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In order to associate complex traits with genetic polymorphisms, genome-wide association
studies process huge datasets involving tens of thousands of individuals genotyped for mil-
lions of polymorphisms. When handling these datasets, which exceed the main memory of
contemporary computers, one faces two distinct challenges: (1) millions of polymorphisms
and thousands of phenotypes come at the cost of hundreds of gigabytes of data, which can
only be kept in secondary storage; (2) the relatedness of the test population is represented
by a relationship matrix, which, for large populations, can only fit in the combined main
memory of a distributed architecture. In this paper, by using distributed resources such
as Cloud or clusters, we address both challenges: the genotype and phenotype data is
streamed from secondary storage using the double-buffering technique, while the relation-
ship matrix is kept across the main memory of a distributed memory system. With the help
of these solutions, we develop separate algorithms for studies involving only one or a mul-
titude of traits. We show that these algorithms sustain high-performance and allow the
analysis of enormous datasets.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Genome-wide association (GWA) analyses are a powerful statistical tool to identify certain locations of significance in the
genome: typically, they aim at determining which single-nucleotide polymorphisms (SNPs) influences specific traits of interest.
Thanks to these studies, hundreds of SNPs for dozens of complex human diseases and quantitative traits have been discov-
ered [1]. In GWA studies (GWAS), one of the most used methods to account for the genetic substructure due to relatedness
and population stratification is the variance component approach based on mixed-models [2,3]. While effective, mixed-mod-
els based methods are computationally demanding both in terms of data management and computation. The objective of
this research is to make large-scale GWA analyses affordable.

Computationally, a mixed-model based GWAS on n individuals, m genetic markers (SNPs), and t traits boils down to the
solution of the m� t generalized least-squares (GLS) problems
bij :¼ XT
i M�1

j Xi

� ��1
XT

i M�1
j yj; with i ¼ 1; . . . ;m and j ¼ 1; . . . ; t; ð1Þ
where Xi 2 Rn�p is the design matrix, Mj 2 Rn�n is the covariance matrix, yj 2 Rn contains the vector of observations, and
bij 2 Rp quantifies the relation between a variation in an SNP (Xi) and a variation in a trait (yj). Furthermore, Mj is a symmet-
ric positive definite (SPD) matrix, and the full rank matrix Xi can be viewed as composed of two parts: Xi ¼ XLjXRið Þ, with
achen.de
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XL 2 Rn�ðp�1Þ and XRi 2 Rn�1, where XL, which contains p� 1 covariates, is fixed, and only XRi varies with SNPi. Moreover, the
relationship among the individuals is taken into account by the covariance matrix Mj:

 
 

Mj ¼ r2
j h2

j Uþ ð1� h2
j ÞI

� �
: ð2Þ 
Here, I is the identity matrix, the kinship matrix U 2 Rn�n contains the relationship among all studied individuals, and r2
j and

h2
j are trait-dependent scalar estimates. Finally, common problem sizes are: 103

6 n 6 105;2 6 p 6 20, 105
6 m 6 108, and t

is either 1 (single-trait analysis) or in the range of thousands (multi-trait analysis).
The first reported GWA study dates back to 2005: 146 individuals were genotyped, and about 103;000 SNPs were ana-

lyzed with respect to one trait [4]. Since then, as the catalog of published GWA analyses shows [5,6], the number of publi-
cations has increased steadily, up to 2404 in 2011 and 3307 in 2012. A similar growth can be observed in both the population
size and the number of SNPs: across all the GWAS published in 2012 the studies comprised on average 15;471 individuals,
with a maximum of 133;154, and on average 1;252;222 genetic markers, with a maximum of 7;422;970. More recently,
advances in technology make it affordable to assess ‘‘omics’’ phenotypes in large populations, resulting in the challenge
of analyzing (potentially hundreds) of thousands of traits. From the perspective of Eqs. (1) and (2), these trends present con-
crete challenges, especially in terms of memory requirements. As Mj 2 Rn�n and the m Xi’s and t yj’s compete for the main
memory, two distinct scenarios arise: (1) if n is small enough for Mj to fit in main memory, the Xi’s and yj’s are to be streamed
from disk; (2) if Mj does not fit in main memory, both data and computation have to be distributed over multiple compute
nodes. In this paper, we present efficient strategies for utilizing distributed architectures —such as clusters, Cloud-based sys-
tems, and supercomputers— to execute single-trait and multi-trait GWA analyses with arbitrarily large population size,
number of SNPs, and traits.

