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ABSTRACT 
In this paper, the security posture of two versions of the Cisco 
Nexus 1000V virtual switch is tested against a set of exploits known 

to be valid on physical switching infrastructure. Specifically, the 

Nexus 1000V as implemented with VMware’s ESXi hypervisor is 

examined. The attempted exploits are CAM table overflows, VLAN 

hopping, Spanning Tree manipulation, ARP poisoning, and Private 

VLAN attacks. With the exception of Spanning Tree manipulation, 

the Nexus 1000V is vulnerable to all of the attacks in at least one 

of the tested release combinations. This leads to a call for additional 

security considerations when deploying the Nexus 1000V/ESXi 

combination in data centers and cloud provider networks as 

intended by their design. 
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1.  INTRODUCTION 
Virtualization and cloud technologies are now pervasive in 
enterprise networks [2] due the many advantages offered. 
Implementation within enterprises allows for  the  reduction  of 
underutilized server infrastructure; thereby enabling efficiencies 

in management and delivery of network applications and services 

to  users.  In  cloud  provider  environments,  this virtualization  is 

further leveraged for rapid service provisioning, improved disaster 

recovery and business continuity, and service isolation [13]. As 

server virtualization has increased to nearly 75% of all x86 
implementations  [2],  a  need  to  effectively,   efficiently,  and 
securely manage the network infrastructure that interconnects the 
virtual machines, host systems, and hypervisors has also emerged. 

 

Network function virtualization has been one of the primary 

mechanisms by which this has been addressed. That is, 

implementing a manageable virtual network device with  every 

hypervisor has added a layer of control and management 

capabilities that are difficult to achieve with dedicated physical 

switches, firewalls, and routers. VMware has termed their 

implementation of the virtual network device vSwitch, which 

provides a virtual switching fabric between virtual NICs, which 

are connected to virtual machines. However, when virtualization 

clusters can host hundreds, or thousands, of virtual machines, a 

simple virtual switch may not accommodate the needs required by 
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such complex demands. As such, VMware has enhanced these 

capabilities further with the vNetwork Distributed Switch, seeking 

to leverage the ability to manage multiple vSwitch instances from 

one management console [3,10]. 
 

While this is desirable from a service system administration 

standpoint, the distributed approach remains proprietary and 

generally incompatible with the physical network infrastructure that 

is present to physically interconnect the host hardware. 

Additionally, as this approach is further implemented, the 

traditional division of responsibilities between network/security 

administrators and system administrators is blurred. Ultimately, this 

could lead to a breakdown in the security posture an organization 

has due to a lack of a single entity that is responsible for the 

requisite tasks associated with that security posture. 
 

Cisco Systems, while attempting to remediate this potential 

breakdown   and   seeking   to   continue   its   dominance   in   the 

enterprise network, created a virtual switch that is a direct 

replacement for VMware’s vSwitch in ESX. This virtual network 

device, the Nexus 1000V, is a virtualization of their Nexus fabric 

extender switches as part of the Nexus Series of data center and 

cloud provider infrastructure and seamlessly integrates into the 

ESX/ESXi  hypervisor  [8,9].  The  Nexus  1000V  extends  the 

features and functionality available in vNetwork switch while 

providing an interface identical to the physical Nexus switching 

hardware. 
 

While there are many known vulnerabilities and attacks against 

physical infrastructure and switches, it is not currently established 

if those same vulnerabilities are present in the virtualized switches 

[2]. Additionally, very little is known concerning if those same 

attacks that are successful in the physical implementations are 

portable to the virtualized implementation [17]. Given the massive 

numbers of data centers and cloud providers implementing 

virtualization, and VMware holding a significant portion of the 

market share [2], and Cisco having more than 12,000 

implementations of the Nexus 1000V in ESX environments [9], 

an investigation of the security of this virtualized architecture is 

necessary. Due to the challenges of securing both data centers and 

cloud   environments,   this   knowledge   could   be   immediately 

critical. That is, as multitenancy grows in the data center and 

cloud service provider networks, the ability to compromise the 

network and expose data and information from another customer 

is a dire possibility. Identifying these potential vulnerabilities and 

understanding their attack profile is immediately necessary. 
 

