
47

Investigating the Security of Nexus 1000V Virtual
Switches in VMware ESXi Hypervisors

Raymond A. Hansen
Purdue University

401 N Grant St
West Lafayette, IN 47906

hansenr@purdue.edu

Benjamin Peterson
Purdue University

401 N Grant St
West Lafayette, IN 47906

Timothy Becker
Purdue University

401 N Grant St
West Lafayette, IN 47906

becker43@purdue.edu

ABSTRACT
In this paper, the security posture of two versions of the Cisco
Nexus 1000V virtual switch is tested against a set of exploits known

to be valid on physical switching infrastructure. Specifically, the

Nexus 1000V as implemented with VMware’s ESXi hypervisor is

examined. The attempted exploits are CAM table overflows, VLAN

hopping, Spanning Tree manipulation, ARP poisoning, and Private

VLAN attacks. With the exception of Spanning Tree manipulation,

the Nexus 1000V is vulnerable to all of the attacks in at least one

of the tested release combinations. This leads to a call for additional

security considerations when deploying the Nexus 1000V/ESXi

combination in data centers and cloud provider networks as

intended by their design.

Keywords
Network Security; Virtualization; Network Function
Virtualization; Layer 2 Security;

1. INTRODUCTION
Virtualization and cloud technologies are now pervasive in
enterprise networks [2] due the many advantages offered.
Implementation within enterprises allows for the reduction of
underutilized server infrastructure; thereby enabling efficiencies

in management and delivery of network applications and services

to users. In cloud provider environments, this virtualization is

further leveraged for rapid service provisioning, improved disaster

recovery and business continuity, and service isolation [13]. As

server virtualization has increased to nearly 75% of all x86
implementations [2], a need to effectively, efficiently, and
securely manage the network infrastructure that interconnects the
virtual machines, host systems, and hypervisors has also emerged.

Network function virtualization has been one of the primary

mechanisms by which this has been addressed. That is,

implementing a manageable virtual network device with every

hypervisor has added a layer of control and management

capabilities that are difficult to achieve with dedicated physical

switches, firewalls, and routers. VMware has termed their

implementation of the virtual network device vSwitch, which

provides a virtual switching fabric between virtual NICs, which

are connected to virtual machines. However, when virtualization

clusters can host hundreds, or thousands, of virtual machines, a

simple virtual switch may not accommodate the needs required by

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org. 
RIIT'16, September 28-October 01 2016, Boston, MA, USA  
© 2016 ACM. ISBN 978-1-4503-4453-1/16/09…$15.00  
DOI: http://dx.doi.org/10.1145/2978178.2978188

such complex demands. As such, VMware has enhanced these

capabilities further with the vNetwork Distributed Switch, seeking

to leverage the ability to manage multiple vSwitch instances from

one management console [3,10].

While this is desirable from a service system administration

standpoint, the distributed approach remains proprietary and

generally incompatible with the physical network infrastructure that

is present to physically interconnect the host hardware.

Additionally, as this approach is further implemented, the

traditional division of responsibilities between network/security

administrators and system administrators is blurred. Ultimately, this

could lead to a breakdown in the security posture an organization

has due to a lack of a single entity that is responsible for the

requisite tasks associated with that security posture.

Cisco Systems, while attempting to remediate this potential

breakdown and seeking to continue its dominance in the

enterprise network, created a virtual switch that is a direct

replacement for VMware’s vSwitch in ESX. This virtual network

device, the Nexus 1000V, is a virtualization of their Nexus fabric

extender switches as part of the Nexus Series of data center and

cloud provider infrastructure and seamlessly integrates into the

ESX/ESXi hypervisor [8,9]. The Nexus 1000V extends the

features and functionality available in vNetwork switch while

providing an interface identical to the physical Nexus switching

hardware.

While there are many known vulnerabilities and attacks against

physical infrastructure and switches, it is not currently established

if those same vulnerabilities are present in the virtualized switches

[2]. Additionally, very little is known concerning if those same

attacks that are successful in the physical implementations are

portable to the virtualized implementation [17]. Given the massive

numbers of data centers and cloud providers implementing

virtualization, and VMware holding a significant portion of the

market share [2], and Cisco having more than 12,000

implementations of the Nexus 1000V in ESX environments [9],

an investigation of the security of this virtualized architecture is

necessary. Due to the challenges of securing both data centers and

cloud environments, this knowledge could be immediately

critical. That is, as multitenancy grows in the data center and

cloud service provider networks, the ability to compromise the

network and expose data and information from another customer

is a dire possibility. Identifying these potential vulnerabilities and

understanding their attack profile is immediately necessary.

