
1022 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

Detection of PUE Attacks in Cognitive Radio
Networks Based on Signal Activity Pattern

ChunSheng Xin, Senior Member, IEEE and Min Song, Senior Member, IEEE

Abstract—Promising to significantly improve spectrum utilization, cognitive radio networks (CRNs) have attracted a great attention in
the literature. Nevertheless, a new security threat known as the primary user emulation (PUE) attack raises a great challenge to
CRNs. The PUE attack is unique to CRNs and can cause severe denial of service (DoS) to CRNs. In this paper, we propose a novel
PUE detection system, termed Signal activity Pattern Acquisition and Reconstruction System. Different from current solutions of PUE
detection, the proposed system does not need any a priori knowledge of primary users (PUs), and has no limitation on the type of
PUs that are applicable. It acquires the activity pattern of a signal through spectrum sensing, such as the ON and OFF periods of the
signal. Then it reconstructs the observed signal activity pattern through a reconstruction model. By examining the reconstruction
error, the proposed system can smartly distinguish a signal activity pattern of a PU from a signal activity pattern of an attacker.
Numerical results show that the proposed system has excellent performance in detecting PUE attacks.

Index Terms—Cognitive radio network, primary user emulation attack, primary user emulation detection

1 INTRODUCTION

MANY studies have indicated that a significant amount
of licensed spectrum is considerably under-utilized

in both temporal and spatial domains. Such spectrum holes
or white spaces offer a great opportunity for wireless com-
munication. As such cognitive radio networks (CRNs) have
been proposed to exploit this opportunity. In CRNs, unli-
censed or secondary users (SUs) dynamically search for idle
licensed spectrum bands or channels through spectrum sens-
ing, and access them for communications. On the other
hand, to ensure the access privilege of licensed or primary
users (PUs), the SUs are required not to generate harmful
interference to PUs. In other words, once a PU signal is
detected on a channel, SUs have to give up channel access.
However, such a requirement raises a security threat to
CRNs, known as the primary user emulation (PUE) attack.
Specifically, an attacker, which may be a malicious user or
a selfish SU, can transmit a PU signal using its cognitive
radio. The benign SUs, which cannot distinguish that the
PU signal is from a PU or an attacker, have to evacuate from
the channel. The PUE attack causes denial of service (DoS)
to the CRN and can result in severe performance degra-
dation, due to service disruption at the MAC and higher
layers. Hence, the PUE attack greatly limits the spectrum
access opportunity of SUs.

• C. Xin is with the Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, VA 23529 USA.
E-mail: cxin@odu.edu.

• M. Song is with the Department of Electrical Engineering and Computer
Science, University of Toledo, Toledo, OH 43606 USA.
E-mail: min.song@utoledo.edu.

Manuscript received 26 Dec. 2012; revised 3 Aug. 2013; accepted 22 Aug.
2013. Date of publication 12 Sep. 2013; date of current version 15 May 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TMC.2013.121

While CRNs are also vulnerable to other security attacks
that are common to wireless networks, the PUE attack is
unique to CRNs and is a fundamental threat to CRNs. As
such, it has attracted many research efforts. The existing
studies on PUE attacks can be classified into two cate-
gories, detection or defense. The strategy for defense based
schemes [1] is similar to the one for anti-jamming. The SU
does not care if a busy channel is due to a signal from a
PU or an attacker. It simply senses the channels, and picks
an idle channel for communications by some game theo-
retic strategies that maximize the chance to ‘escape’ from
the attackers. Nevertheless, this approach is not effective
for PUE attacks launched by selfish SUs, which have the
internal knowledge of an CRN, and also not effective for
Sybil PUE attacks where one malicious user launches many
attacks on different channels simultaneously [2].

The detection based schemes aim to verify if the trans-
mitter of a PU signal is a PU or an attacker [3]–[5]. There are
primarily two approaches, location verification or hardware
fingerprint verification. The location verification approach [3],
[5] assumes that the PUs are TV towers with locations
known to SUs. The main goal is to develop algorithms
to estimate the location of a PU signal transmitter, e.g.,
through a wireless sensor network [5] or a technique called
location belief propagation [3], and then look up the database
of TV tower locations, to find whether the transmitter is an
attacker (if the estimated location is not in the database).
The second approach for PUE detection is to use the radio
hardware fingerprint of the transmitter. The authors in [4]
presented an interesting work that extracts the transmitter
fingerprint from a signal, namely the phase shift differ-
ence, carrier frequency deviation from the ideal signal, etc.,
which are unique for a given transmitter. To detect PUE
attacks, a received signal is processed by two modules.
The first module extracts the fingerprint from the signal,

1536-1233 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1023

and the second module extracts the ID of the PU from
the signal, e.g., the MAC address. The paper assumed that
the SU has some way to check if a PU ID is valid, e.g.,
through an ID database of PUs, and hence an attacker has
to use a previously overheard PU ID. Hence, if there is
another signal (previously received) that has the same PU
ID, but a different fingerprint, then a PUE attack is alarmed.
There are also PUE detection studies that target a particular
type of PUs. For instance, the authors in [6] proposed an
interesting method that exploits the correlation between RF
signals and acoustic information to detect the PUE attacker
emulating a wireless microphone.

While the existing studies on PUE detection are promis-
ing, the problem is not completely solved. The current
solutions need certain critical a priori knowledge of PUs.
Specifically, the location verification approach assumes that
the locations of PUs are known to the SU, and the finger-
print approach assumes that the IDs of PUs are known to
the SU (as otherwise an attacker can simply use an arbi-
trary ID different from any previously overheard PU ID,
so that the detection algorithm would not find two finger-
prints with the same ID). Furthermore, the current solutions
can be applied to only certain type of PUs. The location ver-
ification approach requires that PUs be static, such as TV
towers. The fingerprint approach requires that the PU ID be
included in the signal and can be extracted by SUs, which
is often difficult, e.g., for analog PUs.

In this paper, we propose a novel PUE detection system,
termed Signal activity Pattern Acquisition and Reconstruction
System (SPARS). In the ensuing discussion, if not otherwise
noted, an attacker refers to a PUE attacker, a signal refers to
a PU signal, and a transmitter refers to a PU signal trans-
mitter, which may be a PU or an attacker. We define a
signal activity pattern (SAP) of a transmitter as a series of ON
and/or OFF periods of the transmitter along the time. An
ON period refers to the duration of a busy period that the
transmitter is transmitting and the SUs must be refrained
from communications. An OFF period refers to the dura-
tion of an idle period between two adjacent ON periods.
Different from current solutions on PUE detection, SPARS
does not have limitation on the type of PUs, i.e., SPARS can
be applicable to all types of PUs. Furthermore, SPARS does
not need any a priori knowledge of PUs. It acquires the SAP
of a transmitter through spectrum sensing, and compares
it with SAPs of PUs through a SAP reconstruction model. If
the observed SAP is not ‘like’ the SAPs of PUs, which is
measured by the reconstruction error, then the transmitter
is an attacker.

Our motivation is that while an attacker can cheat on
the signal itself, it cannot cheat on its objective, i.e., caus-
ing DoS to the CRN. An attacker can transmit a PU signal,
but its SAP is expected to be different from the ones of PUs.
This is because the objective of the attacker is to occupy the
channel to cause DoS to the CRN. Therefore, the attacker
aims to significantly decrease the channel availability to the
CRN, e.g., by increasing the ON periods and/or decreas-
ing the OFF periods. Thus the attacker creates a different
SAP from PUs. On the other hand, if an attacker also cheats
on its SAP, i.e., manipulates its spectrum occupation to be
similar to the one of PUs, we argue that such a ‘mild’ PUE
attack is tolerable by the CRN, and hence defeats the DoS

objective of the attacker. This is because a CRN usually
selects the operation channels with low spectrum occupa-
tion by PUs. An attacker with a similarly low spectrum
occupation is not a serious threat to the CRN, as the CRN
has been designed with the mild disruption (from PUs) in
mind, and hence is tolerable to a PUE attack that causes a
mild disruption. Therefore, by targeting the objective of the
attacker, SPARS is effective to detect PUE attack.