Related work. To perform GWA studies, there exist several freely available libraries. Among them, we highlight GENABEL, a
widely spread framework for statistical genomics [7], and FAST-LMM, a high-performance software targeting single-trait
analyses [8]. More recently, Fabregat et al. developed OmicABEL —a package for the GENABEL suite— which implements opti-
mized solutions for shared memory architectures [9,10]. However, those algorithms do not support distributed-memory
computations, and are only applicable when the kinship matrix fits in the local memory of a single node.

Organization of the paper. The rest of this paper is structured as follows. Section 2 is devoted to single-trait GWAS analyses
(i.e., t ¼ 1): In Section 2.1, the mathematical algorithm is first introduced; in Section 2.2, we discuss the shared memory
implementation GWAS-1D-SMP, an extension to accommodate analyses with an arbitrarily large number of SNPs (large
m); then, in Section 2.3, we present GWAS-1D-MPI, a distributed memory extension for analyses with large population size
(large n). Section 3 addresses multi-trait studies (i.e., t > 1): A discussion of a core algorithm that exploits invariants across
multiple traits is given in Section 3.1; to allow the solutions of problems of arbitrary size (in terms of m;n, and t), we apply
out-of-core (Section 3.2) and distributed-memory techniques (Section 3.3), thus yielding GWAS-2D-MPI. Conclusions are
drawn in Section 4.

2. Single-trait GWAS

We consider Eq. (1) restricted to the study of a single trait y:
bi :¼ XT
i M�1Xi

� ��1
XT

i M�1y; with i ¼ 1; . . . ;m: ð3Þ
2.1. The algorithm

The standard route to solving one such GLS is to reduce it to an ordinary least squares problem (OLS)
bi ¼ XT
i Xi

� ��1
XT

i y;
through the operations
1 LLT :¼ M ðCholesky factorizationÞ
2 Xi :¼ L�1Xi ðtriangular solveÞ
3 y :¼ L�1y ðtriangular solveÞ
The resulting OLS can then be solved by two alternative approaches, respectively based on the QR decomposition of Xi,
and the Cholesky decomposition of XT

i Xi. In general, the QR-based method is numerically more stable; however, in this spe-
cific application, since XT

i Xi 2 Rp�p is very small and Xi is typically well conditioned, both approaches are equally accurate. In
terms of performance, the solution via Cholesky decomposition is slightly more efficient:
4 Si :¼ XT
i Xi ðsymmetric matrix productÞ

5 bi :¼ XT
i y ðmatrix times vectorÞ

6 bi :¼ S�1
i bi ðlinear system via CholeskyÞ
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In this paper, we only consider this approach.

2.1.1. Multiple SNPs
When the six steps for the solution of one GLS are applied to the specific case of Eq. (3), by taking advantage of the struc-

ture of Xi, it is possible to avoid redundant computation.
Plugging Xi ¼ XLjXRið Þ into Xi :¼ L�1Xi (line 2), we obtain

 
 

 

1 The
2 Sinc

never a
3 Sinc
4 In p
XLjXRi
� �

:¼ L�1XLjL�1XRi

� �
;

that is, XL :¼ L�1XL, and XRi :¼ L�1XRi. These assignments indicate that the quantity XL can be computed once and reused
across all SNPs.

Similarly, for Si :¼ XT
i Xi (line 4), we have1
from which
STL :¼ XT
L XL 2 Rðp�1Þ�ðp�1Þ;

SBLi :¼ XT
RiXL 2 R1�ðp�1Þ; and

SBRi :¼ XT
RiXRi 2 R:
This indicates that STL, the top left portion of Si, is independent of i and needs to be computed only once.2 Finally, the same
idea also applies to bi (line 5), yielding the assignments bT :¼ XT

L y and bBi :¼ XT
Riy.

