
Contents lists available at ScienceDirect

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

A note on a single-machine lot scheduling problem with indivisible orders

Dar-Li Yang, Yung-Tsung Hou, Wen-Hung Kuo⁎

Department of Information Management, National Formosa University, Yunlin 632, Taiwan, ROC

A R T I C L E I N F O

Keywords:
Lot scheduling
Single machine
Total completion time
Indivisible order
Integer programming

A B S T R A C T

In this paper, a lot scheduling problem on a single machine with indivisible orders is studied. The objective is to
minimize the total completion time of all orders. We show that the problem is NP-hard in the strong sense.
Then, a binary integer programming approach and four simple heuristics are proposed to solve the problem.
The binary integer programming approach with running time limit is considered as one heuristic method. As
compared to a lower bound, the average performances of the heuristic method are really good and better than
those of the four simple heuristics.

1. Introduction

Generally, there are two main production processes in a production
system, that is, continuous production and batch production. Here, we
are interested in batch production. In the literature, there are two
categories of batch scheduling problems. One is batch scheduling with
divisible batch sizes. For example, Santos and Magazine studied a
single machine scheduling problem with divisible lots. The objective is
to minimize the total flowtime of all jobs. They showed that lot splitting
may occur and that the batching decisions may have a great impact on
the lead time of jobs. Naddef and Santos [1] studied a single machine
problem with batching jobs. The objective is to minimize the total
completion times. They showed that the greedy algorithm solves the
problem if jobs are all of one type. They also provided a heuristic for the
problem with various job types. Coffman et al. [2] considered a single
machine job shop in which subassemblies of two different types are
made and then assembled into products. They provided an efficient
algorithm for minimizing the total flow time of the products. Dobson
et al. [3] considered batch jobs in the multiple-machine scheduling
problem. The objective is to minimize the mean flow times. They
proposed an efficient algorithm for computing the optimal solution for
single product case. Hou et al. [4] studied a lot scheduling problem
with orders which can be split. Orders are grouped into lots and then
processed. The objective is to minimize the total completion time of all
orders. They showed that this problem can be solved in polynomial
time.

The other is batch scheduling with indivisible batch sizes. Shallcross
[5] studied a problem of batching identical jobs on a single machine.
He presented an algorithm to minimize the sum over all jobs of the
batched completion times. Mosheiov et al. [6] addressed a classical

minimum flow-time, single-machine, batch-scheduling problem. They
introduced a simple rounding procedure for Santos and Magazine’s
solution [7], which guarantees optimal integer batches. Mor and
Mosheiov [8] studied an identical parallel-machine scheduling problem
with identical job processing times and identical setups. They showed
that the solution is given by a closed form, consisting of identical
decreasing arithmetic sequences of batch sizes on the different
machines. For more studies of this line, the reader is referred to the
survey papers (Potts and Kovalyov [9], and Allahverdi et al. [10]).

In a factory, products are usually made according to customers’
orders. This production approach is called MTO (make to order). Since
different orders may contain different quantities, two production
strategies are applied in the batch production, especially when the lot
size of the batch production is fixed. Also, in this particular situation,
the production time of each lot is fixed no matter how many quantities
in the lot. Therefore, from the viewpoint of efficiency, one order may be
divided into several lots to fill up each lot. The study presented by Hou
et al. [4] is based on this viewpoint. However, from the viewpoint of
management, one order is not divided into different production lots
because the products of the same order are finished at the same time
and then delivered to the customer. Based on this viewpoint, in this
paper, we study the same problem given by Hou et al. [4] but orders are
restricted to be indivisible.

2. Problem description

There are n orders (Oi, i=1, 2, …, n) to be grouped into lots and then
be processed on a single machine. Every order has its own size (σi, i=1,
2, …, n). The size of each order is no more than one lot's capacity (k).
On top of that, every order is indivisible. It means products of each

http://dx.doi.org/10.1016/j.cor.2016.10.004
Received 13 October 2014; Received in revised form 21 April 2016; Accepted 9 October 2016

⁎ Corresponding author.
E-mail address: whkuo@nfu.edu.tw (W.-H. Kuo).

Computers & Operations Research 79 (2017) 34–38

0305-0548/ © 2016 Elsevier Ltd. All rights reserved.
Available online 11 October 2016

crossmark

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.10.004
http://dx.doi.org/10.1016/j.cor.2016.10.004
http://dx.doi.org/10.1016/j.cor.2016.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.10.004&domain=pdf

individual order have to be processed on the same lot. The orders in the
same lot have the same processing time (t). Therefore, all orders in the
same lot have the same completion time.

The machine can handle at most one lot at a time and cannot stand
idle until the last lot assigned to it has finished processing. The
objective is to minimize the total completion time (C∑ Oi) of all orders.
Thus, using the three-field notation, this scheduling problem is denoted
by lot indivisible C1/ , / ∑ Oi.

3. The analysis of the lot indivisible C1/ , / ∑ Oi problem

The proposed problem is similar to the classical bin-packing
problem when “lots” are considered as “bins” and “orders” as “items”.
The only difference is that the objective function of the bin-packing
problem is to find the minimum number of bins while that of the
proposed problem is to minimize the total completion time of all
orders. In other words, the contribution of each bin to the objective
function in the bin-packing problem is the same. However, the
importance of each lot is different in the proposed problem. The
completion time of a latter lot is longer than that of an earlier one.
Therefore, it is better to arrange orders in earlier lots to minimize the
total completion time. Based on the above observation, a similar
reduction to 3-partition problem is used to prove the strong NP-
hardness of the problem lot indivisible C1/ , / ∑ .Oi

Theorem 1. The problem lot indivisible C1/ , / ∑ Oi is NP-hard in the
strong sense.

Proof. We show that 3-partition problem reduces to this problem.
Considering the following well-known NP-complete problem:

3-partition: Given positive integers a1, a2, …, a m3 , B and for each
j A m∈ = {1, 2, ... ,3 } such that B a B/4 < < /2j and a mB∑ =j A j∈ , does
there exist disjoint sets A1, A2, …, Am of A such that

a a a B∑ = ∑ = ...= ∑ =j A j j A j j A j∈ ∈ ∈ m1 2
?

First, an instance of the lot indivisible C1/ , / ∑ Oi problem is con-
structed as follows.

N m K B t σ a i m= 3 , = , = 1, = where = 1, 2,…,3 .i i

We will show that 3-partition problem has a solution if and only if
the above instance has an optimal schedule with minimal total
completion time C m m∑ = 3 (+ 1)/2Oi .

(⇒) If 3-partition problem has a solution, then there exist disjoint
sets A1, A2, …, Am of A such that a a a B∑ = ∑ = ...= ∑ =j A j j A j j A j∈ ∈ ∈ m1 2

.
Let the orders corresponding to A1 be assigned to J1, those correspond-
ing to A2 be assigned to J2, … and so on. Since B a B/4 < < /2j , exactly
three orders are assigned to each job. Therefore, the total completion
time of the above instance is C m m∑ = 3 (+ 1)/2Oi .

(⇐) If 3-partition problem has no solution, we will show that the total
completion time of any schedule for the above instance is greater than
m m3 (+ 1)/2. Assume that 3-partition problem has no solution, then at
least one disjoint set of A, say Ak, in which a B∑ <j A j∈ k

. Therefore, if the
orders corresponding to Ak are assigned to one job, then the sum of aj in
the other disjoint sets is greater than mB B(−). In such a situation, since
B a B/4 < < /2j , the best feasible schedule to minimize the total com-
pletion time is arranged as follows. The first m(− 1) jobs consist of three
orders, the mth job consists of two orders and the (m+1)th job con-
sists of one order. Hence, the total completion time is

C m∑ = 3(1 + 2 + ... +(− 1))Oi m m+2 + (+ 1) m m=(3 (+ 1)/2) + 1.
Therefore, if 3-partition problem has no solution, the total completion
time of the above instance is greater than m m3 (+ 1)/2. This completes the
proof.

4. Integer programming formulation

Let X = 1i q[] if the ith order is assigned to the qth lot, and 0
otherwise. Since the processing time of each lot is t, the completion
times of the first lot, the second one, … are t, 2t, …, respectively. Thus,

the total completion time of all orders is t X q∑ ∑q
N

i
N

i q=1 =1 [] . Then a
binary integer programming (BIP) formulation to solve the proposed
problem is developed as follows.