The remainder of the paper is organized as follows: section two 

identifies the details of the network  architecture; section  three 

indicates  the  specific  attacks   and   methodologies   that   were 

executed in this work. Section four details the results of each 

attack on the different versions of the Nexus 1000V, and section
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five provides the conclusions of the work and suggestions for future 
efforts. 

 

2.  NETWORK ARCHITECTURE 
Each  of  these  attacks  has  been  proven  to  be  exploitable  in 
physical switching environments. As such to create a realistic test 
platform, these were tested against the virtual switching 
environment shown in Figure 1 below. 

 

Figure 1 - Network Architecture for Attacks 

Each instance of ESXi was installed with vSphere 6.0.0 and were 

placed in a cluster managed by vCenter version 6.0.0 on the ESXi 

system. Multiple virtual machines were installed on each system. 

Minimally, a Kali Linux system was installed to act as an attacker, 

a CentOS Linux sysem was installed to provide a target, and an 

Ubuntu Linux client was installed to act as a second target system 

and to run Wireshark as a monitoring/sniffing client. The physical 

systems were interconnected with a Cisco 3750G, with the switch 

uplink connected router, which performed port address translation 

(PAT). Each ESXi instance had the Cisco Nexus 1000V installed 

to  replace the VMWare vSwitch  according to [7]. In  the first 

iteration of the testing, the Nexus 10000V release 4.2(1)sv1(4) 

was used. The second iteration used release  5.2(1)sv3(1.15) in 

order to evaluate multiple releases of the virtual switch. 
 

Cisco recommends configuration of three VLANs in the Nexus 
1000v  switching  platform:  Control,  Packet,  and  Management 
[5,6]. Additionally, five host VLANs were created for testing 
purposes within this study. 

Table 1 - VLAN & Network Assignment 
 

VLAN ID Name IP Address 

10 Management 10.96.1.0/24 

20 Control 172.28.20.0/24 

30 Packet 172.28.30.0/24 

110 Private 172.28.110.0/24 

120 Public 172.28.120.0/24 

153 pvPrimary 172.28.153.0/24 

154 pvCommunity N/A 

155 pvIsolated N/A 

Nearly all of the exploits were attempted over VLANs 110 and 

120. An ACL was configured that denied any traffic that was 
sourced from the “Public” VLAN and destined for the “Private” 

VLAN. Also, VLANs 153, 154, and 155 are members of Private 
VLANs  to  limit  host-to-host  communications.  Further,  VLAN 
155 is set as an isolated network, which only allows connections 

out to  the Internet, with  no  connections to  any other  network 

segments. 

3.  NETWORK ATTACKS USED 
A general categorization of attacks against known and exploited 
vulnerabilities in switches can be described as such [1]: 

      CAM Overflow 

      VLAN Hopping 

      Spanning Tree Protocol Manipulation 
      ARP Poisoning 
      Private VLAN Attack 

Specific tools, techniques, and processes were needed to perform 

each of the attacks. Complex exploits that leveraged the success 

of one attack to launch a subsequent attack were not attempted. 

The tools used for each exploit type are shown in Table 2 below. 

While other tools exist that are able to perform these exploits, 

these tools were selected based on their ease of use, popularity, 

documentation, and efficacy. 

Table 2 - Vulnerability Exploit Tools 
 

Attack Methodology Tool(s) 

CAM Overflow macof [18] 

VLAN Hopping Yersinia [15] 

STP Manipulation Yersinia 

ARP Poisoning Ettercap [16] 

Private VLAN Attack Nemesis [14] 

The following sections describe each of the individual attacks and 

the methodologies used to attempt to exploit the potential 

vulnerabilities. 

