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A~tract--For the past decade, many image segmentation techniques have been proposed. These seg- 
mentation techniques can be categorized into three classes, (I) characteristic feature thresholding or 
clustering, (2) edge detection, and (3) region extraction. This survey summarizes some of these tech- 
niques, in the area of biomedical image segmentation, most proposed techniques fall into the categories 
of characteristic feature thresholding or clustering and edge detection. 

Boundary formation Clustering Edge detection Gradient operator Region extraction Segmenta- 
tion Thresholding 

I N T R O D U C T I O N  

One of the approaches of automated quantitative 
cytology is using digital image processing. This 
approach not only mimics to some extent the human 
recognition process but also quantify the parameters 
(for example nucleus area, integrated nucleus density) 
which are not easily measurable with the human 
vision system. Image segmentation is the division of 
an image into different regions, each having certain 
properties. It is the first step of image analysis which 
aims at either a description of an image or a classifi- 
cation of the image if a class label is meaningful. An 
example of the former is the description of an office 
scene. An example of the latter is the classification of 
the image of a cancerous cell. Image segmentation is a 
critical component of an image recognition system 
because errors in segmentation might propagate to 
feature extraction and classification. 

The applications of image segmentation are numer- 
ous ~-9~. Image segmentation has been used in bio- 
medical areas such as in the identification of lung 
diseases, {1°~ in automated classification of white blood 
cells, {~1~ in detection of cancerous cells ~12~ and in 
chromosome karyotyping. ~13t 

During the past decade, many image segmentation 
techniques have been proposed/1-91 These segmenta- 
tion techniques can be categorized into three classes, 
(1) characteristic feature thresholding or clustering, (2) 
edge detection, and (3) region extraction. This survey 
is performed from the view-point of cytology image 
processing and is by no means exhaustive. For a more 
complete bibliography of image segmentation and 
processing, the reader is referred to Rosenfield's sur- 
vey papers. ~2 ~ 

One way to define image segmentation is as fol- 
}OWS.~l 4. 151 
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DeJinition of unilorm predicate 

Let X denote the grid of sample points of a picture. 
i.e. the set of pairs 

{i,j} i =  1,2 . . . . .  N , j  = 1,2 . . . .  M 

where N and M are the number of pixels in the x and 
y direction respectively. Let Y be an nonempty subset 
of X consisting of contiguous picture points. Then a 
uniform predicate P(Y) is one which assigns the value 
true or false to Y, depending only on properties 
related to the brightness matrix f ( i , j )  for the points of 
}: Furthermore, P has the property that if Z is a 
nonempty subset of Y, then P(Y)=  true implies 
always P(Z) = true. 

Definition of  a segmentation 

A segmentation of the grid X for a uniformity 
predicate P is a partition of X into disjoint nonempty 
subsets X1,X 2 . . . . .  X N such that: 

N 

U X, = X (i) 
i = I  

Xi, i = 1,2 . . . . .  N is connected (ii} 

P(Xi) = TRUE for i = 1,2 . . . . .  N (iii) 

P ( X I w X j } = F A L S E  for i=~j  (iv) 

where X~ and Xj are adjacent. 
Zucker ~6~ summarized the above conditions as fol- 

lows: the first condition implies that every picture 
point must be in a region. This means that the seg- 
mentation algorithm should not terminate until every 
point is processed. The second condition implies that 
regions must be connected, i.e. composed of contigu- 
ous lattice points. The third condition determines 
what kind of properties the segmented regions should 
have, for example, uniform gray levels. The fourth 
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condition expresses the maximality of each region in 
the segmentation. 

Almost all image segmentation techniques pro- 
posed so far are ad hoc in nature. (t-9) There are no 
general algorithms which will work for all images. 
One of the reasons that we do not have a general 
image understanding system is that a two dimensional 
image can represent a potentially infinite number of 
possibilities. To build a general image understanding 
system would require the representation and storage 
of a vast amount of knowledge. Pavlidis (15) com- 
mented that an image segmentation problem is basi- 
cally one of psychophysical perception, and therefore 
not susceptible to a purely analytical solution. Any 
mathematical algorithms must be supplemented by 
heuristics, usually involving semantics about the class 
of pictures under consideration. Quite often, one must 
go beyond simple heuristics, and the introduction of a 
priori knowledge about the picture is essential. Pav- 
lidis then quoted the example of the dalmatian dog 
picture. Without the a priori knowledge that the pic- 
ture consists of a dalmatian dog, most human 
observers perceive the picture as pure noise. However, 
when the human observers are told that the picture 
consists of a dalmatian dog, most can identify it in the 
picture. Almost all segmentation algorithms are either 
based on the concepts of similarity (e.g. characteristic 
feature clustering algorithms) or discontinuity (e.g. 
edge detection algorithms). Despite the large amount 
of research effort devoted to image segmentation 
algorithms, very little is known about how to measure 
segmentation .error besides the simple criteria of the 
percentage of pixels misclassified. (17) As a conse- 
quence, it is still very difficult to answer the question 
'how good is a given algorithmT Therefore, it is not 
easy to compare different image segmentation algor- 
ithms. Further compounding the evaluation process, 
different authors generally use different data and few 
authors process more than several hundred images. 
Unless one specifically implements a given segmenta- 
tion algorithm and tries it out on one's data, it is very 
difficult to evaluat" from the published results how 
well it will work for a given set of data. For these 
reasons, except in very special cases, the authors will 
not comment exactly how well a given algorithm will 
work although qualitative statements on the advan- 
tages and disadvantages of the approach can be made. 

I. CHARACTERISTIC FEATURE THRESHOLDING 
OR CLUSTERING 

l.l Thresholding 
(A) Statistical. Characteristic feature thresholding is 

a technique widely used in image segmentation. 
Weszka (ts) recently surveyed a number of threshold 
selection techniques. In its most general form, thresh- 
olding is descrll:md mathematically as: 

S(x,y) = k if T~-t <~ f(x ,y)  < Tk 

k ffi 0,1,2 . . . . .  m (1) 

where (x, y) is the x and y co-ordinate of a pixel; 
S(x, y),f(x, y) are the segmented and the characteristic 
feature (e.g. gray level) functions of (x, y) respectively; 
To . . . . .  T= are threshold values with To equal to the 
minimum and TO, the maximum; m is the number of 
distinct labels assigned to the segmented image. A 
threshold operator Tcan be viewed as a test involving 
a function Tof the form 

T(x, y,N(x, y),f(x, y)) 

where N(x,y) denotes some local property of the 
point (x, y), e.g. the average gray level over some 
neighbourhood. Weszka (is) divided thresholding into 
three types depending on the functional dependencies 
of the threshold operator T. When T depends only on 
f (x,  y), the threshold is called global. If Tdepends on 
bothf(x, y) and N(x, y), then it is called a local thresh- 
old. If Tdepends on the coordinate values x, y as well 
as on f(x,  y and N(x, y), then it is called a dynamic 
threshold. 

There are a number of global threshold selection 
schemes. