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a b s t r a c t

We discuss a parallelization procedure for a two-dimensional random search of a single individual, a
typical sequential process. To assure the same features of the sequential random search in the parallel
version, we analyze the former spatial patterns of the encountered targets for different search strategies
and densities of homogeneously distributed targets.We identify a lognormal tendency for the distribution
of distances between consecutively detected targets. Then, by assigning the distinct mean and standard
deviation of this distribution for each corresponding configuration in the parallel simulations (constituted
by parallel random walkers), we are able to recover important statistical properties, e.g., the target
detection efficiency, of the original problem. The proposed parallel approach presents a speedup of nearly
one order of magnitude compared with the sequential implementation. This algorithm can be easily
adapted to different instances, as searches in three dimensions. Its possible range of applicability covers
problems in areas as diverse as automated computer searchers in high-capacity databases and animal
foraging.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Surely, computational simulations constitute a keystone tool
for our scientific understanding of nature [1]. However, given the
diversity and the potential complexity [2] of necessary (numerical)
models to study distinct phenomena, the optimization of the
underlying algorithms becomes, in many instances, a crucial
aspect [3] in their viability.

Towards this optimization goal, parallel computing strategies
[4] are particularly important. Usually, algorithms and codes that
rely on sequential decisions are not easily parallelizable, like P-
complete problems [5,6]. But in spite of that, some processes
thought to be inherently sequential, like the depth-first search [7],
have been solved in a parallel fashion thanks to a proper distri-
bution of work between the processors [8]. Other highly sequen-
tial instances, as edge coloring [9] and the maximal independent
set [10], also have found alternative parallel solutions. Further, par-
allelized algorithms may be constructed in a very different way
from the sequential counterparts, like parallel genetic algorithms
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that have a super-linear performance when compared to their se-
quential versions [11]. A collection of multidisciplinary problems
allowing parallel approaches can be found in [12].

The general random search problem consists of finding a
competent strategy for the encounter of randomly located target
sites that can only be detected in the limited vicinity of the
searcher. Its possible range of applicability covers areas as diverse
as automated computer searchers of registers in high-capacity
databases [13], motion of binding enzymes or proteins along
DNA [14], economics [15], operational research like hunt for
submarines [16], and animal foraging [17,18]. In certain contexts,
such as in animal foraging [18], the knowledge of the distribution
of encountered targets provides an important way to characterize
how the resources are exploited during the search (e.g., if in an
efficient manner).

In dealing with random search through numerical models
[17,18], one often faces difficulties concerning the long time it
takes to obtainmeaningful results, a consequence of the large num-
ber of averages required. Actually, in this area of research [17,18]
the computational procedures are traditionally sequential: the
random walker moves from target to target until some halt cri-
terion is achieved. The question is then how to formulate ex-
actly the same problem, nevertheless using a framework allowing
parallelization (with a consequent reduction of computational re-
sources and time). One possibility is instead to consider a single
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random walker looking for Q targets, to assume Q random walk-
ers looking for only one target. But for both models to lead to
equal results, a carefully constructed extra condition must be im-
posed to the latter version. This extra information – in the form
of initial conditions – concerns the spatial pattern that arises from
the targets detected by a sole searcher, like footprints left by the
walker on the original distribution of targets during the random
search. Our present parallelized solution to the problem is based
precisely on this idea. In fact, in order to recover the same distribu-
tion of detected targets observed in the sequential search routine,
hence yielding the same statistical properties, our parallel imple-
mentation deals with a particular choice for the initial coordinates
of each independent parallel random walker. This set of initial
coordinates is actually built (as detailed below) from the original
sequential search problem distribution of distances between two
consecutively detected targets. It is basically a lognormal curve,
whose mean and standard deviation values fully depend on the
search strategy and environment density considered.

As for the protocol technical implementation, the paralleliza-
tion is accomplished using OpenMP directives in the original (se-
quential) C code [19]. In the serial code, we have identified which
functions could be independently processed, and then have used
parallel directives to split the work between the threads. Each
thread is able to execute a set of instructions independently,
namely, to access the environment (stored in the shared memory),
and to proceed with its own random walk according to its private
variables. The OpenMP approach has been chosen because its di-
rectives have a simple implementation and also provide a natural
solution for the memory consistency problem that appears in the
parallelization.