3.1  CAM Overflow Attack 
A CAM table overflow attack takes advantage of the reaction of a 
switch when its forwarding table reaches its maximum capacity. A 
CAM table, also called the MAC address table, is a dynamic table 
located in memory that maps hosts’ MAC addresses to physical 
interfaces on a switch. This table is populated as part of a 
reactionary  process  that  records  MAC  addresses  as  they  are 
received from ingress frames on a specific port. Because the 
memory assigned to the table is finite, it has a maximum capacity. 
When the table is full, the switch refuses to add any additional 
entries into the table until other mappings are removed. Just as 
traditional physical switches, the default aging time for the Nexus 
1000v is 300 seconds. 

If a switch receives a frame with a destination MAC address that 

is not in the forwarding table, then its standard response is to 

forward  the  frame  out  all  ports  in  that  broadcast  domain. 

Attackers can manipulate this response to their advantage by 

intentionally filling the forwarding table to its maximum capacity 

with counterfeit MAC addresses. Then, when the switch receives 

a frame with a destination address that it is unaware of, it will 

forward that packet out all interfaces in the broadcast domain, 

including the attackers interface. The attacker can then eavesdrop 

on this traffic and learn potentially sensitive data. 

To attempt to exploit this vulnerability, the attack was launched 

from the Kali Linux VM. The CentOS Linux VM sent ICMP 

traffic to another host in the same network. A successful exploit 

would show the ICMP packets being sent through the switch as
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being sourced from the CentOS machine, but broadcast out all 
interfaces on the switch since the CAM table would overflow; 
resulting the MAC addresses of the VMs being overwritten. 

Both of the CentOS Linux VMs were assigned new MAC addresses 

so that it was certain that the Nexus 1000V had never dynamically 

learned of those specific MAC addresses. After this change,  the 

macof CAM  table  overflow attack  was  started by executing the 

command macof –i eth0 on the Kali Linux attacker [18]. 

The macof tool instantly started generating random MAC addresses 

and sending thousands of counterfeit frames with those bogus MAC 

addresses. 

3.2  VLAN Hopping Attack 
One method to execute a VLAN Hopping attack is to leverage the 
ability to  place two  802.1Q tags into an  Ethernet frame.  This 
exploit  sends  a  specifically  crafted  Ethernet  frame  with  two 
VLAN tags into the network to attempt to bypass existing filters, 
ACLs, etc. The attacker can pass this special frame into an edge 
interface of a switch, and the switch will then remove the outer- 
most tag and pass along the rest of the frame, leaving the second 
tag still in place. [4] This frame must traverse to another switch 
for this exploit to be successful. This is because when the frame 
leaves the switch, it should be sent onto the trunk connection with 
the  second  VLAN  tag  still  intact.  When  the  second  switch 
receives this frame, it should forward the frame into the segment 
indicated by the remaining VLAN tag. This method would bypass 
the layer 3 filter, and “hop” straight onto the other VLAN without 
any interaction with a layer 3 device. This traffic can only be 
unidirectional, as the victim will not craft this type of frame for 
return traffic. However, if there are routes present between the 
two network segments, traffic may be returned via traditional 
routing. 

The three VMs of ESXi14 were used for this attack. The Kali Linux 

attacker was configured to be on the Public network, which had an 

ACL preventing any traffic from the Public network to the Private 

network from being exchanged. The CentOS target was configured 

to be a part of the Private network, where it cannot be reached by a 

device on the Public network. 
 

Yersinia was used to craft double-tagged 802.1Q frames carrying 

ICMP packets destined for the Private network. Yersinia was 

operated in  interactive  mode for this test,  which is started by 

executing the command yersinia –I [15]. Figure 2 shows the 

output of the interactive Yersinia frame construction. 
 