We use a Bayesian method and sparse modeling to
develop a good SAP reconstruction model to compare a
candidate SAP with the SAPs of PUs. The sparse model-
ing has been widely used in the literature to solve various
problems in science and engineering fields [7]–[14], due
to its good performance of data/signal reconstruction. In
[7], the authors studied the dictionary structure for sparse
representation of multi-dimension data and presented an
efficient algorithm to learn the dictionary. The author in
[8] showed that for most sparse approximation problems,
the solution can be obtained efficiently. The authors in
[9] used sparse modeling for face recognition. The prob-
lem of face recognition is formulated as a classification
problem among multiple classes of objects and the objects
are constructed with sparse representation. In [10], the
authors presented a sparse coding model to obtain high-
dimensional sparse representations of sensory data. The
authors in [11] applied sparse modeling for unusual event
detection in videos, through online reconstruction of an
event using a dynamically learned dictionary. In [12], the
authors used sparse modeling for speech recognition. The
authors in [13] studied sparse modeling in computer vision
and image processing, and presented the neurobiological
implication of sparse modeling. The authors in [14] pre-
sented an efficient algorithm to solve the sparse coding or
the sparse optimization problem.

Before we get into the details of SPARS, we summarize
our main contributions as follows.

• We have designed a PUE detection system, SPARS,
which does not need a priori PU knowledge such as
the locations or IDs of PUs, and has no limitation on
the type of applicable PUs such as static PUs or PUs
with extractable IDs.

• We have developed a SAP reconstruction model
through a Bayesian method, to train SPARS and
reconstruct an observed SAP. We have incorporated
the sparsity and other principles in the model design,
to achieve excellent performance for SAP reconstruc-
tion.

• We directly target the objective of the attacker which
the attacker cannot hide, and utilize a technique
called tolerance interval to test the normality of the
reconstruction error and accordingly detect the PUE
attack.

The remainder of the paper is organized as follows.
Section 2 describes the network model. Section 3 describes
the architecture and the main idea. The SAP reconstruction
model is presented in Section 4. Sections 5 and 6 describe
the system training and the PUE detection. Section 7
develops the Chernoff bounds for the performance of
SPARS. Section 8 introduces a statistics based PUE detec-
tion scheme, which is studied comparatively with SPARS.

1024 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

Section 9 presents performance evaluation and Section 10
concludes the paper.

2 NETWORK MODEL AND ASSUMPTIONS

There are two types of attackers: 1) a selfish SU that wants
to use a channel exclusively and thus launches a PUE attack
to drive benign SUs out of the channel; and 2) a malicious
user that simply wants to cause DoS to the CRN. While
there is a slight difference, we do not differentiate them for
the purpose of detection, since their common objective is
to cause DoS.

We adopt a fingerprint technique such as the one in [4] to
track the transmitter of a signal, and hence SPARS is appli-
cable to both static and mobile PUs. Specifically, each SU
independently carries out spectrum sensing on every chan-
nel. For each received signal, an SU extracts its fingerprint,
and records the ON and OFF periods of the signal, which
are stored in a database together with the fingerprint of the
signal. The fingerprint essentially serves as the transmitter
ID. Hence with a little abuse of the language, we say that
each SU has recorded the ON and OFF periods of every
PU signal transmitter (identified by the fingerprint). The
spectrum sensing can be carried out either continuously
or periodically in the time domain. In the former case, an
ON or OFF period is a continuous random variable. In the
latter case, let Ts denote the duration of the spectrum sens-
ing cycle. An ON or OFF period is then a discrete random
variable, represented as the number of time unit Ts. SPARS
can be run periodically or on-demand as necessary. When
SPARS is invoked to detect if a transmitter is an attacker,
the last k ON or OFF periods of this transmitter (identified
by the fingerprint) are used to compose the SAP to be fed
to SPARS.

In most studies of PUE detection [3]–[5], only one PU
transmitter is assumed to be transmitting at any time. While
this assumption is usually true, we introduce a technique
that can handle the scenario when multiple transmitters
send PU signals simultaneously, within the sensing range of
an SU. The directional spectrum sensing technique in [15] can
be used to distinguish the transmitters that are simultane-
ously transmitting signals. This technique allows an SU to
select a given spatial direction and listen to the signal only
at that direction. Here we assume that the transmitters at
the same direction of an SU are not transmitting simulta-
neously, as otherwise they would likely be interfering each
other. Combining the directional spectrum sensing and the
fingerprint technique, we can address both mobile PUs and
simultaneously transmitting PUs.

At last, in this paper, we assume that there is only one
class of PUs that have similar SAP features, i.e., with sim-
ilar distributions for the ON/OFF periods. Nevertheless,
the proposed PUE detection approach can be extended
to address the scenario with multiple classes of PUs that
have different SAP features, which will be studied in our
future work.

3 ARCHITECTURE OF SPARS
The main idea of SPARS is to use a set of n vectors
B1, . . . , Bn ∈ R

k, which are called bases in this paper, to
reconstruct a SAP. Specifically, let a column vector Y ∈ R

k

Fig. 1. SPARS architecture.

denote a SAP. Our objective is to reconstruct Y using bases
B1, . . . , Bn as

Y =
n∑

i=1

BiWi, (1)

where Wi (1 ≤ i ≤ n) is the weight associated with base Bi
to compose Y.

The bases B1, . . . , Bn are carefully learned through a
training process to capture the essential features of the
SAPs of PUs. For the reconstruction model in (1) to be a
good model, it is typically not a determined system, but
an overdetermined or underdetermined system. Hence the
reconstruction of a SAP results in a reconstruction error,
which is utilized by SPARS to detect PUE attack. This is
because the SAPs of PUs can be reconstructed by (1) very
well, i.e., with a small reconstruction error, as the bases
have captured the essential features of such SAPs. On the
other hand, as discussed in Section 1, the SAPs of attack-
ers would have different features from the SAPs of PUs,
since the attackers aim to cause severe DoS to the CRN.
Therefore, if we use the bases to reconstruct a SAP of an
attacker, it would turn out that the reconstruction cannot be
performed well, i.e., we would have a large reconstruction
error. Thus, from the reconstruction error, we can tell if the
transmitter of SAP Y is an attacker or a PU.

Fig. 1 illustrates the architecture of SPARS. It consists
of three modules: system training, SAP reconstruction, and
PUE detection. In the initial CRN setup phase, an SU pas-
sively performs spectrum sensing to collect a set of SAPs
from PUs for the purpose of training SPARS. This set of
SAPs is called the training data set. The system training mod-
ule learns the bases B1, . . . , Bn from the training data set.
After learning the bases, the system training module also
computes the reconstruction errors for the training data set,
η1, . . . , ηm, called the sample errors in the figure. This mod-
ule can be re-run periodically to update the training data
set and the bases.