The paper is organized as follows. In Section 2 we give a
very brief overview about parallelization of problems involving
random walks. The features of typical sequential random searches
(important for our goals) are described in Section 3. In Section 4
wedetail the proposed parallel search algorithmand comparewith
results from the usual sequential simulation. Finally, few remarks
and the conclusion are presented in Section 5.

2. Few examples of parallelization of random walks based
algorithms

As we are going to show in the next sections, our parallel
algorithm for the random search problem actually promotes a
considerable speedup of the simulations runs. So, certainly it
is a contribution of practical importance in the field. However,
conceptually the method is likewise relevant. By including a
dynamical constraint to a reformulation of the original process, we
are able to make it amenable to a parallel construction. Therefore,
we are adding a new example to the previously mentioned (and
not so large) list of systems which are essentially sequential in
character, but even then can be parallelized.

Before going into our specific problem, few comments about
the parallelization of random walks in a broader perspective are
in order next. Random walks have been important tools in Monte
Carlo simulations. For instance, to achieve flat histograms to cal-
culate the density of states, the Wang–Landau method employs
independent random walkers for different energies [20,21]. It al-
lows a proper numerical solution for larger systems, with the inde-
pendent randomwalkers playing a crucial role in this respect. One
possible parallelization of the protocol assigns one random walk
for each available thread [22], using thousands of threads from the
GPU. Nevertheless, the sampling over the energy landscape is not
sufficiently homogeneous, thus being necessary to specify more
random walkers to the lower energy regions. An OpenMP imple-
mentation [23] has been designed for the Ising model using the
Wang–Landau method. Moreover, the parallelism can be explored

in the solution of partial differential equations that use the Monte
Carlo method [24] with multiple random walkers.

In graph theory, an important application of parallel random
walks is the study of the cover time of a graph (i.e. the necessary
time to visit all the nodes). It is known that for some graphs of
size n the use of k random walkers (with k ≤ log n) can decrease
the cover time by a factor of k [25]. However, the choice of the
initial coordinates for thewalkers influences both the cover and the
hitting times of random regular graphs [26,27]. In this sense, there
is an optimal choice of initial coordinates, which is dependent on
the topology of the graph, and that minimizes both times. The s− t
connectivity problem, inwhich one has to determine if the vertices
s and t are connected to a same component, also gains efficiency
when several randomwalkers are initialized. Inwireless networks,
the use of multiple random walkers in search for a target reduces
both the computing time and the network overhead [28].

Further, in model-checking algorithms, where one has to verify
the correctness of a system implementation, parallel randomwalk-
ers have been successfully employed to explore the states space
looking for errors [29]. These independent random walks can ex-
plore more states in a fraction of the sequential time, since the re-
visits to the same location are decreased in such arrangement [30].
Some model-checking algorithms are designed with coordinate
random walkers, that simulate properties of animal foraging. The
BEE algorithm [31], inspired by the cooperative behavior in bee
hives, allocates parallel random walkers in regions of errors that
were previously identified and communicated by an exploring ran-
dom walker. The process is similar to the scouting of idle working
bees when one bee identifies a profitable flower patch and informs
its location to the colony. Another model with biological inspira-
tion uses ant robots that work in a parallel and decentralized fash-
ion, interacting only locally to explore a landscape efficiently [32].

All these examples illustrate the great computational gain in
developing parallel procedures for algorithms based on random
walks and searches. The present contribution goes exactly in this
direction.

3. Sequential search properties

In order to build a parallel version of the random search
problem, we present in this section some properties of the
sequential version of the code that are necessary for our parallel
implementation. The sequential random searchmodel is discussed
in detail in Ref. [18].

