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Research conducted over the years has shown that the application of single input change (SIC) pairs of

test patterns for sequential, i.e. stuck-open and delay fault testing is extremely efficient. In this paper, a

novel architecture for the generation of SIC pairs is presented. The implementation of the proposed

architecture is based on Ling adders that are commonly utilized in current data paths due to their high-

operating speed. Since the timing characteristics of the adder are not modified, the presented

architecture provides a practical solution for the built-in testing of circuits that contain such adders.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

While every VLSI design project has its own unique set of goals,
there is a universal need for reliability in the finished product.
Built-in self test (BIST) [1] techniques constitute an attractive and
practical solution. Advantages of BIST include the possibility of
performing at-speed testing, very high-fault coverage, elimination
of test generation effort and less reliance on expensive external
testing equipment for applying and monitoring test patterns.
Therefore, BIST can drive down the cost of testing.

It is widely known that a large class of physical defects cannot
be modeled as stuck-at faults. For example, a transistor stuck-
open fault in a CMOS circuit can convert a combinational circuit
under test (CUT) into a sequential one [2], while a delay fault may
cause circuit malfunction at clock speed, although it does not
affect the steady-state operation [3]. Detection of such faults
requires two-pattern tests.

In the literature, two types of two-pattern tests have been
investigated, multiple input change (MIC) and single input change
(SIC) pairs. In SIC pairs the first pattern differs from the second in
exactly one bit. The utilization of SIC pairs for the detection of
stuck-open and delay faults holds some very interesting proper-
ties and has been studied by a number of researchers [4–15].
Smith [4] proved that SIC tests are sufficient to detect all robustly
detectable path delay faults; Wang and Gupta [5] proved that SIC
pairs provide higher pseudorandom robust path delay fault
coverage than MIC pairs. In other words, if a certain number of
pairs is applied to the inputs of a circuit under test, the achieved
ll rights reserved.
fault coverage is higher if the pairs are SIC, than if the pairs are
MIC. Furthermore, a number of related works [6–17] indicate that
the utilization of SIC pairs for testing delay and stuck-open faults
compares favorably to the utilization of MIC pairs. Experimental
data indicate the effectiveness of SIC pairs in identifying path
delay faults in some of the well-known ISCAS 89 benchmarks [18].
In the field of RAM testing, Gizdarski utilized SIC pairs in order to
test delay faults in the address decoders of RAM memories [19].

Accumulator structures composed of an adder and a register
module commonly exist in current VLSI circuits, e.g. in the data
path of embedded processors, or in digital signal processing (DSP)
chips [20,21]. The utilization of such structures for compression of
the CUT responses [22–25], or generation of test patterns [26–29]
in BIST results in low hardware overhead and low impact on the
circuit normal operating speed. Accumulator-based techniques
that target the detection of stuck-at faults have been presented in
[26–28]; generation of MIC two-pattern tests has been achieved
in [29]. In [30,31] the generation of SIC pairs based on an
accumulator whose inputs are driven by a barrel shifter was
proposed. Such structures are commonly found in typical DSP
cores.

In the data paths of the modern processors, binary adders are
typically implemented using parallel-prefix architectures based
on conventional [32–34] or Ling carries [35–37], in order to
increase the operating speed.

In this paper, we propose an accumulator-based SIC-pair
generator where the adder of the accumulator is based on a
properly modified Ling adder. One of the most important
advantages of the proposed scheme is that the modifications
imposed on the Ling adder do not alter its timing characteristics.

The paper is organized as follows. In Section 2, the algorithm
utilized for the generation of SIC pairs is reviewed and the
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implemented architecture is presented; in Section 3, the hardware
implementation is presented. In Section 4, the techniques
presented in the literature for the generation of SIC pairs are
compared. Finally, in Section 5 we conclude the paper.
clk

S-Adder

rn-1 r1 r0

Register

cint

Fig. 2. Accumulator utilized for the implementation of the proposed scheme.
2. Algorithm and BIST architecture

Let V ¼ vn�1vn�2yv1v0 be an n-bit binary vector. We denote
with Vi the binary vector that differs from V in the i-th bit
(0rnrn�1). For example, if V ¼ 010 then V0

¼ 011, V1
¼ 000 and

V2
¼ 110. Furthermore, we denote with V̄ the vector that differs

from V in all n bits. For example, for V ¼ 010 and V̄ ¼ 101.