After SPARS is trained, then an SU can use it for PUE
detection. Suppose the SU wants to find if there is an
attacker in a candidate channel. It first collects a SAP from
this channel. Then the SU uses the SAP reconstruction mod-
ule of SPARS to reconstruct this SAP using the learned
bases B1, . . . , Bn, and compute the reconstruction error ζ

for this SAP. Next, the PUE detection module is used to
check if ζ falls in a tolerance interval of the sample errors
η1, . . . , ηm, which have been obtained in the initial system

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1025

training. If it does not fall in the tolerance interval, then
this SAP is treated from an attacker, and the transmitter of
this SAP is alarmed as an attacker.

Both the SAP reconstruction and the system training rely
on a good SAP reconstruction model. The system training
needs the model to select the best bases B1, . . . , Bn for the
purpose of SAP reconstruction in the future. On the other
hand, the SAP reconstruction module needs the model to
select best weights W1, . . . , Wn to minimize the reconstruc-
tion error. Following the work in [7]–[9], [13], we develop
an SAP reconstruction model through a Bayesian method
in the next section.

4 SAP RECONSTRUCTION MODEL

A determined model in (1) has poor performance for recon-
structing arbitrary input data (SAP in this paper), because
it targets only the training data during system training. In
other words, a determined model captures all features of
the training data, some of which are actually not desirable
when reconstructing the future input data, as they repre-
sent deviations of training data from a typical input data.
Therefore, it is desirable to design an overdetermined or
underdetermined model in practice. In this paper, we adopt
an underdetermined model, which is robust to noise and
other interference of the data. An underdetermined model
also has other desirable features such as greater flexibil-
ity to reconstruct the input data. With an underdetermined
model, we do not get an exact representation of Y by
B1, . . . , Bn and W1, . . . , Wn. Instead, we get an approximate
representation of Y with an error term E = [E1, . . . , Ek]T. In
other words, as an underdetermined model, (1) becomes

Y = E +
n∑

i=1

BiWi, (2)

where the number of bases n is larger than the number of
elements k in Y.

Furthermore, to prevent overfitting, a sparse model that
uses only a small number of bases to reconstruct the input
data is preferred over a complex model that uses a major-
ity of bases to reconstruct the input data. This is because
although an overfitted complex model is usually better
to represent the training data (with a smaller error), it is
vulnerable to small fluctuations of future input data, and
hence has poor reconstruction performance [7]. In contrast,
a sparse model captures only the essential features of the
data and is not affected by small fluctuations of the input,
which are typically caused by features of minor importance.
Therefore, a sparsity requirement is imposed to the model so
that only a small number of bases are used to represent
Y. Sparse modeling has been widely used in the litera-
ture to solve a wide range of problems, due to its good
performance of data/signal reconstruction and preventing
overfitting, see [7]–[11].

For the ease of description, sometimes we use a matrix
B = [B1, . . . , Bn] to denote the bases and a column vector
W = [W1, . . . , Wn]T to denote the weight. To avoid con-
fusion, we briefly describe the style of notations in this
paper. We use a bold symbol to denote a matrix, e.g., B,
or a column vector, e.g., W. For a matrix B, we use Bj to
represent the jth column vector, and Bij to represent the

TABLE 1
Notations for Section 4

element on row i and column j of B. For a vector W,
we use Wj to denote the jth element. We list the nota-
tions for this section in Table 1. With this notation style,
we rewrite (2) to

Y = E + BW. (3)

The objective of the model in (3) is to reconstruct an
arbitrary SAP Y, using a fixed set of bases B and a variable
weight W. SAP Y can be viewed as a random variable.
Similarly, W is also a random variable. The bases B are
currently unknown and our objective is to derive B for
the model, to minimize the reconstruction error. Let p(Y)

denote the probability distribution of Y. In order to repre-
sent Y using (3), the probability distribution of BW needs
to match p(Y) well, so that the error term E is minimized.
The term BW is the representation of Y by bases B, and
hence its probability distribution is denoted as p(Y | B). A
good matching of p(Y) and p(Y | B) would result in a set
of bases B that capture the essential features of Y. Given
the prior probability distribution of weight W, denoted as
p(W), and the probability distribution that a SAP Y occurs
for a given weight W (and bases B), denoted as p(Y | W, B),
the probability distribution p(Y | B) can be obtained as
follows.

p(Y | B) =
∫

p(W)p(Y | W, B)dW. (4)

In a Bayesian context, the probability distribution of Y
is our belief of the uncertainty of Y. Given weight W and
bases B, the uncertainty of Y is reduced to the uncertainty of
the error E. As a general practice, the element Ei of the error
term E can be assumed to follow a Gaussian distribution
with 0 mean and variance σ 2. Therefore, p(Y | W, B), the

1026 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

probability distribution of SAP Y given weight W and bases
B, is as follows

p(Y | W, B) = 1

(2π)
k
2 σ k

e− ‖Y−BW‖2
2

2σ2 , (5)

where k is the number of elements of vector Y, and ‖•‖2 is
the �2 norm, with ‖Y‖2 =

√
Y2

1 + · · · + Y2
k .

When representing SAP Y in (3), it is desirable to make
the weighted terms B1W1, . . . , BnWn statistically indepen-
dent. Furthermore, as discussed earlier, the model should
have a sparse structure, i.e., only a small number of
B1, . . . , Bn are needed to reconstruct Y, or equivalently, only
a small number of elements of W are non-zeros. These
two requirements are critical to build a good reconstruction
model, and can be imposed through applying a suitable
prior probability distribution of weight W, p(W), to the
model. The requirement of statistical independence can be
imposed by selecting a prior probability distribution of W
such that it is a product of the probability distributions of
the elements W1, . . . , Wn. That is, p(W) is given as

p(W) =
n∏

i=1

p(Wi), (6)

where p(Wi) denotes the probability distribution of Wi, the
ith element of W.

The requirement of sparse representation of Y can be
achieved by assigning each element of W a prior probabil-
ity distribution that is peaked around 0. Then the random
variable Wi (1 ≤ i ≤ n) has a large probability to be 0
(or close to 0), and hence the average number of non-
zero elements among W1, . . . , Wn is small, which meets the
sparsity requirement. In this paper, we select the Laplace
distribution with 0 mean for Wi. Hence p(Wi) is given as

p(Wi) = 1
2b

e−|Wi|
b , (7)

where b is the shape parameter, and |Wi| is the absolute
value of Wi. With the Laplace distribution, p(Wi) is peaked
around 0. The parameter b is to control the concentration
of Wi around the mean 0. The smaller the b, the more
concentrated the Wi is, and hence the more sparse the
model is.

Combining (4)–(7), we obtain p(Y | B), the probability
distribution of Y represented as the bases. To measure how
close this probability distribution is to the real probability
distribution of Y, p(Y), we can use a statistical diver-
gence function. We adopt the Kullback–Leibler divergence
function to measure the difference of p(Y) from p(Y | B),
denoted as D, which is given as

D =
∫

p(Y) log
p(Y)

p(Y | B)
dY

=
∫

p(Y)
(
log p(Y) − log p(Y | B)

)
dY. (8)

A smaller value of D means a smaller difference of p(Y)

from p(Y | B). If D = 0, then p(Y) = p(Y | B).
To accurately reconstruct Y using the bases B by (3), we

need to select B to minimize D. Since p(Y) is not affected by

the selection of B, the objective is to maximize p(Y | B) in
(8). From (4), the optimal B, denoted as B∗, is obtained as

B∗ = arg max
B

p(Y | B)

= arg max
B

∫
p(W)p(Y | W, B)dW. (9)

Since we have selected the Laplace distribution for Wi,
then p(W) is peaked around a point in the R

n space. On the
other hand, p(Y | W, B) is a Gaussian distribution, which is
also peaked around a certain point in R

k space. Therefore,
p(W)p(Y | W, B) is expected to peak around a point in the
W space. With this property, we can approximately maxi-
mize the integral

∫
p(W)p(Y | W, B)dW by maximizing the

product p(W)p(Y | W, B). Therefore, (9) is approximately
equivalent to the following optimization.

