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a b s t r a c t

This paper is concerned with the two-mode-dependent robust control synthesis of networked control
systemswhere randomdelays existing in both forward controller-to-actuator (C–A) and feedback sensor-
to-controller (S–C) communication links aremodeled asMarkov chains. The output feedback controller is
designed to depend on the current S–C delay and the previous C–A delay. Then, the closed-loop system is
formulated as a special jump linear system. The generalized definitions of the H2 and H∞ norms for such
underlying special systems are proposed. Further, the two-mode-dependent robust H2 and robust mixed
H2/H∞ control design methods for NCSs are developed. The design examples illustrate the effectiveness
of the proposed methods.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Networked control systems (NCSs) have advantages such as
low cost, easy diagnosis, and high mobility over the traditional
control system. Hence, NCSs have been finding many industrial
applications in automobiles, manufacturing plants, and aircrafts;
see, e.g., Nilsson (1998), Seiler and Sengupta (2005), Shi and Fang
(2010) and Tsai and Ray (1999), and the references therein. The
introduction of communication networks into control systems
also brings some design constraints such as network-induced
delays, packet dropouts, and quantization errors. It is well known
that the time delays and packet dropouts can degrade the
system performance or even cause instability of control systems.
Therefore, how to handle the network-induced delays and packet
dropouts has attracted much attention. To model the time delays
and/or packet loss process, there are two basic approaches. The
first approach is the stochastic method which assumes that the
time delay and/or packet loss processes follow certain probability
distributions, e.g., Markov chain (Nilsson, 1998) and Bernoulli
process (Seiler & Sengupta, 2005; Shi, Fang, & Yan, 2009); the
second approach is the deterministicmethod,which places bounds
on time delays and/or packet losses or specifies them in a time
average sense (Lin & Antsaklis, 2005).
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In a general NCS as shown in Fig. 1, network-induced delays
exist on both the forward controller-to-actuator (C–A) and the
feedback sensor-to-controller (S–C) communication links. Various
methodologies have been proposed in the literature for the
controller design considering the network-induced delays and/or
packet dropouts. The controller can be time-invariant (mode
independent) or depend on S–C and/or C–A delays (one mode
dependent or two mode dependent). The mode-independent
controller does not depend on either S–C or C–A delays. Since
the controller is mode independent, the S–C and C–A delays can
be lumped together as a whole, and therefore, the methods for
time-delayed systems can be applied to NCSs. Examples of such
controller design are the research work in Gao and Chen (2008),
Xiao, Hassibi, and How (2000) and Xiong and Lam (2007). The one-
mode-dependent controller usually depends on S–C delays. Then
the closed-loop system was formulated as a jump linear system
and the stabilization and control synthesis can be solved under the
framework of jump linear systems as in Seiler and Sengupta (2005)
and Xiao et al. (2000). The two-mode-dependent controller refers
to that the controller depends on both S–C and C–A delays. Zhang,
Shi, Chen, and Huang (2005) developed a new state feedback
controller that simultaneously depends on both S–C and C–A
delays modeled by Markov chains, and provided the sufficient and
necessary condition to guarantee stochastic stability. In Huang and
Nguang (2008), the Markov processes were used to model the
randomnetwork-induced delays and a two-mode-dependent state
feedback controller was designed for continuous-time NCSs based
on the Lyapunov–Razumikhin method. Recently, in Shi and Yu
(2009), the S–C and C–A delays, modeled by two Markov chains,
were simultaneously incorporated into the controller design in a
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Fig. 1. Diagram of a networked control system.

general and practical way, and the output feedback control design
was developed.

However, to the best of our knowledge, the two-mode-
dependent robust control synthesis problem for NCSs has not been
addressed, which is the focus of this paper. A closer scrutiny of
incorporating both forward C–A and feedback S–C delays into
controller design necessarily requires the consideration on the
availability of the C–A delay information at the controller node in
practical NCSs. In comparisonwith the aforementioned references,
it is a worthwhile effort to examine how to make full use of
the available forward C–A and feedback S–C delay information
in designing the two-mode-dependent controllers for NCSs. First,
to be of any practical use in applications, the current forward
C–A delay dk may not be available at the controller node at time
instant k, because the transmission of such delay information
is also subject to the network-induced delay. Second, owing to
the use of Markov chain models for the delays, and the strategy
of incorporating both S–C and the most recent available C–A
delays into the design, the well-established results in MJLSs (Costa
& Marques, 2000; Seiler & Sengupta, 2003) cannot be directly
applied. As will be seen in later sections, the inclusion of the
most recent available C–A delay renders difficulty in analyzing the
underlying special jump system. Third, the robust H2 and robust
mixed H2/H∞ two-mode-dependent control for NCSs have not
been reported in the literature. Thus the development of such two-
mode-dependent robust H2 and robust mixed H2/H∞ control for
NCSs is both practically necessary and theoretically interesting.