∑ ∑t X qMinimize
q

N

i

N

i q
=1 =1

[]
(1)

∑ X i NSubject to = 1 = 1, 2,…,
q

N

i q
=1

[]
(2)

∑ σ X K q N≤ = 1, 2,…,
i

N

i i q
=1

[]
(3)

X i N q N∈ {0, 1} = 1, 2,…, , = 1, 2,…,i q[] (4)

The objective is to minimize the total completion time of all orders
which is shown in objective function (1). Eq. (2) ensures that each
order is only assigned to one lot. Constraint (3) limits the total sizes of
orders that are assigned to the same lot to the lot capacity (K). Finally,
constraint (4) guarantees that variable Xi q[] is either 0 or 1.

5. Heuristics

Since the proposed problem is similar to the bin packing problem,
the following simple commonly used heuristics for solving the bin
packing problem are adopted to find the solution of the proposed
problem. In the first two heuristics, the orders are randomly arranged
in a list. On the other hand, in the last two heuristics, the orders are
arranged in a non-decreasing order of their sizes in a list because such
an order sequence is optimal for the same problem with divisible
orders [4]. The four simple heuristics are given as follows.

First Fit Random (FFR) algorithm.

Step 1. Arrange the orders in a list randomly.
Step 2. Select the order at the head of the list and assign it to the first
feasible lot with enough residual capacity for the order from the
beginning. If the order doesn’t fit in any existing lot, place the order
in a new lot.
Step 3. Repeat Step 2 until all orders are assigned to a lot.

Best Fit Random (BFR) algorithm.

Step 1. Arrange the orders in a list randomly.
Step 2. Select the order at the head of the list and assign it to the
most feasible lot with the least enough residual capacity for the order
by scanning all the existing lots. If the order doesn’t fit in any
existing lot, place the order in a new lot.
Step 3. Repeat Step 2 until all orders are assigned to a lot.

First Fit Non-decreasing (FFN) algorithm.

Step 1. Arrange the orders in a non-decreasing order of their sizes in
a list.
Step 2 and Step 3 are the same as those in FFR algorithm.

Best Fit Non-decreasing (BFN) algorithm.

Step 1. Arrange the orders in a non-decreasing order of their sizes in
a list.
Step 2 and Step 3 are the same as those in BFR algorithm.

The time complexities of first-fit and best-fit are O n n(log).
Therefore, it is obvious that the time complexities of the four
algorithms are all O n n(log).

D.-L. Yang et al. Computers & Operations Research 79 (2017) 34–38

35

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

6. Computational experiments

The above binary integer programming approach can solve the
proposed problem, but it is time-consuming when it comes to a large
problem. Considering the efficiency of the BIP, the run time limit of the
BIP is set to 3600 s. Also, in order to evaluate the performance of the
BIP, it is compared to the above heuristics. They are all tested in the
computational experiments which are conducted based on the follow-
ing parameter set.

(1) Order number n is equal to 20, 30, 40, 50, 60, 70, 80, 90, 100.
(2) Lot capacity k is equal to 15, 30.

(3) Order size σi is uniformly distributed over [1,5], [1,10] (σi=
d
U(1,5),

σi=
d
U(1,10))

There are 9 × 2 × 2 = 36 problem types. For each problem type, 30
test problems are generated. Each test problem is solved by BIP, LP
and four heuristics, respectively. BIP and LP are solved by using a
computer program coded in LINGO 11.0 while the four heuristics are
carried on a Matlab program with 4 GB of memory available for
working storage, running on a personal computer Intel(R) Core(TM)
i7-2600 CPU @3.4 GHz. To evaluate the performance of the computa-
tional results, we have to come up with a lower bound (LB) and then
compare these percentage errors (H LB LB100*(−)/) in different test
problems where H is BIP, or one of the four heuristics.

Obviously, one lower bound can be obtained from the solution of a
variant of the original problem by changing the original problem to the
one in which orders are divisible and can be processed in different lots.
Therefore, we only need to change Eq. (4) as follows.