B∗ ≈ arg max
B

(
max

W
p(W)p(Y | W, B)

)
. (10)

For the optimization in (10), we need to add a con-
straint for the norm of B, to prevent W = [0, . . . , 0]n. This
is because if there exist a set of bases C and a weight
U = [U1, . . . , Un]T as the solution for problem (10), then
there always exist another weight U′ = U

s and bases
C′ = sC, where s 	 max{|U1| , . . . , |Un|}, as the solution
since C′U′ = CU. However, the latter solution has a weight
U′ = [0, . . . , 0]n, which would make the SAP reconstruction
model useless. Therefore, to prevent this situation, we need
to add a constraint c for the Frobenius norm of B as follows

‖B‖2
F =

n∑

i=1

‖Bi‖2
2 =

n∑

i=1

k∑

j=1

B2
ji ≤ c. (11)

To maximize p(W)p(Y | W, B) in (10), we note that

p(W)p(Y | W, B)

=
[

1

(2π)
k
2 σ k

e− ‖Y−BW‖2
2

2σ2

][n∏

i=1

1
2b

e−|Wi|
b

]

= �e− ‖Y−BW‖2
2

2σ2 −∑n
i=1

|Wi|
b

= �e
− 1

2σ2

(
‖Y−BW‖2

2+ 2σ2
b

∑n
i=1|Wi|

)

= �e
− 1

2σ2

(
‖Y−BW‖2

2+λ
∑n

i=1|Wi|
)

, (12)

where

� = 1

(2π)
k
2 σ k (2b)n

, and λ = 2σ 2

b
.

From (12), we see that to maximize p(W)p(Y | W, B),
it is equivalent to minimize the exponent ‖Y − BW‖2

2 +
λ

∑n
i=1 |Wi| since � is a constant. Therefore, optimizing the

bases in (10) is transformed to

B∗ = arg min
B

(
min

W
‖Y − BW‖2

2 + λ

n∑

i=1

|Wi|
)

,

subject to constraint (11). Finally, the reconstruction of
SAP Y in (3) is transformed into solving the following
optimization problem.

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1027

min
B,W

‖Y − BW‖2
2 + λ

n∑

i=1

|Wi| (13)

subject to ‖B‖2
F ≤ c. (14)

In the literature, an optimization problem with the form
in (13), i.e., a least square term and an �1 norm regulariza-
tion term, is called a sparse coding problem [9], [13], [14],
as the �1 norm term λ ‖W‖1 = λ

∑n
i=1 |Wi| has an effect to

enforce a sparse structure of W, i.e., a majority of elements
of W are zeros. Problem (13) can be used to obtain an opti-
mal set of bases B∗ as well as reconstruct a SAP given the
bases. To obtain B∗, we will need to feed a set of train-
ing SAPs. We discuss this problem in the next section. To
reconstruct a SAP Y given a set of bases B∗, we remove the
constraint (14) and let B = B∗ in (13) to minimize over W
only. We discuss it in Section 6.

5 SPARS TRAINING

To train SPARS to obtain an optimal set of bases B∗, we
need a set of training data, i.e., a set of SAPs. We can
collect the training data in the initial setup phase of the
CRN. At the beginning of CRN setup, each SU passively
performs spectrum sensing on each channel to collect the
SAP information (ON and OFF periods) of every PU signal
transmitter. In this initial sensing phase, the transmitters
of PU signal are expected to be (genuine) PUs. This is
because in this phase, the selfish SUs would not launch
PUE attack, since data transmission is not started yet,
and they do not get any benefit for occupying a chan-
nel. Furthermore, a malicious attacker would not be aware
of a CRN being set up in the field, since the SUs are not
transmitting. (We assume that there is no internal malicious
SUs inside the CRN in the initial setup phase.) Hence a
malicious attacker would not launch a PUE attack either,
since it thinks that there is no CRN yet, and launching
a PUE attack simply wastes its energy. In the case that
a malicious attacker does not care if a CRN is being set
up and sends signals on some arbitrarily selected chan-
nels anyhow, a CRN would usually avoid such channels
and selects the channels that are lightly utilized as the
operation channels. Hence, the PUE attack in the initial
CRN setup phase is relieved by the selection of opera-
tion channels. Therefore, we assume that during the initial
sensing phase of a CRN setup, there is no PUE attack, so
that the training data set consists of SAPs of PUs. After
the CRN is set up, the training data set can be continu-
ously updated by randomly incorporating the SAPs which
are recognized as from PUs by SPARS. The bases can be
updated accordingly to accommodate the dynamic changes
of SAP features.

We list the notations for this and next sections in Table 2. Let
m denote the number of SAPs in the training data set, and let
X1, . . . , Xm denote these SAPs, where Xi ∈ R

k. Let the column
vector Si ∈ R

n (1 ≤ i ≤ m) denote a weight to be used to
reconstruct training data Xi. We let matrix X = [X1, . . . , Xm]
denote the training data set, and let S = [S1, . . . , Sm] denote
the weight matrix. Given the training data set X, the learning
of bases is a process to find B and S such that

X ≈ BS. (15)

TABLE 2
Notations for Sections 5 and 6

Based on the analysis in the preceding section,
Problem (15) can be transformed into the following problem1.

min
B,S

‖X − BS‖2
F + λ

m∑

i=1

‖Si‖1 (16)

subject to ‖B‖2
F ≤ c, (17)

where ‖•‖F is the Frobenius norm of a matrix, and ‖Si‖1 =∑n
j=1 Sji is the �1 norm of vector Si.
Problem (16) is an optimization problem over B and S.

It is a convex optimization problem if one of the variables
(B or S) is fixed. Therefore, (16) can be solved by iteratively
optimizing the objective over B or S while fixing the other.
There are efficient algorithms to solve the sparse coding
problem. In this paper, we use the feature-sign and Lagrange
dual algorithms in [14] to solve (16). After it is solved, we
obtain a set of optimal bases, denoted as B∗.

Next, we discuss the error when using the learned bases
B∗ to reconstruct the training data Xi. Let Ẽvi denote the
error to reconstruct the vth element of Xi. Ẽvi is given as

Ẽvi =
(

Xvi −
∑n

j=1
B∗

vjSji

)
. (18)

Let ηi denote the sum of square of errors (SSE) to reconstruct
Xi. Then ηi is given as

ηi = ∥∥Xi − B∗Si
∥∥2

2 =
k∑

v=1

Ẽ2
vi. (19)

The reconstruction error Ẽvi can be seen as a random
variable. Therefore, if k is reasonably large, by the central
limit theorem,ηi is an approximate Gaussian random variable
with some unknown mean μ̃ and variance σ̃ 2. Algorithm 1
describes the system training, with the output as the obtained
optimal bases B∗ and the SSE ηi (1 ≤ i ≤ m).

1. Note that B does not necessarily satisfy the RIP condition.
Nevertheless, [8] shows that for most matrices, the sparse solution
can be found.

1028 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

Algorithm 1 SPARS training

Input: Training data set X, number of bases n, parameters
λ, c

Output: Optimal bases B∗, SSEs η1, . . . , ηm
1. Solve problem (16) with constraint (17) to get B∗ and

S using the feature-sign and Lagrange dual algorithms
in [14].