Algorithm 1. Optimized algorithm for single-trait studies

in

set
The computation for the whole Eq. (3) is given in Algorithm 1. There, by moving all the operations independent of i out-
side the loop, the overall complexity is lowered from Oðn3 þmn2pÞ down to Oðn3 þmn2Þ.3 This algorithm constitutes the basis
for the large-scale versions presented in the next two sections.
2.2. Out-of-core

GWA studies often operate on and generate datasets that exceed the main memory capacity of current computers. For
instance, a study with n ¼ 20;000 individuals, m ¼ 10;000;000 SNPs, and p ¼ 4, requires 1.49 TB to store the input data
(M and Xi’s), and generates 305 MB of output.4 To make large analyses feasible, regardless of the number of SNPs, Fabregat
et al. proposed an algorithm that uses asynchronous I/O operations to stream XRi and bi from and to secondary storage [9]. This
extension of Algorithm 1 is described in the following.
subscript letters L ; R; T , and B , respectively stand for Left, Right, Top, and Bottom.
e Si is symmetric, its top-right and bottom-left quadrants are the transpose of each other; we mark the top-right quadrant with a � to indicate that it is

ccessed nor computed.
e in most analyses m� n, the complexity reduces by a factor of p, from Oðmn2pÞ down to Oðmn2Þ.
ractice the size of the output is even larger, because along with each bi , a symmetric p� p matrix is generated.
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Algorithm 2. Out-of-core algorithm for single-trait studies. The XRi and bi are streamed from and to disk in blocks.
Asynchronous I/O operations are highlighted in green

In order to avoid any overhead, the vectors XRi (and bi) are grouped into blocks Xblk (and bblk) of size mblk, and read (writ-
ten) asynchronously using double-buffering. This well-known technique logically splits the main memory in two equal
regions: while one region is devoted to the block of data that is currently processed, the other is used to both store the output
from the previous block and load the input for the next one. Once the computation on the current block is completed, the
roles of the two regions are swapped. The algorithm commences by loading the first block of SNPs Xblk from disk into mem-
ory; then, while the GLS’s corresponding to this block are solved, the next block of SNPs is loaded asynchronously in the sec-
ond memory region. (Analogously, the previous bblk is stored, while the current one is computed.)

When dealing with large analyses, an important optimization comes from, whenever possible, processing multiple SNPs
at once: Algorithm 2 shows how combining slow vector operations on XRi together originates efficient matrix operations on
Xblk 2 Rn�mblk (line 8).

2.2.1. Performance results: GWAS-1D-SMP
The shared memory implementation of Algorithm 2, here called GWAS-1D-SMP, makes use of parallelism in two different

ways [9]. The operations in lines 1 through 8 are dominated by Level 3 Basic Linear Algebra Subroutines (BLAS) and take full
advantage of a multithreaded implementation of BLAS and the Linear Algebra PACKage (LAPACK). By contrast, for the oper-
ations within the innermost loop (lines 11 through 14), which only involve very small or thin matrices, BLAS and especially
multithreaded BLAS are less efficient. Therefore, they are scheduled in parallel using OPENMP in combination with single-
threaded BLAS and LAPACK.

We compile GWAS-1D-SMP, written in C, with the GNU C compiler (GCC version 4.4.5) and link to Intel’s Math Kernel
Library (MKL version 10.3). All tests are executed on a system consisting of two six-core Intel X5675 processors, running
at 3.06 GHz, equipped with 32 GB of RAM, and connected to a 1 TB hard disk.

Preliminary measurements showed that changing p 2 f1; . . . ;20g results in performance variations on the order of system
fluctuations (below 1%). Therefore p ¼ 4, a value encountered in several GWA studies, is considered throughout all our
experiments.

In the first experiment, we compare the efficiency of GWAS-1D-SMP with GWAS-BASE, an equivalent in-core version. Fix-
ing n ¼ 10;000; p ¼ 4, and we let m vary between 103 and 107. For the out-of-core version, the SNPs are grouped in blocks of
size mblk ¼ 5000. As Fig. 1 shows, GWAS-1D-SMP scales linearly in the number of SNPs well beyond the maximum problem
size imposed by the 32 GB of RAM. Furthermore, the fact that the lines for the in-core and out-of-core algorithms overlap
perfectly confirms that the I/O operation from and to disk are entirely hidden by computation.

