging

on standard routing algorithms thus simplifying overlay

construction and maintenance as loop avoidance and

detection are built-in mechanisms in routing algorithms.

Narada [8,9] is one of the first application layer multicast

protocols that demonstrated the feasibility of implementing

multicast functionality at the end hosts. It is targeted to

support collaborative applications with small group size.

Narada first builds a mesh control topology across

participating nodes and subsequently, the data topology is

built on top of the mesh by having the group members

self-organized into source-rooted multicast trees using

DVMRP like routing protocol. This is shown in Panel 0 of

Fig. 10. New members obtain a list of group members in the

mesh via a rendezvous point (RP) which maintains state

about all members joined to the multicast group. The new

member randomly selects some of these members as a

neighbour under constraint of maximum degree (refer to

Panel 2). Each member keeps state about all other members

in the group and the routing path and these states are

updated via periodic refresh messages exchanges with one

another. The aggregate control overhead resulting from the

distribution of state messages is very high to the order of

OðN2Þ: This overhead for member discovery and

the maintenance of membership in each member limit

Narada to support only small to medium group multicast.

However, the mesh control topology has the advantages of

increased connectivity and is robust to overlay partition and

node failure. This is illustrated in Panel 1. To adaptively

refine the mesh which directly determines the quality of the

data topology, every member periodically evaluates the

utility of adding a link to another member of the control

mesh and deleting existing links. An example is shown in

Panel 3 where adding the edge kJ,Gl is useful as it results in

a large number of shorter unicast paths being created on the

mesh (e.g. between member sets {A,C,J} and {G,H}, and

between member sets {C,J} and {F}). Edge kA,Cl is

removed since it has been made less useful after the addition

of kJ,Gl. The utility is computed based on the following

heuristics:

Adding link: A member m computes the utility gained if a

link is added to member n based on (i) the number of

members to which n improves the routing delay of m, (ii) how

significant this improvement is in terms of delay.

Dropping link: The cost of a link between m and n in m’s

perceptive is the number of group members for which m uses

n as next hop and vice versa. These are computed and m will

choose the higher of the two as the consensus cost of the link

to each of its neighbours. The link with the lowest consensus

cost will be dropped.

Note that original Narada [9] only uses latency as the

performance metric while the improved version [10] uses

both latency and bandwidth to improve performance.

The latter version prioritizes bandwidth over latency by

incorporating these metrics into the distance vector protocol

running on the mesh. The routing protocol uses a variant of

Fig. 9. Local configurations tested in TBCP [28].

Fig. 10. Control and data topologies in Narada. Neighbours on the control path (mesh) are connected by edges. In Panel 0, the arrowed edges indicate the

multicast data path where A is the source. These edges also form part of the mesh. In Panel 1, the departure of D and E leads to a mesh partition. Remaining

members, detect the departure and B adds a new mesh link to F hence repairing the partition. In Panel 2, a new member joins the mesh and sets up mesh-

neighbour links with two randomly chosen existing members. Periodically members evaluate the utility of different links on the mesh. In Panel 3, a non-useful

link is deleted from the mesh and a potentially useful link is added [37].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681552

the shortest widest path algorithm presented in Ref. [38].

Every member tries to pick the widest (highest bandwidth)

path to every other member. If there are multiple paths with

the same bandwidth, the member picks the shortest (lowest

latency) path among these. The utility gain and the

consensus cost in the algorithms to add and drop links

described are now computed based on the number of

members to which performance improves (degrades)

in bandwidth and latency if the mesh link were

added (dropped) and the significance of the improvement

(degradation).

Kudos [27] is an extension of Narada by adding hierarchy

in the overlay topology to significantly increase its

scaleability. Kudos partitions overlay nodes into clusters

and each cluster has a unique representative node, called the

cluster head. Fig. 11 shows the two-level hierarchy. All

non-head nodes in a cluster are referred to as children. At

the bottom level, independent instances of Narada

(the version using latency as the metric) is run within each

cluster forming an overlay of children. At the top-level, an

overlay spans across all cluster heads built using Narada too.

In fact, any topology aware overlay building algorithm can

be used. The data topology therefore comprises individual

trees at each cluster in the bottom level and a tree at the top

level. Likewise for the control topology, in an overlay of n

nodes, Kudos form approximately n1=2 clusters each

containing n1=2 nodes. The merits of the hierarchy lies in

its superior scaleability and low management overhead

since measure probes are run across smaller groups and

effects of member failures are localized to smaller groups.

This is achieved at the cost of efficiency as the children

nodes in different clusters are unable to form overlay links

to one another. The added complexity in Kudos is the

clustering which involves migration, splitting and diffusion

of clusters. A node joins any member using some

bootstrapping mechanisms and learns of other cluster

heads from its current head node. A node in a cluster can

migrate to another if its periodic probes to other head nodes

yield a significantly lower latency than its latency to its

current head node. To reduce the load on head nodes due to

such probes, a child will not probe a head node which is

more than twice the latency between the child and its current

head node. Splitting occurs when a cluster is more than

twice as large as n1=2: The head node will remain as head for

one of the new cluster and selects a new head node from the

other new cluster. A head node is chosen to minimize

the average latency to all other child nodes in its cluster.

As Narada maintains state data of every other member in the

overlay, pairwise latency data can be easier obtained for

head selection. A cluster which has shrunk in size by more

than a factor of two smaller than n1=2 due to node migration,

death or departure is disbanded. The remaining nodes

migrate to other cluster.

Scattercast [19] proposes an application level infrastruc-

ture to provide routing and forwarding services and

customizable transport framework on top of this

infrastructure that leverages application defined semantic

to tune the transport protocol for Internet broadcast

distribution. It is similar to Narada except for the explicit

use of infrastructure service agents, called ScatterCast

proXies (SCXs). These proxies which are strategically

deployed within the network infrastructure use a protocol

called gossamer to self-organize into an application level

mesh over which a global routing algorithm is used to

construct source-rooted data distribution trees using latency

as the routing metric. Fig. 12 shows the scattercast

architecture. Clients communicate with SCXs either via

locally scoped multicast groups or via unicast. Fig. 13 shows

the gossomer overlay topology and illustrates its resilience to

failure and the mesh’s reusability for multiple source-rooted

trees. The initial mesh is randomly built as new SCXs

bootstrap themselves via well-known list of rendezvous

points and rely on gossip-style discovery algorithm to locate

other members and join them as neighbours. The gossip

protocol works by having each member periodically and

independently picks some random nodes and exchanges

membership information thereby propagating information

rapidly across the entire system. Optimization of the mesh is

performed using latency as the metric based upon which the

member decides to accept others as neighbours or to change

neighbours according to a predefined cost function and

threshold. The cost function of a member is the cost of

routing to the various sources via its individual neighbours. A

member X will be accepted as a neighbour to Y if its cost

function is less than the maximum cost functions among all

the existing neighbours of Y. Similar to Narada, every

Fig. 11. The two-level hierarchy of Kudos. Clouds represent cluster with the

solid nodes as head nodes. The solid lines between the heads is the top level

topology [27]. Fig. 12. The Scattercast architecture [19].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1553

member must maintain a full state and routing tables to all the

other members. Scattercast relies on centralized rendezvous

points for repairing mesh partition. Although this assumption

simplifies significantly the partition recovery mechanism, the

partition problem will still arise in the event of failure of all

rendezvous points.

Yoid [13,35] aims to extend the multicast architecture and

defines a set of protocols for host-based content distribution

either through tunneled unicast connections or IP multicast

wherever available. It uses the tree-mesh structure differently

from the other proposals categorized here in the sense that it

builds a shared data tree directly and creates a mesh later to

recover from tree partitions. Yoid’s tree building algorithm is

similar to BTP in that the first member to join a tree becomes

its root and a new member queries a centralized RP which

responds with a list of members (called candidate parents)

which have already joined the tree. The new member then

probes this list of members and decides on its parents based

on a performance metric. The RP in Yoid takes on the

additional roles of partition healing and group security.

Yoid’s objective of tree refinement is not so much to optimize

performance but to avoid pathologies as its creators believe

that the latter goes a long way towards acceptable level of

performance. Tree refinement is accomplished through

switching parents based on observed loss rates and latencies.

For latency measurements, Yoid members periodically query

RP for updates on their initial lists of candidate parents. Each

node operates tentative links to a subset of this candidate

parents list. The average latency difference between the data

frames sent via these tentative links is compared to those sent

via the data tree. If the latter is higher than the former by a

threshold, the node will switch to the candidate parent.

Note that these tentative links also serve as ready potential

parents for a node to switch to in the event that it is

experiencing data losses which are higher than a threshold.

Yoid member passively captures data losses from the data it

receives and exchanges its loss print (average losses over a

period) with its neighbours. Upstream nodes will gather loss

prints from its loss print nodes to decide if a downstream node

is to be removed to reduce fan-out and improve loss rate.