2. for 1 ≤ i ≤ m do
3. Compute SSE ηi by (18) and (19).
4. end for

6 SAP RECONSTRUCTION AND PUE
DETECTION

Given the bases B∗ obtained from the system training in
last section, we can use them to reconstruct an observed
SAP Y = [Y1, . . . , Yv, . . . , Yk]T using the model in (3). It is
transformed into the following problem, which now becomes
a least square problem with an �1 norm regularization to
enforce a sparse structure.

min
W

∥∥Y − B∗W
∥∥2

2 + λ ‖W‖1 . (20)

Let Ev =
(

Yv − ∑n
j=1 B∗

vjWj

)
denote the error to recon-

struct the vth element of Y. Let ζ denote the SSE to reconstruct
Y using the bases B∗. Then we have

ζ = ∥∥Y − B∗W
∥∥2

2 =
k∑

v=1

E2
v. (21)

As discussed in last section, ζ is an approximate
Gaussian random variable with some unknown mean μ̃

and variance σ̃ 2.
We use the SSE ζ to measure the normality of SAP Y.

Specifically, let γ denote the α quantile of the Gaussian
distribution with mean μ̃ and variance σ̃ 2, i.e., γ = μ̃ +
σ̃zα , where zα is the α quantile of the standard Gaussian
distribution, i.e., Pr(Z ≤ zα) = α where Z is a standard
Gaussian random variable. Then if ζ is larger than γ , the
observed SAP Y is treated as an abnormal SAP, i.e., a PUE
attack. Otherwise, Y is seen as a normal SAP. Unfortunately,
the SSE mean μ̃ and variance σ̃ 2 are unknown, and hence
we cannot obtain γ .

We introduce a technique called tolerance interval [16, Ch2]
to test normality of SAP Y. The tolerance interval is similar to
the quantile, but has a benefit that it can be computed from
the sample mean and variance, without needing the actual
mean and variance. We can obtain the SSE sample mean
and variance from η1, . . . , ηm, which have been obtained in
last section for reconstructing the training data set X, since
each training data Xi is a random SAP sample.

Based on η1, . . . , ηm, we can compute the SSE sample
mean and variance as

μ̂ = 1
m

m∑

i=1

ηi, σ̂ 2 = 1
m − 1

m∑

i=1

(
ηi − μ̂

)2
. (22)

We expect that an abnormal SAP has a large reconstruction
error. Hence we use a one-sided tolerance interval in the

form of [− ∞, γ̃]. The upper tolerance limit γ̃ is given as

γ̃ = μ̂ + θσ̂ , (23)

where θ is a parameter that we discuss next. (Similarly, the
lower tolerance limit is given as γ̃ ′ = μ̂ − θσ̂ .)

An (α, β) one-sided tolerance interval [−∞, μ̂+θσ̂] means
that a proportion β of the entire SSE population (i.e., 100β%
population) falls in the interval [− ∞, μ̂ + θσ̂] with 100α%
confidence. In other words, we have

Pr
{
Pr(ζ ≤ μ̂ + θσ̂ | μ̂, σ̂) ≥ β

} = α. (24)

Given α, β, μ̂, σ̂ , (24) can be solved to obtain θ as follows
[16, Ch2].

θ = 1√
m

tm−1,α(zβ

√
m),

where m is the sample size when computing μ̂ and σ̂ ,
zβ is the β quantile of the standard Gaussian distribution,
and tm−1,α(zβ

√
m) denotes the α quantile of the noncentral

Student’s t distribution with m−1 degree of freedom and the
noncentrality parameter zβ

√
m. While tm−1,α(zβ

√
m) may be

computed from the inverse of the cumulative probability dis-
tribution function of the noncentral Student’s t distribution,
a convenient approximation for computing θ is given as [17]

θ ≈
zβ +

√
z2
β − τω

τ
, (25)

τ = 1− z2
α

2(m − 1)
, ω = z2

β − z2
α

m
,

where zβ and zα are the β and α quantiles of the standard
Gaussian distribution, respectively. The formula in (25) is
easier for computation since the quantile for the standard
Gaussian distribution is widely available.

Given the tolerance interval [− ∞, γ̃], we test SAP Y
by examining the SSE ζ in (21). If ζ falls in the tolerance
interval, i.e., ζ ≤ γ̃ , then Y is a normal SAP. Otherwise, Y is
an abnormal SAP and the corresponding signal transmitter
is alarmed as an attacker. Algorithm 2 describes how an SU
carries out the PUE detection using SPARS that output an
alarm signal for a SAP Y collected from a candidate channel,
to indicate that the corresponding transmitter is an attacker
or a PU.

After identifying an attacker, there may be several options
for subsequent actions, such as reporting to the correspond-
ing authority, or reporting to the nearby nodes of the attacker
to penalize the latter, e.g., not forwarding the traffic of the
attacker (effective for selfish SU attacker) or even ignoring
the PU signal. We do not get into details of such actions, as
this is out of the scope of this paper.

7 BOUND ANALYSIS OF SPARS
We develop the Chernoff bound for the SPARS system. In
the literature, the Chernoff bound is typically given for
only Bernoulli random variables that have values of 0 or 1.
However, the Chernoff bound can be derived for a general
distribution from the Markov inequality. If X is a nonnegative
random variable and a > 0 is a constant, then the Markov
inequality is

Pr(X > a) ≤ E(X)

a
. (26)

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1029

Algorithm 2 PUE detection by SPARS at an SU

Input: Parameters λ, c, α, β, m, n
1. if CRN is in the initial setup phase then
2. Passively carry out spectrum sensing to collect m

SAPs, X1, . . . , Xm, on candidate channels, which are
used as the training data set X.

3. Apply Algorithm 1 on X with parameters λ, c, and
n to obtain the bases B∗ = [B∗

1, . . . , B∗
n] and SSEs

η1, . . . , ηm.
4. end if
5. loop
6. For a SAP Y collected from a candidate channel,

solve problem (20) to get W.
7. Compute SSE ζ by (21).
8. Compute μ̂ and σ̂ by (22) using ηi from Algorithm 1.
9. Compute θ by (25).

10. Compute γ̃ by (23).
11. if ζ > γ̃ then
12. SAP Y is from an attacker. Alarm = YES.
13. else
14. SAP Y is from a PU. Alarm = NO.
15. end if
16. end loop

If Y is an arbitrary random variable that can also have
negative values, the Markov inequality can be still applied
to obtain the tail probability by letting X = esY where s > 0 is
some constant. Since esY is a nonnegative random variable,
we can apply the Markov inequality on it. Furthermore,
since esY is an increasing function, we have

Pr(Y > a) = Pr(esY > esa) ≤ E(esY)

esa = eg(s)−sa, (27)

where g(s) = log E(esY) is the cumulant generating func-
tion of the random variable esY. (27) is called the Chernoff
bound when s is selected such that g(s) − sa is minimized
and s > 0.

Next we derive the Chernoff bound for the SSE ζ in
(21). Recalling from the preceding section that ζ follows the
Gaussian distribution with mean μ̃ and variance σ̃ 2. The
cumulant generating function of the Gaussian distribution is

g(s) = σ̃ 2

2
s2 + sμ̃.

To minimize g(s) − sa, we let

d(g(s) − sa)
ds

= σ̃ 2s + μ̃ − a = 0.

=⇒ s = a − μ̃

σ̃ 2 for a > μ̃.

Hence

min
s

(g(s) − sa) = − (a − μ̃)2

2σ̃ 2 .