Definition 1:. The S-sequence (or SIC-sequence) of V is the
sequence of n vectors {V0, V1yVn�1}, where

Vi ¼
V0 if i ¼ 0

Vi
i�1 else

(

For example, for V ¼ 000, S-sequence (V) ¼ {001, 011, 111}. It is
easy to note that the S-sequence (V) always ends to V̄.

Definition 2:. The double-SIC sequence (DS-sequence ) of V is the
sequence of (2n+1)—vectors comprised of V, the S-sequence of V,
and the S-sequence of V̄.

For example, for V ¼ 000, DS-sequence (V) ¼ {000, 001, 011, 111,
110, 100, 000}. It is easy to note that the DS-sequence (V) always
ends with V.

In Fig. 1, we present the algorithm utilized to generate the SIC
pairs. According to the theory proposed in [31], the algorithm
generates all n-bit SIC pairs within (n+1/2)�2n cycles.

As an example, the patterns generated by the algorithm of
Fig. 1 for n ¼ 3 are presented in Table 1.

The algorithm of Fig. 1 can be implemented with a (properly
modified) accumulator whose inputs are driven by a barrel shifter.
The modified accumulator, shown in Fig. 2, consists of a modified
n-bit adder (denoted as S-adder) and a register, and takes as
ARN(int n) 
{ N=2n;
for (V=0; V<N/2; V++) 
  { 
    apply(V); 
    S-sequence(V);

    S-sequence(V );
  } 
S-sequence(X)
{
  for (i=0; i<n; i++) 
      {X=Xi; apply(X);} 
  } 

Fig. 1. SIC-pair generation algorithm.

Table 1
Patterns generated for n ¼ 3.

V ¼ 0 V ¼ 1 V ¼ 2 V ¼ 3

000 001 010 011

001 000 011 010

011 010 001 000

111 110 101 100

110 111 100 101

100 101 110 111

000 001 010 011
inputs an n-bit vector B, a carry-in cin and a clock input, clk. The
output of the accumulator is a vector R and a carry-out signal cout.
The S-adder has an additional test input, t and operates as follows:
when t ¼ 0, the S-adder operates as an ordinary n-bit adder; when
t ¼ 1, the S-adder operates as a series of n two–input XOR gates,
i.e. each output of the S-adder is the eXclusive-OR (XOR) of the
corresponding inputs.

The n-bit SIC pair generator implemented in this work is
presented in Fig. 3. The control inputs {fk�1,y, f1,f0} ¼ F,
(k ¼ dlog2 ne) of the barrel shifter are driven by a k-bit counter
that counts modulo n.

The module presented in Fig. 3 operates as follows. Initially,
the binary vector 00y01 is driven to the inputs of the barrel
shifter and the outputs of the Accumulator rn�1,rn�2,y r0 are set
to 0. The counter is initially set to 0 and increments in every clock
cycle. During the first n clock cycles, the vectors {00y01,
00y010,y,10y0} are applied to the inputs of the accumulator
and the S-sequence (0) is generated. At this time, the output of the
accumulator is 11y1. Then the counter starts counting from 1 to
n�1 again, and the S-sequence (2n

�1) is generated and applied to
the CUT. Then, the t signal is disabled by the control module, the
accumulator accumulates the vector 00y01and the DS-sequence
(1) commences.

The control unit of the proposed architecture is given in Fig. 4.
Initially, the flip-flop is set to ‘0’. The ‘‘F ¼ n�1’’ signal indicates
that the counter has reached the value n�1.

The operation of the module of Fig. 3 is analyzed in Table 2 for
n ¼ 3. The first column of Table 2 presents the number of the
cycle, the second column presents the value of the t signal, the
third column presents the output of the counter that are driven to
the fi inputs of the shifter, the fourth column presents the output
of the shifter and the sixth column the output of the accumulator.
The fifth column presents the operation of the accumulator, either
eXclusive-OR (�) or addition (ADD), which depends on the value
of the t signal. For the first six cycles, the next value of the
accumulator is calculated as the bit-by-bit eXclusive-OR of
the current value of the accumulator and the value of the shifter.