The search space is a square region of size D with periodic
boundary conditions. In this environment a given amount of
targets is distributed in a homogeneousway,with average distance
lt between them. The value of lt (measured in terms of the radius
of vision rv , see below) characterizes the density of targets: the
larger (smaller) lt , the lower (higher) the density. The targets are
non-destructive, i.e. they can be detected an unlimited number of
times during the search. The searcher is a random walker whose
step lengths ℓ are taken independently from a probability density
distribution P(ℓ) at a random direction. The interaction between
the searcher and the targets is provided by the radius of vision rv
that defines the region around the searcher where the target can
be detected (here we set rv = 1). Along the step j of length ℓj
the walker constantly looks for targets within a distance rv . If no
target is found, the searcher completes the full step. Otherwise, a
target is detected and the step ℓj is truncated. This process is then
repeated with a new step and direction taken until the stop (halt)
condition for the simulation is reached. For the probability density
function of the step length ℓ we consider a power-law P(ℓ) ∼ ℓ−µ

(1 < µ ≤ 3) for rv < ℓ < D and 0 otherwise. This power-law
distribution corresponds to the long-distance limit of the family
of α-stable Lévy distributions with index α = µ − 1 [18]. The
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(a) High density: lt = 10. (b) Low density: lt = 100.

Fig. 1. Illustration of the spatial patterns of the positions of T = 104 detected targets under ballistic (µ = 1.1), superdiffusive (µ = 2.0) and Brownian (µ = 3.0) random
search strategies. (a) Dense and (b) sparse environments, with lt denoting the average distance between targets. In the high-density regime, the presence of larger steps in
the ballistic walk allows to detect targets distributed over a larger area. In contrast, a Brownian strategy tends to confine the searcher to a narrower region in this regime.
On the other hand, when the targets density is low the large number of encounters (T = 104) chosen as the stop criterion makes the distribution of targets found to spread
nearly homogeneously over the whole search space for µ = 1.1 and µ = 2.0, whereas some empty regions can be observed in the Brownian searches due to the small
displacements.

lower limit of the step lengths prevents the searcher to waste a
step in a region that it already knows (using its visual radius) and
that does not have targets. On the other hand, the upper limit
is a consequence of the periodic boundary conditions: if a step
longer than D (throughout the work we set D = 104) is allowed,
the searcher can in principle explore the same space more than
once in the same step. But very important, although the steps
lengths here are truncated, to a great extent they behave as usual
non-truncated Lévy processes for very long times [33]. So, the
exponent µ provides different search behaviors, from a ballistic
superdiffusive walk (µ → 1) to the normal diffusion Brownian
motion (µ > 3). One of the main results concerning power-law
random searches in non-destructive sparse distributions is that the
walker with strategy µ ≈ 2 maximizes the search efficiency, a
result with empirical and analytical support [17,18,34].

A particular aspect of random searches that has not attracted
much attention in the literature is the spatial pattern formed by
the detected targets. An analytical approach has been developed in
Ref. [35], but considering several random walkers with a common
starting position, instead of the resulting pattern of one random
walker. From a practical perspective, in the foraging activity of
distinct animal species each one explores the resources in a
different spatial scale: some of them have a dispersal rate higher
than the others [34]. In our model, each search strategy µ leaves
a particular footprint on the environment. For example, ballistic
searches explore a larger region of the space if compared to
Brownian searchers, as a consequence of the distribution of step
lengths. Moreover, when the density is varied, the spatial pattern
of the found targets also changes accordingly. These properties are
summarized in Fig. 1, in which a total of T = 104 encounters are
registered in each search.

To characterize the particular spatial pattern associated with
each search strategy, we first focus on the behavior of the
distribution of distances between two sequentially detected
targets. We record such distances as the straight lines that connect
the targets. Null distances corresponding to the return to the target
just visited are not included in the statistical analysis. Since the
environment has periodic boundary conditions, for each couple
of distinct points successively visited two possible values for the
distance between them arise. For convenience, we always consider
the shortest distance in our records. We actually work with the
logarithm of the distances because this quantity seems to follow
a normal distribution under certain conditions, as can be seen in
Fig. 2. We also keep the information about the number of revisited
targets for a later analysis.