In the second experiment, Fig. 2, we compare the performance of GWAS-1D-SMP to that of two other solvers: FAST-LMM,
a program designed for GWAS on large datasets [8], and GENABEL, a widely spread library for genome studies [7]. Again, fix-
ing n ¼ 10;000 and p ¼ 4;m varies between 106 and 3:6 � 107. The fairly constant observed speedups of GWAS-1D-SMP over
FAST-LMM and GENABEL at m ¼ 3:6 � 107 are, respectively, 6.3 and 56.8.

 
 

 



distributed matrix: local data:

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

p0: p1: p2:
a11 a14
a31 a34

a12 a15
a32 a35

a13
a33

p3: p4: p5:
a21 a24
a41 a44

a22 a25
a42 a45

a23
a43

Fig. 3. Default 2D matrix distribution on a 2� 3 process grid.
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Fig. 1. Performance of single-trait solvers GWAS-BASE and GWAS-1D-SMP as a function of m. n ¼ 10;000; p ¼ 4, and m ranges from 103 to 107. The vertical
line indicates the limit for the in-core solver GWAS-BASE imposed by the RAM size.
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Fig. 2. Performance of the single-trait solver GWAS-1D-SMP compared to GENABEL and FAST-LMM. n ¼ 10;000;p ¼ 4, and m ranges from 106 to 3:6 � 107.
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2.3. Distributed memory

While GWAS-1D-SMP scales up to an arbitrarily large amount of SNPs m, the main memory is still a limiting factor for the
population size n: in fact, the algorithm necessitates the matrix M 2 Rn�n (or equivalently, its Cholesky factor L) to reside
fully in memory. Due to the triangular solve (Algorithm 2, line 2), keeping the matrix in secondary storage is not a viable
option. Our approach here consists in distributing M; L, and all matrices on which L operates across multiple compute nodes.
Thereby, any constraint on their size is lifted.

2.3.1. ELEMENTAL

As a framework for distributed-memory dense linear algebra operations, we use ELEMENTAL [11]. This C++ library, which is
based on the Message Passing Interface (MPI), operates on a virtual two-dimensional grid of processes; its name is inspired
by the fact that, in general, matrices are cyclically distributed across this grid in an element-wise fashion. This principal dis-
tribution5 is shown in Fig. 3.
5 In ELEMENTAL’s notation: ½MC;MR�.
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Algebraic operations on distributed matrices typically involve two stages: data redistribution (communication), and invo-
cation of single-node BLAS or LAPACK routines (computation). Optimal performance is attained by minimizing communica-
tion within the redistributions. In most cases, as shown in [11], this is achieved by choosing the process grid to be as close to
a perfect square as possible.

While a square process grid is optimal for performance, since all processes only hold non-contiguous portions of the
matrix, it complicates loading contiguously stored data from files into a distributed matrix. In the context of GWAS, the algo-
rithm has to load two objects of different nature: the matrix M, and the collections of vectors Xblk; the special nature of the
latter determines that the vectors can be loaded and processed in any order.

For loading M, we first read contiguous panels into the local memory of each process via standard file operations, and
then, by accumulating these panels, construct the global (distributed) version of M. This is done via ELEMENTAL’s axpy-inter-
face, a feature that makes it possible to add node-local matrices to a global one.

For loading Xblk instead, a collection of contiguously stored vectors is read into memory through more efficient means
than the axpy-interface by exploiting that, as long as consistently handled, the order of the vectors is irrelevant. The trick
is to use a matrix that is distributed on a virtual 1D reordering of the grid into a row of processes. As shown in Fig. 4, the
process-local data of such a matrix is a set of full columns, which can be loaded from a contiguous data-file. While these
local columns are not adjacent in the distributed matrix, ELEMENTAL guarantees that all algebraic operations performed on
them maintain their order. For performance reasons, prior to any computation, the matrix on the 1D ordering of this grid
needs to be redistributed to conform to the initial 2D process grid (Fig. 3). This redistribution, provided by ELEMENTAL, can
internally be performed most efficiently through a single MPI_Alltoall if the 1D grid is the concatenation of the rows of
the 2D grid.6

2.3.2. The parallel algorithm

Algorithm 3. Distributed memory algorithm for single-trait studies. Asynchronous I/O operations are depicted in green,
distributed matrices and operations in blue, and quantities that differ across processes in red

In Algorithm 3, we present the distributed-memory version of Algorithm 2 for np processes; the matrices distributed
among the processes and the corresponding operations are highlighted in blue; the quantities that differ from one process
to another are instead in red.