Thus, from (27), the Chernoff bound for ζ is

Pr(ζ > a) ≤ e− (a−μ̃)2

2σ̃2 for a > μ̃. (28)

In practice, the mean μ̃ and the variance σ̃ 2 are unknown.
In this case, we can use the SSE sample mean and variance,

μ̂ and σ̂ 2, to replace μ̃ and σ̃ 2 in (28) to get the approximate
Chernoff bound.

8 PUE DETECTION BY STATISTICS

In this section, we present another PUE detection approach,
termed PUE detection by statistics (PDS), which also utilizes
the signal activity pattern of PU signals. PDS examines
two most important statistics, the mean and variance, of
the signal ON/OFF periods in a SAP to see if they are
abnormal. It works as follows. In the initial setup phase
of a CRN, similar to SPARS, each SU passively carries out
spectrum sensing to collect SAPs, denoted as X1, . . . , Xm and
put them into a training data set X. Next, it compute the
mean and variance of the ON/OFF periods in each SAP Xi,
denoted as μi and vi. Therefore, from the training data set,
PDS obtains a vector of means [μ1, . . . , μm] and a vector of
variances [v1, . . . , vm]. For the ease of description, let M(Y)

or M(Y1, . . . , Yk) represent the function to compute the mean
of a vector Y = [Y1, . . . , Yk], and let V(Y) or V(Y1, . . . , Yk)

represent the function to compute the variance of vector Y.
They are given as

M(Y) = M(Y1, . . . , Yk) = 1
k

k∑

i=1

Yi,

V(Y) = V(Y1, . . . , Yk) = 1
k − 1

k∑

i=1

(Yi − M(Y))2 .

By the central limit theorem, the mean and variance of
the ON/OFF periods in a SAP Y, denoted as μY and σ 2

Y ,
approximately follow the Gaussian distribution, as long as
the number of ON/OFF periods in SAP Y is reasonably large.
Therefore, we can use (23) and (25) to compute the tolerance
limits for μY and σ 2

Y , respectively, based on the sample
mean and variance of vectors [μ1, . . . , μm] and [v1, . . . , vm],
respectively. With the tolerance limits, we can test if SAP
Y is normal (from a genuine PU) or abnormal (from an
attacker) by checking the mean and variance of the ON/OFF
periods against the tolerance limits. Algorithm 3 formally
describes PDS.

9 PERFORMANCE EVALUATION

In this section, we evaluate the performance of SPARS
through simulations. We use n = 128 bases. The constraints
λ and c are both assumed as 1. The SAP size k is assumed as
30. We assume 30 PU signal transmitters randomly spread
on 20 channels, with minimum one and maximum 3 trans-
mitters on each channel. To focus on evaluation of the PUE
detection, we do not consider cooperative spectrum sensing
and assume that each SU independently performs spectrum
sensing to acquire SAPs. Hence without loss of generality,
we study the PUE detection of one SU only. We use two dis-
tributions, exponential and Pareto distributions, to simulate
the ON and OFF periods of each transmitter. As discussed
earlier, we assume that in the initial sensing phase of the
CRN setup, each SU passively performs spectrum sensing
and acquires the ON and OFF periods from each transmitter
into a training data set. (The training data set may also be col-
lected offline and injected into each SU before deployment.)
We use a training data set with 200 training SAPs.

1030 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

Algorithm 3 PUE detection by statistics (PDS) at an SU
1. if CRN is in the initial setup phase then
2. Passively carry out spectrum sensing to collect SAPs,

denoted as X1, . . . , Xm.
3. for 1 ≤ i ≤ m do
4. Calculate the mean μi = M(Xi) and variance

vi = V(Xi) for SAP Xi.
5. end for
6. Compute the sample mean and variance of vector

[μ1, . . . , μm] as μ̂mean = M(μ1, . . . , μm) and σ̂ 2
mean =

V(μ1, . . . , μm)

7. Compute the tolerance limit of the ON periods mean
γ̃mean using μ̂mean and σ̂mean by (23) and (25). (For
the OFF periods mean, compute the lower tolerance
limit γ̃ ′

mean.)
8. Compute the sample mean and variance of vec-

tor [v1, . . . , vm] as μ̂var = M(v1, . . . , vm) and σ̂ 2
var =

V(v1, . . . , vm)

9. Compute the tolerance limit of the variance γ̃var
using μ̂var and σ̂var by (23) and (25)

10. end if
11. loop
12. For a SAP Y collected from a candidate channel,

compute the mean μY = M(Y) and variance σ 2
Y =

V(Y).
13. if μY ≤ γ̃mean and σ 2

Y ≤ γ̃var then
14. {or μY ≥ γ̃ ′

mean for OFF periods}
15. SAP Y is from a PU. Alarm = NO.
16. else
17. SAP Y is from an attacker. Alarm = YES.
18. end if
19. end loop

We run the simulation with 30 batches. Each batch includes
30 experiments with a different seed. In our experiments,
the initial SPARS training typically takes a few minutes
on a desktop PC with a Intel Core i5 2.67 GHz processor.
The reconstruction of a SAP after the initial phase is in
the order of milliseconds. To simulate varying scenarios, in
each experiment, the number of attackers is generated as a
random number between 0 and 30, instead of using a fixed
number of attackers. The ON periods are simulated with
the exponential distribution, with the mean ON period for
PUs as 1 time unit, and the mean ON period for attackers
varying from 1.5 to 2 time units. A larger mean ON period
indicates that the channel availability for SUs is smaller.
The OFF periods are simulated with the Pareto distribution
using the shape parameter 1.9, and the location parameter 4
for PUs. The location parameter for attackers varies from 2
to 3, and the shape parameter is the same. This results in a
mean OFF period of attackers being 50% to 75% of the mean
OFF period of PUs. A smaller mean OFF period indicates
that the channel availability for SUs is smaller.

Being an approach that targets general scenarios of the
PUE detection without limiting the PU type and/or requir-
ing a priori knowledge of PUs, SPARS takes a very different
methodology from existing PUE detection schemes. This
makes it difficult to quantitatively compare the performance
of SPARS with the ones of other PUE detection schemes. For

Fig. 2. False alarm probability for detection of SAPs consisting of ON
periods.

instance, the location verification approach [3], [5] assumes
that the PU location is known in advance, and the perfor-
mance depends on how accurately the spectrum sensing
can estimate the distance to the transmitter. In contrast,
SPARS does not need such accurate localization. Hence, in
this paper, we do not quantitatively compare SPARS with
the existing PUE detection schemes.

Next, we first examine the performance of SPARS for
detecting straight attackers that do not forge their SAPs, and
then evaluate SPARS comparatively with PDS for detecting
smart attackers that forge their SAPs.

9.1 Detection of Straight Attacker
Fig. 2 plots the false alarm probability of the PUE detection
by SPARS, i.e., the probability that a PU is alarmed as an
attacker by SPARS, when the ON periods are used as the
SAP for detection. The X-axis indicates the batch ID of the
experiments. The false alarm probability is averaged over
the 30 experiments in each batch. We use three tolerance
limits for PUE detection, with β = 0.999 and α = 0.95,
0.975, and 0.99, respectively. We can see that the false alarm
probability meets the expectation of the tolerance limits.
That is, the false alarm probability is expected to be not
larger than 1 − α. We also plot the Chernoff bounds for
the false alarm probability with the three tolerance limits
as the parameters. We can see that the Chernoff bounds are
quite tight. Nevertheless, one may note that the Chernoff
bounds here are approximations as we have used the sam-
ple mean and standard deviation instead of the real mean
and standard deviation of the SSE ζ , which are unknown.
Hence, such tight Chernoff bounds may be due to this sub-
stitution. Fig. 3 illustrates the false alarm probability when
the OFF periods are used as the SAP for PUE detection.
The false alarm probabilities are slightly higher than for ON
periods, but still approximately meet the expectation of the
tolerance limits.