The set of histograms displayed in Fig. 2 corresponds to the
same parameters considered in the patterns of Fig. 1. Except for
Fig. 2(a), the data seem to closely follow a normal-shaped distribu-
tion with definite parameters mean m and standard deviation σ .
Even though the fitting is not accurate, working with an approxi-
mate distribution is sufficient in our method. Since superdiffusive

search strategies have a steps distributionwith both short and long
components that depends on its search exponent µ, the resulting
interaction between the walker and the targets is not uniform. The
searcherwill accomplish detections both close to its last visited tar-
get and far away from it. However, whenµ = 1.1, the frequency of
long steps is very high, and in a low density scenario (say, lt = 100)
the detected targets are usually very distant from each other. The
histogram in the inset of Fig. 2(a) shows the (original) distribution
of distances prior to the logarithm transformation. It does not dis-
play the typical heavy tail of lognormal distributions, presenting
instead a lowdecay (specially for distances up toD/2 = 5×103, be-
ing almost uniform in such region). This contrast with Fig. 2(b)–(f),
where both distant and close targets are found (but at different
proportions) and the lognormal behavior is observed. When the
targets density increases, even the ballistic searcher will tend to
detect targets in the neighborhood of its last detection, and the dis-
tances distribution shows a lognormal shape. But we should em-
phasize that to represent this a bit harder µ = 1.1, lt = 100 case
(given rise to a homogeneous distribution of detected targets, see
Fig. 1(b)) by a normal-shaped distributionwith a largemean – thus
consistent with Fig. 3 – already turns out to be good enough for our
later purposes.

From simulations using the sequential code, we obtain the
parameters that characterize the normal-shaped distribution
showed in Fig. 2 for different targets density and search strategies.
Working with the logarithm of the distances, we take advantage
on the additive properties of the normal distribution and thus
can perform averages over different spatial configurations. Indeed,
each sequential search is averaged overN = 2.5×103 simulations,
with each run ending upon the finding of 104 targets. In Fig. 3 we
display the behavior of themeanm and the standard deviation σ of
the logarithmof the distances between targets consecutively found
as a function of the exponent µ and for different configurations
of the search space. As expected, Fig. 3(a) shows that the targets
detected by the ballistic searcher are generally much further away
than those encountered by the Brownian walker. Also, as it should
be, the values for themeanm increasewhen sparser configurations
are considered.

The standard deviation has a more complex behavior. We
first observe in Fig. 3(b) that it reaches higher values for denser
configurations, indicating that larger fluctuations around themean
are present for smaller average distances between targets. We
should point out that even though the average distance between
two targets is smaller in the dense regime, sometimes during the
long search for T = 104 targets the searcher travels a large path in
order to make a detection, especially for lower values of µ.

Another peculiarity in Fig. 3(b) is the curve for lt = 100: it is
maximized around µ = 2.0, in contrast with the curves for the
other (smaller) values of lt . This effect is a consequence of an im-
portant feature of the µ = 2.0 strategy in a sparse (large lt ) envi-
ronment: it does not only detect both distant and nearby targets,
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Fig. 2. Histograms of the logarithm of the distances between successively detected targets, corresponding to a single random search for T = 104 targets, for different lt ’s
and search strategies µ’s (the parameters here are the same as those in Fig. 1). The original sets are reasonably well fitted by lognormal distributions (seen as Gaussians,
continuous curves, because the logarithm rescaling), except in a scarce environment for a ballistic searcher, case (a). In the inset of (a) we have a histogram of the original
distances, showing that they are fairly well distributed. Based on these analyses, one can ‘‘artificially’’ generate the same patterns of Fig. 1 by constructing a random walk
with steps following the histograms (a)–(f).

Fig. 3. (a) Mean m and (b) standard deviation σ of the logarithm of the distances between subsequently detected targets as a function of the search strategy µ. Each curve
is the result of an average over N = 2.5 × 103 walks, each one with T = 104 targets found. The density of the search space is indicated by the average distance between
targets, namely lt = 10 (circles), lt = 25 (squares), lt = 50 (diamonds), and lt = 100 (triangles). The parameters m and σ are subsequently used to characterize the virtual
environment for the parallel random searches (see text).

a signature of its super-diffusive behavior [36], but also it does so
in a balanced way. Hence, the many scales are well represented,
resulting in a larger standard deviation for this particular configu-
ration. On the other hand, the strategy that is able tominimize both
the mean and the standard deviation is µ = 3.0 (due to its normal
diffusion properties), always leading to detection of targets in the
initial neighborhood of the searcher.