X i N q N≥ 0 = 1, 2,…, , = 1, 2,…,i q[] (4′)

Then, since the problem becomes a linear programming (LP)
problem, we take much less time to solve the problem than the original
one. The lower bound is also tight because the solutions of the original
problem and its variant can happen to be the same (integers).

The average and maximal percentage errors for the BIP solutions
and the number of optimal solutions obtained within 3600 s in
different test problems are shown in Table 1 and Fig. 1. The results
of the four heuristics are also shown from Tables 2–5.

When comparing the results from Tables 1–5, we have the
following observations:

(1) If the orders are arranged in a non-decreasing order of their sizes
first, the results of first-fit and best-fit algorithms are the same and
much better than those with random order sequences.

Table 1
Computational results of experiments (BIP).

σi=1–5, k=15 σi=1–5, k=30 σi=1–10, k=15 σi=1–10, k=30

Error (%) Error (%) Error (%) Error (%)

n Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no.

20 0 0 30 0 0 30 0 0 30 0 0 30
30 0 0 30 0 0 30 1.05 9.23 26 0 0 30
40 0.38 3.44 26 0 0 30 1.30 10.08 25 0.15 4.46 29
50 1.08 3.04 13 0 0 30 1.31 10.86 24 0.13 3.93 29
60 1.38 2.77 7 0 0 30 1.34 7.52 23 0.28 3.19 27
70 1.59 2.37 2 0 0 30 1.06 10.24 25 0 0 30
80 1.23 2.38 6 0.56 1.71 18 1.49 8.01 22 0.09 2.63 29
90 0.91 2.54 10 0.57 1.44 15 1.30 7.27 23 0.18 3.15 28
100 1.47 2.06 1 0.86 1.32 3 2.46 6.55 17 0.08 2.47 29

σi: Order size, k: Lot capacity, n: Order number.

Fig. 1. The trend in the number of optimal solutions.

Table 2
Computational results of experiments (FFR).

σi=1–5, k=15 σi=1–5, k=30 σi=1–10, k=15 σi=1–10, k=30

Error (%) Error (%) Error (%) Error (%)

n Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no.

20 22.71 36.61 0 16.53 29.03 0 27.64 37.93 0 22.69 48.81 0
30 24.82 41.16 0 18.97 33.33 0 27.63 36.86 0 24.36 36.03 0
40 28.33 48.15 0 23.31 28.27 0 28.63 38.18 0 27.52 38.62 0
50 27.50 41.03 0 24.61 38.78 0 27.87 39.84 0 29.45 42.22 0
60 28.55 38.48 0 27.14 32.93 0 29.00 41.97 0 29.31 43.70 0
70 29.07 39.72 0 29.68 38.44 0 29.55 39.43 0 33.56 45.30 0
80 31.22 44.89 0 28.93 36.40 0 30.62 39.21 0 32.84 42.17 0
90 30.48 37.94 0 30.00 40.73 0 30.56 49.10 0 34.14 43.62 0
100 30.81 39.18 0 29.14 36.30 0 31.68 41.87 0 33.97 46.79 0

σi: Order size, k: Lot capacity, n: Order number.

D.-L. Yang et al. Computers & Operations Research 79 (2017) 34–38

36

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

(2) Even though the performances of FFN and BFN are better than
those of the other two heuristics, only in some test problems of the
problem type (σi=1–5, k=30) the average percentage errors are less
than 5. The average percentage errors are even more than 20 in the
problem type (σi=1–10, k=15). Therefore, the performances of
FFN and BFN are not good, let alone those of FFR and BFR. In
addition, no optimal solution is found in all test problems. The four
heuristics are commonly used to solve the bin packing problem.
They are supposed to have good performance in the similar
proposed problem. However, they don’t. The reason may be the
objective function of the proposed problem is different from that of
the bin packing problem.

(3) Based on Observation (2), although BIP takes much time to find
the solutions, the performances of BIP with time limit are much
better than those of the four heuristics. Therefore, it can be
regarded as a good heuristic method.

Next, we further discuss the results of BIP with running time limit.
From Table 1 and Fig. 1, we have the following observations:

(1) For n = 20, the optimal solutions for all generated test problems
can be found within 3600 s.