 
Figure 2 - IEEE 802.1Q Fields Defined via Yersinia 

The crafted frames were sent from the attacker. As seen below, 

the packets sent out from Kali Linux appeared to be properly 

configured for the attack. These double tagged frames were then 

verified  on  ingress  to  the  Nexus  1000V,  egress  of  the  Nexus 

1000V, and ingress of the Catalyst 3750G 

 

Figure 3 – Double-Tagged Frame from Attacker 

3.3  Spanning Tree Protocol Manipulation 
The spanning tree protocols utilize specific frames between 
switches in a network to eliminate switching loops. These specific 
bridge  protocol  data  units  (BPDU)  are  used  to  indicate  the 
authoritative switch in the network, the best path to that switch, 
and which interface(s) should be blocked to keep a loop from 
forming. The dangers of switching loops in Ethernet environments 
results   in   frames   being   forwarded   along   inefficient   paths, 
repeatedly  forwarded  between  multiple switches, or generating 
broadcast storms. 

An attacker may craft a specific BPDU that forces the 

reconvergence of the switches to a new topology. This would 

potentially allow the attacker to force traffic to flow through a 

different switch and allow that traffic to be monitored, copied, 

replayed,  etc.  Additionally,  a  crafted  BPDU  or  set  of BPDUs 

could be used to create a denial of service within the network. 

Although the Nexus 1000V implemented a loop prevention 

algorithm that was meant to eliminate the need for STP, there was 

potential that it would still process STP BPDUs. To attempt to 

exploit this vulnerability, spoofed STP messages were sent from the  

attack  VM to  the  Nexus 1000V.  Yersinia  was  used,  as  it 

allowed for the creation of falsified STP-compliant frames (Omella, 

n.d.). 

For this exploit, the attack VM was assigned to VLAN 30 and two 

STP manipulations were attempted. The first manipulation was a 

Configuration BPDU denial-of-service and the second was a 

Topology Change Notification BPDU denial-of-service. Both of 

these attempts were accomplished by again using Yersinia’s 

interactive mode. This time however, the “STP” attack group was 

selected. The configuration for these packets was based on the 

information detailed by [19] as shown in Figure 4 below. 

 
Figure 4 - Yersinia output for STP-compliant Frames 

3.4  ARP Poisoning Attack 
An ARP poisoning attack leverages the protocol that translates 
addresses between layer 2 and layer 3, called ARP. The ARP 
poisoning attack begins by identifying clients inside the network 
and recording all of the selected clients MAC addresses (layer 2) 
and IP Addresses (layer 3). ARP is designed in such a way that it 
will overwrite any older entries in the ARP table that are 
conflicting. So, the attacker will craft and send unsolicited ARP 
messages containing the counterfeit IP address associated with the 
attackers MAC address. After running the exploit, all traffic 
destined for the victims IP Address will actually be sent to the MAC 
address of the attacker, which then could potentially be 
relayed appropriately to the victim so that they are unaware that 
anything as changed. 

To execute the ARP poisoning attack against the Nexus 1000V 

the three hosts on ESXi14 were placed on the Public network 

(VLAN 120). For this exploit, it was not necessary to have any 

hosts on a separate network, as this attack is contained within a layer 

2 broadcast domain. The attacker must be able to identify hosts of 

interest. So, the client VMs were set to indefinitely ping each other. 

The attacker captured packets to and from its interface connected 

to the network, but was filtered down to only display this ICMP 

traffic. 

In the figure below, you can see that prior to the Ettercap attack, 
the ARP table of the Catalyst 3750 switch appears normal, with 
unique MAC addresses resolved to each IP address in the table. At
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this point, the attacker is not capable of seeing any ICMP traffic 

between the client VMs because the switch is forwarding it to 

their   intended   destinations   (MAC   addresses)   and   no   other 

interface. 

 

Figure 5 - Initial ARP Table for Poisoning Attack 

To execute the ARP poisoning exploit, Ettercap was used. The 

command used to execute the program on the directly connected 

LAN Segment was: ettercap –T –M arp //// [12]. 

3.5  Private VLAN Attacks 
Private VLANs are designed to allow multiple users to access one 
VLAN, but prevent them from being able to communicate with each  
other, unless it is to  a designated destination  (such  as a 
default gateway). This protection mechanism can often be avoided 
by sending a packet with the destination MAC address of the default 

gateway (which is allowed in the private network) and a destination 

IP Address of another host inside the network. The packet will be 

forwarded across the layer 2 network to the default gateway, and 

the default gateway will route the packet back onto the same 

network to the destination IP address, sidestepping the intended 

security mechanism in place. This exploit typically only functions 

in a unidirectional method, as the target will not craft this specific 

packet to forward traffic back to the attacker. Despite the traffic 

only being unidirectional, the attack can still be leveraged for a 

denial of service attack. 