The remainder of this paper is organized as follows. Section 2
describes the systemswe deal with and states the objectives of this
work. Section 3 proposes the robust H2 and robust mixed H2/H∞

two-mode-dependent control design for NCSs, respectively. We
give an illustrative design example in Section 4. Finally, the
concluding remarks and future work are addressed in Section 5.

Notation: The superscripts ‘‘T’’ and ‘‘−1’’ stand for matrix
transposition and matrix inverse, respectively. Rn denotes the
n-dimensional Euclidean space and the notation P > 0 means
that P is real symmetric and positive definite. diag{· · ·} stands for
a block-diagonal matrix and tr{·}means the trace of a matrix. ‖ ·‖2
refers to the Euclidean norm for vectors and induced 2-norm for
matrices. E(·) stands for the mathematical expectation operator.
l2[0, ∞) is the space of a square summable vector sequence over
[0, ∞).

2. Problem formulation

Consider the NCS setup in Fig. 1. The uncertain discrete-time
plant model is

x(k + 1) = (A + 1A)x(k) + (B + 1B)ũ(k) + Jω(k),
y(k) = Cx(k), (1)

where x(k) ∈ Rn is the state vector, ũ(k) ∈ Rm is the control input,
y(k) ∈ Rp is the controlled output, ω(k) ∈ Rl is the exogenous
disturbance signal which belongs to l2[0, ∞), A, B, C , and J are
known real constantmatrices with appropriate dimensions.1A(k)
and 1B(k) are unknown matrices representing the time-varying
norm-bounded uncertainties that satisfy the following condition:
1A(k) 1B(k)


= G1∆u(k)


U1 U2


. (2)

Here, G1,U1, and U2 are known real constant matrices with
appropriate dimensions, and ∆u(k) is the unknown time-varying
matrix function subject to∆u(k)T∆u(k) ≤ I . Random delays in S–C
and C–A links as shown in Fig. 1 are assumed to be bounded and
multiples of the sampling period. Here, 0 ≤ τk ≤ τ represents
the S–C delay and 0 ≤ dk ≤ d stands for the C–A delay. Further,
τk and dk are modeled as two homogeneous Markov chains that
take values in M = {0, 1, . . . , τ } and N = {0, 1, . . . , d}, and
their transition probability matrices are Λ = [Λij] and Π = [Πrs],
meaning that τk and dk jump from mode i to j and from mode r to
s, respectively, with probabilitiesΛij andΠrs, which are defined by

Λij = Pr(τk+1 = j|τk = i), Πrs = Pr(dk+1 = s|dk = r)

with the constraints Λij, Πrs ≥ 0 and

τ−
j=0

Λij = 1,
d−

s=0

Πrs = 1

for all i, j ∈ M and r, s ∈ N .

Remark 1. The network-induced delays and packet dropouts may
lead to the disorder (out of order) of arriving packets. The Markov
chain model assumes that the most recent data is used at the
controller node. A buffer could be used to store the latest data that
has the most recent time stamp. When a new packet arrives at the
buffer, if the time stamp of the data is greater than that of the data
stored in the buffer, the new data will be stored in the buffer and
applied.

As shown in Shi and Yu (2009), the controller can be designed
based on the S–C delay τk and the previous C–A delay dk−τk−1.
Hence, the two-mode-dependent output feedback controller has
the following form:

z(k + 1) = F(τk, dk−τk−1)z(k) + G(τk, dk−τk−1)ỹ(k),

u(k) = H(τk, dk−τk−1)z(k) + T (τk, dk−τk−1)ỹ(k), (3)

where z(k) ∈ Rn is the state vector of the output feedback
controller; F ,G,H , and T are appropriately dimensioned matrices
to be designed. In total, there are 4(τ + 1)(d + 1) matrices to be
designed.