Fig. 14 illustrates such a process.

Loop detection is effected through the presence of route

paths in each node of the data tree as per HM. The mesh

topology in Yoid is built by having each member maintains

a small cache of members (mesh members) which are

randomly selected using a frame delivery mode called

‘mesh anycast’. In anycast, a discovery message takes a

random walk along the mesh and randomly selects

Fig. 13. A typical Gossamer overlay topology. (a) Topology consists of a mesh with a source-rooted spanning tree superimposed atop. (b) The tree-mesh

provides resilience to failures by automatically re-routing the tree around a failed SCX. (c) The mesh can be reused for multiple source-rooted trees without

excessive additional computation [19].

Fig. 14. Loss-rate refinement algorithm for Yoid. C, D, and E reorganize to reduce the load on the congested bottleneck link [13].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681554

a member. Mesh members must be distinct and must not be

tree neighbours. These mesh links ensure that partition

resulting from node on the tree will be recovered through

the additional connectivity.

2.3. Embedded structure

Embedded structure refers to proposals who assign to

members of the overlay network logical addresses from

some abstract coordinate space and builds an overlay with

the help of these logical address By embedding neighbour

mappings in member addresses, next-hop routing of

messages can be performed without the need for full

fledged routing protocols such as DVMRP. Moreover, each

member needs to maintain knowledge about only a small

subset of members enabling the protocols to be highly

scaleable. However, in contrast to tree and mesh based

approaches, many of these protocols impose rules on

neighbour relationships that are dictated by addresses

assigned to hosts rather than performance. This may involve

a performance penalty in constructed overlays as the

overlays do not map well to the physical network topology.

Hence a lot of overlay topologies built using embedded

structure are also known as topology-agnostic designs with

the exception of those which have implicit characteristics

which enables them to be close to the substrate network. The

following sections will first introduce the topology-agnostic

solutions, namely ALM-CAN and ALM-DT and thereafter,

proceed to detail the topology-aware proposals.

Application-Level Multicast using Content-Addressable

Networks (ALM-CAN) [18] makes use of Content-Addres-

sable Network (CAN) [39] architecture to provide an

application level multicast solution. ALM-CAN is designed

to scale to large group sizes without restricting the service

model to a single source. CAN is an application-level

structured peer-to-peer overlay network whose constituent

nodes form a virtual d-dimensional Cartesian coordinate

space and each member owns its individual distinct zone in

this space. Fig. 15 shows a 2-D coordinate space partitioned

into zones by 34 CAN members of which six (A–F) are

marked. The black dot represents a source node. Examples

of the virtual coordinate zones of A, C, D are: A(2.0–

2.5,2.0–3.0), C(2.5–3.0,2.5–3.0), D(2.5–3.0,2.0–2.5).

The d-dimensional Cartesian coordinate space therefore

comprises the control topology of ALM-CAN. The multi-

cast data topology is implicitly defined by performing

directed flooding on the control topology (refer to Fig. 15a).

No explicit tree construction is required. Each CAN

member maintains a routing table to its neighbours as well

a packet cache to identify and discard any duplicate packets.

Neighbours are defined as members whose zones abut each

other. Hence for a d-dimensional CAN, a member node

maintains state for 2-D additional nodes (its abut

neighbours) regardless of the number of source in the

group. The data forwarding rule is summarized as follows:

The source forwards a data packet to all its neighbours in

the control topology. The receiving neighbours in turn

forward the data to all their neighbours except the neighbour

from whom it receives the data subject to the condition that

the packet has not already traversed at least half-way across

the space from the source coordinates along the dimension

of data forward. This is to prevent data packets from looping

around the overlay. (refer to the example in Fig. 15a where

D does not forward data upwards or downwards.)

A new member Z who wishes to join the multicast group

queries a RP to find at least one existing member say X. Z

then picks a random point in the 2-D coordinate space (say

Y’s space) and sends a join request through X to locate

Y. This is done by routing through CAN as shown in

Fig. 15b. Upon locating Y, Y’s zone is split into two with Z

owing one of them (see Fig. 15c). The split is done by

assuming a certain order of dimension so that zones can be

remerged when nodes leave. For a 2-D CAN, the split is

along the X-dimension first, then the Y and so on. As

ALM-CAN uses a topology-agnostic approach to build the

control and data topologies without taking the relative

distances between nodes into account, their data distribution

paths can be very long compared to the physical network

Fig. 15. Structure of a 2-D CAN and the corresponding control and data topologies.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1555

distance between them. Ratnasamy et al. [18] proposes to

ameliorate this situation by using distributed binning by

which members that are close to one another are assigned

nearby zones in the coordinate space.

Application Layer Multicasting using Delaunay

Triangulations (ALM-DT) [12] is aimed to support very

large multicast group size. It assigns each member a pair of

logical ðx; yÞ coordinates in a plane. The coordinates can be

assigned via some external mechanisms such as GPS or user

input and can be selected to reflect the geographical

locations of the nodes. Using these coordinates, the control

topology which essentially comprises combinations of DTs

[40] is built through angular calculations and comparisons

based on the properties of DT. DT has been extensively

studied in computational geometry [40]. A DT for a set of

vertices A is a triangulation graph with the defining property

that for each circumscribing circle of a triangle (see Fig. 16)

formed by three vertices in A, no vertex of A is in the

interior of the circle. The underlying mechanism used in

forming the DT control topology is the neighbour test.

The neighbour test is based on the locally equiangular

property. Details of this property is provided in Ref. [41].

Two nodes are neighbours in the overlay if their

corresponding vertices are connected by an edge in the

DT that comprises the vertices associated with all the nodes

in the overlay. A new node N requests to join the group by

contacting the DT server who bootstraps it to an existing

node D. Besides managing group membership, the DT

server also helps in repairing partition in the overlay. Node D

will perform the neighbour’s test on N and if successful, N

will become D’s neighbour. Otherwise, D route the join

request to one of its neighbours whose coordinates are closer

to those of N. The process repeats towards the coordinates

of the new node N until it passes a neighbour’s test. Hence

the only state information to be maintained by each node is

confined to that of its neighbours.

Once the control topology is built, the source-rooted

multicast data tree is embedded in the DT without requiring

a routing protocol as packet forwarding information

is encoded in the coordinates of a node. Compass routing

[42,43] is used to determine the multicast routing tree where

nodes calculate their child nodes in the multicast routing

tree in a distributed fashion. No loop detection is required as

compass routing in DT does not result in loops [43].

Each node can locally determine its child nodes with

respect to a given tree using its own coordinates, the

coordinates of its neighbours and the coordinates of

the sender. Hence average overhead of a node is a few

kbps in steady state. Fig. 17 shows an example of compass

routing. TCP unicast connections are adopted.

DT’s merits lie in that it generally has a set of alternate

non-overlapping routes between any pair of vertices which

can be readily exploited for building optimal data topology

and to facilitate recovery when overlay nodes fail. DT can

be established and maintained in a distributed fashion where

no entities maintain knowledge of the entire group unlike

Narada and Scattercast. Experiments conducted showed that

it can scale to 10,000 members [12]. Similar to ALM-CAN,

its weakness lies in the suboptimal mapping of the overlay

to the physical network given the topology-agnostic nature

of the logical coordinates of the members.

Bayeux [15] focuses on fault-tolerant packet delivery as a

primary goal. It can be used for Internet content distribution

and is designed to scale to arbitrarily large receiver groups.

The control topology of Bayeux is the Tapestry overlay.

Tapestry [36] is a wide area routing and location

infrastructure which embeds nodes in a well-defined virtual

address space. Nodes have names independent of their

locations in the form of random fixed-length bit sequences

represented by a common base (e.g. 40 Hex digits

representing 160 bits). These can be generated by secure

one-way hashing algorithms such as SHA-1 [44].

Tapestry uses similar mechanism to the hashed-suffix

Fig. 16. A Delaunay triangulation [12].

Fig. 17. Compass routing. A determines that it is the parent for C since

/RCA , /RCD and /RCB. Likewise, B and D determine that they are

not the parents of C since /RCA , /RCB and /RCA , /RCD [12].

Fig. 18. Tapestry routing example showing the path taken by a message

originating from node 0325 and destined for node 4598 in a

Tapestry network using hexadecimal digits of length 4 (65,536 nodes in

namespace) [15].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681556

mesh introduced by Plaxton et al. [45]. It follows from the

proof in Ref. [45] that the network distance traversed by a

message during routing is linearly proportional to the real

underlying network distance. Experiments performed in

Ref. [36] verified that this proportionality is maintained with

a small constant in real networks. Hence Bayeux’s overlay

is classified as topology-aware design although it is built via

embedded structure approach. Tapestry uses local routing

maps (neighbour map) stored at each node to incrementally

route overlay packets to the destination ID digit by digit

(e.g. ***8) **98) *598) 4598 where * represents

wildcards) as shown in Fig. 18. Assuming consistent

neighbour map, Tapestry’s natural hierarchy ensures that

the destination can be reached within at most logbN logical

hops in a system with an N size namespace of base b:

As each neighbour map at a node assumes that the preceding

digits all match the current node’s suffix, it only needs to

keep a small constant size (b) entries at each route level,

yielding a neighbour map of fixed constant size b logbN:

Unlike ALM-CAN and ALM-DT, Bayeux has to

explicitly build a source-based multicast tree on top of the

Tapestry control overlay. Bayeux’s data tree comprises both

Tapestry nodes acting as software routers as well as

the multicast receivers. A JOIN request by Receiver 1250

in Fig. 19 to join a session is routed by Tapestry all the way

to the root node (ID 7876 in Fig. 19). Then the root records

the identity of the new member and uses Tapestry to route a

TREE message back to the new member. Every tapestry

node along this route (xxx0, xx50, x250) adds the identity of

the new member to the list of receiver node IDs that it is

responsible for and updates its routing table. Requests to

leave the group are handled similarly. Bayeux therefore

requires nodes to maintain more group membership

information and it generates more traffic when

handling group membership changes. In particular the root

keeps a list of all group members and all group management

traffic must go through the root which is not only a

bottleneck but also a single point of failure. Bayeux

proposes a multicast tree partitioning mechanism to

ameliorate these problems by splitting the root into several

replicas and partitioning members across them.

NICE [20] proposes a highly scaleable solution designed

for low-bandwidth, data streaming applications with large

receiver sets. It proposes an extremely low control overhead

structure over which different low-latency data distribution

paths can be built. The scaleability is achieved by

organizing the members into a multi-level hierarchical

control topology. Layers are numbered sequentially with the

lowest layer being labelled Layer zero (denoted by L0).

Members in each layer are partitioned into a set of clusters.

Each cluster is of size between k and 3k 2 1 where k is a

constant and comprises members that are close to each

other. NICE uses latency between members as the distance

metric used in organizing the overlay. Fig. 20 shows NICE’s

hierarchy using k ¼ 3: Note that all members are part of the

lowest layer, L0: A distributed clustering protocol at each

layer partitions these members into a set of clusters with the

specified size bounds. The protocol chooses a cluster leader

which is the graph theoretic centre of the cluster in layer Li

to join layer Liþ1: The cluster leader therefore has the

minimum maximum distance to all other members in the

cluster. This allows new members to quickly locate its

position in the hierarchy with minimum queries to other

members. A new member is bootstrapped by a RP to the

hosts in the highest layer ðLiÞ of the hierarchy. The joining

host contacts these members and selects the one which is

closest to it in terms of latency. This selected node will

inform the joining host about its peers in layer Li21:

The joining host iteratively identifies the closest member in

each layer until it locates its cluster in layer L0: Hence NICE

Fig. 19. Bayeux tree maintenance [15].

Fig. 20. Hierarchical arrangement of hosts in NICE. The layers are logical entities overlaid on the same underlying physical network.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1557

is a topology-aware design as it chooses overlay peers based

on network locality although its data topology is implicit in

the NICE hierarchy. The NICE members hierarchy is used

to define both the control and the data topologies. Using

cluster size of 4, the control topology is shown in Panel 0 of

Fig. 21. The edges indicate the peerings between group

members on the overlay topology. Each set of 4 hosts

arranged in a 4-clique in Panel 0 are the clusters in layer L0:

Hosts B0; B1; B2 and C0 are the cluster leaders of these four

L0 cluster and form the single cluster in layer L1: Host C0 is

the leader of this cluster in layer L1: In the control topology,

all members of each cluster peer with each other and

exchange periodic refresh messages incorporating the

latencies between them. For example, the control path

peers of A0 in layer L0 are all the other members in its L0

cluster (i.e. A1; A2 and B0) while those of B0 which belongs

to layers L0 and L1 are all the other members of its L0 cluster

(i.e. A0; A1 and A2) and L1 cluster (i.e. B1; B2 and C0).

In addition, all members periodically probe members in its

supercluster (defined as the cluster in the next higher level

where its leader belongs to) to identify a cluster leader than

its current one so that the member’s hierarchy can be

improved to adapt to changing network conditions. Cluster

leaders are also responsible for splitting and merging

clusters to satisfy the cluster size bound. NICE’s worst

case control overhead is Oðk log NÞ and the number of

application level hops on the basic data path between any

pair of members is Oðlog NÞ:

The data topology is an embedded source-specific tree

defined by a forwarding rule on the control topology without

the need to build it explicitly or use any complex routing

algorithm. A source sends a data packet to all its peers in the

control topology (see Panel 1 of Fig. 21 where A0 is the

source and it forwards data to peers A1; A2 and B0).

A receiving host will only forward the data to its peers if and

only if it is the cluster leader (see Panel 1 where cluster

leaders B0; B1; B2 and C0 forward data to their respective

peers). Panels 2 and 3 show different trees rooted at sources

A7 and C0; respectively. Loops and partitioning of the data

tree may occur due to stale cluster membership data and

node failures, respectively. No special mechanisms are

introduced except for the members and cluster leaders to

restore the hierarchical relationships and reconcile the

cluster view for all members.

SCRIBE [16,17] is a large-scale event notification

system to disseminate data on topic-based publish-subscribe

groups. It builds a source-based multicast shared tree on top

of Pastry [46] which is a peer-to-peer location and routing

overlay network in the Internet. Pastry uses a circular

128-bit namespace and assigns an ID based on this

namespace by basing the nodeId on a secure hash of the

node’s public key or IP address. Given a message and a

destination key, Pastry routes the message to the node

whose node ID is numerically closer to the key. This is

illustrated in Fig. 22. Assuming a Pastry network of N

nodes, the expected number of application level hops is

logb
2N where b is a configuration parameter with a typical

value of 4. With concurrent node failures, eventual delivery

is guaranteed unless l=2 or more nodes with adjacent

nodeIds fail simultaneously (l is an even integer parameter

with typical value 16). NodeIds and keys can be interpreted

as a sequence of digits in base 2b: A node’s routing table is

organized into 128=b levels with 2b entries in each level.

The entry in column m at level n of a node p’s routing table

points to a node whose nodeId shares the first n digits with

p’s nodeId and whose ðn þ 1Þth digit is m: The routing table

entry is left blank if no such node is known. In addition, each

node maintains IP addresses for the nodes in its leaf set.

A leaf set is the set of l nodes that are numerically closest to

the current node with l=2 being smaller and l=2 being bigger.

Fig. 21. Control and data delivery paths for a two-layer hierarchy. All Ai hosts are members of only L0 clusters. All Bi hosts are members of both layers L0 and

L1: The only C host is the leader of the L1 cluster comprising itself and all the B hosts [20].

Fig. 22. Routing a message from node 65a1fc with key d46a1c. The dots

depict live nodes in Pastry’s circular namespace [16].

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681558

It also maintains a neighbour set which have members that

are close based on the distance metric. The uniform

distribution of nodeIds ensures an even population of the

nodeId space with only logb
2N levels in the routing table

populated on average. Moreover, only ð2b 2 1Þ entries per

level are populated as one of them is the local node.

Hence the average state entries maintained by each node is

only ð2b 2 1Þlogb
2N entries. Moreover, after a node failure or

the joining of a new node, the tables can be repaired by

exchanging Oðlogb
2NÞ messages among the affected nodes.

At each routing step, a node forwards the message to a node

that shares a longer common prefix with the destination key

than its own ID. When no such member is found in the

routing table, the message is forwarded to a member in the

leaf set that is numerically closer to the destination key than

its own ID. Similar to Tapestry, Pastry exploits network

locality to reduce routing delays by measuring the delay

(RTT) to a small number of nodes when building the routing

tables. For each routing table entry, it chooses the closest

nodes whose nodeId satisfies the constraint for that entry.

Since the constraints are stronger for the lower levels of the

routing table, the average delay of each Pastry hop increases

exponentially until it reaches the average delay between two

nodes in the network.

The control topology of SCRIBE is essentially that of

Pastry where the neighbours of any member on the control

path include all in its routing table, neighbourhood set and

leaf set entries. Neighbours exchange refresh messages with

one another. A new node X, joining Pastry is bootstrapped

to an existing node A to route a join message using X as the

key. It is routed to the existing node Z with nodeId

numerically closest to X. X obtains the leaf set from Z and

the ith row of the routing table from the ith node

encountered along the route from A to Z thereby initializing

its state and notifying neighbours of its arrival. In the event

of a failed node, neighbours learn of its demise and update

their leaf sets. The recovering node will contact the nodes in

its last known leaf set, obtain their leaf sets and updates its

own. Each multicast group in SCRIBE typically consists of

a subset of the members that have already joined the Pastry

control topology and has its own ID (called topic identifier).