To  attempt to exploit private VLANs on  the  Nexus 1000V, a 

private VLAN (VLAN 155) was configured for Isolation mode, 

which restricts all hosts from communicating with each other. One 

client VM and the attacker VM were migrated to this isolated 

private VLAN on ESXi14. The hosts involved were configured with 

the following IP Addresses and MAC addresses: 

Table 3 - 
 

Host IP Address MAC Address 

Gateway 172.28.153.1 00:0f:8f:c6:ab:c8 

Attacker 172.28.153.17 00:50:56:00:02:12 

Target 172.28.153.18 00:50:56:a1:03:ec 

 
To verify that the private VLAN was functioning as expected, 

each host, the attacker and target attempted to ping each other and 

the gateway. If the private VLAN is functioning properly, both the 

target and attacker should be able to ping their gateways 

successfully. However, pings to each other should be unsuccessful 

as shown in Figure 6 below. 

The target VM was capturing packets with Wireshark on its 

interface connected to the isolated VLAN. While verifying the 

private VLAN configuration, no standard ICMP packets destined 

for the target from the attacker were captured with Wireshark, 

which further validates the configuration of the private VLAN. 

Nemesis was used to craft the packets needed to exploit this 

vulnerability [11]. On the attacker machine, the command sudo 
nemesis  icmp  –d  eth0  –S  172.28.153.18  –D 

172.28.153.17 –M 00:0f:8f:c6:ab:c8 was  executed  to 
send the manipulated ICMP packet. The command sends an ICMP 
packet with a source IP address of 172.28.253.18, a destination IP 

address  of  172.28.153.17  and  a  destination  MAC  address  of 
00:0f:8f:c6:ab:c8. 

 

Figure 6 – Target Connectivity 

4.  RESULTS 
Table 4 shows a simple summary of the different exploits against 
the two different architectures. At a rudimentary level, the same 
vulnerabilities  that  are  present  in  physical  switches  are  also 
present in the Cisco Nexus 1000V virtual switch. A majority of 
these span different releases of the Nexus 1000V as well. 

Table 4 - Summary of Results 
 

 CAM 
Manip 

VLAN 
Hopping 

STP ARP 
Poison 

Private 
VLAN 

ESXi 5.0 with 
Nexus  1000V 

release 4.2(1) 

Y Y N Y Y 

ESXi 6.0 with 
Nexus  1000V 
release 5.2(1) 

N Y - Y Y 

 
In the earlier release of the Nexus 1000V, the CAM overflow attack 

was successful. That is, the valid MAC addresses were purged from 

the CAM table and replaced with randomly created MAC  addresses  

that  were  assigned  to  valid  interfaces  on  the virtual switch. The 

two hosts began losing 100% of the frames sent. However, with 

release 5.2(1), the ICMP packets sent by the victim were 

successfully sent and received back while the attack was 

continuously running 

Executing the show mac address-table count vlan 

120 command,  the  Nexus  1000V  reported  a  total  number  of 
20,480 MAC addresses, and never displayed a value greater than 
that number. Despite Cisco documentation stating that the 
maximum number of MAC addresses per VLAN within a VEM is 
1024 (Cisco Systems, Inc., n.d.), clearly more were present. 

The CAM table remained full as the attack continued, but the 

Wireshark sniffer  never received any broadcast ICMP packets 

from the sending machine. In theory, the Nexus 1000v would not 

have added the new MAC addresses to the forwarding table, and 

would have been unaware of where to send the ICMP packets. 

The normal reaction for a switch in this scenario would be to 

forward the frame out ALL interfaces in the broadcast domain. 

However this behavior was not observed. 

