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Highlights 

 A multi-period hub set covering problem with flexible covering radius is presented. 

 A dynamic model is proposed to solve the hub set covering problem with flexible 

covering radius. 

 A modified genetic algorithm (GA) is proposed.  

 A real world case study is presented for hub set covering problem with flexible covering 

radius. 
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Abstract 

Traditionally, in hub covering problems, it is assumed that the covering radius is an exogenous parameter 

which cannot be controlled by the decision maker. In many real-world cases, with a negligible increase in 

covering radius, considerable savings in hub establishment costs are possible. On the contrary, changes in 

problem parameters during the planning horizon cause the results of theoretical models to be impractical 

in real-world situations. This article proposes a mixed integer model for a multi-period single-allocation 

hub set covering problem in which the covering radius is a decision variable. The proposed model is 

validated through a real world case study. Also, due to the NP-Hardness of the problem a modified 

genetic algorithm (GA) is proposed for solving that. The proposed GA benefits from a dynamic stopping 

criteria and immigration operator. The performance of the proposed GA is compared with the original GA 

and imperialist competitive algorithm (ICA). Computational results corroborated efficiency of the 

proposed algorithm in achieving high-quality solutions in a reasonable time. 

Keywords: Facility location, Dynamic hub set covering problem, Flexible covering radius, Mathematical 

modelling, Dynamic genetic algorithm, Immigration operator. 
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1- Introduction and literature review 

The concept of hub nodes arises when there are many origin-destination (O/D) pairs in a transportation 

network to benefit from the economies of scale. Hubs are nodes in which the flow from various origins is 

gathered, and after reorganization, it is dispatched to the destinations. Hub location problems, initially 

introduced by O'Kelly [1], have many applications in cargo delivery systems, airline networks and 

telecommunication systems. O'Kelly proposed a quadratic model for hub median problem which was 

aimed at minimizing total flow costs [2]. Subsequent researches by Campbell [3], Ernst et al. [4], and 

O'Kelly et al. [5] proposed some linearized versions for the problem. Hub location problems are generally 

classified into three categories: hub center, hub median and hub covering problems. This article 

investigates on hub-covering problem. Readers can refer to the review papers by Alumur et al. [6], 

Farahani et al. [7], and Campbell and O'Kelly [8] for the other categories of hub location problem. 

Initially, Campbell proposed mathematical formulations for single and multiple-allocation versions of hub 

set covering problem (HSCP) and hub maximal covering problem (HMCP) [9]. He also proposed that an 

O/D pair i, j, might be covered by hubs k, l in three ways: 

1. Total transport costs (time or distance) from origin i to destination j (via origin i to hub k, hub k to hub 

l, with a discount factor 𝛼;  0 ≤ 𝛼 ≤ 1, and hub k to destination j) do not exceed a given covering radius. 

2. Transport costs (time or distance) for each of the links in the path from origin i to destination j via hubs 

k and l do not exceed the covering radius. 

3. Transport costs (time or distance) from origin i to hub k and hub l to destination j do not exceed the 

covering radius. 

The existing models in the literature obey the above rules. They assume that the covering radius is an 

exogenous parameter, and the decision maker (DM) cannot control its size; however, in many real-world 

applications, covering radius is a decision variable. Sometimes it is possible to avoid establishing hub 

nodes with a slight increase in covering radii. For example, in a transportation network, equipping the 

existing facilities or establishing more spacious depots help increase the covering radius and consequently 

to serve farther customers. The capability of an airport to serve the flights has a direct proportion to the 

number of runways, facilities and infrastructure which can be increased when necessary. Also in a 

telecommunication system, the area covered by the radio waves depends on the strength of the transmitted 

waves, and with reinforcing the radiation, larger areas may be covered by the hub node. Accordingly, a 

larger covering radius, can prevent the superfluous costs of establishing new hubs. In order to capture this 

situation, two types of costs are considered for a hub node, fixed hub establishment and covering cost in 

which the latter is proportional to the selected covering radius for the hub node. 

Facility location decisions are frequently long-term in nature. Facilities such as airports, dams, schools, 

hospitals, factories, distribution centers and retail outlets are often operated for decades. Consequently, 

there may be a considerable uncertainty regarding the relevant parameters in the location decision [10]. 

For example, as time goes on, the amount of supply and demand varies in origin and destination nodes. 

Moreover, transportation costs among nodes may vary due to the factors such as increasing the fuel cost, 

depreciation or using cheaper facilities in the fleet. Also time value of money, which is affected by the 

inflation and the interest rate, is very important in making managerial decisions [11]. These financial 
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factors may change during the planning horizon. Multi-period consideration of a problem enables the 

model to establish new facilities or close the existing ones periodically, which is proportional to the 

variation of the relevant parameters. From one point of view, dynamic facility location problems can be 

divided into two categories. The first category consists of problems in which the number of facilities is an 

exogenous parameter. In some cases like Zarandi et al. [12], the total number of facilities in the planning 

horizon is proposed by the DM and the number of facilities in each period is determined by the model. 

Also, in some cases like Drezner and Wesolowsky [13] and Wesolowsky and Truscott [14], the authors 

assumed a fixed number of facilities that can be relocated at the end of each period. The second category 

consists of problems in which the number of facilities is an endogenous parameter and is located such that 

the total costs are minimized. Contreras et al. [15] considered the un-capacitated dynamic hub location 

problem and proposed a mixed integer nonlinear programming model to solve that. While constructing 

hubs is costly, it is assumed that their closure is profitable because of the released resources. Also, 

Taghipourian et al. [16] studied a dynamic virtual hub location problem. The authors assumed that both 

closed and established hubs are costly. The hub covering problem investigated in this paper belongs to the 

second category. Table 1 addresses some of the major extensions to the hub covering problem. Referring 

to the table, existing formulations for hub covering problem are static, and the proposed dynamic model 

integrates previous viewpoints by considering both costs and benefits of the closed hubs. More realistic 

approach to the problem arises with more scrutiny on structure of the facilities. Facilities in a hub can be 

categorized into two types: static and movable facilities. Although, static facilities remain useless when a 

hub is closed, moving facilities can be transferred to newly developed hubs causing some savings. For 

example in a hub airport, some infrastructure facilities like building, watchtower and runways are static 

facilities and some like airport staff, office supplies or vehicles are moving facilities and their 

displacement causes savings in costs. It is assumed that the moving facilities released from the closed 

hubs are usable in only one of the newly established hubs in the same period. The saving associated to 

these movements is subtracted from the total costs of the period. 