At sampling time k, ifwe augment the state andoutput variables
of the plant as

X̃(k) =

x(k)T y(k − 1)T y(k − 2)T · · · y(k − τ)T

T
,

and consider that ỹ(k) = y(k − τk), then we have

X̃(k + 1) = ÃX̃(k) + B̃ũ(k) + J̃1ω(k),

ỹ(k) = C̃1(τk)X̃(k), (4)

where

Ã =


A + 1A 0 · · · 0 0

C 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , B̃ =


B + 1B

0
...
0
0

 ,

J̃1 =

JT 0 · · · 0 0

T
,

C̃1(τk) =



C 0 · · · 0 0 · · · 0


, for τk = 0,

0 · · · 0 I 0 · · · 0
  

(1+τk)th block being identity

, for τk > 0.
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Similarly, at sampling time k, augment the state and output
variables of the controller as
Z̃(k) =


z(k)T u(k − 1)T u(k − 2)T · · · u(k − d)T

T
,

then
Z̃(k + 1) = F̃(τk, dk−τk−1)Z̃(k) + G̃(τk, dk−τk−1)ỹ(k),

ũ(k) = H̃(τk, dk, dk−τk−1)Z̃(k) + T̃ (τk, dk, dk−τk−1)ỹ(k), (5)
where

F̃(τk, dk−τk−1) =


F(τk, dk−τk−1) 0 · · · 0 0
H(τk, dk−τk−1) 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 ,

G̃(τk, dk−τk−1) =


G(τk, dk−τk−1)
T (τk, dk−τk−1)

...
0
0

 ,

H̃(τk, dk−τk−1, dk)

=



H(τk, dk−τk−1) 0 · · · 0 0 · · · 0


, for dk = 0,

0 · · · 0 I 0 · · · 0
  

(1+dk)th block being identity

, for dk > 0,

T̃ (τk, dk−τk−1, dk) =


T (τk, dk−τk−1), for dk = 0,
0, for dk > 0.

Combining (4) and (5), and defining the state variable as

X(k) =

X̃(k)T Z̃(k)T

T
,

we have the closed-loop system dynamics as follows:

X(k + 1) =

Ā + B̄K(τk, dk−τk−1, dk)C̄(τk)


X(k) + J̃ω(k),

y(k) = C̃X(k), (6)
where

Ā =

[
Ã 0
0 0

]
, B̄ =

[
0 B̃
I 0

]
, C̄(τk) =

[
0 I

C̃1(τk) 0

]
,

K(τk, dk−τk−1, dk) =

[
F̃(τk, dk−τk−1) G̃(τk, dk−τk−1)

H̃(τk, dk−τk−1, dk) J̃(τk, dk−τk−1, dk)

]
,

J̃ =

JT 0 · · · 0 0 0 0 · · · 0 0

T
,

C̃ =

C 0 · · · 0 0 0 0 · · · 0 0


.

Eq. (6) represents a discrete-time jump linear system. For
the ease of the presentation, when the system is in mode
i ∈ M and r ∈ N (i.e., τk = i, dk−τk−1 = r),
F(τk, dk−τk−1),G(τk, dk−τk−1),H(τk, dk−τk−1), and T (τk, dk−τk−1)
will be denoted as F(i, r),G(i, r),H(i, r), and T (i, r), respectively.

Note that the matrices Ā and B̄ are of the following form

Ā = AAug + 1AAug = AAug + G̃1∆u(k)U1IT2 , (7a)

B̄ = BAug + 1BAug = BAug + G̃1∆u(k)U2IT3 , (7b)
where

AAug =



A 0 · · · 0 0 0 · · · 0
C 0 · · · 0 0 0 · · · 0
0 I · · · 0 0 0 · · · 0
...

...
. . .

...
... 0 · · · 0

0 0 · · · I 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
... 0 · · · 0 0 0

. . . 0
0 0 · · · 0 0 0 · · · 0


BAug =



0 · · · 0 B
0 · · · 0 0

0 · · · 0
...

...
. . .

... 0
0 · · · 0 0
I 0 0 0

0
. . . 0

...
0 0 I 0


G̃1 =


GT
1 0 · · · 0 0 0 · · · 0

T
,

I2 =

I 0 · · · 0 0 0 · · · 0

T
,

I3 =

0 0 · · · 0 0 0 · · · I

T
.

Then, it is clear that the uncertainties in the augmented system in
(6) are also norm bounded.

Remark 2. If we augment the possible network-induced delay
values at the same time by defining a vector-valued variable
as Φk =


τk dk dk−1 dk−2 · · · dk−τ−1


, the closed-loop

system can be transformed to a standard MJLS. However, this
approach would bring two difficulties for the controller design:
(1) It is hard to determine the transition probability matrix for the
vector-valued variable Φk; (2) the computational complexity will
be increaseddrasticallywith the increasednumber of themodes by
using the vector-valued jumping parameter. The proposed control
schemes in this paper take advantage of the multi-step jump of
Markov chains instead of augmenting the delay values.