For our purposes, a final quantity also important to characterize
the spatial distribution of detected targets is the fraction of those
revisited during the search. We consider as a revisitation the in-
stance when the searcher leaves the current target and then finds
it again at some subsequent step, without the detection of distinct
targets in between. The revisit events (whose parallel implemen-
tation is simple, see next section) take care of situations which are
not included into the histograms in Fig. 2. In Fig. 4 we show the
percentage of revisits during the search for T = 104 targets as a
function of the average distance between targets lt and the search
strategy µ. The highest number of revisits occurs for µ = 3.0, as
expected for the normal diffusion regime. The density of targets
also plays a role on this behavior: the sparser the environment

(i.e., the larger the lt ) the higher the probability to return to the
previously visited target. As it is going to be clear next, to know
the number of revisitations in each random search configuration is
fundamental to implement the parallelization procedure.

4. Implementing the parallelization

Now we discuss the parallel implementation of the random
search problem and how the properties of the usual sequential
case, Section 3, can be properly imposed in its construction.

4.1. The initial conditions for the parallel version

As already mentioned, the spatial pattern of detected targets
(Fig. 1) is an important feature because it provides the informa-
tion about how a single walker looking for a total of T targets pro-
gressively interacts with the environment. In the parallel version,
we assume many independent random walkers (Nrw), each look-
ing for Q targets (with Q ≪ T ), so that Nrw ×Q = T . To mimic the
successive neighborhoods that a unique walker ‘‘sees’’ along the
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Fig. 4. Percentage of targets that are revisited during the random search to
encounter T = 104 targets as a function of the search strategy (µ), in environments
with distinct average distances between targets (lt ). Revisits to the last visited target
are more frequent using a Brownian strategy (µ = 3) in a sparse configuration
(lt = 100). Indeed, as a consequence of the normal diffusion, the Brownian searcher
has a higher (≈ 60%) probability to return to its starting position for lt = 100. On
the other hand, ballistic strategies (µ → 1) tend to access faraway regions of the
search space, leading to a small number of revisits.

search, we use the parameters from Fig. 3 to generate the initial
coordinates (i.e., the starting positions {(x, y)sp} = {(x1, y1)sp, . . . ,
(xNrw , yNrw )sp}) of the Nrw parallel random walkers. In the way we
define {(x, y)sp} (see below), any parallel walker n, starting from a
point (xn, yn)sp, while finding just few targets effectively will ex-
perience a stretch of the full trajectory traveled by a sole walker.
Thus, collectively they properly sample the long term characteris-
tic of the sequential search.

To construct a correct set {(x, y)sp} for each strategy and envi-
ronment parameters µ and lt , we first need to generate a lognor-
mal distribution of corresponding m and σ , Fig. 3. Thus, we follow
the standard protocol [37] of initially creating (with a random
number generator) a list of normal distributed numbers {u} =

{u1, u2, . . . , uNrw } with mean 0 and standard deviation 1. Next, we
obtain another list of also normally distributed numbers {v}, with
mean m and standard deviation σ , simply writing v = u σ + m.
Then, we apply the mapping z = exp[v], getting a lognormal dis-
tribution {z} similar to those displayed in Fig. 2. Second, for a given
m and σ , we simulate an usual simple random walk (i.e., with no
search), for which the turning angles are drawn from an uniform
distribution and the jth step length is given by the element zj of
{z}. This walker takes in total Nrw steps and the coordinate po-
sitions of the successive steps end points form the set {(x, y)} =

{(x1, y1), (x2, y2), . . . , (xNrw , yNrw )}.
Third, and lastly, two extra transformations are performed to

the above {(x, y)}:

(i) The number of revisited targets during the sequential search,
which can be inferred from Fig. 4, determines how many
starting positions of the parallel walkers should coincide (a
necessary restriction if the parallel implementation is going
to reproduce patterns similar to those in Fig. 1). Thus, if for
a certain µ and lt the revisitation fraction is Prev , we take the
last Nrw × Prev distinct coordinates in {(x, y)} and randomly
set them equal to the first Nrw × (1 − Prev) coordinate values.
We notice this straightforward procedure (seeking to obtain
the final {(x, y)sp}) can work well for Q not too big. However,
there is no reason tomakeQ very large since thenwemay start
losing the advantages of the parallelization. Observe that in the
parallel construction thewalker can revisit its starting position
and also detect a target in another walker’s initial location, this
last event corresponding to the sequential walker revisiting a
target after detecting new ones.