This article investigates on a multi-period HSCP with flexible covering radius. The model distinguishes 

between the costs and benefits of the closed hubs. Similar to the real-world situation, covering radius is 

assumed to be an endogenous parameter in which the amount is determined optimally. The proposed 

model helps the DM to design a transportation network by determining the established hubs, their 

covering radius and allocating ordinary nodes to the hubs. Also, multi period structure of the model 

enables the manager to involve changes of the problem parameters in the decision making process.  

Table 1: Major contributions to the HSCP and HMCP 

Article 
of  number

periods 
Major contribution Solution approach 

[9] single period Introduction of HSCP and HMCP Exact 

]7[1 single period New formulations for HSCP Exact 

]8[1 single period New formulations for HSCP Exact 

]9[1 single period New formulation and path relinking approach for HMCP Heuristic 

]20[ single period Formulating an incomplete network for HSCP Tabu search 

]1[2 single period Assuming each hub as an M/M/C queue ICA 

]2[2 single period New formulations for HSCP and HMCP Heuristics 

]3[2 single period coverage HSCP with mandatory dispersion-Q Exact 

]4[2 single period Multimodal HSCP network Heuristics 

]5[2 single period New formulations for HMCP Heuristics 
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]6[2 single period Time definite delivery network Exact 

]7[2 single period considering stochastic transportation time and a risk factor 

on the mean travel time 

Multi Objective ICA 

(MOICA) 

]8[2 periodsingle  Incomplete hub network and uncertain location of demand 

nodes 

Variable Neighborhood 

Search (VNS) 

]9[2 single period New formulations for HMCP and considering the problem 

under uncertain shipments 

Non dominated sorting 

II -genetic algorithm

II)-(NSGA 

]30[ single period partial coverage in HMCP Exact 

This 
article 

Multi period Flexible covering radius in HSCP GA 

The rest of this paper is organized as follows. Section 2 is dedicated to the proposed solution approaches. 

Initially, Section 2.1 presents a mixed integer mathematical model, and due to the computational 

complexity of the problem, Section 2.2 proposes a dynamic genetic algorithm to solve it in a reasonable 

time. Computational results are presented in Section 3 and conclusions and some guidelines for further 

studies are presented in Section 4. 

2. Multi period HSCP with flexible covering radius 

It is assumed that 𝑁 = {1,2, … , 𝑛} is the set of origin and destination nodes in the network. Each node is a 

potential location for establishing a hub. Let i, j be the indices for origin and destination nodes 

respectively, k, l be indices for the hubs and t be the index for periods. Furthermore, it is supposed that the 

costs matrix is symmetric, this means that: 𝑐𝑖𝑗 = 𝑐𝑗𝑖. The hub network is assumed to be a complete graph, 

and each O/D pair is connected through one or two intermediate hubs. Also, there is no limitation on the 

capacity of the hub nodes. Ordinary nodes may be connected to one hub (single allocation) or more than 

one hub (multiple allocations) in which the former is investigated here. Each hub contains two kinds of 

costs: fixed establishment and covering costs. Covering costs of a hub are proportional to its covering 

radius, and the covering radius of the hub equates to the farthest node covered by the hub. Between hubs 

transportation is discounted considering the use of special facilities(0 ≤ 𝛼 ≤ 1). Given an O/D pair, i, j, 

transportation cost (𝑐𝑡𝑖𝑗
𝑘𝑙 ) in period t equates to the sum of costs from i to hub k, hub k to hub l, considering 

the discount factor 𝛼, and hub l to j.  

Whenever it happens, closed hubs are costly. However, the savings occur when there is a possibility to 

reuse the released movable facilities in newly established hubs. The following lemma is proposed to 

determine the number of possible movements in each period. It is assumed that after a hub is closed, 

movable facilities are transferred to one of the newly established hubs and are not capable of buffering for 

subsequent periods. 

Lemma. Number of possible movements in each period equates to the minimum of total established hubs 

(∑ 𝑝𝑡𝑘𝑘 ) and total closed hubs in that period (∑ 𝑞𝑡𝑘𝑘 ). 

Proof. Generally, in each period, there are three possible cases: 

(a) The sum of established hubs is larger than the sum of closed hubs (∑ 𝑝𝑡𝑘𝑘 > ∑ 𝑞𝑡𝑘𝑘 ). In this case, it is 

possible to reuse the released movable facilities from all of the closed hubs. Hence, number of movements 

will be∑ 𝑞𝑡𝑘𝑘 . 
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(b) Number of established hubs equals to the number of closed hubs (∑ 𝑝𝑡𝑘𝑘 = ∑ 𝑞𝑡𝑘𝑘 ). In this case, 

movable facilities from each of closed facilities are allocated to one of the established facilities. 

Therefore, number of movements will be ∑ 𝑞𝑡𝑘𝑘  or∑ 𝑝𝑡𝑘𝑘 .  

(c) Established hubs are less than closed hubs (∑ 𝑝𝑡𝑘𝑘 < ∑ 𝑞𝑡𝑘𝑘 ). Despite extra supply, the demand is 

limiting, and it is possible to use moving facilities from ∑ 𝑝𝑡𝑘𝑘  of closed hubs in newly established ones. 

Accordingly, the number of possible movements in each period equates to the minimum of total 

established hubs and total closed hubs. 

This section contains two parts, each of which presents a solution approach to the addressed problem. The 

first part is devoted to the suggested mixed integer model and the second part proposes a dynamic GA for 

solving the problem.   

2.1 Proposed formulation  

Despite simpler formulations for HSCP in the literature, such as the one proposed by Ernst and 

Krishnamoorthy [4], the developed mixed integer model is based on the formulation by Campbell [9] for 

the sake of clarity. The set of model parameters is as follows: 

𝑐𝑡𝑖𝑗
𝑘𝑙  Is the present value of total transportation cost from origin i to destination j via hubs k and l in 

period t. 

𝑒𝑐𝑡𝑘 Is the present value of fixed hub establishment cost in node k in period t. 

𝑓𝑟𝑡𝑘 Is the present value of covering cost of a hub at node k in period t. 