In our previouswork (Shi & Yu, 2009), the stabilization problem
for the system in (6) (without considering the uncertainties and
external disturbances) was solved. In the literature, to incorporate
the control performance indices (H2 and H∞ norms) into the
two-mode-dependent controller design for NCSs has not been
investigated despite their importance in practical applications. The
objective of this paper is to develop the robust H2 and robust
mixed H2/H∞ two-mode-dependent control design schemes for
NCSs.

3. Two-mode-dependent robust H2 control and robust mixed
H2/H∞ control

3.1. Robust stability analysis

First of all, let us deal with the robust stability analysis problem.
The stochastic stability for the system in (6) with ω(k) = 0
is defined in Shi and Yu (2009) considering the multi-jump and
interdependency of these stochastic variables τk, dk, and dk−τk−1.
The following theorem provides the sufficient and necessary
condition under which the closed-loop system in (6) with a
designed controller and ω(k) = 0 is robustly stable.

Theorem 1. Let the controller parameters F(i, r),G(i, r),H(i, r),
and T (i, r) in (3) be given and the norm-bounded uncertainty
condition (2) hold. Then, the closed-loop system in (6)with ω(k) = 0
is stochastically stable if and only if there exist symmetric P(i, r) > 0
such that the following matrix inequality:

L(i, r) = −P(i, r) +

τ−
j=0

d−
s2=0

d−
s1=0

ΛijΠ
1+i−j
rs2 Π j

s2s1

×

Ā + B̄K(i, r, s1)C̄(i)

T
P(j, s2)

×

Ā + B̄K(i, r, s1)C̄(i)


< 0 (8)
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holds for all i ∈ M and r ∈ N . Here,Π1+i−j
rs2 stands for the probability

of the jump from r to s2 based on the transition probability matrix
Π1+i−j and Π

j
s2s1 represents the probability of the jump from s2 to s1

based on the transition probability matrix Π j.
Proof. The proof can be arrived at by following a similar line in Shi
and Yu (2009). �

3.2. Definitions of H2 and H∞ norms

As the closed-loop system in (6) under consideration is a special
discrete-time jump linear system, the definitions of the classical
H2 norm and the MJLS H2 norm are not suitable for this system.
Therefore,we define the generalizedH2 norm for the system in (6),
taking the special features of the system in (6) into account.

Definition 1. The H2 norm of the system in (6) is defined as

‖Hyω‖
2
2 =

l−
s=1

τ−
io=0

d−
ro=0

α(io,ro)‖ys,io,ro‖
2
2, (9)

where ys,io,ro is the output sequence of the system in (6) and
‖ys,io,ro‖

2
2 =

∑
∞

k=0 E

‖ys,io,ro(k)‖

2
2


when

(1) the input sequence is given by ω = (ω(0), ω(1), . . .), ω(0) =

es, ω(k) = 0, k > 0, es ∈ Rl the unitary vector formed by one
at the sth position and zeros elsewhere;

(2) τ0 = io and d−τ0−1 = ro;
(3) The joint probability of τ0 and d−τ0−1 is denoted as α(io,ro),

which satisfies
∑

io∈M,ro∈N α(io,ro) = 1, where io ∈ M, ro ∈ N .

Remark 3. When τ = 0, d = 0, the generalized H2 norm given
in Definition 1 is reduced to the classical H2 norm. Hence, the
definition can be viewed as a generalization of the H2 norm from
the LTI system to the special jump linear system. Moreover, when
d = 0, Definition 1 is reduced to the H2 norm for MJLSs (Costa &
Marques, 1998).

The definition of the classical H∞ norm for LTI systems can
be interpreted as a measure of robust stability that represents
the worst-case energy attenuation for any energy-bounded distur-
bance. Following the time-domain interpretation, the generalized
H∞ norm for the special system in (6) is defined as follows.

Definition 2. Let X(0) = 0 and define the H∞ norm as

‖Hyω‖∞ = sup
τ0∈M

sup
d−τ0−1∈N

sup
ω∈l2(0,∞)

‖y‖2

‖ω‖2
. (10)

The following theoremestablishes the relationship between the
H2 norm and the state–space model of the jump linear system in
(6).

Theorem 2. The H2 norm of the system in (6)with the stochastically
stabilizing controller in (3) can be computed as follows.