(2) The larger the lot capacity is or the smaller the order size range is,
the more optimal solutions you can obtain within the running time

Table 3
Computational results of experiments (BFR).

σi=1–5, k=15 σi=1–5, k=30 σi=1–10, k=15 σi=1–10, k=30

Error (%) Error (%) Error (%) Error (%)

n Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no.

20 22.34 36.61 0 16.30 29.03 0 25.47 37.93 0 23.78 48.81 0
30 24.82 41.16 0 18.97 33.33 0 27.35 36.86 0 24.41 36.03 0
40 28.33 48.15 0 23.31 28.27 0 28.21 38.18 0 27.64 38.62 0
50 27.50 41.03 0 24.61 38.78 0 27.66 35.70 0 29.67 42.22 0
60 28.55 38.48 0 27.14 32.93 0 28.99 41.97 0 29.49 43.70 0
70 29.07 39.72 0 29.68 38.44 0 29.58 39.43 0 33.78 45.30 0
80 31.22 44.89 0 28.93 36.40 0 30.55 38.82 0 32.82 42.17 0
90 30.48 37.94 0 30.00 40.73 0 30.40 49.10 0 34.01 43.62 0
100 30.81 39.18 0 29.14 36.30 0 31.43 41.87 0 34.04 46.79 0

σi: Order size, k: Lot capacity, n: Order number.

Table 4
Computational results of experiments (FFN).

σi=1–5, k=15 σi=1–5, k=30 σi=1–10, k=15 σi=1–10, k=30

Error (%) Error (%) Error (%) Error (%)

n Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no.

20 8.37 12.76 0 6.53 10.52 0 23.63 37.70 0 10.19 15.36 0
30 7.73 11.13 0 5.16 8.53 0 20.99 31.95 0 7.99 12.25 0
40 6.54 11.54 0 3.85 6.00 0 23.81 37.49 0 8.43 12.28 0
50 7.34 11.38 0 3.80 6.62 0 23.99 35.89 0 7.89 11.27 0
60 7.67 10.07 0 3.18 6.85 0 23.61 32.43 0 7.80 12.26 0
70 7.33 10.92 0 3.08 5.07 0 23.34 31.03 0 7.28 11.11 0
80 7.32 10.23 0 2.94 5.12 0 22.99 31.46 0 7.28 9.68 0
90 6.87 9.55 0 3.02 4.82 0 21.79 31.22 0 7.00 10.36 0
100 7.15 9.30 0 2.71 3.96 0 22.91 30.89 0 6.74 8.95 0

σi: Order size, k: Lot capacity, n: Order number.

Table 5
Computational results of experiments (BFN).

σi=1–5, k=15 σi=1–5, k=30 σi=1–10, k=15 σi=1–10, k=30

Error (%) Error (%) Error (%) Error (%)

n Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no. Average Maximal Optimal no.

20 8.37 12.76 0 6.53 10.52 0 23.63 37.70 0 10.19 15.36 0
30 7.73 11.13 0 5.16 8.53 0 0 7.89 11.27 0
60 7.67 10.07 0 3.18 6.85 0 23.61 32.43 0 7.80 12.26 0
70 7.33 10.92 0 3.08 5.07 0 23.34 31.03 0 7.28 11.11 0
80 7.32 10.23 0 2.94 5.12 0 22.99 31.46 0 7.28 9.68 0
90 6.87 9.55 0 3.02 4.82 0 21.79 31.22 0 7.00 10.36 0
100 7.15 9.30 0 2.71 3.96 0 22.91 30.89 0 6.74 8.95 0

σi: Order size, k: Lot capacity, n: Order umber.

D.-L. Yang et al. Computers & Operations Research 79 (2017) 34–38

37

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

limit.
(3) There exists one trend, that is, the number of optimal solutions

decreases when the number of orders increases.
(4) All average percentage errors are less than 2.5, it means that the

performance of the BIP with running time limit is really good,
especially, in the problem type with parameters k=30 and

σi=
d
U(1,5).

(5) Most maximal percentage errors are less than 4.5, it implies that
the BIP performs well in most test problems, even in the worst
situations. However, some of them in the problem type with

parameters k=15 and σi=
d
U(1,10) are greater than 10, though their

average percentage errors are less than 2.5. The performance of
BIP in such a problem type is not robust. Therefore, it is
worthwhile to come up with other heuristics with better and
robust performances.