At clock cycle 7, the signal t is disabled, the accumulator
operates normally, and the pattern 001 is generated at the outputs
of the accumulator. The same holds for clock cycles 14, 21 and 28.
3. Hardware implementation

In the sequel, we shall present an implementation of the
scheme based on a modified Ling adder [37]. Prior to presenting
the modifications of a Ling adder to implement the S-adder, we
revise some introductory concepts on parallel-prefix addition.

Let A ¼ an�1an�2ya1a0 and B ¼ bn�1bn�2yb1b0 be two n-bit
numbers to be added and let S ¼ sn�1sn�2ys1s0 be their sum.
A CLA adder can be considered as a three-stage circuit. The first-
stage computes the carry generate gi ¼ ai bi, the carry propagate
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Fig. 4. The control unit.

Table 2
Operation of 3-bit SIC pair generation.

Cycle t F B Oper R

1 1 00 001 � 000

2 1 01 010 � 001

3 1 10 100 � 011

4 1 00 001 � 111

5 1 01 010 � 110

6 1 10 100 � 100

7 0 00 001 ADD 000

8 1 00 001 � 001

9 1 01 010 � 000

10 1 10 100 � 010

11 1 00 001 � 110

12 1 01 010 � 111

13 1 10 100 � 101

14 0 00 001 ADD 001

15 1 00 001 � 010

16 1 01 010 � 011

17 1 10 100 � 001

18 1 00 001 � 101

19 1 01 010 � 100

20 1 10 100 � 110

21 0 00 001 ADD 010

22 1 00 001 � 011

23 1 01 010 � 010

24 1 10 100 � 000

25 1 00 001 � 100

26 1 01 010 � 101

27 1 10 100 � 111

28 0 00 001 ADD 011
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pi ¼ ai+bi, and half-sum di ¼ ai�bi bits for the case of inclusive-OR
adders or the carry generate gi ¼ ai bi and carry propagate
pi ¼ di ¼ ai�bi bits, for the case of exclusive-OR adders, where
0rirn�1. The symbols �, +, � denote the logic AND, OR, and
eXclusive-OR operations, respectively. The second stage of the
adder computes the carry bits ci, using the carry generate and
propagate bits, while the final stage computes the sum bits si.

A large variety of carry computation algorithms has been
proposed [32–34]. Among them, parallel-prefix architectures are
more suitable for VLSI implementation, since they rely on the use
of simple cells and maintain regular connections. Carry computa-
tion is transformed into a prefix problem using the associate
operator �, which associates pairs of propagate and generate bits
according to the relation

ðgi; piÞ � ðgj; pjÞ ¼ ðgi þ pi � gj; pi � pjÞ

In a sequence of consecutive associations of (g, p) terms the
notation (gk:j, pk:j) is used to denote the group generate and the
group propagate terms for the bits k, k�1,y, j. That is,

ðgk:j; pk:jÞ ¼ ðgk;pkÞ � ðgk; pkÞ � ðg�1k; pk�1Þ � . . . � ðgj; pkÞ

Each carry bit ci is equal to gi:0. Parallel-prefix adder architec-
tures are based on the use of tree structures for the computation
of carry bits. The sum bits are implemented as si ¼ di�ci�1.

3.1. S-adder architecture based on Ling carries

A variant of the carry look-ahead computation is based on Ling
carries [35], leading to faster adder architectures. The Ling carries,
defined in [35] as Hi ¼ ci+ci�1, can easily be derived for the case of
the inclusive-OR adders as follows. Since the carry propagate
functions are defined for these adders as pi ¼ ai+bi the relation
pi ¼ gi � pi holds and we have

ci ¼ gi þ pigi�1 þ pipi�1gi�2 þ � � � þ pipi�1 � � �p1p0

¼ piðgi þ gi�1 þ pi�1gi�2 þ � � � þ pi�1 . . . p1p0Þ

¼ piHi

where Hi ¼ gi+gi�1+pi�1gi�2+?+pi�1ypip0 are the Ling carries.
An efficient implementation of the sum bits using the