‖Hyω‖
2
2 =

τ−
io=0

d−
ro=0

τ−
jo=0

d−
so2=0

α(io,ro)ΛiojoΠ
1+io−jo
roso2

× tr

J̃TS(jo, so2)J̃


, (11)

where S(jo, so2) > 0 is obtained from the following equation

S(i, r) = C̃TC̃ +

τ−
j=0

d−
s1=0

d−
s2=0

ΛijΠ
1+i−j
rs2 Π j

s2s1

×

Ā + B̄K(i, r, s1)C̄(i)

T
S(j, s2)

×

Ā + B̄K(i, r, s1)C̄(i)


, (12)

for i ∈ M, r ∈ N .
Proof. Suppose that y(k) is an impulse response of the system in
(6). Then, for k ≥ 1 and considering (12)

E

y(k)Ty(k)


(13)

= E

X(k)TC̃TC̃X(k)


= E


X(k)T


S(i, r) −

τ−
j=0

d−
s1=0

d−
s2=0

ΛijΠ
1+i−j
rs2 Π j

s2s1

×

Ā + B̄K(i, r, s1)C̄(i)

T
S(j, s2)

×

Ā + B̄K(i, r, s1)C̄(i)


X(k)


= E


X(k)TS(i, r)X(k)


− E


X(k + 1)TS(τk+1, dk−τk+1)X(k + 1)


. (14)

Here, i = τk, r = dk−τk−1.
Eq. (14) is obtained by considering the multi-step delay mode

jump and the probability transition matrices:

τk → τk+1 : Λ, dk−i−1 → dk−j : Π1+i−j, dk−j → dk : Π j.

The detailed derivation of (14) can be found in Shi and Yu (2009).
Also notice that S(i, r) in (12) satisfies inequalities (8). Hence,
the system in (6) is stochastically stable. Then stochastic stability
implies limk→∞ E(‖X(k)‖)2 = 0. By taking the sum of (13) from 1
to ∞, we obtain

‖(ys,io,jo)‖
2
2

=

∞−
k=1

E


ys,io,jo(k)
2

|τ0,d−τ0−1

= E

X(1)TS(τ1, d−τ1)X(1)|τ0,d−τ0−1


= E


eTs J̃

TS(τ1, d−τ1)J̃es


=

τ−
jo=0

d−
so2=0

ΛiojoΠ
1+io−jo
roso2


eTs J̃

TS(jo, so2)J̃es


.

Thus,

‖Hyω‖
2
2 =

l−
s=1

τ−
io=0

d−
ro=0

α(io,ro)‖(ys,io,jo)‖
2
2

=

τ−
io=0

d−
ro=0

τ−
jo=0

d−
so2=0

α(io,ro)ΛiojoΠ
1+io−jo
roso2

× tr

J̃TS(jo, so2)J̃


.

This completes the proof. �

3.3. Robust H2 control

In this section, we focus on the two-mode-dependent robust
H2 control design for the special jump system. The objective is
to design a controller in (3) such that the H2 norm of the system
in (6) is minimized. The H2 control for LTI systems has been
studied (Oliveira, Geromel, & Bernussou, 2002; Scherer, Gahinet,
& Chilali, 1997) and theH2 control for MJLSs has been investigated
in Costa and Marques (2000). Based on the proposed definition of
H2 norm for the special jump system, the H2 control design will
be transformed to solving an optimization problem.

Theorem 3. Under the proposed output feedback control law (3), the
closed-loop system in (6) is stochastically stable and ‖Hyω‖2 < γ ,
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if there exist matrices F(i, r),G(i, r),H(i, r), T (i, r), and symmetric
matrices X̄(j, s2) > 0, P(i, r) > 0 and a set of scalars ε1(i, r) > 0,
ε2(i, r) > 0, . . . , ε(τ+1)(d+1)(d+1)(i, r) > 0 satisfying the following
inequalities

τ−
io=0

d−
ro=0

τ−
jo=0

d−
so2=0

α(io,ro)ΛiojoΠ
1+io−jo
roso2

× tr

J̃TP(jo, so2)J̃


< γ 2−P(i, r) + C̃TC̃ ∗ ∗

Vc(i, r) −X(i, r) + Ĝ(i, r) ∗

1Vu(i, r) 0 −ε̂(i, r)I

 < 0;