In other words, a member needs to be joined to the Pastry

overlay in order to join a SCRIBE multicast group. SCRIBE

creates a multicast tree, rooted at the RP as its data topology.

The RP is the node with nodeId closest to the topic identifier

and the tree is formed by joining the Pastry routes from each

group member to the RP. A Pastry node that wishes to join a

SCRIBE group simply routes a join message using the topic

identifier as its destination key. All members on this path

that are not already part of the multicast data delivery tree

for the group add themselves to the tree. SCRIBE node

therefore maintains a children table for the group containing

an entry (IP address and nodeID) for each of its children in

the multicast tree. Upon detection of a tree partition,

the SCRIBE node will call Pastry to route a join request to

its topic identifier. In the process, Pastry will route the

message to a new parent thus repairing the multicast tree.

2.4. Flat topology versus hierarchy topology

A flat topology is one where there is only a single-layer

overlay sitting atop the physical network. All nodes in the

overlay are in the same logical level. A hierarchical design

introduces hierarchy into the overlay forming a multi-layer

overlay. Nodes form clusters at the lowest level where each

cluster has a leader. The leaders in turn form clusters at the

next level and so on. Table 2 shows that Kudos and NICE

are the only advocates of hierarchical topologies. The main

advantage of a hierarchical overlay lies in its ability to scale

and low management overhead since measure probes are

run across smaller groups. This is achieved at the cost of

efficiency as the children nodes in different clusters are

unable to form overlay links to one another and there is

additional overhead in maintaining the clusters.

As explained above, Kudos builds a 2-level hierarchical

overlay while NICE is a multi-level overlay. It is noted that

TBCP introduces a form of hierarchy by organizing its

members into different domains based on their domain

identities to cluster members of the same domain into the

same subtree so as to improve tree efficiency. However, as

the domain roots do not form another layer of overlay

among themselves, TBCP is thus still classified as a flat

topology with a single-layer overlay.

3. Classification by service models

By service model, we refer to the manner in which data is

being delivered to the multiple destinations, namely

best-effort delivery versus reliable delivery and source-

specific delivery model (one-to-many) versus any-source

delivery model (many-to-many). The service model will

determine the type of applications the various multicast

techniques can support. For example, real-time broadcast

streaming of multimedia data and certain collaborative

applications such as audio and video conferencing are

tolerant of loss and hence best-effort delivery will suffice

while certain types of content distribution such as data

replication services will require data integrity and therefore

entails reliable transfer. Content distribution usually

Table 2

Flat versus hierarchical topologies

Flat Hierarchical

ALMA Bayeux Overcast Kudos

ALMI HM SCRIBE NICE

ALM-CAN Narada Scattercast

ALM-DT OMNI TBCP

BTP Yoid

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1559

belongs to the source-specific model while collaborative

applications use the any-source model.

3.1. Best effort versus reliable transfer

Note that the definition of reliable transfer here is more

rigorous and refers to end-to-end reliability. In other words,

it includes more than just the use of TCP for data transfer.

TCP only ensures hop-to-hop reliability which prevents

losses due to transmission error and network congestion

albeit at the expense of real-time delivery. To recover from

error arising from delivery tree transitions and node failures,

error recovery techniques such as data duplication and

retransmissions must be incorporated. These techniques, as

well as hop-to-hop TCP transfer impose a back pressure on

the source as the source needs to handle the retransmission

requests and rate-limit itself to avoid buffer overflow. In this

respect, the receivers in application level multicast

techniques can help to ease the pressure on the source if

they possess buffering and/or rate-limiting capability as

flow control and retransmissions can be handled locally.

It is noted without prejudice that all the proposals

covered herein are capable of best effort delivery be it via

TCP or UDP transfer with the former being deployed at the

expense of real-time performance. Table 3 shows how

the various application multicast solutions can be fitted into

the different service models based on the above definitions.

Only a handful of proposals, namely, ALMI, Scattercast,

Bayeux and Overcast incorporated additional mechanisms

and protocols to support end-to-end reliable transfer while

the rest choose to focus on specific applications and the

efficiencies of the overlays. Yoid has included sequence

number in the packet header in the Yoid Delivery Protocol

specifications for in-order delivery [35] but it has, however,

not defined the protocols for lost packet recovery.

ALMI and Scattercast support data delivery via both

UDP and TCP. In addition, ALMI proposes out-of-band

connection direct to the source for re-transmission for error

recovery and in cases where application has buffering

capability, retransmission can happen locally. Scattercast

uses Scaleable Reliable Multicast (SRM) [32] in addition to

TCP for hop-to-hop reliability. To recover lost data, a

receiver issues recovery requests which get forwarded

from its local proxy (called SCX) through other SCXs

towards the source until one of the SCX can recover the data

either from itself or its local group. It uses a scheme based

on PGM (PraGmatic Multicast) [33] and BCFS (Bread-

Crumb Forwarding Service) [34] to limit the scope of

retransmitted data so that data is only re-transmitted to those

links which have requested for it. The links are kept as soft

state in each SCX.

Bayeux leverages the redundant paths to every destina-

tion provided by Tapestry, an overlay location and routing

layer presented by Zhao et. al. [36] for end-to-end

reliability. It proposes a suite of protocols which include

100% data duplication on the first backup route to selective

duplication based on the probability of successful delivery

of each link. Other protocols do away with data duplication

by either using heuristics to choose the best outgoing path

for each packet or predicting the shortest and most reliable

outgoing link to the next hop Tapestry router. To date,

Bayeux has adopted the latter approach to minimize

overheads due to data duplication.

Overcast provides reliable data transfer to users via TCP

over its overlay of proxy nodes (called Overcast nodes) that

reside within the network infrastructure. Overcast node

performs store-and-forward and failure recovery operations.

It maintains a log of the data it has received and stored, and

upon failure recovery, it resumes on-demand distribution

from where it leaves off.

3.2. Source-specific versus any-source delivery

Table 4 shows the classification of the various techniques

into source specific versus any-source models. The former

builds data delivery tree rooted at a single source with one

tree for each source while the latter builds a group-shared

tree where any members in the tree can be a source.

The shared tree is usually rooted at the dominant source

though it can be rooted at any node as defined by the

respective tree-building algorithms. Source-specific trees

are simple and are known to have latency advantage over

group-shared trees although routing states associated with

source-specific tree grow linearly with the number of data

sources as this approach needs to deal with the overhead of

maintaining and optimizing multiple trees. This is, however,

less of a concern on end hosts than on routers. On the other

hand, group-shared trees reduce routing inefficiency and

incur less overhead in tree building and management but are

not optimized for the individual source and are susceptible

to a central point of failure.

Table 4

Classification by single-source versus any-source model

Source specific model Any-source model

ALMA NICE ALMI HM

Bayeux OMNI ALM-DT SCRIBE

Kudos Overcast ALM-CAN TBCP

Narada Scattercast BTP Yoid

Table 3

Classification by data transfer reliability

Best effort delivery

Without complete end-to-end reliable transfer

mechanisms

Reliable

delivery

ALMA Kudos SCRIBE ALMI

ALM-DT Narada Yoid Scattercast

ALM-CAN NICE HM Bayeux

BTP OMNI TBCP Overcast

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681560

The service models adopted by the various proposals are

largely influenced by the targeted primary applications.

ALMA, Bayeux, Narada, Kudos, NICE, OMNI, Overcast

and Scattercast are aimed at media streaming and broadcast

applications which are characterized by a single source.

These proposals therefore fully exploit this characteristic to

produce simple and efficient data delivery trees. Proposals

such as ALMI are primarily targeted at collaborative

applications where there can be more than one source per

group while the rest are more generic in their service models.

Hence, if the applications do not entail multiple sources, the

proposals classified under the any-source model perform as

per those in the source specific model. Any-source model is

hence a superset of the single-source model.

4. Classification by architecture

Architecturally, proposals for overlay based multicast

can be distinguished by whether they assume a peer-to-peer

architecture or an infrastructure (proxy) based architecture.

A peer-to-peer (P2P) approach constructs the overlay across

end-users with all functionalities being vested with these

end-users. A proxy based approach makes explicit use of

infrastructure service agents or proxies or dedicated servers

strategically deployed within the network to provide

efficient data distribution and value-added services to a set

of end hosts. The overlay is built across these proxies and

end hosts attach themselves to proxies with the proxies

operating on their behalf.

The diverse application layer techniques can also differ

in the approaches adopted for the overlay creation and

maintenance. This will determine the presence and role of a

central controller in their architectures. The functions of this

controller include being a centralized tree construction

server, a centralized directory of all members, managing

group membership such as join and leave processes and

performing partition recovery.