Ling carries is derived according to the relation si ¼ Hi�1di þ

Hi�1ðdi � pi�1Þ given in [38] (x̄ denotes the inverse of x).
Parallel-prefix adder architectures based on Ling carries

are introduced in [36] and high-speed implementations are
proposed in [37]. Two consecutive Ling carries are computed in
parallel-prefix form [37] as Hi ¼ Gi:0 and Hi+1 ¼ Gi+1:1 for i

even, where (Gi:0,Pi�1:�1) ¼ (Gi,Pi�1)3(Gi�2,Pi�3)3y3(G0,P�1) and
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Fig. 5. Modified 8-bit Ling adder.
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(Gi+1:0,Pi:0) ¼ (Gi+1,Pi)3(Gi�1,Pi�2)3y3(G1,P0), for Gi ¼ gi+gi�1 and
Pi ¼ pi �pi�1, with g�1 ¼ 0, p�1 ¼1, G�1 ¼ 0 and P�1 ¼ 1.

For example, the parallel-prefix expressions for the Ling carries
of an 8-bit adder are as follows:

H0 ¼ ðG0; P�1Þ

H1 ¼ ðG1; P0Þ

H2 ¼ ðG2; P1Þ � ðG0; P�1Þ

H3 ¼ ðG3; P2Þ � ðG1; P0Þ

H4 ¼ ðG4; P3Þ � ðG2; P1Þ � ðG0; P�1Þ

H5 ¼ ðG5; P4Þ � ðG3; P2Þ � ðG1; P0Þ

H6 ¼ ðG6; P5Þ � ðG4; P3Þ � ðG2; P1Þ � ðG0; P�1Þ

H7 ¼ ðG7; P6Þ � ðG5; P4Þ � ðG3; P2Þ � ðG1;P0Þ

The carry-in bit cin can be included in the adder architecture,
either by adding a fast carry increment stage, or by treating cin as
an extra bit in the preprocessing stage of the adder [37]. For the
case of carry increment stage the two consecutive Ling carries are
computed as Hi ¼ Gi:0+Pi�1:�1c�1 and Hi+1 ¼ Gi+1:1+Pi:0c�1 for i

even. The second case is derived by setting g�1 ¼ cin.
The efficiency of the architecture in [37] relies on the use of

AND–OR and OR–AND complex gates to implement the
Gi ¼ aibi+ai�1bi�1 and Pi ¼ (ai+bi)(ai�1+bi�1) terms, which mini-
mizes the in-series transistors in the critical path. In addition, the
computation of the sum bits according to the relation si ¼

Hi�1di þ Hi�1ðdi � pi�1Þ is implemented using a multiplexer
that selects either di or di�pi�1. This circuit introduces the
same delay as the XOR gate that computes the si bits of
conventional adders. The carry output bit of the adder is derived
using an extra AND gate to implement the relation cn�1 ¼

pn�1Hn�1.
The modification of the gi terms to convert the Ling adders to

S-adders proposed in [31] leads to modification of the terms
Gi ¼ gi+gi�1 ¼ aibi+ai�1bi�1 to G�i ¼ g�i þ g�i�1 ¼ aibi

�t þ ai�1bi�1, or
equivalently to G�i ¼ ðaibi þ ai�1bi�1Þ�t. It is evident that the G�i
terms are more complicated than their corresponding Gi terms
and can alter the timing characteristics of the adder.

In the following, an alternative methodology is proposed that
leads to S-adder architectures that operate at the same speed
as their corresponding parallel-prefix adders based on Ling
carries. According to the definition of the S-adders in [31], their
carries can be expressed as c�i ¼

�tci ¼ �tpiHi where Hi are the Ling
carries. Using this relation and following a methodology similar to
that in [35] the sum bits of the S-adder can be computed as
follows:

si ¼ di � c�i�1 ¼ di � �tpiHi�1

¼ di ¼ �tpi�1Hi�1 þ dið�tpi�1Hi�1Þ ¼ di
�tpi�1Hi�1 þ dið�tpi�1Þ þ diHi�1

¼ di
�tpi�1Hi�1 þ dið�tpi�1ÞðHi�1 þ Hi�1Þ þ diHi�1

¼ di
�tpi�1Hi�1 þ dið�tpi�1ÞHi�1 þ dið�tpi�1ÞHi�1 þ diHi�1

or

si ¼ ðdi � ð�tpi�1ÞÞHi�1 þ diHi�1

The additional hardware required for the implementation of the
si terms according to the derived relation is a series n two-input
AND gates which implement the t̄pi�1 functions. No extra delay is
imposed by the proposed modification.