(ii) In the sequential case, immediately after collecting a target
located at, say (xt , yt), the walker initial position to look for
the next target is obviously (xt , yt). Therefore, we substitute
each location j ≡ (xj, yj) of the set {(x, y)} resulting from (i)
by the coordinates of the closest target to j. In doing so, we end
upwith lists {(x, y)} of positions which have exactly themotifs
shown in Fig. 1. Finally, we take these sets as ours {(x, y)sp}’s.

Fig. 5 summarizes the above described scheme for the initial con-
ditions attainment. The transformations (i) and (ii) are illustrated
in Fig. 5(b) and (c). Furthermore, we can see that the pattern of de-
tected targets using the sequential, Fig. 5(a), and parallel, Fig. 5(d),
algorithms are indeed very similar.

Finally, we mention the localization of the targets nearest to
the coordinates in the list {(x, y)} – procedure (ii) above – also
should be optimized, otherwise the computational time gain with
the parallelization process would be less effective. With such an
aim, we first divide the environment into M quadrants. Then, we
determine to which quadrant q (q = 1, 2, . . . ,M) a given (xj, yj)
belongs to. Lastly, we look for the closest target to this point (xj, yj)
by inspecting only q and its first neighbor quadrants. This operation
also has been parallelized to increase the efficiency of the code:
each thread receives a pair (xj, yj) of starting coordinates, identifies
to which quadrant q this pair pertains, searches in q and in the
adjacent quadrants for the closest target, calculating the distances
coordinate-targets, and then selects the target with the shortest
distance. The task is completed by the proper change of (xj, yj) by
the closest target location.

4.2. The parallelized algorithm and the comparison between the
parallel and sequential results

Prior to briefly describe the parallelized parts of the algorithm,
we shall remark that some functions of the original code have
been kept sequential, such as the initialization of the variables,
the creation of the environment and the construction of the
list with starting positions before the translation (transformation
(ii)). So, still there is more room for further improvements.
However, our main goal here is to show that the apparently
essential sequential process of a single agent random search can
actually be parallelized by means of proper adaptations in the
problem original formulation. A fully optimized parallel protocol
is presently under development and will be the subject of a future
contribution.

The first parallel procedure is the generation of the initial
conditions, detailed in Section 4.1. As mentioned, independently
any thread must determine the closest target in its vicinity. The
second parallelized process is the routine that actually performs
the searches of the Nrw individual walkers (each having to find Q
targets). A thread receives one initial position of {(x, y)sp} and the
full list of available targets in the environment and then proceeds
with the search task (making the probabilistic choices concerning
the step lengths and turning angles). In order to further enhance
the simulations, one could be tempted to consider just a fraction
of the targets, say, only those in the close neighborhood of the
searcher’s starting location. However, this would not lead to a
correct search pattern since, for instance, searchers with µ → 1
tend to hit targets rather distant from the departure point (see,
e.g., the discussion in Ref. [36] as well as the exploitation patterns
in Fig. 1). In this way, always all the targets must bemade available
to all the walkers.

In the simulations, the total traveled distance Lt for the
detection of any target t is saved. After many encounters, in a
total of T , the statistical search efficiency η is calculated, where the
averages are taken over the results of all the threads. The quantityη

is defined as [17,18] η = T/
t=T

t=1 Lt , thus basically being equal to
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Fig. 5. Illustration of the initial conditions construction for the independent parallel walkers. The parameters here are T = 104 , µ = 2.0 and lt = 10 (the two latters
associated to lognormal mean and standard deviation m = 2.71 and σ = 1.07, see Fig. 3). (a) The complete environment and the detected targets (black dots) by a
sequential searcher. (b1) As explained in the main text, the lognormal distribution of distances is used to generate the shown set of positions {(x, y)}. (b2) The set in (b1)
goes through the procedure (i): the last Nrw × Prev positions coordinates (indicated by arrows) are randomly substituted by the first Nrw × (1 − Prev) coordinate values.
Hence, the number of distinct points displayed in (b2) matches the number of distinct detected targets in the pattern in (a). (c) The transformation (ii): the set of positions
in (b2) are translated so as to coincide with the locations of the corresponding closest targets. (d) The found targets by all the random parallel searchers (which initiate their
searches at the locations resulting from (c)). The patterns in (a) and (d) are very similar, e.g., notice their sizes, border shapes, and degree of compactness.