𝑐𝑐𝑡𝑘 Is the present value of hub closure costs at node k in period t, including both static and movable 

facilities. 

𝑚𝑠𝑡 Is the present value of the benefits from movable facilities in a closed hub in period t. 

𝑑𝑖𝑘 Is the Euclidean distance from node i to hub k. 

𝑀 Is a big number. 

The set of decision variables in the model is as follows: 

𝑥𝑡𝑖𝑗
𝑘𝑙  A binary decision variable which is 1 if nodes i and j are connected via hubs k and l in period t 

and otherwise equals 0. 

𝑦𝑡𝑖𝑘 A binary variable which is 1 if node i is connected to hub k in period t and otherwise it is 0. 

𝑟𝑡𝑘 Is the covering radius of hub k in period t. 

𝑝𝑡𝑘 Is a binary variable which is 1 if a new hub is established at node k in period t and otherwise 

equals 0. 
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𝑞𝑡𝑘 Is a binary variable which is 1 if the existing hub in node k is closed in period t and otherwise 

equals 0. 

𝑧𝑡 Is the minimum of ∑ 𝑝𝑡𝑘𝑘  and∑ 𝑞𝑡𝑘𝑘 . 

Considering the above explanations, the proposed mathematical model is as follows.  

kl kl

tij tij tk tk tk tk tk tk t t

t i k l j t k t k t k t

Min c x ec p fr r cc q ms z          (1) 

1       , ,kl

tij

k l

x i j t    (2) 

2       , , , ,kl

tij tjl tikx y y t i k l j     (3) 

       , ,tik tkky y t i k    (4) 

1     ,tik

k

y t i    (5) 

     , ,tk ik ikr d y t i k    (6) 

1      ,  1tk tk tkk t kkp q y y k t       (7) 

min( , )      t tk tk

k k

z p q t     (8) 

 , , , 0,1 , 0, 0&integerkl

tij tik tk tk tk tx y p q r z     (9) 

Expression (1) is the objective function of the proposed model which is aimed at minimizing the total 

costs. The first part of the objective function considers transportation costs from origin i to destination j 

via hubs k and l. The second part is dedicated to the hub establishment costs. Covering cost of each hub in 

each period is the third part of the objective function. Costs associated with the closed hubs in each period 

are the fourth part, and the benefits from movable facilities are calculated in the fifth part. Constraints (2) 

guarantee that each O/D pair is connected through one or two hubs. Constraints (3) ensure that the path 

from i to j via hubs k and l is established if both i and j are, respectively, connected to hubs k and l. 

Constraints (4) ensure that in each period, ordinary node i may be connected to k if it is set as a hub. 

Constraints (5) ensure that each node allocates to only one hub (single-allocation constraint). Covering 

radius equates to the distance between the hub and farthest ordinary node allocated to it, which is 

calculated in (6). According to (7), for a given node k in period t when a hub is newly established, binary 

variable ptk equals 1 and binary variable qtk equals 0 and when the existing hub in a node is closed, qtk 

equals 1 and ptk equals 0. Otherwise, both variables will be zero. Constraint (8) expresses the proposed 

lemma, upon which the number of possible movements in each period equates to the minimum number of 
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established and closed hubs. Expression (9) specifies 𝑥𝑡𝑖𝑗
𝑘𝑙 , 𝑦𝑡𝑖𝑘 , 𝑝𝑡𝑘 and 𝑞𝑡𝑘 as binary variables and 𝑟𝑡𝑘, 𝑧𝑡 

as nonnegative variables. 

The following set of linear constraints may be substituted with nonlinear equation (8). Referring to (10), 

𝑣𝑡 is the subtraction of ∑ 𝑞𝑡𝑘𝑘  from∑ 𝑝𝑡𝑘𝑘 . Using constraints (11) and (12) if 𝑣𝑡 is negative, binary 

variable 𝑤𝑡 will be 1, otherwise it is 0. Constraints (13) and (14) provide an upper bound for 𝑣𝑡
,
. 

Accordingly, if 𝑤𝑡 = 1, then 𝑣𝑡
, ≤ 𝑣𝑡 and if 𝑤𝑡 = 0, then 𝑣𝑡

, ≤ 0. Therefore, considering equation (15), 

the upper bound of 𝑧𝑡 is the minimum of ∑ 𝑞𝑡𝑘𝑘  and ∑ 𝑝𝑡𝑘𝑘 . However, considering the utility of larger 

values of 𝑧𝑡 in the objective function, it will attain the upper bound. 

      t tk tk

k k

v p q t      (10) 

       t tv Mw t     (11) 

(1 )      t tv M w t     (12) 

' (1 )      t t tv M w v t     (13) 

'       t tv Mw t    (14) 

'      t t tk t

k

z v p v t      (15) 

  '0,1 , , 0t t tw v v    (16) 

2.2 Proposed genetic algorithm 

To proof NP-hardness of a given problem, it is a common practice to show that it is at least as hard as 

another proven NP-hard problem [31]. Kara and Tansel proved the NP-hardness of HSCP [17]. On the 

other hand, the problem investigated in this article may be simplified to the classic HSCP when the 

number of periods in the planning horizon is limited to one and the covering radius has a predetermined 

level. Therefore the problem discussed here, will be NP-Hard as well. The complexity of the problem 

leads to a high computational time for even medium and small-sized instances. To obtain suitable 

solutions in a reasonable computational time, a genetic algorithm (GA) is proposed for the investigated 

problem. GA is a meta-heuristic algorithm, based on Darwinians theory of evolution, first introduced by 

Holland [32]. GA transmits a set of solutions for consecutive iterations, namely population, and in each 

iteration, some new individuals are added to the population and some individuals with lower utility will 

be eliminated. This goes on until a predetermined stopping criterion is met.    

GA has properties such as the chromosomes structure, initial population, selection strategies, genetic 

operators and stopping criteria, which determine the performance of the proposed algorithm. The 

following subsections describe each of these features for the proposed GA. 
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2.2.1 Chromosome structure 

One of the most important specifications of the GA, with a noticeable effect on the efficiency of 

algorithm, is the chromosome structure. The proposed structure, presented in Figure 1, must capture all 

the features of the problem. In the first stratum of the proposed structure, each allele represents a node and 

its content determines the hub to which it is assigned, accordingly, self-assigned nodes are interpreted as 

hubs. Length of a chromosome equates to the number of nodes multiplied by the number of periods. 