The remainder of the paper is organized as follows: section two

identifies the details of the network architecture; section three

indicates the specific attacks and methodologies that were

executed in this work. Section four details the results of each

attack on the different versions of the Nexus 1000V, and section

mailto:hansenr@purdue.edu
mailto:becker43@purdue.edu
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2978178.2978188

48

five provides the conclusions of the work and suggestions for future
efforts.

2. NETWORK ARCHITECTURE
Each of these attacks has been proven to be exploitable in
physical switching environments. As such to create a realistic test
platform, these were tested against the virtual switching
environment shown in Figure 1 below.

Figure 1 - Network Architecture for Attacks

Each instance of ESXi was installed with vSphere 6.0.0 and were

placed in a cluster managed by vCenter version 6.0.0 on the ESXi

system. Multiple virtual machines were installed on each system.

Minimally, a Kali Linux system was installed to act as an attacker,

a CentOS Linux sysem was installed to provide a target, and an

Ubuntu Linux client was installed to act as a second target system

and to run Wireshark as a monitoring/sniffing client. The physical

systems were interconnected with a Cisco 3750G, with the switch

uplink connected router, which performed port address translation

(PAT). Each ESXi instance had the Cisco Nexus 1000V installed

to replace the VMWare vSwitch according to [7]. In the first

iteration of the testing, the Nexus 10000V release 4.2(1)sv1(4)

was used. The second iteration used release 5.2(1)sv3(1.15) in

order to evaluate multiple releases of the virtual switch.

Cisco recommends configuration of three VLANs in the Nexus
1000v switching platform: Control, Packet, and Management
[5,6]. Additionally, five host VLANs were created for testing
purposes within this study.

Table 1 - VLAN & Network Assignment

VLAN ID Name IP Address

10 Management 10.96.1.0/24

20 Control 172.28.20.0/24

30 Packet 172.28.30.0/24

110 Private 172.28.110.0/24

120 Public 172.28.120.0/24

153 pvPrimary 172.28.153.0/24

154 pvCommunity N/A

155 pvIsolated N/A

Nearly all of the exploits were attempted over VLANs 110 and

120. An ACL was configured that denied any traffic that was
sourced from the “Public” VLAN and destined for the “Private”

VLAN. Also, VLANs 153, 154, and 155 are members of Private
VLANs to limit host-to-host communications. Further, VLAN
155 is set as an isolated network, which only allows connections

out to the Internet, with no connections to any other network

segments.

3. NETWORK ATTACKS USED
A general categorization of attacks against known and exploited
vulnerabilities in switches can be described as such [1]:

 CAM Overflow

 VLAN Hopping

 Spanning Tree Protocol Manipulation
 ARP Poisoning
 Private VLAN Attack

Specific tools, techniques, and processes were needed to perform

each of the attacks. Complex exploits that leveraged the success

of one attack to launch a subsequent attack were not attempted.

The tools used for each exploit type are shown in Table 2 below.

While other tools exist that are able to perform these exploits,

these tools were selected based on their ease of use, popularity,

documentation, and efficacy.

Table 2 - Vulnerability Exploit Tools

Attack Methodology Tool(s)

CAM Overflow macof [18]

VLAN Hopping Yersinia [15]

STP Manipulation Yersinia

ARP Poisoning Ettercap [16]

Private VLAN Attack Nemesis [14]

The following sections describe each of the individual attacks and

the methodologies used to attempt to exploit the potential

vulnerabilities.

3.1 CAM Overflow Attack
A CAM table overflow attack takes advantage of the reaction of a
switch when its forwarding table reaches its maximum capacity. A
CAM table, also called the MAC address table, is a dynamic table
located in memory that maps hosts’ MAC addresses to physical
interfaces on a switch. This table is populated as part of a
reactionary process that records MAC addresses as they are
received from ingress frames on a specific port. Because the
memory assigned to the table is finite, it has a maximum capacity.
When the table is full, the switch refuses to add any additional
entries into the table until other mappings are removed. Just as
traditional physical switches, the default aging time for the Nexus
1000v is 300 seconds.

If a switch receives a frame with a destination MAC address that

is not in the forwarding table, then its standard response is to

forward the frame out all ports in that broadcast domain.