In an effort to understand why the attack was ineffective on the 

newer release, several factors were analyzed concerning the 

behavior of the mac address table and an attempt to quantify the
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rate at which the attacker could fill the CAM table. Based on these 
efforts, the Nexus 1000V CAM table could be filled to 20,480 
unique addresses in just over 360ms. 

To determine if the forwarding table was static or “rolling”, I took 

a sample of the mac-address table after the macof attack had been 

run against it and was at max capacity of 20,480 mac addresses. 

After the sample was recorded, I ran the attack again to generate 

all new mac addresses. I then took a second sample to compare to. 

If the forwarding table was a “rolling” table, the entries in both 

tables should be drastically different, and in the very least have 

entries that are in very different positions from one another. While 

examining the CAM tables more thoroughly, it was noticed that 

there were several static MAC address mappings, among the 

thousands of dynamic mappings. All of the dynamic mappings were 

mapped to the interface that connected to the attacker, which was 

expected. However, the static mappings pointed to the other virtual 

hosts in the virtual network. 

It was determined that the Cisco Nexus 1000v has a MAC address 

auto-learn feature that is now enabled by default, which uses the 

integration with VMware to set a static MAC address mapping to 

all hosts connected to the switch. This feature was introduced in 

Cisco Nexus 1000v version 4.2(1)sv1(5.1)  (Cisco Systems, Inc., 

2014). Because all of the virtual machines have permanent MAC 
address table entries, these mappings can never be pushed out of 
the   forwarding   table   by   dynamic   entries   and   will   always 
supersede  dynamic  entries.  This  explains  why the  CAM  table 
overflow attack was ineffective against the Nexus 1000v. Because 
of these static entries that have been installed automatically, a CAM 
table overflow attack becomes ineffective as seen in the 
release 5.2(1). 

Both tested versions of the Nexus 1000V were susceptible to the 

VLAN hopping exploit. It was noted that in both cases, the double 

tagged frames were sent through the Nexus 1000V and processed 

accordingly. That is, the frame was passed into the Nexus 1000v 

switch, and the outer tag (VLAN 120) was stripped off, while the 

second tag remained. The Wireshark VM also recorded the packet 

being sent from the system-uplink of the Nexus 1000v switch to the 

Catalyst 3750G switch with the inner VLAN tag still present. 

Beyond the Nexus 1000v egress interface, the packet is dropped at 

some point. The target’s virtual interface was monitored in an 

attempt to verify if the traffic had made the “hop” across VLANs, 

however that packet  for an  unknown  reason  would  always be 

dropped before it could be viewed on VLAN 110. These results 

were the same  whether the attacker VM was  connected to  an 

interface on the Nexus 1000V set as trunk or access; the packets 

monitored in the switch appeared the same with both 

configurations. Monitoring the egress traffic of the uplink port 

channels on the Nexus 1000v indicated that the Nexus 1000V was 

forwarding the packets with the second VLAN tag intact to the 

physical Catalyst 3750G. 

The attempt to exploit the spanning tree protocol on the Nexus 

1000V was limited to the release 4.2(1). After the packets being sent 
by Yersinia had been verified, their impact on the Nexus 
1000V was assessed. The most apparent observation was that the 
switch’s functionality had persisted despite the attempted 
manipulations and no further STP BPDUs were identified on the 
network. Had the attack been successful, the switch would have 
been  overwhelmed  with  CPU  intensive  computations  and  its 
forwarding functions would have been impacted. Because of this, 
the CPU usage of the VSM in vCenter was checked to further verify 
the impact of the attempts. It was found that the CPU usage 

had remained at a level consistent with normal usage, indicating that 
the spanning tree BPDUs were discarded without processing. 

ARP Poisoning 

Regardless of Nexus 1000V release tested, the ARP poisoning 

exploit was successful. Shortly after executing the ARP poisoning 

exploit, the ARP table of the Catalyst 3750G quickly changed and 

showed that all IP addresses, except for the gateway pointed to the 

MAC address of the attacker, Kali Linux. This indicates that the 

attack against the Nexus 1000V was successful and propagated 

those spoofed MAC addresses to the upstream switch as well. 