The proposed architecture of an 8-bit S-adder based on Ling
carries is shown in Fig. 5. The parallel-prefix computation of the
Ling carries is derived according to the Lander–Fischer algorithm
[39]. It is trivial to see that, cout ¼ p7H7.

The logic-level implementations of the basic cells used in the
proposed architecture are shown in Fig. 6.
3.2. S-adder architectures based on conventional carries

The proposed methodology is also applicable to the case of
S-adder architectures based on conventional CLA or parallel-prefix
carry computation. As noted earlier, the architecture of the
S-adder in [31] is based on the modification of the generate
functions from gi ¼ aibi to g�i ¼ aibi

�t, where t is the test input. The
proposed S-adder architecture is derived as follows. According to
the definition of the S-adder [31] the carries can be expressed as
the logical AND of the conventional carries and the inverted test
signal, that is, c�i ¼

�tci. Instead of modifying the gi terms the sum
bits are computed, following a methodology similar to that for the
S-adders based on Ling carries, as si ¼ ci�1di þ ci�1ðdi � �tÞ. Accord-
ing to this relation each si term can be implemented using a 2-to-1
multiplexer controlled by ci�1. Since the multiplexer is of almost
equal delay to an XOR gate and the signals di and di�t̄ are
computed in fewer logic levels than ci�1, the timing characteristics
of the adder are not changed by the proposed modification.

3.3. Calculation of the hardware overhead

The S-adder architecture proposed here, instead of modifying
the Gi terms, introduces the test line t in the last stage of the
adder, which computes the si bits. The additional hardware
required is a series of n 2-input AND gates, where n is the number
of bits of the accumulator–shifter. Since the Gi terms are not
modified and the introduced AND gates are not in the critical path,
no extra delay is imposed by the proposed architecture and the
derived S-adders operate at the same speed as their corresponding
ordinary adders.

The proposed S-adder architecture based on conventional
carries does not modify the gi terms. Since no extra delay is
imposed by the proposed computation of the sum bits, these
S-adders operate at the same speed as the original Ling adders.
4. Comparisons

In this section, the proposed scheme will be compared with the
techniques proposed in [5–8,16,30,31], in terms of hardware
overhead and time required to generate the entire sequence of SIC
pairs.
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For the comparisons, we shall assume that an n-bit register
(consisting of n flip-flops) exists at the inputs of the n-input CUT
for the case of [5–8,16], and we shall calculate the overhead
imposed on these flip-flops. For the case of the schemes proposed
in [30,31] and in this work, we shall assume the existence of the
accumulator whose inputs are driven by a barrel shifter.

Wang and Gupta [5] utilized a (2n+1)-bit shift register, an n-bit
LFSR and n 2-input XOR gates in order to generate the n-bit SIC
pairs within n�2n+1 clock cycles. Thereby, 2n+1 scan flip-flops
and n 2-input XOR gates are implemented.

In PEAT [6], an n-bit NFSR, an n-bit shift register and an n-bit
shift registers with flip capability are utilized to generate the SIC
pairs within (n+1)�2n clock cycles. To implement the technique
the NFSR and n scan flip-flops with flip capability are implemen-
ted. Furthermore, the n flip-flops of the existing register are
substituted by scan flip-flops.

Girard et al. [7] proposed an optimization of [5] that saves n

stages of the shift register substituting them with n 2-input AND
gates. The time required to generate the SIC pairs is the same as
in [6].

In [8] a different approach was presented that utilizes a (n�1)-
bit counter, an n-bit shift register and a series of n 2-input XOR
gates in order to generate the SIC pairs within (n+1/2)�2n clock
cycles. The hardware overhead of the technique is n flip-flops and
n 2-input XOR gates.

In [16], Das et al. presented an optimal solution to the problem
of generating SIC pairs, in the sense that the pairs are generated
within time equal to the theoretical minimum, i.e. n�2n+1.
However, the hardware overhead of [16] is rather high, thus the
value of the scheme lies mainly on its high theoretical signifi-
cance. The hardware overhead of the scheme is, according to [16],
3n+2 flip-flops, n XOR gates (2-input), (2n�1)OR gates (2-input),
(n+1) AND gates (2-input) and 1 NOT gate.