Attackers can manipulate this response to their advantage by

intentionally filling the forwarding table to its maximum capacity

with counterfeit MAC addresses. Then, when the switch receives

a frame with a destination address that it is unaware of, it will

forward that packet out all interfaces in the broadcast domain,

including the attackers interface. The attacker can then eavesdrop

on this traffic and learn potentially sensitive data.

To attempt to exploit this vulnerability, the attack was launched

from the Kali Linux VM. The CentOS Linux VM sent ICMP

traffic to another host in the same network. A successful exploit

would show the ICMP packets being sent through the switch as

49

being sourced from the CentOS machine, but broadcast out all
interfaces on the switch since the CAM table would overflow;
resulting the MAC addresses of the VMs being overwritten.

Both of the CentOS Linux VMs were assigned new MAC addresses

so that it was certain that the Nexus 1000V had never dynamically

learned of those specific MAC addresses. After this change, the

macof CAM table overflow attack was started by executing the

command macof –i eth0 on the Kali Linux attacker [18].

The macof tool instantly started generating random MAC addresses

and sending thousands of counterfeit frames with those bogus MAC

addresses.

3.2 VLAN Hopping Attack
One method to execute a VLAN Hopping attack is to leverage the
ability to place two 802.1Q tags into an Ethernet frame. This
exploit sends a specifically crafted Ethernet frame with two
VLAN tags into the network to attempt to bypass existing filters,
ACLs, etc. The attacker can pass this special frame into an edge
interface of a switch, and the switch will then remove the outer-
most tag and pass along the rest of the frame, leaving the second
tag still in place. [4] This frame must traverse to another switch
for this exploit to be successful. This is because when the frame
leaves the switch, it should be sent onto the trunk connection with
the second VLAN tag still intact. When the second switch
receives this frame, it should forward the frame into the segment
indicated by the remaining VLAN tag. This method would bypass
the layer 3 filter, and “hop” straight onto the other VLAN without
any interaction with a layer 3 device. This traffic can only be
unidirectional, as the victim will not craft this type of frame for
return traffic. However, if there are routes present between the
two network segments, traffic may be returned via traditional
routing.

The three VMs of ESXi14 were used for this attack. The Kali Linux

attacker was configured to be on the Public network, which had an

ACL preventing any traffic from the Public network to the Private

network from being exchanged. The CentOS target was configured

to be a part of the Private network, where it cannot be reached by a

device on the Public network.

Yersinia was used to craft double-tagged 802.1Q frames carrying

ICMP packets destined for the Private network. Yersinia was

operated in interactive mode for this test, which is started by

executing the command yersinia –I [15]. Figure 2 shows the

output of the interactive Yersinia frame construction.

Figure 2 - IEEE 802.1Q Fields Defined via Yersinia

The crafted frames were sent from the attacker. As seen below,

the packets sent out from Kali Linux appeared to be properly

configured for the attack. These double tagged frames were then

verified on ingress to the Nexus 1000V, egress of the Nexus

1000V, and ingress of the Catalyst 3750G

Figure 3 – Double-Tagged Frame from Attacker

3.3 Spanning Tree Protocol Manipulation
The spanning tree protocols utilize specific frames between
switches in a network to eliminate switching loops. These specific
bridge protocol data units (BPDU) are used to indicate the
authoritative switch in the network, the best path to that switch,
and which interface(s) should be blocked to keep a loop from
forming. The dangers of switching loops in Ethernet environments
results in frames being forwarded along inefficient paths,
repeatedly forwarded between multiple switches, or generating
broadcast storms.

An attacker may craft a specific BPDU that forces the

reconvergence of the switches to a new topology. This would

potentially allow the attacker to force traffic to flow through a

different switch and allow that traffic to be monitored, copied,

replayed, etc. Additionally, a crafted BPDU or set of BPDUs

could be used to create a denial of service within the network.

Although the Nexus 1000V implemented a loop prevention

algorithm that was meant to eliminate the need for STP, there was

potential that it would still process STP BPDUs. To attempt to

exploit this vulnerability, spoofed STP messages were sent from the

attack VM to the Nexus 1000V. Yersinia was used, as it

allowed for the creation of falsified STP-compliant frames (Omella,

n.d.).

For this exploit, the attack VM was assigned to VLAN 30 and two

STP manipulations were attempted. The first manipulation was a

Configuration BPDU denial-of-service and the second was a

Topology Change Notification BPDU denial-of-service. Both of

these attempts were accomplished by again using Yersinia’s

interactive mode. This time however, the “STP” attack group was

selected. The configuration for these packets was based on the

information detailed by [19] as shown in Figure 4 below.