Next we examine the miss-detection probability, i.e., the
probability that an attacker is not detected. Fig. 4 illustrates
the miss-detection probability when the ON periods are used
in the SAP for PUE detection. The miss-detection probability
is averaged on all experiments of all batches. We also use
three tolerance limits, with α = 0.95 and β = 0.99, 0.995, and

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1031

Fig. 3. False alarm probability for detection of SAPs consisting of OFF
periods.

0.999, respectively. In the figure, μ denotes the mean ON
period of PUs. The X-axis indicates the mean ON period of
attackers, e.g., 1.5μ indicates 1.5 times of μ. We see that if
the mean ON period of attackers is 70% larger than the one
of PUs, most attackers are caught by SPARS. If the mean
ON period of attackers increases to twice as the one for
PUs, i.e., 2μ, then almost all attackers are caught by SPARS.
Note that the typical spectrum occupation of PUs is low,
e.g., 10%. Hence even doubling the spectrum occupation
by an attacker does not really result in a high spectrum
occupation, while on the other hand, the attacker is in the
risk of almost surely being caught by SPARS. Therefore,
SPARS is effective to detect PUE attack. Among the three
tolerance limits, a smaller β indicates that the tolerance limit
is smaller or tighter; hence an attacker is more likely to be
caught.

Fig. 5 illustrates the miss-detection probability when the
OFF periods are used as the SAP for PUE detection. The ν

denotes the location parameter of the Pareto distribution to
generate the OFF periods of PUs, which is proportional to
the mean. Given the same shape parameter, 0.5ν indicates
that the mean OFF period of attackers is about half of the
mean OFF period of PUs. When the mean OFF period of
attackers decreases by 25% (0.75ν), about 33% attackers are
not caught by SPARS. However, if the mean OFF period

Fig. 4. Miss-detection probability for detection of SAPs consisting of
ON periods.

Fig. 5. Miss-detection probability for detection of SAPs consisting of
OFF periods.

of attackers is about half of the mean OFF period of PUs,
almost all the attackers are caught, with the miss-detection
probability close to 0.

Next, we examine the receiver operating characteristic (ROC)
curve of SPARS, which is a plot of the true positive rate, i.e.,
1− miss-detection probability, versus the false positive rate,
i.e., the false alarm probability. Fig. 6 plots the ROC curves
of SPARS for detecting SAPs of ON periods, when the ON
periods of attackers’ SAPs are generated with 1.5μ, 1.8μ,
and 2μ, respectively, as the mean. We use the (0.95, 0.999)

tolerance limit for PUE detection in SPARS. The ROC curves
indicate that SPARS is effective to detect SAPs of attackers,
with high true positive rates versus low false positive rates.
In particular, when the mean ON period of attackers is 1.8
times of the mean ON period of PUs or larger, the true
positive rate is close to 1 versus a false positive rate close
to 0. Fig. 7 illustrates the ROC curves of SPARS for detecting
SAPs of OFF periods, when the OFF periods of attackers’
SAPs are generated with 0.5ν, 0.65ν, and 0.75ν, respectively,
as the location parameter of the Pareto distribution. The
observations are similar to those in Fig. 6, and confirm that
SPARS is effective to detect SAPs of attackers. In particular,
when the mean OFF period of attackers is 0.5 times of the
mean OFF period of PUs or smaller, the true positive rate
is almost 1 versus a low false positive rate.

Fig. 6. ROC curves of SPARS for detecting SAPs consisting of ON
periods.

1032 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

Fig. 7. ROC curves of SPARS for detecting SAPs consisting of OFF
periods.

Putting it all together, for attackers to cause DoS to the
CRN, they want to increase ON periods and/or decrease
OFF periods. With SPARS, if an attacker increases the
average ON period by more than 100% or decreases the
average OFF period to about half, which results in only
a mild increase of spectrum occupation, it will be almost
surely caught by SPARS. On the other hand, if an attacker
wants to avoid the detection of SPARS, it has to have
almost the same average ON and OFF periods as PUs.
However, as discussed in Section 1, such an attacker would
have low spectrum occupation, which defeats the objec-
tive of the PUE attack and would be tolerable by the
CRN. Therefore, SPARS is effective to detect and deter PUE
attacks.

9.2 Detection of Smart Attackers
In this section, we consider smart attackers that forge their
SAPs, and evaluate SPARS comparatively with PDS. Both
schemes can detect PUE attacks in general scenarios. For
straight attackers, PDS also has a very good performance
comparable to the one of SPARS. Nevertheless, as to be seen,
the drawback of PDS is on detecting smart attackers.

A smart attacker can manipulate its ON/OFF periods
so that the mean ON/OFF period is more close to the one
of PUs. Specifically, a smart attacker randomly generates a

Fig. 8. Miss-detection probability of SPARS for detecting smart attackers.

Fig. 9. Miss-detection probability of PDS for detecting smart attackers.

small fraction of very short ON periods, e.g., using a mean
close to 0, to intentionally decrease the mean ON period in
a SAP. Similarly, it can randomly generate a small fraction
of very long OFF periods, to intentionally increase the mean
OFF period in a SAP.

Figs. 8 and 9 plot the miss-detection probabilities of SPARS
and PDS, respectively, for detecting SAPs of ON periods.
The ‘Forge’ in the figures indicates the forging fraction of
the ON periods in a SAP. For instance, ‘Forge = 0.2’ indi-
cates that 20% ON periods in a SAP are forged. We use
the (0.95, 0.999) tolerance limit for the PUE detection for
both SPARS and PDS. PDS needs two tolerance limits, one
for testing the mean and the other for testing the variance.
Both tolerance limits use the same α and β values. From
Fig. 8, we can see that SPARS is robust to smart attackers
as the miss-detection probability does not increase much
even with up to 25% forged ON periods. In contrast, the
miss-detection probability of PDS in Fig. 9 deteriorates signif-
icantly when the forging fraction of the ON periods increases.
Comparing Fig. 8 and Fig. 9, we can see that SPARS is much
more robust than PDS for detecting smart attackers. For
instance, with 25% forged ON periods, the miss-detection
probability of PDS is much higher than the one of SPARS.
In other words, smart attackers can easily defeat PDS by
forging a fraction of the ON/OFF periods in its SAPs, while
they will be still caught by SPARS. The results of using

Fig. 10. ROC curves of SPARS for detecting smart attackers.

XIN AND SONG: DETECTION OF PUE ATTACKS IN COGNITIVE RADIO NETWORKS BASED ON SIGNAL ACTIVITY PATTERN 1033

Fig. 11. ROC curves of PDS for detecting smart attackers.

OFF periods for SAPs have similar observations and are
omitted.

Figs. 10 and 11 plot the ROC curves of SPARS and PDS,
respectively, for detecting smart attackers, with the forging
fraction being 20%. Comparing Fig. 10 and Fig. 11, we can
see that SPARS is much more effective for detecting smart
attackers, as the true positive rate of SPARS is relatively
much higher versus the false positive rate. For instance, in
the case that the mean ON periods of attackers is 1.7μ, the
true positive rate of PDS versus the 0.01 false positive rate
is around 0.75, while the one of SPARS is approximately 0.9.