Considering the difficulty of implementing the GA operators on the first stratum, the second stratum is 

introduced in which the hub nodes are appointed.     

 

Figure1. The chromosome structure  

2.2.2 Initial population 

GA is a population-based algorithm and permanently transmits a set of individuals to consecutive 

iterations. First, it is necessary to generate a set of solutions as initial population. To emphasize the 

importance of the population size, it is noticeable that extra-large size of the initial population results in 

trashy increase of computational time and small size of the population will cause the algorithm not 

achieving to optimal solution. Based on the parameters tuning results, initial population consists of 200 

individuals. To create the population, some of the nodes are selected as hubs and the others are allocated 

to the nearest hubs. 

2.2.3 Selection strategies 

There are different methods to select parents for implementing crossover and mutation. Roulette wheel 

method, first introduced by Goldberg [33], is applied here. In this approach, after sorting all population 

members based on their fitness, each one will be allocated a selection probability proportional to its rank. 

In this situation, all the members of the population have the chance to be selected, although the 

chromosome with a better fitness is more likely to be chosen. 

2.2.4 Genetic operators 

Premature convergence to a non-optimal solution is probably the most serious problem encountered in 

GA [34]. The operators in GA are tools to avoid the premature convergence. Reproduction causes to add 

new individuals to the population which the characteristics are their parent’s patrimony. This 

phenomenon is presented in crossover operator. Scarcely, and due to disorder in structure, some of the 

individuals have salient differences with the others. Similar to the illustrious role of mutation in the 

human evolution, this operator also is very important for the GA in salvation from local optima. A 

phenomenon that many human societies are faced with, is the immigration. Inspired from the real world 

populations, the proposed algorithm applies the immigration as a GA operator.  
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Crossover is the basic operator of GA for combining two chromosomes [35]. There are multiple methods 

for implementing crossover. Here a modified version of single-point crossover is proposed. It is 

noteworthy that the investigated problem is a multi-period one; therefore, single-point crossover might 

not be suitable. For more efficiency a k-point crossover is proposed, where k is the number of periods. 

Each cut point is located randomly within one of the periods. Crossover on the first stratum might result 

in an infeasible solution, therefore the second stratum of the chromosome is used to do a crossover. 

Crossover on the second stratum of a hypothetical chromosome is presented in Figure 2.  

 

Figure2. Crossover on the second stratum of a chromosome with four periods  

Mutation is the second operator of GA. When the solution remains unchanged for consecutive iterations, 

the algorithm might be trapped in local optima. This operator prevents the algorithm from trapping in 

local optima by the exploring solution space [36]. The proposed mutation operator is conducted on the 

second stratum of the chromosome. To mutate a chromosome, some of the genes are selected randomly. 

If the selected node is a hub, it is changed to an ordinary node. Otherwise it is altered to a hub. Figure 3 

shows mutation on a hypothetical chromosome with three periods in which 4 nodes are mutated. One of 

the possible occurrences is to make a period without any hubs, like the third period in Figure 3. In this 

case, the same number of the genes are selected randomly to be hubs.   

 

Figure3. The mutation operator  

Although increasing the number of changes in a selected chromosome for mutation causes the increment 

of computational time, more changes provide better search in solution space. Proposed dynamic mutation 

operator increases the number of changes in a selected chromosome for mutation along with increasing 

the number of iterative solutions. The number of genes that are remodeled in a mutant (nm) is presented 

in (17). 
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    if  IS<

5 3
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    if  IS<     

3 3

max
    if  IS>

2 2

nnode it

nnode it
nm

nnode it

 
 
 
 

  
 
 
 
 

  (17) 

Where nm is the number of remodeled genes in a chromosome, 𝑛𝑛𝑜𝑑𝑒 is the number of origins and 

destinations, IS is the number of the iterative solutions in which the best solution found by the algorithm 

remains unchanged, and 𝑚𝑎𝑥𝑖𝑡 is the maximum number of iterations. 

The third operator introduced here is called immigration. It is assumed that there are some immigrants to 

the society in each period. In real-world situation, alongside with the economic and scientific growth of a 

society, general tendency of the people from other populations increases to immigrate to the society, 

similarly the designed dynamic operator increases immigration rate with increasing the probability of 

achieving the global optima, which the sign is a fixed solution for consecutive iterations. Increasing the 

immigration rate, as well as the mutation rate, increases the algorithm’s capability to avoid local optima. 

Similar to the initial population, immigrants are created randomly and the rate of immigration is presented 

in (18). 

p

pop

IS
IM

n
   (18) 

Where 𝐼𝑆 is the number of consecutive iterations in which the best solution remains unchanged, 𝑛𝑃𝑂𝑃is 

the number of individuals in the population and 𝐼𝑀𝑝is the immigration rate. 

2.2.5 Stopping criteria 

Various criteria have been introduced to stop the GA computational processes. The maximum number of 

iterations is the one most widely used as the stopping criteria. In some cases, the algorithm attains the 

optimum solution in primal iterations and remains unchanged until the last iteration. There are two 

possibilities: first, the algorithm is trapped in a locally optimal solution. In this case, as described in 

Section 2.2.4, the designed algorithm tries to escape the trap by increasing the severity of search in 

solution space with the aid of intensifying the number of permutations in a mutant and increasing the 

immigration rate. Second, the possibility is that the algorithm has reached optimum solution; in this case, 

it is ideal to stop the algorithm immediately. To reduce the computational time in the latter case, another 

stopping criterion is utilized alongside with the maximum number of iterations. Provided that the best 

solution remains unchanged for 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

2
, the algorithm will be terminated. 

To aggregate the above explanations, the flowchart of the proposed GA is presented in Figure 4. 
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                                     Figure 4. Flow chart of the proposed GA 

 

3. Numerical experiments 

In this section, numerical examples are conducted to evaluate the developed mathematical model and the 

proposed GA. To discuss the main outcomes of the mathematical model, a real world case study is 

presented in Section 3.1. Also, to analyze efficiency of the proposed GA, the results are compared with 

the original GA and ICA. The proposed GA differs from the original GA in the immigration operator, 
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dynamic mutation, and the stopping criteria. To analyze the effects of these features, the results of 

proposed GA are compared with the results of the original GA. Parameters calibration and the obtained 

results are presented in Section 3.2, and the computational results are provided in Section 3.3. 