Fig. 6. Search efficiency (normalized by l2t ) obtained from the parallel (circles) and
sequential (triangles) implementations. It is clear that the sequential and parallel
codes present practically the same numerical results. The stop condition is the
detection of T = 104 targets in both dense (lt = 10) and sparse (lt = 100)
environments. In the parallel code example here, each of the Nrw = 104 walkers
looks for just a single target (Q = 1). The averages are performedoverN = 2.5×103

simulation runs.

the inverse of themeandistance to find a target. In Fig. 6we test the
parallel implementation of the (single individual) random search
problem comparing the function η obtained from the sequential
and parallel codes. The efficiency curves are practically the same.
Moreover, the optimal search strategy (maximum of η) perfectly
coincides, arising for µ ∼ 2 as it should be the case [18]. So, from
Fig. 6 (and also from Fig. 5(a) and Fig. 5(d)) we clearly see that the
two codes yield the same statistical results. We shall mention that
we have checked η from the parallel and sequential algorithms for
a very large number of distinct parameters values (for instance, for
Q ranging from 1 to 10 and soNrw varying from 104 to 103), always
obtaining the very good agreement observed in Fig. 6.

As a last remark, we point out that for µ around 3 the
efficiencies here are slightly different from those in other previous
publications (see, e.g., [17,36,38,39]). This has a simple cause.
For convenience in comparing the results and also to make the
parallel code easier to deal with in few technical aspects, for
the environment construction (which is exactly the same in the
parallel and sequential versions), we include an extra constrain in

Fig. 7. For the sequential search protocol, the average number of steps necessary to
encounter just one target as a function of the search strategyµ and for lt = 100 and
lt = 10 (inset). In both low- and high-density regimes, the Brownian limit (µ → 3)
demands a number of steps considerably larger to complete a same task, e.g., when
compared to the ballistic strategy (µ → 1).

the targets creation: the distance between two targets is always
larger than the visual radius rv . As a consequence, the search
space is not completely random (as commonly considered in the
literature). There is a very short scale spatial correlation between
nearby targets. Hence, the search efficiency for µ → 3 (just the
case with more frequent short steps) might ‘‘feel’’ it, increasing a
little the value of η(µ ∼ 3) when contrasted to an environment
without such restriction.

4.3. A simple benchmark analysis

In the sequential simulations, the total time spent to find T
targets strongly increases with µ. This can be observed in Fig. 7,
which displays the average number of steps necessary to complete
the detection of a single target. Such a general trend takes places
both at low and high target densities. Nevertheless, as expected
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Fig. 8. Performance of the parallel code. (a) The elapsed simulation time (in
seconds) required to find a total of T = 104 targets in a low density regime
(lt = 100). The task is performed by a single searcher Nrw = 1 (so Q = 104), i.e., a
sequential random search, and for Nrw = 103 (with Q = 10) and Nrw = 104 (with
Q = 1) independent searchers, hence the parallel implementation. Clearly, the
sequential search is much more time consuming. In contrast, the difference in the
elapsed time is not substantial for the two parallel examples presented. Simulations
were performed in a CPUwith 16 cores (32 threads). (b) The speedup ratio, namely,
the ratio between the elapsed simulation times for the sequential and parallel runs,
as function of the search strategy (µ), for dense (lt = 10) and sparse (lt = 100)
regimes. For the high-density case, the resulting speedup is nearly constant and
generally higher than that in the sparse landscape. For this latter, the speed up
systematically decreases with µ (more strongly in the region µ < 2 (see inset),
thus in conformity with Fig. 7) due to the overhead generated when the threads
need to perform a larger number of steps to encounter the targets, accessing the
targets list more frequently.

the effect is more evident in the former: searchers with µ → 3
demand more than a thousand steps to detect a single target in a
low density configuration, while those with µ → 1 need nearly a
dozen steps to do so. For lt decreasing by one order of magnitude
(inset of Fig. 7) the difference between the µ ∼ 1 and µ ∼ 3 cases
decreases by roughly also one order of magnitude.