 
 

 

6 In ELEMENTAL: ½�;VR�.



distributed matrix:
a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

local data:
p0: p1: p2: p3: p4: p5:

a11 a17
a21 a27
a31 a37
a41 a47

a12 a18
a22 a28
a32 a38
a42 a48

a13
a23
a33
a43

a14
a24
a34
a44

a15
a25
a35
a45

a16
a26
a36
a46

Fig. 4. 1D matrix distribution on a 1� 6 process grid.
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The algorithm begins (line 1) by loading the first mblk
np vectors XRi into a local block Xblk on each process asynchronously.

Then, from the initially distributed M;XL, and y, it computes L;XL, and y (lines 2 – 3). Next, XL and y, respectively local copies
of XL and y, are created on each process (line 4). Since small local computations are significantly more efficient than the dis-
tributed counterparts, all processes compute STL and bT redundantly (line 5).

In order to compute Xblk :¼ L�1Xblk, Elemental requires all involved operands to be distributed across its 2D process grid.
However, the process-local Xblk is stored as contiguous columns. These matrices, which are seen as a cyclically distributed
matrix on a 1D grid (see Section 2.3.1), are therefore redistributed to Xblk on the 2D grid (line 9). After the computation
in line 10 completes, the resulting Xblk is distributed back: each process receives those contiguous columns Xblk of Xblk that
correspond to Xblk.

In addition to blocking XRi and bBi, by stacking the mblk row vectors SBLi’s belonging to the current block into Sblk, their com-
putation is combined into a single matrix product (line 12). In line 14, SBLi and XRi are selected from, respectively, Xblk and Sblk

for the innermost loop. This loop then computes the local bblk independently on each process. Finally, while bblk (whose col-
umns bi corresponds to the initially loaded vectors XRi within Xblk) is stored asynchronously, the next iteration commences.

In addition to ELEMENTAL’s distributed memory parallelism, we exploit node-local shared memory parallelism in two dif-
ferent ways: since the innermost loop (lines 13 through 20) works on very small quantities, it is parallelized with OPENMP;
all other operations involve larger matrices and make use of multithreaded BLAS libraries.

2.3.3. Performance results: GWAS-1D-MPI
We compile GWAS-1D-MPI, the C++-implementation of Algorithm 3, with the GNU C++ compiler (GCC version 4.8.1) with

OPENMPI (version 1.6.4), use ELEMENTAL (version 0.82-p1) and link to Intel’s Math Kernel Library (MKL version 11.0). In our
tests, we use a compute cluster with 40 nodes, each equipped with 16 GB of RAM and two quad-core Intel Harpertown
E5450 processors running at 3.00 Ghz. The nodes are connected via InfiniBand and access a high speed Lustre file system.7

Throughout all our experiments, we use one process per node with 8 threads each. Furthermore, we choose mblk —the
width of Xblk— as large as possible to fit in the combined main memory.

Processing huge numbers of SNPs out-of-coreSince GWAS-1D-MPI incorporates the double-buffering technique introduced
in Section 2.2, it can process datasets with arbitrarily large numbers of SNPs m without introducing any overhead due to I/O
operations. To support this claim, we perform a series of experiments on np ¼ 1;2;4, and 8 nodes (8, 16, 32, and 64 cores) to
solve a problem of size n ¼ 30;000 and p ¼ 4 with increasing dataset size m. The performance of these experiments is pre-
sented in Fig. 5, where the vertical lines mark the points at which the 16 GB of RAM per node are insufficient to store all m
vectors XRi. The plot shows a very smooth behavior with m (dominated by the triangular solve in Algorithm 3, line 10) well
beyond this in-core memory limit.