Proposed GA, original GA and ICA are coded and implemented in MATLAB R2011b running on a 

system with 4 GB of RAM and core i5 CPU. Furthermore, the optimal solutions are obtained by GAMS 

22.2 using CPLEX solver. 

3.1 Case study 

 It is estimated that $40-100 billion is paid annually to keep Iranians, supplied with cheap energy, water, 

fuel, and basic food [37]. Thereupon the government has devised a multistep plan, namely the targeted 

subsidiary plan, to cut the subsidies. During the first phase of the plan in 2010, fuel prices had a 400% 

enhancement, upon which a noticeable increase in the transportation costs happened.   

The investigated case is a cargo delivery firm which serves in 11 provinces. The problem is to design a 

hub network under the described price increases. Initially the plan was implemented in 5 pilot provinces 

and after 6 months, it was held nationwide. The first period (P1) refers to the full subsidy prices before 

starting the plan. Intensity of transportation (tons per day) and unit transportation cost of the first period, 

are presented in the upper and lower diagonal of Table 2 respectively. During the second period (P2), 

subsidies are cut in 5 provinces, highlighted provinces in Figure 5 (b), and finally the third period (P3) 

represents free prices. Transportation costs for the second and third period are provided in the upper and 

lower diagonal of Table 3 respectively. Referring to the World Bank statistics, inflation rate has moved 

from 10.1% in the first period to 20.6% in the second and third period [38], upon which the related costs 

are inflated in Table 4. Also due to the possibility of selling surplus land and reusing movable facilities, it 

is assumed that in a closed hub, 60% of the costs are retrievable (closure benefits). The discount factor (α) 

and covering cost (fr) are assumed to be 0.4 and 10 dollars per kilometer respectively. 

GAMS 22.2 is applied to solve the problem. Table 5 presents the established hubs, their covering radius 

and the ordinary nodes allocated to each one. The total costs of the designed network is $6774117 from 

which $4892841 is the total transportation costs and $1820576 is the hub established cost. Also the 

designed network is represented in Figure 5. Considering the dynamic nature of the problem, covering 

radius of a hub might be changed in each period. According to Table 5, the covering radius of Shiraz is 

1100 kilometers in the first period (the distance between Shiraz and Zahedan) while its covering radius in 

the second and third period is 659 kilometers (the distance between Shiraz and Ahwaz). 

Table 2: Intensity of transportation and unit transport costs for P1 

 
Isfahan Shiraz Yazd Kerman Tehran Bushehr Bandar Abbas Mashhad Zahedan Tabriz Ahwaz 

Isfahan 0 110 65 60 130 55 75 80 40 70 65 

Shiraz 131 0 100 110 150 85 70 60 45 60 75 

Yazd 82 116 0 100 110 40 55 60 40 40 35 

Kerman 180 156 98 0 130 60 90 85 80 50 35 

Tehran 120 252 185 283 0 70 50 130 40 120 85 

Bushehr 158 83 198 239 335 0 55 45 30 35 65 

Bandar Abbas 266 169 179 132 364 201 0 60 65 40 50 
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Mashhad 333 375 251 242 244 449 375 0 70 35 30 

Zahedan 325 300 243 144 427 383 200 259 0 25 30 

Tabriz 283 415 348 446 163 425 527 407 591 0 65 

Ahwaz 203 180 295 335 238 132 349 482 480 293 0 

 

 

Figure 5. A graphical view of the designed hub network: (a) the first period, (b) the second period, and (c) the third period  

Table 3: Transportation costs for P2 and P3 

 
Isfahan Shiraz Yazd Kerman Tehran Bushehr 

Bandar 

Abbas 
Mashhad Zahedan Tabriz Ahwaz 

Isfahan 0 131 139 303 120 158 399 333 526 283 203 

Shiraz 262 0 174 311 252 83 353 375 580 415 180 

Yazd 164 232 0 197 341 297 358 377 485 522 383 

Kerman 361 311 197 0 495 358 235 364 260 670 503 

Tehran 239 504 369 566 0 335 546 244 641 163 238 

Bushehr 316 166 396 477 670 0 302 539 574 425 132 

Bandar Abbas 532 388 358 265 728 403 0 562 400 633 523 

Mashhad 667 749 503 485 488 899 749 0 389 407 482 

Zahedan 649 600 485 289 855 766 400 519 0 886 720 

Tabriz 566 831 696 893 327 851 1054 814 1181 0 293 

Ahwaz 406 359 590 671 477 265 697 964 959 586 0 

 

 

 

Table 4: Periodic hub establishment cost, closure cost and closure benefits 

Cities 
Hub establishment costs Closure costs Closure benefits 

P1 P2 P3 P1 P2 P3 P1 P2       P3 

Isfahan 1525218 1679265 2025194 610087 671706 810078 915131 1007559 1215116 

Shiraz 491094 540694 652077 196437 216278 260831 294656 324416 391246 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Yazd 752764 828793 999524 301105 331517 399810 451658 497276 599714 

Kerman 463818 510664 615861 185527 204266 246344 278291 306398 369517 

Tehran 818818 901519 1087232 327527 360608 434893 491291 540911 652339 

Bushehr 546364 601547 725466 218546 240619 290186 327819 360928 435279 

bandar 

Abbas 636364 700636 844967 254545 280255 337987 381818 420382 506980 

Mashhad 765455 842766 1016376 306182 337106 406550 459273 505660 609825 

Zahedan 446727 491847 593167 178691 196739 237267 268036 295108 355900 

Tabriz 709091 780709 941535 283636 312284 376614 425455 468425 564921 

Ahwaz 538188 592545 714610 215275 237018 285844 322913 355527 428766 

 

Table 5. The designed hub network 

Periods Established hubs Covering radius (Km) Allocated cities 

First period Tehran 894 Mashhad, Tabriz, Isfahan, Yazd 

Shiraz 1100 Ahwaz, Bushehr, Bandar Abbas, Kerman, Zahedan 

Second period Tehran 894 Mashhad, Tabriz 

Kerman 529 Zahedan, Yazd, Bandar Abbas 

Shiraz 659 Ahwaz, Bushehr, Isfahan 

Third period Tehran 894 Mashhad, Tabriz 

Kerman 529 Zahedan, Yazd, Bandar Abbas 

Shiraz 659 Ahwaz, Bushehr, Isfahan 
 

3.2 Parameters setting  

Parameter calibration plays an important role in the efficiency of metaheuristic algorithms. In this article 

Taguchi method is applied for parameters tuning. To reduce the number of experiments, this method 

proposes a fractional factorial experiment instead of full factorial experiments. Taguchi method divides 

the factors in to signal (or controllable) and noise factors. The method tries to minimize the effect of noise 

and determines the optimal level of the signal factors [39]. For a comprehensive study on the Taguchi 

method, the readers are referred to works of Peace [40] and Taguchi et al. [41].  