In [30] an accumulator-based generator was presented,
that requires the transformation of the adder to an S-adder; it
also requires the implementation of a counter whose inputs
drive the shift control inputs of the shifter; the time required
to generate the SIC pairs is (n+2)�2n. Two implementations
were presented, based on a ripple carry adder (RCA) and a CLA
adder, respectively. The ripple carry implementation forces
no overhead on the adder, while the implementation based
on a CLA adder affects the adder timing characteristics, since
the modification is performed on the critical path of the
module, hence it will not be taken into account in the
comparisons.

The scheme proposed in [31] utilizes an accumulator-based
architecture and generates the SIC pairs within (2n+1)�2n�1

¼

(n+1/2)�2n cycles. Two implementations were also proposed
there, based on a ripple carry adder and on a CLA adder. With a
reasoning similar to the one followed for [30], the CLA adder-
based implementation will not be taken into account in the
comparisons, since it affects the adder timing characteristics.

For the comparisons, the following are taken into account [40].
A 2-input NAND/NOR gate requires 4 MOS transistors; a 2-input
AND requires 6 transistors and a 2-input XOR gate can be
implemented using 6 transistors. The memory elements used
are considered to have set/reset capability. Thereby, the flip-flop
requires 26 transistors, the scan flip-flop requires 34 transistors
and the scan flip-flop with flip capability [5] requires 46
transistors. All techniques, except from the schemes proposed in
[30,31] and in this work, require that the n flip-flops at the inputs
of the CUT be transformed into scan flip-flops.

In Table 3 we present, for each one of the SIC-pair generation
techniques (first column) the time required to generate the SIC
pairs (in clock cycles, second column) the formulas used for the
calculation of the hardware overhead (third column) and the
hardware overhead (in transistors, fourth column).

In order to perform a quantitative comparison of the
techniques, we define the following metrics. Let SG can be any
one of the techniques proposed in [5–8,16,30,31] and the
proposed. Let hon(SG) denote the hardware overhead of SG and
tn(SG) denote the time required by SG to generate all n-bit SIC
pairs. Since the hardware overhead is of the order O(n), we define
the effective hardware overhead, e_hon(SG) as a metric of the
hardware overhead as follows:

e_honðSGÞ ¼
honðSGÞ

n

Similarly, since the time in clock cycles is of the order O(n�2n),
we define the effective time, e_tn(SG)

e_tnðSGÞ ¼
tnðSGÞ

n� 2n



Table 3
SIC pair generation techniques: Comparison technique.

Technique Time cycles�2n Hardware overhead

Modules Transistors

Peat [6] n+1 n� (DFF+NOR)+n�DFFscanwithflip+n� (DFFscan�DFF) 84�n

Wang [5] 2n (2n+1)�DFF+n�XOR+n� (DFFscan�DFF) 66�n+26

Girard [7] 2n (n+1)�DFF+n�AND+n�XOR+n� (DFFscan�DFF) 42�n

[8] n+1/2 n�DFF+n�XOR+n� (DFFscan�DFF) 40�n

[16] n (2n+2)�DFF+n�XOR +(2n�1)�OR2+(n+1)�AND2+NOT 76�n+52

[30] (Ripple Carry Adder) 2n+2 n�AND+2�DFF+(dlog2 ne+2)�DFF+AND+OR 12�n+65

[31] (Ripple Carry Adder) n+1/2 n�AND+(dlog2ne+2)�DFF+control 6�n+36�dlog2ne+86

Proposed scheme (Ling Adders) n+1/2 1�AND+n� (MUX2�to�1)+(dlog2ne+2)�DFF+control 4�n+36�dlog2ne+30
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We integrate the above two metrics into the effectiveness En(SG)

EnðSGÞ ¼
1

e_honðSGÞ � e_tnðSGÞ
¼

1

ðhonðSGÞ=nÞ � ðtnðSGÞ=n� 2n
Þ

¼
n2 � 2n

ðhonðSGÞÞ � ðtnðSGÞÞ

Since it is desirable that both hon(SG) and tn(SG) be as low as
possible, the higher the value of En(SG), the more effective is SG. In
Fig. 7, En(SG) is presented for each one of the techniques for
various values of the inputs of the CUT. From Fig. 7 it is derived
that the proposed implementation is the most effective of the
techniques that have been presented in the literature for the
generation of SIC pairs with respect to the hardware overhead and
the time required to complete the test.
5. Conclusions