Figure 4 - Yersinia output for STP-compliant Frames

3.4 ARP Poisoning Attack
An ARP poisoning attack leverages the protocol that translates
addresses between layer 2 and layer 3, called ARP. The ARP
poisoning attack begins by identifying clients inside the network
and recording all of the selected clients MAC addresses (layer 2)
and IP Addresses (layer 3). ARP is designed in such a way that it
will overwrite any older entries in the ARP table that are
conflicting. So, the attacker will craft and send unsolicited ARP
messages containing the counterfeit IP address associated with the
attackers MAC address. After running the exploit, all traffic
destined for the victims IP Address will actually be sent to the MAC
address of the attacker, which then could potentially be
relayed appropriately to the victim so that they are unaware that
anything as changed.

To execute the ARP poisoning attack against the Nexus 1000V

the three hosts on ESXi14 were placed on the Public network

(VLAN 120). For this exploit, it was not necessary to have any

hosts on a separate network, as this attack is contained within a layer

2 broadcast domain. The attacker must be able to identify hosts of

interest. So, the client VMs were set to indefinitely ping each other.

The attacker captured packets to and from its interface connected

to the network, but was filtered down to only display this ICMP

traffic.

In the figure below, you can see that prior to the Ettercap attack,
the ARP table of the Catalyst 3750 switch appears normal, with
unique MAC addresses resolved to each IP address in the table. At

50

this point, the attacker is not capable of seeing any ICMP traffic

between the client VMs because the switch is forwarding it to

their intended destinations (MAC addresses) and no other

interface.

Figure 5 - Initial ARP Table for Poisoning Attack

To execute the ARP poisoning exploit, Ettercap was used. The

command used to execute the program on the directly connected

LAN Segment was: ettercap –T –M arp //// [12].

3.5 Private VLAN Attacks
Private VLANs are designed to allow multiple users to access one
VLAN, but prevent them from being able to communicate with each
other, unless it is to a designated destination (such as a
default gateway). This protection mechanism can often be avoided
by sending a packet with the destination MAC address of the default

gateway (which is allowed in the private network) and a destination

IP Address of another host inside the network. The packet will be

forwarded across the layer 2 network to the default gateway, and

the default gateway will route the packet back onto the same

network to the destination IP address, sidestepping the intended

security mechanism in place. This exploit typically only functions

in a unidirectional method, as the target will not craft this specific

packet to forward traffic back to the attacker. Despite the traffic

only being unidirectional, the attack can still be leveraged for a

denial of service attack.

To attempt to exploit private VLANs on the Nexus 1000V, a

private VLAN (VLAN 155) was configured for Isolation mode,

which restricts all hosts from communicating with each other. One

client VM and the attacker VM were migrated to this isolated

private VLAN on ESXi14. The hosts involved were configured with

the following IP Addresses and MAC addresses:

Table 3 -

Host IP Address MAC Address

Gateway 172.28.153.1 00:0f:8f:c6:ab:c8

Attacker 172.28.153.17 00:50:56:00:02:12

Target 172.28.153.18 00:50:56:a1:03:ec

To verify that the private VLAN was functioning as expected,

each host, the attacker and target attempted to ping each other and

the gateway. If the private VLAN is functioning properly, both the

target and attacker should be able to ping their gateways

successfully. However, pings to each other should be unsuccessful

as shown in Figure 6 below.

The target VM was capturing packets with Wireshark on its

interface connected to the isolated VLAN. While verifying the

private VLAN configuration, no standard ICMP packets destined

for the target from the attacker were captured with Wireshark,

which further validates the configuration of the private VLAN.

Nemesis was used to craft the packets needed to exploit this

vulnerability [11]. On the attacker machine, the command sudo
nemesis icmp –d eth0 –S 172.28.153.18 –D

172.28.153.17 –M 00:0f:8f:c6:ab:c8 was executed to
send the manipulated ICMP packet. The command sends an ICMP
packet with a source IP address of 172.28.253.18, a destination IP

address of 172.28.153.17 and a destination MAC address of
00:0f:8f:c6:ab:c8.

Figure 6 – Target Connectivity

4. RESULTS
Table 4 shows a simple summary of the different exploits against
the two different architectures. At a rudimentary level, the same
vulnerabilities that are present in physical switches are also
present in the Cisco Nexus 1000V virtual switch. A majority of
these span different releases of the Nexus 1000V as well.