7. Conclusion

In this paper, we study a single-machine lot scheduling problem
with indivisible orders. First, the problem is proved to be NP-hard in
the strong sense. Next, a binary integer programming approach and
four heuristics are proposed to solve the problem. Considering the
efficiency of the BIP, the run time limit is set. As compared to the lower
bound, it turns out the average performances of the BIP with running
time limit are really good for all test problems. The performances of the
BIP with running time limit are also much better than those of the four
heuristics. The maximal percentage errors of the BIP with running time
limit are a little greater than 10 in one situation. Therefore, it is

worthwhile to find other heuristics with better performance in the
future.

Acknowledgement

This research was supported in part by the National Science
Council, Taiwan, R.O.C. under Grant number NSC-102–2221-E-150-
043-MY2 and the Ministry of Science and Technology, Taiwan, R.O.C.
under Grant number MOST-102-2221-E-105-025.

References

[1] Naddef D, Santos C. One-pass batching algorithms for the one-machine problem.
Discret Appl Math 1988;21:133–45.

[2] Coffman ED, Nozari A, Yannakakis M. Optimal scheduling of products with two
subassemblies on single machine. Oper Res 1989;37:426–36.

[3] Dobson G, Karmarkar UD, Rummel JL. Batching to minimize flow times on parallel
heterogeneous machines. Manag Sci 1989;35:607–13.

[4] Hou YT, Yang DL, Kuo WH. Lot scheduling on a single machine. Inf Process Lett
2014;114:718–22.

[5] Shallcross DF. A polynomial algorithm for a one machine batching problem. Oper
Res Lett 1992;11:213–8.

[6] Mosheiov G, Oron D, Ritov Y. Minimizing flow-time on a single machine with integer
batch sizes. Oper Res Lett 2005;33:497–501.

[7] Santos C, Magazine M. Batching in single operation manufacturing systems. Oper
Res Lett 1985;4:99–103.

[8] Mor B, Mosheiov G. Batch scheduling of identical jobs on parallel identical
machines. Inf Process Lett 2012;112:762–6.

[9] Potts CN, Kovalyov MY. Scheduling with batching: a review. Eur J Oper Res
2000;120:228–49.

[10] Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY. A survey of scheduling problems
with setup times or costs. Eur J Oper Res 2008;187:985–1032.

D.-L. Yang et al. Computers & Operations Research 79 (2017) 34–38

38

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

http://refhub.elsevier.com/S0305-16)30252-sbref1
http://refhub.elsevier.com/S0305-16)30252-sbref1
http://refhub.elsevier.com/S0305-16)30252-sbref2
http://refhub.elsevier.com/S0305-16)30252-sbref2
http://refhub.elsevier.com/S0305-16)30252-sbref3
http://refhub.elsevier.com/S0305-16)30252-sbref3
http://refhub.elsevier.com/S0305-16)30252-sbref4
http://refhub.elsevier.com/S0305-16)30252-sbref4
http://refhub.elsevier.com/S0305-16)30252-sbref5
http://refhub.elsevier.com/S0305-16)30252-sbref5
http://refhub.elsevier.com/S0305-16)30252-sbref6
http://refhub.elsevier.com/S0305-16)30252-sbref6
http://refhub.elsevier.com/S0305-16)30252-sbref7
http://refhub.elsevier.com/S0305-16)30252-sbref7
http://refhub.elsevier.com/S0305-16)30252-sbref8
http://refhub.elsevier.com/S0305-16)30252-sbref8
http://refhub.elsevier.com/S0305-16)30252-sbref9
http://refhub.elsevier.com/S0305-16)30252-sbref9
http://refhub.elsevier.com/S0305-16)30252-sbref10
http://refhub.elsevier.com/S0305-16)30252-sbref10

	A note on a single-machine lot scheduling problem with indivisible orders
	Introduction
	Problem description
	The analysis of the 1/lot,indivisible/∑COi problem
	Integer programming formulation
	Heuristics
	Computational experiments
	Conclusion
	Acknowledgement
	References