One may wonder if forging the SAPs by smart attackers
would increase the variance or standard deviation of the
ON/OFF periods of the SAPs, such that PDS can use a
tighter tolerance limit for variance to detect smart attackers.
Fig. 12 illustrates the percentage increase of the standard
deviation of the ON periods in the SAPs of smart attackers,
with different forging fractions. We can see that the increase
of the standard deviation of the ON periods is rather small;
hence tightening the tolerance limit for variance in PDS does
not work well. For instance, even with 25% ON periods being
forged, the increase of the standard deviation is only about
3%. Capturing such an increase requires a tolerance limit
that results in a very high false alarm probability. At last,
we plot the percentage decrease of the ON periods mean
in the SAPs of smart attackers in Fig. 13. The decrease of

Fig. 12. Increase of the standard deviation of ON periods caused by
forged SAPs.

Fig. 13. Decrease of the ON periods mean caused by forged SAPs.

the ON periods mean is approximately the forging fraction,
which is expected as the smart attacker uses a very small
mean to generate the forged ON periods.

In summary, PDS is a fast PUE detection approach and
performs well for straight PUE attacks, but not robust to
smart PUE attacks. On the other hand, SPARS is more robust
to smart PUE attacks than PDS, but is a more complex
system. Fortunately, although it is complex, SPARS is efficient
to detect PUE attacks. After the initial training, the PUE
detection by SPARS takes only a few milliseconds in our
experiments. The initial training time takes several minutes
in our experiments, which is, nevertheless, compensated by
the good performance of SPARS.

10 CONCLUSION AND FUTURE WORK

We have presented a PUE detection system termed SPARS,
which acquires the signal activity pattern (SAP) of PU signal
transmitters. It uses a SAP reconstruction model to recon-
struct an observed SAP and finds if the SAP belongs to an
attacker based on the reconstruction error. Different from
current solutions on the PUE detection, SPARS does not need
a priori knowledge of PUs, and has no limitation on the type
of applicable PUs. The performance evaluation indicates that
SPARS is robust and effective to detect both straight and
smart PUE attackers, even though the smart attackers may
forge the SAPs.

In our future work, we will extend SPARS for the PUE
detection when there are multiple classes of PUs, and dif-
ferent classes of PUs have different signal activity patterns.
Specifically, we will extend SPARS to classify an observed
SAP to see if it belongs to a certain class of PUs. If yes, then
this SAP is from a PU. Otherwise, it is from an attacker. To
achieve this objective, we will need to examine the structure
of the weights in the reconstruction of a SAP, in addition to
the reconstruction error.

ACKNOWLEDGMENTS

The research of ChunSheng Xin is supported in part by
US NSF under grants CNS-1418012 and ECCS-1418013. The
research of Min Song is supported in part by US NSF CAREER
Award CNS-1248092 and NSF IPA Independent Research and
Development (IR/D) Program. Any opinion, finding, and
conclusions or recommendations expressed in this material;

1034 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 5, MAY 2014

are those of the author and do not necessarily reflect the
views of the US National Science Foundation.

REFERENCES

[1] H. Li and Z. Han, “Dogfight in spectrum: Combating primary user
emulation attacks in cognitive radio systems, Part II: Unknown
channel statistics,” IEEE Trans. Wireless Commun., vol. 10, no. 1,
pp. 274–283, Jan. 2011.

[2] Y. Tan, K. Hong, S. Sengupta, and K. Subbalakshmi, “Using Sybil
identities for primary user emulation and byzantine attacks in
dsa networks,” in Proc. IEEE GLOBECOM, Houston, TX, USA,
2011.

[3] Z. Yuan, D. Niyato, H. Li, and Z. Han, “Defense against pri-
mary user emulation attacks using belief propagation of location
information in cognitive radio networks,” in Proc. IEEE WCNC,
Cancun, Mexico, 2011.

[4] N. Nguyen, R. Zheng, and Z. Han, “On identifying primary user
emulation attacks in cognitive radio systems using nonparametric
Bayesian classification,” IEEE Trans. Signal Process., vol. 60, no. 3,
pp. 1432–1445, Mar. 2012.

[5] R. Chen, J.-M. Park, and J. Reed, “Defense against primary user
emulation attacks in cognitive radio networks,” IEEE J. Sel. Areas
Commun., vol. 26, no. 1, pp. 25–37, Jan. 2008.

[6] S. Chen, K. Zeng, and P. Mohapatra, “Hearing is believing:
Detecting mobile primary user emulation attack in white space,”
in Proc. IEEE INFOCOM, 2011.

[7] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity:
Learning sparse dictionaries for sparse signal approximation,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1553–1564, Mar.
2010.

[8] D. L. Donoho, “For most large underdetermined systems of
equations, the minimal l1-norm near-solution approximates the
sparsest near-solution,” Wiley Commun. Pure Appl. Math., vol. 59,
no. 7, pp. 907–934, 2006.

[9] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[10] J. Yang, K. Yu, and T. Huang, “Efficient highly over-complete
sparse coding using a mixture model,” in Proc. 11th ECCV,
Heraklion, Greece, 2010, pp. 113–126.

[11] B. Zhao, L. Fei-Fei, and E. Xing, “Online detection of unusual
events in videos via dynamic sparse coding,” in Proc. IEEE Conf.
CVPR, Providence, RI, USA, 2011, pp. 3313–3320.

[12] O. Vinyals and L. Deng, “Are sparse representations rich enough
for acoustic modeling?” in Proc. 13th Annu. Conf. International
Speech Communication Association, Portland, OR, USA, Sept. 2012.

[13] B. A. Olshausen and D. J. Fieldt, “Sparse coding with an over-
complete basis set: A strategy employed by v1?” Vision Res.,
vol. 37, no. 23, pp. 3311–3325, Dec. 1997.

[14] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Proc. NIPS, 2006.

[15] A. Madanayake, C. Wijenayake, N. Tran, S. Hum, L. Bruton, and
T. Cooklev, “Directional spectrum sensing using tunable multi-d
space-time discrete filters,” in Proc. IEEE Workshop CORAL, San
Francisco, CA, USA, Jun. 2012.

[16] K. Krishnamoorthy and T. Mathew, Statistical Tolerance Regions:
Theory, Applications, and Computation. Hoboken, NJ, USA: Wiley,
2009.

[17] M. G. Natrella, Experimental Statistics, NBS Handbook 91.
Washington, DC, USA: U.S. Department of Commerce, 1963.

ChunSheng Xin received the Ph.D. degree in
computer science and engineering from the State
University of New York at Buffalo, Buffalo, NY,
USA, in 2002. He is an Associate Professor
with the Department of Electrical and Computer
Engineering, Old Dominion University, Norfolk,
VA, USA. His current research interests include
cybersecurity, cognitive radio networks, wireless
communications and networking, cyber-physical
systems, and performance evaluation and mod-
eling. His research is supported by multiple NSF

grants, and results in numerous papers in leading journals and con-
ferences, as well as several book chapters and one patent. He has
served as an Associate Editor of international journals, and an External
Consultant on cybersecurity for industry. He is a senior member of
IEEE.

Min Song received the Ph.D. degree in computer
science from the University of Toledo, Toledo, OH,
USA, in 2001. He is a Professor with the Electrical
Engineering and Computer Science Department
at the University of Toledo. He is currently serv-
ing the US National Science Foundation as a
Program Director of CNS/CISE. He is the recip-
ient of NSF CAREER Award. His professional
career is comprised of a total of 25 years of
work experience in academia, government, and
industry. He was the Founding Director of a

Networking System Division in an IT company, and launched an inter-
national journal and served as the Editor-in-Chief. He has acted as
an Editor or Guest Editor of 13 international journals, and served as
a General chair, Technical Program Committee Chair, and Session
Chair for numerous international conferences. He is a senior member
of IEEE.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