Figure 7 below shows a portion of the ARP table on the Catalyst 

3750G after the attack was executed. 

 

Figure 7 - Ending ARP Table for Poisoning Attack 

After the ARP table was successfully poisoned, the ICMP traffic 
between client VMs was successfully redirected to the attacker 
VM as a man in the middle. 

Finally,   both   tested   releases   of   the   Nexus   1000V   proved 

vulnerable to an attack on Private VLANs. Upon executing the 

attack command, the target VM immediately captured ICMP 

packets with a destination IP address of itself and a source IP 

address of the attacker, indicating the ICMP packet was 

successfully sent to the target from the attacker across the private 

VLAN. However, the attacker did not receive the ICMP response 

packets as the client didn’t craft special replies and the attacker 

didn’t  create  an  attack  on  the  gateway  that  would  forward 

messages back in a bi-directional manner. 

5.  CONCLUSIONS 
The Cisco Nexus 1000v is a robust and well-implemented virtual 
switching solution for large virtual computing systems. However, 
it is clearly susceptible to many of the same vulnerabilities that 
other physical switches are vulnerable to as well. In a multi-tenant 
virtual environment, it appears that layer 2 exploits such as ARP 

poisoning, VLAN Hopping, and private VLAN exploits are a real 

threat, if they are not effectively mitigated. It appears that more 

recent versions of the software have used the integration with 

VMware to allow for a more secure and dynamic solution. While 

all of these attacks require the ability to craft frames and packets 

within specific VLANs, some would argue that these types of 

attacks are of little concern. However, with the growth of cloud 

services like IaaS and Paas, these attacks may become plausible 

from remote systems that have direct access to the VLANs. This 

causes significant concern, as successful exploitations at the lower 

layers can be leveraged for higher layer access (Layer 7 data for 

instance). 

Many of these vulnerabilities can be mitigated with additional 

security and configuration, but if left exposed could create 

substantial problems. The popularity of virtualization has made 

solutions like this significantly more common, and because of this 

users of these VMware and Cisco products should to be aware of 

these potential vulnerabilities. As stated at the beginning of this 

paper, the lines between network administrator and systems 

administrator are becoming blurry with the usage of this 

technology. It is possible that a systems administrator with little 

networking experience or insight into these vulnerabilities could 

be the primary care taker of the solution, and could unknowingly 

leave  gaping  holes  into  the  network  without  realizing  it.  This
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could leave the data center, cloud provider, or other clients and 
customers exposed to potential threats. 

It was also possible that the Nexus 1000V introduced new 

vulnerabilities. In particular, it was possible that the means of 

communication used to facilitate distributed switching had created 

vulnerabilities that were not present in physical switches. There was 

also potential that the mere fact the Nexus 1000V resided as a 

virtual machine could also pose as a security implication. 

Regardless of whether the potential vulnerabilities had previously 

existed in physical switches or were introduced with the transition 

to the virtual realm, each posed a potential security implication. 

Yet, only the vulnerabilities known in the physical architecture were 

considered here. In the future, additional insight into this vector 

should be examined. 

 
Future work certainly should address many of the issues presented 

here. The Advanced (for pay) versions of the Nexus 1000V were 

not tested here, only the Essential versions. It is assumed that they 

will behave similarly against the attacks shown here. Cisco 

indicates, “the software image is the same for both the editions.” [7] 

However, for factual verification of functionality, the 1000V 

Advanced must be tested. Additionally, more complex exploits 

could be crafted to identify limits of the Nexus 1000V. The 

deployment of the Nexus 1000V into the ESXi environment was 

not examined in depth during this study. There is the potential for 

a compromised version of the virtual switch to be deployed that 

could leak data or provide back door access. The potential 

exploitation of the platform itself is certainly of concern for the 

more than 10K deployed systems utilizing the Nexus switching 

platform. Lastly, the testing of multiple Nexus 1000Vs at data 

center scale should be evaluated and its inter-switch and switch- 

controller communications for passing of configuration 

information. 