Increasing the population size n We now turn to the main goal of GWAS-1D-MPI: performing computations on problems
whose matrix M 2 Rn�n exceeds the capacity of the main memory. For this purpose, we use m ¼ 10;000; p ¼ 4 and execute
GWAS-1D-MPI on np ¼ 1;2;4, and 8 nodes (8, 16, 32, and 64 cores) with increasing matrix size n. The performance of these
executions (Fig. 6) is dominated by the cubic complexity of the Cholesky factorization of M (Algorithm 3, line 2). The vertical
lines indicate where the nodes’ aggregate main memory would be exceeded by the combined size of the distributed M and
the buffers for processing the XRi one by one. The plot shows that our implementation succeeds in overcoming these memory
limitations through increasing the number of nodes.

3. Multi-trait GWAS

In an important class of GWAS (analysis of ‘‘omics’’ phenotypes), the studies involve many traits yj [12–15]. In this case,
the set of generalized least squares problems in Eq. (1) extends into the second dimension j:
7 Due
MPI (Al
bij :¼ XT
i M�1

j Xi

� ��1
XT

i M�1
j yj; with i ¼ 1; . . . ;m and j ¼ 1; . . . ; t: ð4Þ
to the favorable ratio between computation and data movement, we recommend using algorithms GWAS-1D-MPI (Algorithm 3) and GWAS-2D-
gorithm 7, in Section 3) not only on traditional compute clusters, but on Cloud systems too.
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Fig. 5. Performance of the single-trait solver GWAS-1D-MPI as a function of m. n ¼ 30;000;p ¼ 4, and m ranges from 103 to 107. The vertical lines indicate
the limits for in-core versions of the parallel algorithm imposed by the combined RAM sizes.
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indicate the limits imposed by the combined RAM sizes.
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This extra dimension is not only reflected in the traits yj, but it also introduces varying matrices Mj. Such symmetric posi-
tive definite Mj’s share the common structure
Mj ¼ r2
j h2

j Uþ ð1� h2
j ÞI

� �
; ð5Þ
where the so called kinship matrix U 2 Rn�n is independent of j. This structure plays a critical role in the design of fast algo-
rithms for multi-trait GWAS.
3.1. The algorithm

In contrast to our single-trait algorithms, which are based on the Cholesky decomposition of M, the key to fast algorithms
for the multi-trait case is the eigendecomposition of U:
1 ZKZT :¼ U:
Here, Z and K are, respectively, the orthonormal collection of eigenvectors and the diagonal matrix of eigenvalues of U.
Substituting this decomposition, Eq. (5) becomes
Mj ¼ r2
j

�
h2

j ZTKZ|fflffl{zfflffl}
U

þð1� h2
j Þ ZT Z|{z}

I

�
¼ ZTr2

j h2
j Kþ ð1� h2

j ÞI
� �

Z:
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This means that (1) the eigenvectors of Mj and U are the same; (2) the eigenvalues of Mj are those of U shifted and scaled: 
8 Usi
2 Kj :¼ r2
j h2

j Kþ ð1� h2
j ÞI

� � 
As a result,8 M�1
j can be expressed as M�1

j ¼ ðZKjZ
TÞ�1 ¼ Z�TK�1

j Z�1 ¼ ZK�1ZT . Plugging this into Eq. (4) yields
 

bij ¼ XT
i ZK�1

j ZT Xi

� ��1
XT

i ZK�1
j ZT yj

¼ ðZT XiÞ
T
K�1

j ðZ
T XiÞ

� ��1
ðZT XiÞ

T
K�1

j ðZ
T yjÞ:
This expression shows that the assignments
3 eXi :¼ ZT Xi ðmatrix times matrixÞ
4 eyj :¼ ZT yj ðmatrix times vectorÞ
can, respectively, be computed independently of j and i. As a result, we have
bij ¼ eXT
i K
�1
j
eXi

� ��1eXT
i K
�1
j
eyj:
By decomposing
5 KjK
T
j :¼ K�1

j ðreciprocal square root of diagonalÞ
and assigning
6 Xij :¼ KT
j
eXi ðmany-vector scalingÞ

7 yj :¼ KT
j
eyj; ðvector scalingÞ
the problem then reduces to
bij ¼ XT
ij Xij

� ��1
XT

ijyj:
This ordinary least squares problem is of the same form as encountered in Section 2.1; hence it is solved in the same way.