A novel implementation of a SIC two-pattern generator
based on Ling adders has been proposed. Ling adders are typically
used in current systems, since they have been proved to be
faster than competitive architectures. The proposed scheme
generates the SIC pairs within (n+1/2)�2n cycles without altering
the timing characteristics of the adder. Comparisons with the
techniques that have been proposed in the literature for the
generation of Sic pairs revealed that the proposed implementation
is more effective in terms of hardware overhead and time required
to generate the Sic pairs when accumulators and barrel shifters
are available.
References

[1] M. Abramovici, M. Breuer, A. Freidman, Digital Systems Testing and Testable
Design, Computer Science Press, 1990.

[2] R.L. Wadsack, Fault Modeling and logic simulation of CMOS and MOS
integrated circuits, Bell System Technical Journal 57 (5) (1987) 1449–1474
(May–June).

[3] M.H. Woods, MOS VLSI reliability and yield trends, Proceedings of the IEEE 74
(12) (1986) 1715–1729 (December).

[4] G.L. Smith, Model for delay faults based upon paths, Proceedings of the IEEE
International Test Conference (1985) 309–314.

[5] W. Wang, S. Gupta, Weighted random robust path delay testing of
synthesized multilevel circuits, Proceedings of the 12th IEEE VLSI Test
Symposium (1994) 291–297.

[6] G. Craig, C. Kime, Pseudo-exhaustive adjacency testing: a bist approach for
stuck-open faults, Proceedings of the IEEE International Test Conference
(1985) 126–137.

[7] P. Girard, C. Landrault, V. Moreda, S. Pravossoudovitch, An Optimized BIST Test
Pattern Generator for Delay Testing, In: Proceedings of the 15th IEEE VLSI Test
Symposium. 1997, pp. 94–100.

[8] I. Voyiatzis, A. Paschalis, D. Nikolos, C. Halatsis, An efficient built-in self test
method for robust path delay fault testing, Journal of Electronic Testing:
Theory and Applications (1996) 219–222 (June).

[9] P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, Comparison between
random and pseudorandom generation for BIST of delay, stuck-at and bridging
faults, Proceedings of the 6th IEEE On-Line Testing Workshop (2000) 121–126.

[10] R. David, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, On using
efficient test sequences for BIST, Proceedings of the 20th VLSI Test
Symposium (2002) 145–150.

[11] A. Virazel, R. David, P. Girard, C. Landrault, S. Pravossoudovitch, Delay fault
testing: choosing between random SIC and random MIC sequences, Proceed-
ings of the IEEE European Test Workshop (2000) 9–14.

[12] H. Rahaman, D. Das, B. Bhattacharya, Transition count based BIST for
detecting multiple stuck-open faults in CMOS circuits, Proceedings of the
2nd IEEE Asia Pacific Conference on ASICs (2000) 307–310.

[13] S. Crepaux-Motte, M. Jacomino, R. David, An algebraic method for delay
testing, Proceedings of the 14th VLSI Test Symposium (1996) 308–315.



I. Voyiatzis, C. Efstathiou / Microelectronics Journal 41 (2010) 487–493 493

Downloaded from http://iranpaper.ir
[14] M. Gharaybeh, M. Bushnell, V. Agrawal, Parallel concurrent path delay fault
simulation using single-input change patterns, Proceedings of the 9th IEEE
International Conference on VLSI Design (1996) 426–431.

[15] M. Gharaybeh, M. Bushnell, V. Agrawal, A parallel-vector concurrent fault
simulator and generation of single-input-change tests for path-delay faults,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 17 (9) (1998) 673–676 (September).

[16] D. Das, I. Chaudhuri, B. Bhattacharya, Design of an optimal test pattern
generator for built-in self testing of path delay faults, Proceedings of the 12th
International Conference on VLSI Design (1998) 205–210.