Based upon the previous experiments, each parameter (or factor) is assigned three levels. Table 6 presents 

the parameters, their abbreviations, and the intended levels. The parameters are analyzed with an L9 

design and each experiment is run 5 times. Considering the minimization nature of the objective function, 

a lower response level is more desirable. Accordingly the signal-to-noise (S/N) ratio is calculated as 

follows. 

2

1

1
/ 10log( )

n

i

i

S N y
n 

  
 

(19) 

Where yi is the response in the ith replication and n is the number of replications in experiments. L9 

orthogonal array and the obtained responses are provided in Tables 7 – 9. Mean S/N ratios for each 

algorithm are presented in Figure 6. Notably, a larger value of the S/N ratio is more desirable. Referring 

to Figure 5, in the proposed GA, parameters Maxit, NP, Pm, and Pc should be set at levels 3, 2, 1, and 3 

respectively. Selected parameters for each of the algorithms are shown in Table 10. 

Table 6: GA and ICA parameters 
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Algorithm Parameters 
Factor levels 

1 2 3 

Proposed GA and 

original GA 

Maximum number of iterations (Maxit) 150 200 250 

Population size (NP) 100 200 300 

Mutation rate (Pm)  0.10 0.15 0.20 

Crossover rate (Pc) 0.70 0.80 0.85 

ICA Number of imperialists (NI) 5 9 13 

Number of colonies (NC) 100 150 200 

Revolution rate (PR)  0.05 0.10 0.15 

Assimilation rate (PA) 0.70 0.75 0.80 

Table 7: L9 design and experimental results of the proposed GA 

Experiment 
Factor 

y1 y2 y3 y4 y5 
Maxit NP Pm Pc 

1 150 100 0.1 0.70 786930 821359 756482 746721 772194 

2 150 200 0.15 0.80 764110 763232 720482 793213 828401 

3 150 300 0.20 0.85 829630 825843 825362 803415 741022 

4 200 100 0.15 0.85 795927 742226 773972 843124 734212 

5 200 200 0.20 0.70 790622 752289 842173 790231 831212 

6 200 300 0.10 0.80 819595 763389 762131 734819 799121 

7 250 100 0.20 0.80 741352 849531 805271 832105 791203 

8 250 200 0.10 0.85 744732 815280 793119 740336 732261 

9 250 300 0.15 0.70 733221 774992 773310 809921 769671 

Table 8: L9 design and experimental results of original GA 

Experiment 
Factor 

y1 y2 y3 y4 y5 
Maxit NP Pm Pc 

1 150 100 0.1 0.70 846527 815371 802415 778101 782748 

2 150 200 0.15 0.80 794862 774251 793102 742101 843640 

3 150 300 0.20 0.85 869516 791756 813310 788289 804374 

4 200 100 0.15 0.85 795116 795312 832844 766190 783027 

5 200 200 0.20 0.70 790481 805379 835491 800918 750294 

6 200 300 0.10 0.80 819595 753321 861034 780215 784532 

7 250 100 0.20 0.80 851785 868316 794721 818634 763386 

8 250 200 0.10 0.85 814353 826642 790306 794972 864362 

9 250 300 0.15 0.85 793965 752913 762316 824402 805385 

Table 9: L9 design and experimental results of ICA 

Experiment 
Factor 

y1 y2 y3 y4 y5 
NI NC PR PA 

1 5 100 0.05 0.70 763271 795482 774216 804372 794352 

2 5 150 0.10 0.75 785329 845531 746525 785582 804532 

3 5 200 0.15 0.80 774236 793412 852542 766302 814912 

4 9 100 0.10 0.80 846423 831236 809241 778901 823282 

5 9 150 0.15 0.70 735872 852352 788715 821026 763251 

6 9 200 0.05 0.75 773478 774372 769482 809423 793193 

7 13 100 0.15 0.75 795456 740231 743626 802320 763182 

8 13 150 0.05 0.80 805386 860193 737641 744336 753419 

9 13 200 0.10 0.70 748756 798442 794821 821763 748093 

 

Table 10: Tuned parameters for the proposed GA, original GA, and ICA 

Parameter Original GA Proposed GA Parameter ICA 

Maxit 200 250 NI 13 

NP 300 200 NC 200 

Pm 0.15 0.10 PR 0.15 

Pc 0.7 0.85 PA 0.80 
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Figure 6. Mean S/N ratios for the proposed GA (a), original GA (b), and ICA (c) 

 

3.3 Computational results 

The results of proposed GA are compared with the results of the mathematical model, original GA, and 

ICA. For this purpose, some numerical examples are solved. In the designed problems, fixed hub 

establishment cost, ranges uniformly in [7000, 12000] and the closure benefits have a uniform 

distribution in [4000, 7000]. Costs and benefits might change periodically with rate 1 + α, in which α has 

a uniform distribution in [-0.05, 0.15]. Closure costs are uniformly distributed in [1000, 4000]. Covering 

costs are proportionate to the covering radius. Distances have uniform distribution in [33, 99], and the 

covering cost equates to the distance multiplied by 10. Closure costs change periodically with the rate 

1 + γ, in which γ is uniformly distributed in [-0.2, 0.8]. Numerical experiments have 5, 10, 15, 20, 25, 30, 

40, 60, 80, and 100 nodes. The discount factor (α) equates to 0.3, 0.6 and the number of periods (t) is 2, 3 

and 4. In Tables 11 and 12, each sample problem is denoted as “a – b – c” where “a” is the number of 

periods, “b” is the number of nodes, and “c” is the discount factor.   