Algorithm 4. Optimized algorithm for multi-trait studies
ng the orthonormality of Z : Z�1 ¼ ZT .
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As in the 1D case, we take advantage of Xi ¼ XLjXRið Þ and propagate this structure to eXi ¼ eXLjeXRi

� �
;Xij ¼ XLjjXRij

� �
,

and bij ¼
bTj

bBij

� �
. Extracting all objects independent of the indices i and j from the corresponding loops,

we obtain the mathematically optimized Algorithm 4. This optimization reduces the complexity of the algorithm from
Oðn3 þ n2ðmþ tÞpþmtnp2Þ to O n3 þ n2ðmþ tÞ þmtnp

� �
.

3.2. Out-of-core

Algorithm 5. Out-of-core algorithm for multi-trait studies. The yj;XRi, and bij are streamed from and to disk in blocks.
Asynchronous I/O operations are highlighted in green. (Function innerloops is given in Algorithm 6

Algorithm 6. Function innerloops computes a tile of bij’s from corresponding tiles of eXRi’s and eyj’s

To allow processing of arbitrarily large numbers of SNPs m and traits t, we make use of double-buffering mechanisms
equivalent to those discussed in Section 2.2, leading to Algorithm 5: In lines 3 through 5, the matrix–vector productseXRi :¼ ZT XRi are combined into far more efficient matrix–matrix products on blocks Xblkm of vectors XRi. While one eXblkm is
computed, the previous eXblkm and the next Xblkm are, respectively, stored and loaded simultaneously. Subsequently (lines 6
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– 8), the same mechanism is used to compute eyj :¼ ZT yj in blocks yblkt
. This process results in two temporary files containing,

respectively, all eXRi’s and eyj’s. These files are of the same size as the inputs XRi and yj, i.e., n �m and n � t doubles.
The main loops of the algorithm (lines 9 – 13) employ blocking and double-buffering along both m and t. Thereby, the

result is computed in tiles btile of vectors bij. While one of these tiles is computed, both the next set of vectors eXRi (and eyj)
is loaded in blocks eXtilem (and eytilet ) and the previous btile is stored asynchronously.

In total, the algorithm involves four blocking factors corresponding to blkt ; blkm; tilet , and tilem. In order to make the matrix
products involving yblkt

and Xblkm as efficient as possible, it comes naturally to choose their sizes large. On the other hand, in
order to maximize the computation per I/O ratio, the widths of eytilet and eXtilem should be chosen such that btile is roughly square.

A highly efficient shared memory implementation of Algorithm 5 is presented in [10]; it is shown to be several orders of
magnitude faster than comparable software packages.

3.3. Distributed memory

Due to the size of the main memory, the kinship matrix U 2 Rn�n limits the multi-trait shared memory implementation.
(Very much as the single-trait shared memory implementation was limited by the covariance matrix M 2 Rn�n.) To overcome
this limitation, we present an ELEMENTAL-based distributed memory solution: Algorithm 7.

Algorithm 7. Distributed memory algorithm for multi-trait studies. Asynchronous I/O operations are depicted in green,
distributed matrices and operations in blue, and quantities that differ across processes in red. (Function innerloops is
given in Algorithm 6)

To overcome the aforementioned limitation, this algorithm distributes U and its eigenvectors Z across multiple processes.

 
 

 

Consequently, applying the same technique used for Xblk in the single-trait Algorithm 3, the blocks of vectors Xblkm and
yblkt

—to which Z is applied— are also distributed.
The remainder of Algorithm 7 (lines 14 onward) does not involve any large matrices that necessitate distributing. Hence,

since each process can work on separate tiles btile, this part of the algorithm is embarrassingly parallel.

3.4. Performance results: GWAS-2D-MPI

The performance experiments for GWAS-2D-MPI, i.e., the implementation of Algorithm 7, are carried out with the same
setup used for GWAS-1D-MPI (Section 2.3.3). Again, the implementation makes use of Elemental—specifically of the Ele-
MRRR eigensolver [16]—and of Intel’s MKL library.