[17] S. Lu, M. Lu, Testing iterative logic arrays for delay faults with a constant
number of patterns, Proceedings of the 4th International Symposium on
Electronic Materials and Packaging (2002) 492–498.

[18] F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of sequential
benchmark circuits, Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS) (1989) 1229–1234.

[19] E. Gizdarski, Detection of delay faults in memory address decoders, Journal of
Electronic Testing: Theory and Applications 16 (4) (2000) 381–387 (August).

[20] E. Blokken, H. De Keulenaer, F. Catthoor, H.J. De Man, A flexible module library
for custom DSP applications in a multiprocessor environment, IEEE Journal of
Solid-State Circuits 25 (3) (1990) 720–729 (June).

[21] R.J. Higgins, Digital Signal Processing in VLSI, Prentice Hall, Englewood Cliffs,
NJ, 1990.

[22] J. Rajski, J. Tyszer, Accumulator-based compaction of test responses, IEEE
Transactions on Computers 42 (6) (1993) 643–650 (June).

[23] J. Rajski, J. Tyszer, Test responses compaction in accumulators with rotate
carry adders, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 12 (4) (1993) 531–539 (April).

[24] A.P. Stroele, Test response compaction using arithmetic functions, Proc. of the
14th VLSI Test Symposium (1996) 380–386.

[25] J. Rasksi, J. Tyszer, Arithmetic Built-In Self Test for Embedded Systems,
Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.

[26] S. Gupta, J. Rajski, J. Tyszer, Arithmetic additive generators of pseudo-
exhaustive test patterns, IEEE Transactions on Computers 45 (8) (1996)
939–949 (August).
[27] A.P. Stroele, BIST pattern generators using addition and subtraction opera-
tions, Journal of Electronic Testing:Theory and Applications 11 (1) (1997)
69–80 (August).

[28] K. Radecka, J. Rajski, J. Tyszer, Arithmetic built-in self test for DSP cores, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
16 (11) (1997) 1358–1369 (November).

[29] I. Voyiatzis, A. Paschalis, D. Nikolos, C. Halatsis, Accumulator-based BIST
approach for stuck-open and delay testing, Proceedings of the European
Design and Test Conference (1995) 431–435.

[30] I. Voyiatzis, N. Kranitis, D. Gizopoulos, A. Paschalis, C. Halatsis, An
accumulator-based built-in self-test generator for robustly detectable
sequential fault testing, IEE Proceedings, Computers and Digital Techniques
151 (6) (2004) 466–472 (November).

[31] I Voyiatzis, D. Gizopoulos, A Paschalis, Accumulator-based test generation for
robust sequential fault testing in DSP cores in near-optimal time, IEEE
Transactions on VLSI Systems 13 (9) (2005) 1079–1086 (September).

[32] I. Koren, Computer Arithmetic Algorithms, A.K. Peters Ltd., 2002.
[33] B. Parhami, Computer Arithmetic—Algorithms and Hardware Designs, Oxford

University. Press, 2000.
[34] M. Ergecovac, T. Lang, Digital Arithmetic, Morgan-Kauffman, 2003.
[35] H. Ling, High-speed binary adder, IBM Journal of Research and Development

25 (3) (1981) 156–166 (May).
[36] C. Efstathiou, H.T. Vergos, D. Nikolos, Ling adders in standard CMOS

technologies, Proceedings of the IEEE International Conference. Electronics,
Circuits, and Systems (ICECS) (2002) 485–488 (September).

[37] G. Dimitrakopoulos, D. Nikolos, High-speed parallel-prefix VLSI ling adders,
IEEE Transactions on Computers 54 (2) (2005) 225–231 (February).

[38] S. Vassiliadis, Recursive equations for hardwired binary adders, International
Journal of Electronics 67 (2) (1989) 201–213 (August).

[39] R.E. Ladner, M.J. Fisher, Parallel prefix computation, Journal of ACM 27 (4)
(1980) 831–838 (October).

[40] N. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, Addison Wesley Company, 1985.


	An efficient architecture for accumulator-based test generation of SIC pairs
	Introduction
	Algorithm and BIST architecture
	Hardware implementation
	S-adder architecture based on Ling carries
	S-adder architectures based on conventional carries
	Calculation of the hardware overhead

	Comparisons
	Conclusions
	References