Objective value and computational time for the proposed mixed integer model and the GA are presented 

in Table 11. Also, the table determines the total established hubs (TEH), total closed hubs (TCH) and 
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number of facility movements (NM) during the planning horizon. As shown in Table11, in the 

experiments with 5 nodes, mathematical model performs faster than the proposed GA; however, by 

increasing the problem size, its computational time has an exponential growth. Figure 7 compares the 

growth in computational time of the mathematical model with the proposed GA. It is obvious from the 

table that along with increasing number of periods (t), computational time increases in both GAMS and 

GA solutions. Referring to Table 11, discount factor 𝛼 does not have a meaningful effect on the 

computational time, whereas the objective value increases with increasing the discount factor in most 

cases. Also, according to Table 12 the proposed GA is superior to both the original GA and the ICA in all 

of the experiments.  

Furthermore, the proposed GA provides high-quality solutions. For problems in which the optimal 

solution was found in a reasonable time, the proposed GA attains the optimum solution in all cases (Table 

11). The proposed GA is compared with the original GA and ICA in Table 12. The relative gap between 

the optimal solutions and the solutions obtained by the original GA and ICA is presented in Table 12. For 

instances with 25 nodes and less, the calculations are: 

 

 

100
heuristic optimal solution

optimal solution

Obj Obj

Obj


  

(20) 

And for the problems with more than 30 nodes (30, 40, 60, 80 and 100); it is calculated as bellow. 

 

 

100
heuristic proposed GA

proposed GA

Obj Obj

Obj


  

(21) 

The results confirm the superiority of the proposed GA to the ICA and to the original GA in all instances 

with regard to the relative gap. 

In addition to the computational time, the number of function evaluations (NFE) is a well-known 

performance indicator for the algorithms. Unlike the original GA, the proposed GA is a dynamic 

algorithm in which the number of iterations and the number of evaluated chromosomes are not 

predetermined. The original GA evaluates the fitness function 51300 times in each experiment; however, 

computational results in Table 12 indicate a smaller NFE (with the average 30448) for the proposed GA 

in all of the instances.  
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Figure 7. Growth of computational time  

 

Table 11: GAMS output versus the proposed GA 

Problem 
GAMS Proposed GA 

Obj.value CPU (s) TEH TCH NM Obj.value CPU (s) 

2 – 5 – 0.3 10232 0.97 1 0 0 10232 11.36 

2 – 5 – 0.6 10520 0.97 1 0 0 10520 12.46 

3 – 5 – 0.3 19212 1.03 1 0 0 19212 13.21 

3 – 5 – 0.6 19212 1.03 1 0 0 19212 12.57 

4 – 5 – 0.3 23047 1.52 1 0 0 23047 17.64 

4 – 5 – 0.6 23047 1.51 1 0 0 23047 16.81 

2 – 10 – 0.3 29249 82.84 2 0 0 29249 14.62 

2 – 10 – 0.6 29249 82.31 2 0 0 29249 15.19 

3 – 10 – 0.3 41457 150.29 2 1 1 41457 18.26 

3 – 10 – 0.6 41457 150.40 2 1 1 41457 19.18 

4 – 10 – 0.3 47137 345.95 2 1 0 47137 21.58 

4 – 10 – 0.6 51320 346.04 2 1 1 51320 18.37 

2 – 15 – 0.3 55751 737.18 3 1 0 55751 14.28 

2 – 15 – 0.6 55751 738.28 3 1 0 55751 12.56 

3 – 15 – 0.3 80985 1593.28 4 0 0 80985 21.15 

3 – 15 – 0.6 84009 1592.03 5 1 1 84009 22.96 

4 – 15 – 0.3 108187 3698.35 4 1 1 108187 28.51 

4 – 15 – 0.6 107708 3699.50 3 0 0 107708 25.67 

2 – 20 – 0.3 67456 5167.73 3 0 0 67456 15.07 

2 – 20 – 0.6 91847 5168.09 3 1 1 91847 14.51 

3 – 20 – 0.3 123816 9484.21 4 1 1 123816 22.80 

3 – 20 – 0.6 138235 9485.34 3 0 0 138235 20.53 

4 – 20 – 0.3 149148 14457.29 4 2 1 149148 29.44 

4 – 20 – 0.6 164548 14458.63 5 1 1 164548 26.07 

2 – 25 – 0.3 115761 24349.66 4 0 0 115761 19.36 

2 – 25 – 0.6 157875 24350.88 4 1 1 157875 13.43 

3 – 25 – 0.3 177674 36640.75 5 1 1 177674 21.77 

3 – 25 – 0.6 235884 36639.48 4 1 0 235884 23.60 

4 – 25 – 0.3 218061 47259.89 5 1 0 218061 37.09 

4 – 25 – 0.6 264815 47261.63 6 2 1 264815 31.85 
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Table 12: Computational results for the Proposed GA, original GA and ICA 