Table 4 - Summary of Results

 CAM
Manip

VLAN
Hopping

STP ARP
Poison

Private
VLAN

ESXi 5.0 with
Nexus 1000V

release 4.2(1)

Y Y N Y Y

ESXi 6.0 with
Nexus 1000V
release 5.2(1)

N Y - Y Y

In the earlier release of the Nexus 1000V, the CAM overflow attack

was successful. That is, the valid MAC addresses were purged from

the CAM table and replaced with randomly created MAC addresses

that were assigned to valid interfaces on the virtual switch. The

two hosts began losing 100% of the frames sent. However, with

release 5.2(1), the ICMP packets sent by the victim were

successfully sent and received back while the attack was

continuously running

Executing the show mac address-table count vlan

120 command, the Nexus 1000V reported a total number of
20,480 MAC addresses, and never displayed a value greater than
that number. Despite Cisco documentation stating that the
maximum number of MAC addresses per VLAN within a VEM is
1024 (Cisco Systems, Inc., n.d.), clearly more were present.

The CAM table remained full as the attack continued, but the

Wireshark sniffer never received any broadcast ICMP packets

from the sending machine. In theory, the Nexus 1000v would not

have added the new MAC addresses to the forwarding table, and

would have been unaware of where to send the ICMP packets.

The normal reaction for a switch in this scenario would be to

forward the frame out ALL interfaces in the broadcast domain.

However this behavior was not observed.

In an effort to understand why the attack was ineffective on the

newer release, several factors were analyzed concerning the

behavior of the mac address table and an attempt to quantify the

51

rate at which the attacker could fill the CAM table. Based on these
efforts, the Nexus 1000V CAM table could be filled to 20,480
unique addresses in just over 360ms.

To determine if the forwarding table was static or “rolling”, I took

a sample of the mac-address table after the macof attack had been

run against it and was at max capacity of 20,480 mac addresses.

After the sample was recorded, I ran the attack again to generate

all new mac addresses. I then took a second sample to compare to.

If the forwarding table was a “rolling” table, the entries in both

tables should be drastically different, and in the very least have

entries that are in very different positions from one another. While

examining the CAM tables more thoroughly, it was noticed that

there were several static MAC address mappings, among the

thousands of dynamic mappings. All of the dynamic mappings were

mapped to the interface that connected to the attacker, which was

expected. However, the static mappings pointed to the other virtual

hosts in the virtual network.

It was determined that the Cisco Nexus 1000v has a MAC address

auto-learn feature that is now enabled by default, which uses the

integration with VMware to set a static MAC address mapping to

all hosts connected to the switch. This feature was introduced in

Cisco Nexus 1000v version 4.2(1)sv1(5.1) (Cisco Systems, Inc.,

2014). Because all of the virtual machines have permanent MAC
address table entries, these mappings can never be pushed out of
the forwarding table by dynamic entries and will always
supersede dynamic entries. This explains why the CAM table
overflow attack was ineffective against the Nexus 1000v. Because
of these static entries that have been installed automatically, a CAM
table overflow attack becomes ineffective as seen in the
release 5.2(1).

Both tested versions of the Nexus 1000V were susceptible to the

VLAN hopping exploit. It was noted that in both cases, the double

tagged frames were sent through the Nexus 1000V and processed

accordingly. That is, the frame was passed into the Nexus 1000v

switch, and the outer tag (VLAN 120) was stripped off, while the

second tag remained. The Wireshark VM also recorded the packet

being sent from the system-uplink of the Nexus 1000v switch to the

Catalyst 3750G switch with the inner VLAN tag still present.

Beyond the Nexus 1000v egress interface, the packet is dropped at

some point. The target’s virtual interface was monitored in an

attempt to verify if the traffic had made the “hop” across VLANs,

however that packet for an unknown reason would always be

dropped before it could be viewed on VLAN 110. These results

were the same whether the attacker VM was connected to an

interface on the Nexus 1000V set as trunk or access; the packets

monitored in the switch appeared the same with both

configurations. Monitoring the egress traffic of the uplink port

channels on the Nexus 1000v indicated that the Nexus 1000V was

forwarding the packets with the second VLAN tag intact to the

physical Catalyst 3750G.

The attempt to exploit the spanning tree protocol on the Nexus

1000V was limited to the release 4.2(1). After the packets being sent
by Yersinia had been verified, their impact on the Nexus
1000V was assessed. The most apparent observation was that the
switch’s functionality had persisted despite the attempted
manipulations and no further STP BPDUs were identified on the
network. Had the attack been successful, the switch would have
been overwhelmed with CPU intensive computations and its
forwarding functions would have been impacted. Because of this,
the CPU usage of the VSM in vCenter was checked to further verify
the impact of the attempts. It was found that the CPU usage

had remained at a level consistent with normal usage, indicating that
the spanning tree BPDUs were discarded without processing.