Fig. 8(a) compares the sequential (Nrw = 1) and parallel simu-
lation times. As the number of independent walkers, we consider
Nrw = 103 and Nrw = 104. We recall that if one uses a rela-
tively small number of parallel searchers (say Nrw = 100, so that
Q = 100 if T = 104), the attempt to reproduce the sequential pat-
terns in Fig. 1 through the collective behavior might be compro-
mised. Moreover, the computational gain with the parallelization
employing fewer Nrw ’s tends to be less important. Finally, we note
that the simulation time invariably increaseswithµ, in compliance
with the results of Fig. 7.

Fig. 8(a) clearly illustrates the advantage of utilizing the
parallel code. But to better quantify this, in Fig. 8(b) we show
the parallelization speedup, defined as the ratio between the
sequential and parallel elapsed times. We have that the speedup
ratio is nearly independent on the search strategy (i.e., the value of
µ) in dense environments, always above a tenfold gain. For sparser
configurations, however, the computational speedup is around 10
only for ballistic searchers (µ → 1), decreasing to a value of about
4 for µ & 2. It can be understood in terms of the higher flux
of accesses to the targets list in low-density environments (when

it is more difficult to find a target). Indeed, in this case whereas
superdiffusive walks (µ ≤ 2) can reach distant targets in just few
steps, on the other hand each thread with µ > 2 needs to read the
target list (to check if there are targets along the way) much more
often (because the steps are shorter, so in a larger number), leading
to a lower speedup ratio.

5. Final remarks and conclusion

In this work we have presented a method to implement paral-
lelization of the random search problem, a paradigmatic example
of a sequential process. The procedure good performance has been
verified by showing that it considerably reduces the computational
time effort compared to the usual sequential simulations. Techni-
cally, the protocol relies on analyzing the pattern of detected tar-
gets in the sequential case and to ascribe to each parallel random
walker a set of proper starting coordinates (based on such pattern).
Then, these multiple searchers are allowed to perform the search
independently from each other. The combined outcomes of all the
parallel searchers reproduce verywell the statistical properties of a
singlewalker performing the full task. In fact, the numerical results
obtained from the parallel implementation are exactly the same
than those from a sequential simulation.

The most important new ingredient (compared to the usual
sequential algorithm) is the construction of the initial conditions
for the multiple independent searchers. This construction, despite
the approximation in terms of a lognormal fitting, does yield very
accurate numerical results. Furthermore, the use of the lognormal
distribution is very useful because it leads to a great plasticity and a
simple way to deal with distinct search landscape scenarios (being
one of the reasons for the faster (and accurate) performance of
the parallelized version of the random search). We should note
that an alternative implementation of parallel random walks can
be accomplished using Brownian bridges [40,41], that is, assigning
initial and final coordinates for each randomwalker and generating
a proper sequential trajectory. However, currently the method
applies only to the Brownian case and our work addresses the
superdiffusive context (in fact, the proper extension of Brownian
to Lévy bridges would constitute an interesting topic of research).
We also should mention that the parallel architecture chosen
(OpenMP) has a pre-existent solution for the problem of several
threads accessing the same data (besides being of easy usage).

The situations in which the computational gain is not so
significant can be explained by the fact that often several threads
try to access the same vector structure concurrently, causing
thread overhead. But this problem could, in principle, be solved by
more complex and involving algorithms (nevertheless, outside the
scope of the present study).

Lastly, the procedure works nicely for homogeneous distribu-
tions of targets in two dimensions and the extension to the three
dimensional case should be direct. Furthermore, conceivably the
parallelization also could be accomplished when short range cor-
relations [38] and limited memory effects in homogeneous target
distribution [39] are present. On the other hand, if resources are
fragmented into clusters, the identification of the patterns of de-
tected targets becomes more difficult. Certainly, this would con-
stitute the next challenge in trying to construct a general parallel
algorithm. So, we hope that the present contribution can stimu-
late developments towards the design of parallel implementations
that could be applied to random searches performed in arbitrary
distribution of targets.
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