X̄(j, s2)P(j, s2) = I, (15)

with

Ĝ(i, r) = diag


ε1(i, r)G̃1G̃T

1 ε2(i, r)G̃1G̃T
1 · · ·

ε(τ+1)(d+1)(d+1)(i, r)G̃1G̃T
1


,

ε̂(i, r) = diag{ε1(i, r) ε2(i, r) · · · ε(τ+1)(d+1)(d+1)(i, r)},

Vc(i, r) =

Vc0(i, r)T Vc1(i, r)T · · · Vcτ (i, r)T

T
,

Vcj(i, r) =

Vcj,0(i, r)T Vcj,1(i, r)T · · · Vcj,d(i, r)T

T
,

Vcj,s2(i, r)

=


(ΛijΠ

1+i−j
rs2 Π

j
s20

)
1
2 [AAug + BAugK(i, r, 0)C̄(i)]

(ΛijΠ
1+i−j
rs2 Π

j
s21

)
1
2 [AAug + BAugK(i, r, 1)C̄(i)]

...

(ΛijΠ
1+i−j
rs2 Π

j
s2d

)
1
2 [AAug + BAugK(i, r, d)C̄(i)]

 ,

1Vu(i, r)

=

1Vu0(i, r)T 1Vu1(i, r)T · · · 1Vuτ (i, r)T

T
,

1Vuj(i, r)

=

1Vuj,0(i, r)T 1Vuj,1(i, r)T · · · 1Vuj,d(i, r)T

T
,

1Vuj,s2(i, r)

=


(ΛijΠ

1+i−j
rs2 Π

j
s20

)
1
2 [U1IT2 + U2IT3K(i, r, 0)C̄(i)]

(ΛijΠ
1+i−j
rs2 Π

j
s21

)
1
2 [U1IT2 + U2IT3K(i, r, 1)C̄(i)]

...

(ΛijΠ
1+i−j
rs2 Π

j
s2d

)
1
2 [U1IT2 + U2IT3K(i, r, d)C̄(i)]

 ,

X(i, r) = diag{X0(i, r) X1(i, r) · · · Xτ (i, r)},
Xj(i, r) = diag{Xj,0(i, r) Xj,1(i, r) · · · Xj,d(i, r)},

Xj,s2(i, r) = diag

X̄(j, s2) X̄(j, s2) · · · X̄(j, s2)

  
d+1

(16)

for all i, j ∈ M and r, s2 ∈ N .

Proof. This theorem can be proved using Lemma 2.4 in Xie (1996)
and the Schur complement. The detailed derivation is omitted due
to the limitation of length. �

3.4. Robust mixed H2/H∞ control

In this section, the two-mode-dependent robustmixedH2/H∞

control problem for the system in (6) is solved in terms of LMIs
with nonconvex constraints. The following theorem provides the
sufficient condition for the mixed H2/H∞ control problem.
Theorem 4. If

− P(i, r) + C̃TC̃ +

τ−
j=0

d−
s1=0

d−
s2=0

ΛijΠ
1+i−j
rs2 Π j

s2s1

×

Ā + B̄K(i, r, s1)C̄(i)

T
P(j, s2)


Ā + B̄K(i, r, s1)C̄(i)


+

1
γ 2

P(i, r)J̃ J̃TP(i, r) < 0, (17)

then the system in (6) is stochastically stable and

• the H∞ norm of system in (6) satisfies ‖Hyω‖∞ < γ ;
• ‖Hyω‖

2
2 <

∑τ
io=0

∑d
ro=0

∑τ
jo=0

∑d
so2=0 α(io,ro)ΛiojoΠ

1+io−jo
roso2

tr

J̃TP(jo, so2)J̃


.

Proof. It is straightforward to show that (17) implies (8). By
Theorem 1, we conclude that the system in (6) is stochastically
stable.

Next, for any nonzero disturbance signal ω(k), it follows from
(6) that

E

X(k + 1)TP(τk+1, dk−τk+1)X(k + 1)


= E


X(k)T


Ā + B̄K(i, r, s1)C̄(i)

T
P(τk+1, dk−τk+1)

×

Ā + B̄K(i, r, s1)C̄(i)


X(k)


+ E


ω(k)T J̃TP(τk+1, dk−τk+1)

×

Ā + B̄K(i, r, s1)C̄(i)


X(k)


+ E


X(k)T


Ā + B̄K(i, r, s1)C̄(i)

T
P(τk+1, dk−τk+1)J̃ω(k)


+ E


ω(k)T J̃TP(τk+1, dk−τk+1)J̃ω(k)


(18)

< E

X(k)T


P(τk, dk−τk−1) − C̃TC̃ −

1
γ 2

P(i, r)J̃ J̃TP(i, r)

X(k)


+ E


ω(k)T J̃TP(τk+1, dk−τk+1)