ARP Poisoning

Regardless of Nexus 1000V release tested, the ARP poisoning

exploit was successful. Shortly after executing the ARP poisoning

exploit, the ARP table of the Catalyst 3750G quickly changed and

showed that all IP addresses, except for the gateway pointed to the

MAC address of the attacker, Kali Linux. This indicates that the

attack against the Nexus 1000V was successful and propagated

those spoofed MAC addresses to the upstream switch as well.

Figure 7 below shows a portion of the ARP table on the Catalyst

3750G after the attack was executed.

Figure 7 - Ending ARP Table for Poisoning Attack

After the ARP table was successfully poisoned, the ICMP traffic
between client VMs was successfully redirected to the attacker
VM as a man in the middle.

Finally, both tested releases of the Nexus 1000V proved

vulnerable to an attack on Private VLANs. Upon executing the

attack command, the target VM immediately captured ICMP

packets with a destination IP address of itself and a source IP

address of the attacker, indicating the ICMP packet was

successfully sent to the target from the attacker across the private

VLAN. However, the attacker did not receive the ICMP response

packets as the client didn’t craft special replies and the attacker

didn’t create an attack on the gateway that would forward

messages back in a bi-directional manner.

5. CONCLUSIONS
The Cisco Nexus 1000v is a robust and well-implemented virtual
switching solution for large virtual computing systems. However,
it is clearly susceptible to many of the same vulnerabilities that
other physical switches are vulnerable to as well. In a multi-tenant
virtual environment, it appears that layer 2 exploits such as ARP

poisoning, VLAN Hopping, and private VLAN exploits are a real

threat, if they are not effectively mitigated. It appears that more

recent versions of the software have used the integration with

VMware to allow for a more secure and dynamic solution. While

all of these attacks require the ability to craft frames and packets

within specific VLANs, some would argue that these types of

attacks are of little concern. However, with the growth of cloud

services like IaaS and Paas, these attacks may become plausible

from remote systems that have direct access to the VLANs. This

causes significant concern, as successful exploitations at the lower

layers can be leveraged for higher layer access (Layer 7 data for

instance).

Many of these vulnerabilities can be mitigated with additional

security and configuration, but if left exposed could create

substantial problems. The popularity of virtualization has made

solutions like this significantly more common, and because of this

users of these VMware and Cisco products should to be aware of

these potential vulnerabilities. As stated at the beginning of this

paper, the lines between network administrator and systems

administrator are becoming blurry with the usage of this

technology. It is possible that a systems administrator with little

networking experience or insight into these vulnerabilities could

be the primary care taker of the solution, and could unknowingly

leave gaping holes into the network without realizing it. This

52

could leave the data center, cloud provider, or other clients and
customers exposed to potential threats.

It was also possible that the Nexus 1000V introduced new

vulnerabilities. In particular, it was possible that the means of

communication used to facilitate distributed switching had created

vulnerabilities that were not present in physical switches. There was

also potential that the mere fact the Nexus 1000V resided as a

virtual machine could also pose as a security implication.

Regardless of whether the potential vulnerabilities had previously

existed in physical switches or were introduced with the transition

to the virtual realm, each posed a potential security implication.

Yet, only the vulnerabilities known in the physical architecture were

considered here. In the future, additional insight into this vector

should be examined.

Future work certainly should address many of the issues presented

here. The Advanced (for pay) versions of the Nexus 1000V were

not tested here, only the Essential versions. It is assumed that they

will behave similarly against the attacks shown here. Cisco

indicates, “the software image is the same for both the editions.” [7]

However, for factual verification of functionality, the 1000V

Advanced must be tested. Additionally, more complex exploits

could be crafted to identify limits of the Nexus 1000V. The

deployment of the Nexus 1000V into the ESXi environment was

not examined in depth during this study. There is the potential for

a compromised version of the virtual switch to be deployed that

could leak data or provide back door access. The potential

exploitation of the platform itself is certainly of concern for the

more than 10K deployed systems utilizing the Nexus switching

platform. Lastly, the testing of multiple Nexus 1000Vs at data

center scale should be evaluated and its inter-switch and switch-

controller communications for passing of configuration

information.