problem 

proposed GA Original GA ICA 

Obj.value CPU(s) NFE Obj.value CPU(s) relative gap Obj.value CPU(s) relative gap 

2-5-0.3 10232 11.36 28096 10232 13.52 0.000 10232 12.44 0.000 

2-5-0.6 10520 12.46 30854 10520 15.01 0.000 10520 13.85 0.000 

3-5-0.3 19212 13.21 24051 19212 15.57 0.000 19212 14.38 0.000 

3-5-0.6 19212 12.57 24051 19212 15.46 0.000 19212 12.85 0.000 

4-5-0.3 23047 17.64 24051 23047 19.70 0.000 23047 18.13 0.000 

4-5-0.6 23047 16.81 24051 23067 19.50 0.001 23047 19.90 0.000 

2-10-0.3 29249 14.62 24051 29249 15.64 0.000 29249 14.37 0.000 

2-10-0.6 29249 15.19 24051 29249 15.55 0.000 29351 16.17 0.003 

3-10-0.3 41457 18.26 24051 41497 21.56 0.001 41467 19.92 0.000 

3-10-0.6 41457 19.18 24432 41457 21.91 0.000 41457 17.56 0.000 

4-10-0.3 47137 21.58 25581 47217 29.89 0.002 47137 27.88 0.000 

4-10-0.6 51320 18.37 25387 51320 29.40 0.000 51320 26.88 0.000 

2-15-0.3 55751 14.28 24241 55794 20.06 0.001 55813 20.43 0.001 

2-15-0.6 55751 12.56 24432 55751 19.78 0.000 55751 17.94 0.000 

3-15-.0.3 80985 21.15 25771 80985 29.80 0.000 80985 30.26 0.000 

3-15-0.6 84009 22.96 29476 84367 36.69 0.004 84213 32.87 0.002 

4-15-0.3 108187 28.51 26929 108251 40.09 0.001 108187 40.87 0.000 

4-15-0.6 107708 25.67 27706 107812 40.81 0.001 107708 36.82 0.000 

2-20-0.3 82997 15.07 25581 83151 21.18 0.002 82997 21.65 0.000 

2-20-0.6 91847 14.51 25197 92413 20.54 0.006 91847 20.88 0.000 

3-20-0.3 123816 22.80 27317 123816 32.12 0.000 123816 28.69 0.000 

3-20-0.6 138235 20.53 25197 138682 29.05 0.003 138912 29.60 0.005 

4-20-0.3 149148 29.44 27317 149268 41.77 0.001 149261 42.48 0.001 

4-20-0.6 164548 26.07 27906 164641 42.48 0.001 164712 32.74 0.001 

2-25-0.3 115761 19.36 27706 115812 27.53 0.000 115825 27.96 0.001 

2-25-0.6 157875 13.43 25966 158123 22.20 0.002 157961 19.49 0.001 

3-25-0.3 177674 21.77 25771 177691 36.38 0.000 177721 31.54 0.000 

3-25-0.6 235884 23.60 25197 236441 33.69 0.002 237215 34.28 0.006 

4-25-0.3 218061 37.09 27516 218112 53.53 0.000 218214 53.82 0.001 

4-25-0.6 264815 31.85 26352 264815 45.62 0.000 264921 39.76 0.000 

2-30-0.3 177775 21.95 26352 177775 31.82 0.000 179456 31.93 0.009 

2-30-0.6 194652 21.70 25966 195145 31.47 0.003 194923 31.59 0.001 

3-30-0.3 263619 29.28 27906 263862 50.08 0.001 264813 36.76 0.005 

3-30-0.6 280087 29.23 28297 282412 49.80 0.008 282681 42.24 0.009 

4-30-0.3 346700 38.57 28879 347812 66.50 0.003 346963 56.41 0.001 
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problem 

proposed GA Original GA ICA 

Obj.value CPU(s) NFE Obj.value CPU(s) relative gap Obj.value CPU(s) relative gap 

4-30-0.6 392356 44.54 28879 393412 65.02 0.003 396065 64.97 0.009 

2-40-0.3 282178 35.73 30457 284721 53.03 0.009 285931 44.18 0.013 

2-40-0.6 322915 31.01 27706 324211 45.96 0.004 326201 45.33 0.010 

3-40-0.3 422745 50.62 30664 424612 76.08 0.004 426117 74.10 0.008 

3-40-0.6 475376 48.16 29871 486449 72.12 0.023 492219 70.49 0.035 

4-40-0.3 545107 69.79 32452 556853 104.29 0.022 553014 102.22 0.015 

4-40-0.6 665146 52.42 29666 673391 93.82 0.012 672251 76.86 0.011 

2-60-0.3 602728 64.23 35097 604214 100.66 0.002 602728 94.58 0.000 

2-60-0.6 716929 45.50 30664 720618 86.04 0.005 717351 67.01 0.001 

3-60-0.3 874574 82.25 37342 879074 157.15 0.005 876312 121.19 0.002 

3-60-0.6 1035040 68.98 32452 1041215 132.30 0.006 1044825 83.66 0.009 

4-60-0.3 1027456 111.01 38171 1029317 214.72 0.002 1031031 163.69 0.003 

4-60-0.6 1371700 101.40 35916 1394694 198.23 0.017 1412621 149.55 0.030 

2-80-0.3 1019915 97.23 35287 1026321 163.35 0.006 1023379 143.90 0.003 

2-80-0.6 1205921 89.36 33661 1264438 152.13 0.049 1242688 132.26 0.030 

3-80-0.3 1255795 130.54 40071 1282256 282.01 0.021 1315623 193.28 0.048 

3-80-0.6 1611591 134.88 41337 1619883 288.00 0.005 1619883 199.73 0.005 

4-80-0.3 1432306 168.63 40071 1521743 361.40 0.062 1456117 249.88 0.017 

4-80-0.6 1905039 186.51 44086 1924841 401.29 0.010 2025216 276.37 0.063 

2-100-0.3 1401816 194.25 41337 1519029 345.69 0.084 1483068 287.98 0.058 

2-100-0.6 1776351 196.82 40914 1787881 355.20 0.006 1793144 232.11 0.009 

3-100-0.3 1730317 264.67 44086 1820220 606.34 0.052 1798545 392.52 0.039 

3-100-0.6 2308048 337.37 43896 2426014 606.80 0.051 2466252 500.41 0.069 

4-100-0.3 2129941 525.71 43039 2185312 960.61 0.026 2243671 617.49 0.053 

4-100-0.6 2657675 418.39 44086 2718275 779.77 0.023 2732799 620.79 0.028 

 

4. Conclusion  

The article proposes a multi-period HSCP with flexible covering radius. There are many real-world 

applications such as telecommunication network or cargo delivery systems in which the covering radius is 

a flexible parameter rather than a fixed one. The proposed model assumes a fixed hub establishment and 

variable covering cost in which the latter is proportional to the area covered by the hub. Furthermore, to 

exert the changes in problem parameters during the planning horizon, a dynamic model is proposed. 

Facilities are divided into movable and static, and the savings from released movable facilities as well as 

the closure costs for static ones are taken in to account. Considering the computational complexity of the 

problem, an effective GA is proposed to solve it. The proposed GA benefits from dynamic migration and 

mutation operators which helped the algorithm to avoid trapping in local optima. The algorithm is 

compared with the original GA and ICA. The results showed that the proposed GA outperforms ICA and 
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original GA in the quality of the obtained solutions. Also the proposed GA is superior to the applied 

optimization toolbox (GAMS) and original GA in computational time. 

The dynamic model proposed here, assumes that the savings resulting from movable facilities are the 

same for all hubs in a period. An interesting further research direction is to assume that the debated 

savings are variable for different hubs due to their sizes and other features. 
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