Ā + B̄K(i, r, s1)C̄(i)


X(k)


+ E


X(k)T


Ā + B̄K(i, r, s1)C̄(i)

T
P(τk+1, dk−τk+1)J̃ω(k)


+ E


ω(k)T J̃TP(τk+1, dk−τk+1)J̃ω(k)


. (19)

Inequality (19) follows by applying inequalities (17) to the first
term of (18). Further, considering that X(k)TC̃TC̃X(k) = ‖y(k)‖2

2,
we have the following inequality

‖P(τk+1, dk−τk+1)
1
2 x(k + 1)‖2

2

− ‖P(τk, dk−τk−1)
1
2 x(k)‖2

2 + ‖y(k)‖2
2 (20)

< −
1
γ 2

‖J̃TP(τk, dk−τk−1)x(k)‖2
2 + E


ω(k)T J̃TP(τk+1, dk−τk+1)

×

Ā + B̄K(i, r, s1)C̄(i)


X(k)


+ E


X(k)T


Ā + B̄K(i, r, s1)C̄(i)

T
P(τk+1, dk−τk+1)J̃ω(k)


+ E


ω(k)T J̃TP(τk+1, dk−τk+1)J̃ω(k)


= −

1
γ 2

‖J̃TP(τk, dk−τk−1)x(k)‖2
2

+
1
γ 2

‖J̃TP(τk+1, dk−τk+1)x(k + 1)‖2
2

−
1
γ 2

‖J̃TP(τk+1, dk−τk+1)x(k + 1)‖2
2

+ 2E

ω(k)T J̃TP(τk+1, dk−τk+1)x(k + 1)


− E


ω(k)T J̃TP(τk+1, dk−τk+1)J̃ω(k)


. (21)



Y. Shi, B. Yu / Automatica 47 (2011) 754–760 759
Rearranging the inequality above yields the following inequality

‖y(k)‖2
2 + ‖P(τk+1, dk−τk+1)

1
2 x(k + 1)‖2

2

− ‖P(τk, dk−τk−1)
1
2 x(k)‖2

2

−
1
γ 2

‖J̃TP(τk+1, dk−τk+1)x(k + 1)‖2
2

+
1
γ 2

‖J̃TP(τk, dk−τk−1)x(k)‖2
2

< −‖
1
γ
J̃TP(τk+1, dk−τk+1)x(k + 1) − γω(k)‖2

2

+ E

ω(k)T


γ 2I − J̃TP(τk+1, dk−τk+1)J̃


ω(k)


≤ E


ω(k)T


γ 2I − J̃TP(τk+1, dk−τk+1)J̃


ω(k)


.

Taking the sum from k = 0 to ∞, and recalling that X(0) =

0, ‖X(k)‖2 → 0 as k → ∞, we obtain

‖y‖2
2 ≤

∞−
k=0

E

ω(k)T


γ 2I − J̃TP(τk+1, dk−τk+1)J̃


ω(k)


= γ 2(1 − v)‖ω‖

2
2 ≤ γ 2

‖ω‖
2
2,

where v ∈


0, 1

γ 2

∑τ
i=0

∑d
j=0 tr(J̃

TP(i, r)J̃)

. Thus, ‖y‖2

‖ω‖2
< γ .

Further, by comparing (12) and (17), we have P(i, r) > S(i, r).
Hence, the inequality about ‖Hyω‖

2
2 is verified. This completes the

proof. �

Condition (17) is difficult to check because it is nonlinear. We
then transform it to an equivalent condition in the form of a set of
LMIs with nonconvex constraints.

Theorem 5. Under the proposed output feedback control law (3),
the closed-loop system in (6) is stochastically stable and ‖Hyω‖2 <

β, ‖Hyω‖∞ < γ , if there exist matrices F(i, r),G(i, r),H(i, r) and
T (i, r) and symmetric matrices X̄(j, s2) > 0, P(i, r) > 0 and a set
of scalars ε1(i, r) > 0, ε2(i, r) > 0, . . . , ε(τ+1)(d+1)(d+1)(i, r) > 0
satisfying:

τ−
io=0

d−
ro=0

τ−
jo=0

d−
so2=0

α(io,ro)ΛiojoΠ
1+io−jo
roso2 tr{J̃TP(jo, so2)J̃} < β2,


C̃TC̃ − P(i, r) ∗ ∗ ∗

Vc(i, r) Ĝ(i, r) − X(i, r) ∗ ∗

1
γ
J̃TP(i, r) 0 −I ∗

1Vu(i, r) 0 0 −ε̂(i, r)I

 < 0

X̄(j, s2)P(j, s2) = I, (22)

with the matrices defined in (16) for all i, j ∈ M and r, s2 ∈ N .