GWAS-2D-MPI vs. GWAS-1D-MPI. In the scenario of multi-trait studies (t > 1), the main advantage of GWAS-2D-MPI over
multiple runs of GWAS-1D-MPI is that redundant calculations are avoided. Complexity-wise, the difference is apparent:
Oðn3 þmntpÞ vs. Oðn3t þmn2tÞ, respectively, for GWAS-2D-MPI and GWAS-1D-MPI. The following experiment is designed
to illustrate such a gap. Fixing n ¼ 30;000; p ¼ 4;m ¼ 10;000, and increasing t from 1 to 100, we compare the runtime for
GWAS-2D-MPI with that for t independent runs of GWAS-1D-MPI. As Fig. 7 shows, regardless of the number of cores used,
GWAS-2D-MPI offers the best timings for t P 35. Most importantly, the difference in slope indicates that the difference
between the approaches will grow larger as t increases. Indeed, at t ¼ 5000 GWAS-2D-MPI outperforms t executions of
GWAS-1D-MPI by more than two orders of magnitude.
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Fig. 7. Performance of the multi-trait solver GWAS-2D-MPI (—) compared to t runs of single-trait solver GWAS-1D-MPI (- - -) as a function of t.
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Fig. 8. Performance of the multi-trait solver GWAS-2D-MPI as a function of m and t. n ¼ 30;000; p ¼ 4, and, while either m or t is fixed at 10;000, the other
ranges from 1;000 to 200;000. The vertical lines indicate the limits for in-core versions of the parallel algorithm imposed by the combined RAM sizes. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Large m and t Since the aforementioned double-buffering technique is applied to both the inputs (m SNPs XRi and t traits
yj) and the output (m � t vectors bij), the application of GWAS-2D-MPI is not constrained by either the number of SNPs or the
number of traits. This is shown in Fig. 8: In this experiment, with n ¼ 30;000 and p ¼ 4 constant, one of m and t is fixed to
10;000, and the other varies between 1000 and 200;000. The plot provides evidence that GWAS-2D-MPI solves, without
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penalty, GWAS that do not fit either in (np ¼ 1) the local memory of one node (dashed vertical red line), or (np > 1) the
aggregate memory from multiple nodes (green, blue, and yellow vertical lines).

In Fig. 8, one should also observe that the timings for the experiments with varying m, and for those with varying t are
very similar. The reason is that the execution time of Algorithm 7 is dominated by the matrix–matrix multiplicationseXblkm :¼ ZT Xblkm and eyblkt :¼ ZT yblkt

(Algorithm 7, lines 6 and 11), and the complexity of these operations —Oðn2mþ n2tÞ— is
perfectly symmetric with respect to m and t.

Large n. As the population size n increases, the quadratically growing memory requirement for the kinship matrix
U 2 Rn�n quickly surpass the memory available in a single node. To show that GWAS-2D-MPI overcomes this limitation,
we fix m ¼ t ¼ 10;000 and p ¼ 4, and let n grow from 5;000 to 85; 000. The resulting execution times in Fig. 9 clearly follow
a smooth cubic behavior in n.9 As for the single-trait case (Section 2.3, Fig. 6), the plot shows that the limit imposed by the
combined main memory size (dashed vertical lines) can be overcome by increasing the number of nodes.

4. Conclusion

We presented parallel algorithms for the computation of linear mixed-models based genome-wide association studies
(GWAS). They address the issue of growing dataset sizes due to the number of studied polymorphisms m, the population
size n, and/or the number of traits t.

The first algorithm uses a double-buffering technique in order to process datasets with arbitrarily large numbers of
genetic polymorphisms. Compared to other wide-spread GWAS-codes, our shared memory implementation, GWAS-1D-
SMP, was shown to be at least one order of magnitude faster.

The second algorithm enables the processing of datasets involving large populations by storing the relationship matrix in
the combined main memory of distributed memory architectures. GWAS-1D-MPI, the implementation of this algorithm, was
shown to scale in both the population size and the number of processes used.

The third algorithm extends the second by analyzing arbitrary numbers of traits at once avoiding redundant computation.
This reflects in the performance of our implementation GWAS-2D-MPI, which scales in all problem sizes, and is significantly
faster than multiple runs of GWAS-1D-MPI.

Together, these algorithms form a viable basis for the challenges posed by the scale of current and future genome-wide
association studies.
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