4.1. Peer-to-peer versus proxy support

P2P architectures have the attractive property of scale-

ability. This is because being distributed, each peer needs

only to keep state for a small number of peers. Its other

advantages include the simplicity of set-up and deployment,

its resource sharing capability as well as dynamicity. Their

vast combined resources such as physical connectivity,

computing resources may be heterogeneous but they can be

individually harnessed according to their capacities. P2P

systems thus provide redundancy as a single failure will not

radically affect the big group. Peers can be dynamically

deployed in large numbers and at hot spots quickly with

minimum prior configuration.

The merits of using proxies as opposed to any end hosts

lie mainly in their functional dedication. Being dedicated,

homogeneous and better provisioned than individual hosts,

proxies are thus more reliable and robust to failure. Proxies

are persistent beyond the lifetime of individual hosts.

They are more intelligent than end-hosts as they can provide

value-added services such as being pre-configured with

application specific components to render them application-

aware. In addition, they can be positioned at strategic

positions such as co-locating with IP routers or at hotspots to

provide more efficient services. However, there may be

problems with the acceptance and deployment of such

proxy, and when compared to P2P systems, it is less

responsive to changing environment conditions as proxy

placement is usually static and has to be manually deployed.

Table 5 distinguishes the P2P systems from their proxy

based counterparts.

OMNI deploys proxies called Multicast Service Nodes

(MSNs) across the network. It is aimed at large scale data

distributions where there is a single source, e.g. a webcast.

Prior to the commencement of the webcast, the MSNs will

organize themselves into an initial data delivery tree where

clients join and leave the tree dynamically. The root MSN is

the one that is connected to the source. This tree of MSN

will transform itself to adapt to changing network

conditions. Overcast organizes a set of proxies called

overcast nodes into a distribution tree rooted at a central

source for single source reliable multicast. A distinguishing

feature of Overcast is the explicit provision of permanent

storage capacities in the network fabric accomplished

through its proxies to support applications such as broad-

casting and reliable data-delivery applications where delay

is not a concern. Scattercast uses its ScatterCast proxies

(SCXs) to build an intelligent, application-aware proxy

infrastructure to provide a customizable framework for

efficient broadcasting. Application specific components

such as rate adaptation are incorporated into these SCXs

to provide more application functionality. SCX also serves

to repair partitions in the overlay network. Clients are either

statically configured with the location of their closest SCX

or locate their SCX via a registry or dynamically via DHCP.

Bayeux has a unique feature in that the overlay built

comprises both end hosts as well as infrastructure nodes

called Tapestry nodes [36]. These reliable servers are

installed across the network to act as software routers with

multicast functionality.

A point to note is that for HM, only designated members

(DM) are involved in the building of the shared tree.

Table 5

Classification by the need for proxy support

Peer-to-peer based Infrastructure support

ALMA HM Bayeux (uses Tapestry nodes)

ALMI Narada OMNI (uses Multicast Service Nodes, MSNs)

ALM-DT NICE Overcast (uses Overcast nodes)

ALM-CAN SCRIBE Scattercast (uses ScatterCast proXies, SCXs)

BTP Yoid

Kudos TBCP

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1561

The DM can be a single host or a member which is elected to

act on behalf of the members in a multicast island. The DM

communicates with its island members via local multicast.

Hence, some researchers may consider DMs as proxies and

classify HM as a proxy-based system. However, in this

paper, we classiy HM as a peer-to-peer system as the DMs

are not dedicated server nodes but are specially designated

end hosts.

4.2. Centralized controller, distributed approach or hybrid

A centralized approach to the overlay tree creation

problem refers to the vesting of all responsibilities for group

management, overlay computation and optimization with a

central controller. The controller maintains group infor-

mation, handles group membership, collects measurements

from all members, computes optimal distribution tree and

disseminates the routing tables to all members. The main

advantage of a centralized controller is in the great

simplification of the routing algorithms, the more efficient

and simpler group management and the provision of a

reliable mechanism to prevent tree partitions and routing

loops. However, the centralized nature limits its scaleability

and poses other reliability problem as it is more susceptible

to a central point of failure while it helps to alleviate

problems of tree partitions and looping.

As the name implies, distributed approach is receiver-

based and it distributes the responsibilities of group

membership and overlay topology computation to the

individual nodes of the overlay network. It is therefore

relatively more robust to failure as failure of an individual

node will not impact the entire group. Having no central

controller as a potential bottleneck, the distributed approach

is thus more scaleable. However, a fully distributed

approach causes excessive overheads and is not as optimal

and efficient in building optimal overlay.

A hybrid approach is one where a lightweight controller

is still used to facilitate some of the group management

(e.g. join process), overlay construction and error recovery

functions while the actual overlay construction is left to a

distributed algorithm. Table 6 shows the classification of the

techniques via their incorporation of central controller into

the architecture.

ALMI is by far the only technique which advocates a

completely centralized solution where a session controller

has total knowledge of group membership as well as of the

characteristics of a mesh connecting the members.

New member only needs to learn of the controller from

either online or offline means such as URL, email, etc. and

simply issues a join request to the controller. Mesh

characteristics are collected from periodic active probes

sent by members to measure application level performance

metric which in this case is round trip time. Based on this

knowledge the session controller builds a minimum

spanning tree and disseminates the routing tables to all the

members. The use of a centralized approach simplifies

the tree building process and enables the ALMI data

distribution trees to be close to source-rooted IP multicast

trees in efficiency with low performance tradeoff. Moreover,

it makes for better reliability as tree partition and looping

can be avoided and reduces overhead during a change of

membership or recovery from node failure as these are more

effectively managed by a central entity. However, the

centralized nature of this architecture limits its scaleability

and hence it is targeted at collaborative applications and

scales to large number of sparse groups. The session

controller also constitutes a single point of failure.

Those proposals classified under distributed approach in

Table 6 adopt a distributed algorithm for overlay construc-

tion and dispense with any centralized controller or server.

However, they do require some form of bootstrap

mechanisms for a host to learn of some nodes in the

multicast group or to learn of the root of the data delivery

tree. Bayeux advertises the root nodes of its data delivery

trees in the network via Tapestry’s location services and its

root nodes handle all join and leave requests. BTP, Kudos,

Narada assume the availability of some out-of-band

bootstrap protocol. Overcast nodes (proxies) who wish to

join the overlay is bootstrapped via a global well known

registry. Clients who wish to join the overcast session

discover the root via a web registry. The root node selects

the best overcast proxy to serve the clients based on the

status information in its database and performs

the redirection. SCRIBE requires a contact node in the

overlay to bootstrap the join process while NICE and TBCP

need a rendezvous point to learn of the highest level nodes

in NICE’s hierarchy and to advertise the root of the TBCP’s

shared tree, respectively. Scattercast provides a well-known

list of rendezvous SCXs for a new SCX to bootstrap itself

and then relies on gossip-style discovery to locate other

SCXs. For clients joining a Scattercast session, they are

statically configured with the location of its closest SCX.

ALM-CAN requires a bootstrap node which maintains a

partial list of members.

ALMA, ALM-DT, HM and Yoid are examples of a

hybrid approach whereby a light-weight controller is

incorporated in the architecture while the overlay construc-

tion algorithms are distributed. ALMA, ALM-DT and Yoid

use a centralized server as a rendezvous point for new

members to join the group. Membership status is maintained

at these rendezvous points. In addition, ALM-DT and Yoid

make use of the server to recover from overlay partition

Table 6

Classification by centralized, distributed or hybrid approach

Centralized Distributed Hybrid

ALMI ALM-CAN NICE ALMA

Bayeux Overcast ALM-DT

BTP Scattercast HM

Kudos SCRIBE OMNI

Narada TBCP Yoid

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681562

when a member leaves the group. As for ALMA, other

mechanisms, namely, dynamic gossip and spirals, have

been incorporated to recover from tree partition problems

[24,25]. Reverting to the centralized server is a last recourse

for ALMA in the event that these mechanisms failed

simultaneously. HM employs a dedicated Host Multicast

Rendezvous Point (HMRP) where new members can learn

about the roots of the shared trees and bootstrap themselves.

The roots stored in the HMRP are kept current through

periodic refreshes. OMNI operates quite differently from the

other techniques. As described in section 2.1, OMNI builds

an overlay across its proxies called MSNs. Prior to a session,

OMNI must execute a centralized initialized procedure.

The source will first be linked to a MSN identified by some

bootstrap mechanism. This root MSN gathers the latency

measurements between itself and the other MSNs and use

this knowledge to build the initial data delivery tree and

distributes the topology to the member MSNs. This

centralized computation of the tree building algorithm

does not impact the data delivery as it operates off-line

before data delivery commences. The subsequent optimi-

zation process for the data delivery tree is performed in a

distributed manner without central intervention.