Proof. By following a similar line as in the proof of Theorem 3, this
theorem can be readily proved. �

Conditions (15) and (22) contain a set of LMIs and noncon-
vex constraints. This can be solved by the product reduction al-
gorithm (PRA) (Zhang, Huang, & Lam, 2003). The robust H2 and
mixed H2/H∞ control problems are then transformed to the op-
timization problems to find the minimum values for γ and/or β

using Theorems 3 and 5.
4. Numerical example

In this section, a design example on inverted pendulum systems
is provided. The linearized nominal discrete-time model of the
plant (sampling time Ts = 0.05 s) is

A =

[
1.01 0.05
0.49 1.01

]
B =

[
0.01
0.50

]
J =

[
0.10
0.10

]
C =

[
1
0

]T

.

The eigenvalues ofA are 0.7312 and 1.3676. Therefore, the nominal
model is unstable. The uncertainty is unavoidable in practical
systems due to inadequate knowledge of the value of model
parameters and variations of the values during operation. Here, the
norm-bounded uncertainties can be characterized by the following
matrices

G1 =

[
0.01
0.5

]
, U1 =


0.2 0.1


, U2 = 0.1.

The random delays involved in this NCS are assumed to be τk ∈

{0, 1, 2} and dk ∈ {0, 1}, and their transition probability matrices
are given by

Λ =

0.5 0.5 0
0.3 0.6 0.1
0.3 0.6 0.1


, Π =

[
0.2 0.8
0.5 0.5

]
.

The initial distribution for (τ0, d−τ0−1) is equal for every (α(io,ro)),
where io ∈ M, ro ∈ N , which means that α(io,ro) =

1
6 in the

following examples.
We then consider the robust mixed H2/H∞ control for the

inverted pendulum system in a simulated network environment.
γ is pre-set to be 2. By searching for the optimal value for β , we
obtain that the minimum value of H2 norm βmin is 0.385 and
the corresponding system matrices of the two-mode-dependent
output feedback controller including a set of matrices (omitted to
save space).

To illustrate the performance of the designmethods, select a set
of disturbance signals as follows:

ω(k) =

1, for 1 ≤ k ≤ 10,
−1, for 21 ≤ k ≤ 30,
0, otherwise.

In the simulation, we assume that ∆u = sin(t), and it can be seen
that ∆T

u∆u ≤ 1. It is observed that the system is stabilized through
the simulation. By calculation, we have ‖ω‖2 = 4.4721, ‖y‖2 =

1.7670 for this example, which yields

‖y‖2

‖ω‖2
= 0.3951 < γ = 2.

The l2 norm of the impulse response according to Definition 1 is
evaluated as l−

s=1

τ−
io=0

d−
ro=0

α(io,ro)‖ys,io,ro‖
2
2 = 0.2877 < 0.385.

These results show that the closed-loop system is stochastically
stable and the robust mixed H2/H∞ control performance is
satisfied.
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5. Conclusion

In this paper, we study the robust control synthesis problem
in NCSs with norm-bounded uncertainties. The time delays from
S–C and C–A links are modeled as two Markov chains. Then, a
two-mode-dependent output feedback controller design method
is proposed. The controller is dependent on both S–C and C–A
delays. Further, the closed-loop system is formulated as a special
jump linear system. The stochastic stability analysis is addressed
and the H2 and H∞ norms for this special system are defined. The
H2 and mixed H2/H∞ control problems are solved in the form of
a set of LMIs with nonconvex constraints, which can be efficiently
solved by PRA.

The results in this paper add to the growing literature on the
controller design for NCSs. The two-mode-dependent framework
provided in this paper motivates analysis and synthesis of a
number of interesting questions that are under investigation.

• Our model assumes that the NCS is in discrete time. Practically,
an NCS is a sampled-data system where the controller is
in discrete time and the plant is in continuous time. One
interesting thrust of research is to develop the dynamic two-
mode-dependent discrete-time controller for the continuous-
time plant under the network environment. Such a problem
will necessitate a different line of analysis. It would be also
interesting to study the data disorder and quantization issues
under the two-mode-dependent framework.

• We assume that the probability transitionmatrix of theMarkov
chain is known. Studying the effects of uncertainties and
unknown parameters on the probability transition matrix is
also an interesting research area.
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