5. Performance comparison

As the application layer multicast techniques reviewed

here vary widely in their goals, designs, performance

evaluation metrics and evaluation strategies, it is not

possible to evaluate all of them comparatively. Neither is

it possible to examine all the performance evaluation

metrics exhaustively. Instead, this paper focuses on the few

more common evaluation metrics adopted and will provide

comparative data wherever available. The evaluation metric

covered here includes scaleability measured intuitively in

terms of the size of the multicast receivers it can support,

the protocol efficiency in terms of the quality of data paths

measured, control overheads, amount of state information to

be maintained at each member node and failure tolerance.

5.1. Scaleability

The scaleability of a solution is limited by the protocol

efficiency which comprises factors such as control over-

heads, time and resources used to construct the application

layer multicast overlay, the amount of state kept by each

node to maintain the overlay. An intuitive but simple

approach which can provide a quick insight into the

scaleability of each technique is via the number of receivers

each of the proposals can support. This data is readily

provided in all the research proposals. Table 7 summarizes

their scaleability. However, a point to note is that a system

which scales to small group may not necessarily be viewed

as inferior to one which scales to a large group as each can

serve the different needs of different applications. The group

size supported is banded into the following:

† small (several tens of members);

† medium (several hundreds of members);

† large (several thousands of members);

† very large (tens of thousands of members).

5.2. Efficiency of protocols

There are many different parameters for evaluating the

efficiency of the various proposals. Here we are interested in

the quality of data paths generated, the amount of overhead

network traffic that is attributable to overlay maintenance,

network probing and other control functions, amount of

state maintained by each node and the robustness to failure.

5.2.1. Performance metrics

The quality of data path is commonly evaluated using

two metrics:

† Stretch also termed as Relative Delay Penalty (RDP) is a

measure of the increase in latency that applications incur

while using overlay routing. It is the ratio of a protocol’s

unicast routing distances to IP unicast routing distances.

Assuming symmetric routing, IP multicast and naı̈ve

unicast both have a Stretch or RDP of one.

† Stress is a measure of how effective a protocol is in

distributing network load across different physical links.

It is defined on a per link or per node basis and counts the

number of identical packets sent by the protocol over that

link or node. IP multicast has no redundant packet

replication and hence has a stress of one while naı̈ve

unicast has a worst case stress equal to the number of

receivers.

In general, it is difficult to analytically compute and

quantify the stretch or stress metrics for most protocols as

most of these results are obtained either via simulation or

empirically and they are all presented graphically.

The performance also varies according to group sizes and

the characteristics of the underlying topology. Nevertheless,

by examining their plots, all of them have shown reasonable

to good performance in either stretch or stress or both

depending on their optimizing goals. To provide some feel

Table 7

Scaleability comparison in terms of the group size supported

Small Medium Large Very large

ALMI ALMA ALM-CAN ALM-DT

BTP Bayeux NICE

HM Kudos

Narada OMNI

TBCP Overcast

Yoid Scattercast

SCRIBE

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1563

on the quality of the data path, the Path Length measured in

terms of the number of application-level hops and the

Outdegree of a node on the data delivery tree are metrics

which are indirectly related to the stress and stretch metrics

and can be easily analysed for some protocols. The Path

Length is an indicator of the stretch of the protocol while the

Outdegree provides an upper bound for the number of times

that a data packet is forwarded at a node which contributes

directly to the stress of the entire overlay.

Protocol Overhead refers to the total bytes of non-data

traffic that enters the network. This overhead includes

control and maintenance traffic required to maintain the

overlay and state management as all application layer

multicast solutions require nodes to exchange refresh

messages with its neighbours, the probe traffic and

other active measurements performed during the overlay

self-organization and maintenance process. The average

overhead per node is commonly used as an indicator of the

scaleability of the protocol.

Another metric that is closely related to protocol

overhead is the amount of information kept by each node

on the overlay. Herein lies their relation. State Information

maintained in each node has to be periodically updated to

reflect dynamically changing network environment.

This implies that a node maintaining more state information

will generate more update messages, thereby contributing to

additional protocol overhead. This metric therefore directly

impacts the scaleability of a technique. Information

maintained by each node includes routing tables and

group state. Protocols which require the full set of member

state to be stored in each node are thus not as scaleable as

those which only maintain partial group member state.

Failure Tolerance is actually a multi-factorial function,

being dependent on the various mechanisms put in place

for error and failure recovery; whether the system is

proxy-based or peer-to-peer based; whether the system

relies on dedicated lower-level infrastructure support;

whether the protocols are prone to a single point of failure

or the failure can be contained and localized. Section 2 has

detailed the mechanisms put in place for error and failure

recovery in the various overlay topology designs while

Section 4.1 has addressed the facts that proxy-based system

is inherently more robust than peer-to-peer based system.

It is acknowledged that application level multicast

techniques are certainly not as robust as one based on IP

multicast with lower-level dedicated infrastructure support

since the end-hosts are not as well provisioned, persistent

and reliable as the infrastructure set up by the Internet

Service providers. This fact, notwithstanding, to facilitate a

single-dimension evaluation of application level multicast

solutions without being intertwined into the convolutions of

the different impacting factors listed above, Failure

Tolerance is simply defined herein as whether the protocols

are prone to a single point of failure or the failure can be

contained and localized. It is important to highlight that the

single point of failure in the context of application level

multicast protocols is not as catastrophic as it sounds. This

vulnerable point refers to the centralized node or dedicated

controller used by the two protocols to manage overlay

construction and membership. It does not refer to the source

of the multicast session as in the event that the source fails,

there will be no session at all. Hence, the failure of this

centralized point only prevents new members from joining

the groups but does not incapacitate the entire system.

Its impact on members who have already joined the groups

is minimal or none depending on the respective algorithms.

Hence all members and sessions in progress continue to

function. Such protocols will generally strengthen this

critical point with server clusters or replicated servers to

minimize the probability of failure and to recover as soon as

possible. Localize failure refers to failure which only

impacts the failed node and its immediate neighbours and

does not impact any join processes.

5.2.2. Comparison and evaluation

Table 8 shows a summary of the performance of the

various protocols in terms of the performance evaluation

metrics spelt out above.

Stretch: As discussed in Section 5.2.1, path length, which

is derived from the number of application level hops,

provides a good indication of the relative maximum Stretch

of the various techniques. From Table 8, it can be observed

that the number of application level hops is only bounded

for those techniques which use embedded structure to

construct their overlay. Tree and mesh-tree techniques

possess unbounded hops and hence are likely to have longer

maximum stretch than their embedded structure

counterparts. The exception is OMNI which predetermines

the number of nodes during its initialization phase prior to

data delivery.

Stress: Outdegree provides an upper bound for the

number of times that a data packet is forwarded at a node

which contributes directly to the stress of the entire overlay.

Similar to the performance for stretch, embedded structure

has an intrinsic bound for maximum outdegree per node

whereas tree and mesh-tree approaches have to impose a

degree constraint to minimize stress and optimize

bandwidth. This constraint can take the form of a static

user defined outdegree (e.g. ALMA, ALMI, HM, Yoid) or a

more dynamic one where users (Narada) or proxies (OMNI,

Scattercast) set the degree constraint according to its

prevailing bandwidth. The exception is BTP and Overcast

where there is no degree constraint imposed.

Protocol Overhead and State Information Maintained.

The overhead introduced by the protocol in the form of non-

data traffic entering the overlay network is normalized as the

average control overhead per node in Table 8 to facilitate

comparison among the different techniques. This is also

directly related to the number of state entries per node as the

more states a node keeps, more updates are required to

maintain its currency thereby impacting the amount of

control information needed to maintain, improve and repair

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681564

the overlay. These two metrics actually affect the

scaleability of the systems and as reflected in Table 8, the

highly scaleable systems with embedded structures have a

non-linear bound on these control and state overheads. In

other words, the overheads do not increase proportionately

with the increase in the number of nodes (e.g. Bayeux,

SCRIBE). In fact, such overheads and state data are constant

in the case of ALM-CAN, ALM-DT and NICE which is a

primary reason for their superior scaleability. Mesh-tree

systems such as Narada fare the worst as it has to maintain

state for the entire group. Likewise for centralized algorithm

based ALMI and unconstrained outdegree protocols such as

BTP and Overcast. Whereas, the other tree-based

algorithms with their imposed outdegree constraint, manage

to cap these overheads to an upper bound.

Failure tolerance. The fully centralized ALMI as well as

most hybrid systems, namely, ALMA, ALM-DT, HM and

Yoid are considered less robust due to their reliance on some

form of centralized entity for group management functions

and recovery from data distribution tree partitioning.

To alleviate the impact of a failure in the centralized entity,

HM and Yoid propose the use of a cluster of servers while

ALMI uses multiple hot standby back-up servers. These

standbys receive periodic updates from the primary

controller so that they are ready to phase into operation

once the primary controller fails. These approaches,

however, often suffer from communication overheads and

data consistency problems. OMNI, unlike its hybrid

counterparts, does not face similar problems as its

centralized entity is only involved in building the data

distribution tree during the initialization phase. Its operation

ceases once data distribution commences.

It is interesting to note that distributed techniques too have

their Achilles heels such as the roots of the data distribution

Table 8

Summary of protocol performance

Techniques Path length Maximum outdegree Average control

overhead per

node

No. of state entries

per node

Failure tolerance Group size

ALMA Max: unbounded User defined Oðmax: deg:Þ Oðmax: deg:Þ Single point of failure

at DS

Medium

ALMI Max: unbounded User defined OðNÞ OðNÞ Single point of failure

at central controller

Small

ALM-CAN Max: OðdN1=dÞ;

Avg: d=4N1=da

Constant of 2d Constant of 2d Constant of 2d Localized failure Large

ALM-DT Avg :
ffiffiffiffiffi

N=4
p

Worst: OðN 2 1Þ;b

Avg: approx. 6

Constant of 6 Constant of 6 Single point of failure

at DT server

Very large

Bayeux Max: OðlogbNÞc OðlogbNÞ OðlogbNÞ Oðb logbNÞ Single point of failure

at root

Large

BTP Max: unbounded Unconstrained OðNÞ OðNÞ Localized failure Medium

HM Max: unbounded User defined Oðmax: deg:Þ Oðmax: deg:Þ Single point of failure

at RP

Medium

Kudos Max: unbounded Oð
ffiffiffi

N
p

Þ Oð
ffiffiffi

N
p

Þ Oð
ffiffiffi

N
p

Þ Localized failure Large

Narada Max: unbounded User defined to

reflect bandwidth

of user’s outgoing link

OðNÞ OðNÞ Localized failure Medium

NICE Max: Oðlog NÞ Between k and 3kd Constant of OðkÞ;

Max: Oðk log NÞ

Constant of OðkÞ;

Oðlog NÞ only for the

highest hierarchical layer

Localized failure Very large

OMNI Max: Oðlog NÞ MSN defined to reflect

bandwidth of MSN’s

outgoing link

Oðmax: deg þ log NÞ Oðmax: deg:þ log NÞ Localized failure Large

Overcast Max: unbounded Unconstrained OðNÞ OðNÞ Single point of failure

at root

Large

Scattercast Max: unbounded User defined to reflect

bandwidth of user’s

outgoing link

Oðmax: deg:Þ Oðmax: degÞ Localized failure Large

SCRIBE Avg: Oðlogb
2NÞ Oðlogb

2NÞ Oðlogb
2NÞ Oðð2b 2 1Þlogb

2NÞ Localized failure Large

TBCP Max: unbounded User defined Oðmax: degÞ Oðmax: degÞ Localized failure Medium

Yoid Max: unbounded User defined Oðmax: degÞ Oðmax: degÞ Central point of failure

at RP

Medium

N is the number of nodes in the overlay.
a d is the dimension of the Cartesian coordinate space of a CAN overlay.
b Theoretically, worse case is created when N 2 1 vertices form a circle and the nth vertex is in the center of the circle. However, the maximum outdegree is

very small [12].
c b is the base used in the Bayeux node ID.
d k is a constant.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1565

trees in the case of Bayeux and Overcast. In both Bayeux and

Overcast, the root handles all join and leave requests from

session members. To ameliorate the problem of the root as a

single point of failure, root replication is incorporated.

Bayeux creates multiple root nodes and leveraging on

Tapestry’s location services, receivers will be routed to the

closest local root in network distance. Receivers are therefore

partitioned into disjoint membership sets transparently. The

technique is similar to root replication used by many existing

IP multicast protocols such as CBT [47] and PIM [48,49].

Bayeux’s root replication does not incur additional overhead

in the sense that these replicated roots do not need to send

periodic advertisements to all receivers as they can be located

via Tapestry location services. Overcast uses a technique

called linear roots to replicate its root. Starting with the root,

some number of nodes are configured linearly, i.e. each node

has only one child. All the other overcast nodes lie below

this set of linear roots. These replicated roots are updated

with all the information needed to handle the join operations

in the event that the root node fails. The drawback of this

technique is the increased latency of content distribution as

data has to traverse all these extra nodes before reaching

the rest of the overcast nodes as well as data consistency

problems.

6. Conclusion

This paper surveys the milestone application level

multicast techniques documented in the various literatures

and classify them into different categories based on their

topology design, service models and architecture. Table 9

summarizes their properties to facilitate a quick insight and

understanding of their contributions. In addition, a per-

formance comparison of the various techniques based on

factors such as scaleability and efficiency of the protocols in

terms of stress on the underlying network, relative delay

penalty, protocol overheads and failure tolerance has been

conducted. The results are presented in Table 8. In

summary, the different techniques have been designed to

cater to their different goals with their respective strengths

and weaknesses as discussed in this paper. Techniques

based on embedded structures tend to enjoy superior

scaleability with the drawback that they may not be as

network topology aware as those based on tree architecture.

Tree-based techniques, being more topology aware, are

better able to exploit underlying network topology for

efficient data distribution except that they are less robust.

Tree-mesh architectures serve to strengthen the robustness

of the data distribution trees but at a cost of higher

overheads. To the best of our knowledge, this paper is one of

the first papers to provide a comprehensive survey of the

various milestone research work in application level multi-

cast in terms of both breadth and depth.

References

[1] S. Deering, D. Cheriton, Multicast routing in Datagram

internetworks and extended LANS, ACM Trans. Comp. Syst. 8 (2)

(1990) 85–100.

Table 9

Summary of the properties of the various milestone application level multicast techniques

Techniques Goals Topology-

awareness

Topology

design

Topology

hierarchy

End-to-end

reliable delivery

Source model Proxy Type of

algorithm

ALMA Min. latency, min. loss Aware Tree Flat Best effort Specific P2P Hybrid

ALMI Min. tree cost Aware Tree Flat Reliable Any-source P2P Centralized

ALM-CAN Min. latency Agnostic Embedded Flat Best effort Any source P2P Distributed

ALM-DT Min. overhead,

max. scaleability

Agnostic Embedded Flat Best effort Any source P2P Hybrid

Bayeux Fault tolerant delivery,

min. latency

Aware Embedded Flat Reliable Specific Tapestry

nodes

Distributed

BTP Min. tree cost Aware Tree Flat Best effort Any source P2P Distributed

HM Min. tree cost Aware Tree Flat Best effort Any source P2P Hybrid

Kudos Max. scaleability Aware Mesh-tree Two-level

hierarchy

Best effort Specific P2P Distributed

Narada Min. latency,

Max. bandwidth

Aware Mesh-tree Flat Best effort Specific P2P Distributed

NICE Min overhead,

max. scaleability

Aware Embedded Multi-level

hierarchy

Best Effort Specific P2P Distributed

OMNI Min. latency Aware Tree Flat Best effort Specific MSNs Hybrid

Overcast Reliable delivery,

Max. bandwidth

Aware Tree Flat Reliable Specific Overcast

nodes

Distributed

Scattercast Min. latency Aware Tree Flat Reliable Specific SCXs Distributed

SCRIBE Max. scaleability Aware Embedded Flat Best effort Any source P2P Distributed

TBCP Max. responsiveness Aware Tree Flat Best effort Any source P2P Distributed

Yoid Min. latency Aware Tree-Mesh Flat Best effort Any source P2P Hybrid

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681566

[2] S.E. Deering, Multicast routing in a Datagram internetwork, PhD

thesis, Stanford University, December 1991.

[3] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, The

PIM Architecture for Wide-Area Multicast Routing, IEEE/ACM

Trans. Networking December (1997) 784–803.

[4] C. Diot, B.N. Levine, B. Lyles, H. Kassan, D. Balensiefen,

Deployment issues for the IP multicast service and architecture,

IEEE Networks Spec. Issue Multicasting 14 (1) (2000) 78–88.

[5] R. Perkman, C. Lee, A. Ballardie, J. Crowcroft, Z. Wang, T. Maufer,

C. Diot, J. Thoo, M. Green, Simple multicast: a design for simple,

low-overhead multicast, IETF draft, draft-perlman-simple-multicast-

03.txt, October 1999.

[6] H. Hoolbrook, D. Cheriton, IP multicast channels: EXPRESS support

for large-scale single source applications, Proc. ACM SIGCOMM

September (1999) September.

[7] H. Hoolbrook, B. Cain, Source specific multicast, IEFT draft,

Holbrook-ssm-00.txt, March 2000.

[8] Y. Chu, S.G. Rao, S. Seshan, H. Zhang, A case for end system

multicast, IEEE J. Select. Areas Commun. 20 (8) (2002).

[9] Y. Chu, S.G. Rao, H. Zhang, A case for end system multicast, Proc.

ACM SIGMETRICS June (2000) 1–12.

[10] Y. Chu, S.G. Rao, S. Seshan, H. Zhang, Enabling conferencing

applications on the Internet using an overlay multicast architecture,

Proc. ACM SIGCOMM August (2001).

[11] J. Jannotti, D.K. Gifford, K.L. Johnson, Overcast: Reliable Multi-

casting with an Overlay Network, Proc. Oper. Syst. Des. Implement.

(OSDI) October (2000) 197–212.

[12] J. Liebeherr, M. Nahas, W. Si, Application-layer multicast with

Delaunay triangulations, IEEE J. Select. Areas Commun. 20 (8)

(2002).

[13] P. Francis, Yoid: Your Own Internet Distribution, http://www.isi.edu/

div7/yoid/, March 2001.

[14] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, ALMI: an

Application Level Multicast Infrastructure, Proceedings of the Third

Usenix Symposium on Internet Technologies and Systems (USITS),

March 2001.

[15] S. Q. Zhang, B. Y. Zhao, A. D. Joseph, R. H. Jatz, J. D. Kubiatowicz,

Bayeux: An architectuture for scaleable and fault-tolerant wide-area

data dissemination, Proceedings of NOSSDAV, April 2001.

[16] M. Castro, P. Druschel, A.M. Kermarrec, A. Rowstron, SCRIBE: a

large-scale and decentralized application-level multicast infrastruc-

ture, IEEE J. Select. Areas Commun. 20 (8) (2002) October.

[17] A. Rowstron, A. M. Kermarrec, M. Castro, P. Druschel, SCRIBE: the

design of a large-scale event modification infrastructure, Proceedings

of the Third International Workshop on Networked Group Communi-

cation (NGC), 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, S. Shenkar, Application-level

multicast using content addressable networks, Proceedings of the

Third International Workshop on Networked Group Communication

(NGC), 2001, pp. 14–29.

[19] Y. D. Chawathe, Scattercast: an architecture for Internet broadcast

distribution as an infrastructure service, PhD thesis, Stanford

University, September 2000.

[20] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scaleable application

layer multicast, Proceedings of ACM SIGCOMM, August 2002.

[21] B. Zhang, S. Jamin, L. Zhang, Host multicast: a framework for

delivering multicast to end users, Proceedings of INFOCOM, June

2002.

[22] D.A. Helder, S. Jamin, Banana tree protocol, an end-host multicast

protocol, Technical Report, University of Michigan, CSE-TR-429-00,

July 2000.

[23] S. Banerjee, C, Kommareddy, K. Kar, B. Bhattacharjee, S. Khulle,

Construction of an efficient overlay multicast infrastructure for

real-time applications, Proceedings of INFOCOM, April 2003.

[24] C.K. Yeo, B.S. Lee, M.H. Er, A framework for multicast video

streaming over IP networks, J. Networks Comput. Applic. 26 (3)

(2003) 273–289.

[25] C.K. Yeo, B.S. Lee, M.H. Er, An overlay for ubiquitous streaming

over Internet, Proceedings of the Second International IFIP-TC6

Networking Conference, May 2002, pp. 1239–1244.

[26] C.K. Yeo, B.S. Lee, M.H. Er, A peering architecture for ubiquitous IP

multicast streaming, ACM SIGOPS Oper. Syst. Rev. 36 (3) (2002)

82–95.

[27] S. Jain, R. Mahajan, D. Wetherall, G. Borriello, S.D. Gribble, A

comparison of large-scale overlay management techniques, Technical

Report UV-CSE 02-02-02, University of Washington, February 2002.

[28] L. Mathy, R. Canonico, D. Hutchison, An overlay tree building

control protocol, Proceedings of the Third International Workshop on

Networked Group Communication (NGC), 2001, pp. 76–87.

[29] A.J. Demers, D.H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,

H.E. Sturgis, D.C. Swinehart, D.B. Terry, Epidemic algorithms for

replicated database maintenance, ACM Operating Systems Review 22

(1988) 8–32.

[30] Q. Sun, D.C. Sturman, A Gossip-based reliable multicast for

large-scale high-throughput applications, Proceedings of the IEEE

International Conference Dependable Systems and Networks, 2000,

pp. 347–358.

[31] R. Tenesse, Y. Minsky, M. Hayden, A Gossip-style failure detection

service, Proceedings of the IFIP International Conference on

Distributed Systems Platforms and Open Distributed Processing

(Middleware), September 1998, pp. 55–70.

[32] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, A reliable

multicast framework for light -weight session and application level

framing, IEEE/ACM Trans. Network. 5 (6) (1997) 784–803.

[33] T. Speakman, D. Farinacci, S. Lin, A. Tweedly, Pragmatic General

Multicast (PGM) reliable transport protocol, CISCO Systems, Internet

Draft, 1998.

[34] K. Yano, S. McCanne, The Breadcrumb Forwarding Service: A

Synthesis of PGM and EXPRESS to Improve and Simplify Global IP

Multicast, ACM Comput. Commun. Rev. 30 (2) (2000).

[35] P. Francis, Yoid: extending the Internet multicast architecture, http://

www.isi.edu/div7/yoid/, April 2000.

[36] B.Y. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: an infrastructure for

fault-tolerant wide-area location and routing, Technical report, UCB/

CSD-01-1141, University of California, Berkeley, April 2001.

[37] S. Banerjee, B. Bhattacharjee, A comparative study of application

layer multicast protocols, Unpublished report, Department of

Computer Science, University of Maryland, http://www.cs.wisc.edu/

~suman/pubs.html

[38] Z. Wang, J. Crowcroft, Bandwidth-delay based routing algorithms,

IEEE Globecom November (1995).

[39] S. Ratnasamy, P. Francis, M. Handley, R. Karp, A scaleable content-

addressable network, Proceedings of the ACM SIGCOMM,

August 2001.

[40] M. Berg, M. Krevekd, M. Overmas, O. Schwarzkopf, Computational

Geometry, Algorithms and Applications, Springer, Berlin, 1997.

[41] R. Sibson, Locally equiangular triangulations, Comput. J. 21 (3)

(1977) 243–245.

[42] B.N. Karp, Geographical routing or wireless networks, PhD thesis,

Harvard University, 2000.

[43] E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric

networks, Proceedings of the 11th Canadian Conference on

Computational Geometry, August 1999, pp. 51–54.

[44] M.J.B. Robshaw, MD2, MD4, MD5, SHA and other hash functions,

Technical Report, TR-101 ver. 4.0, RSA Labs, 1995.

[45] C.G. Plaxton, R. Rajaraman, A.W. Richa, Accessing nearby copies of

replicated objects in a distributed environment, Proceedings of

the Ninth ACM Symposium on Parallel Algorithms and Architectures

(SPAA), June 1997.

[46] A. Rowstron, P. Druschel, Pastry: scaleable, distributed object

location and routing for large-scale peer-to-peer systems, Proceedings

of the IFIP/ACM Middleware, November 2001.

[47] A. Ballardie, Core based trees (CBT) multicast routing architecture,

Internet request for comments RFC 2201, September 1997.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–1568 1567

http://www.isi.edu/div7/yoid/
http://www.isi.edu/div7/yoid/
http://www.isi.edu/div7/yoid/
http://www.isi.edu/div7/yoid/
http://www.cs.wisc.edu/suman/pubs.html
http://www.cs.wisc.edu/suman/pubs.html

[48] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,

V. Jacobson, C. Liu, P. Sharma, L. Wei, Protocol independent

multicast—Sparse Mode (pim-sm): protocol specification, Internet

request for comments RFC 2117, June 1997.

[49] D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, P. Sharma,

A. Helmy, A protocol independent multicast—Dense Mode

(pim-dm): protocol specification, Internet request for comments

RFC 2117, June 1997.

[50] C.K. Yeo, B.S. Lee, M.H. Er, Application layer multicast architecture

for media streaming, Proceedings of the Seventh IASTED

International Conference on Internet, Multimedia, Systems and

Architectures, Hawaii, USA, August 2003.

C.K. Yeo et al. / Computer Communications 27 (2004) 1547–15681568

	A survey of application level multicast techniques
	Introduction
	Classification by overlay topology design
	Tree
	Mesh-tree
	Embedded structure
	Flat topology versus hierarchy topology

	Classification by service models
	Best effort versus reliable transfer
	Source-specific versus any-source delivery

	Classification by architecture
	Peer-to-peer versus proxy support
	Centralized controller, distributed approach or hybrid

	Performance comparison
	Scaleability
	Efficiency of protocols

	Conclusion
	References

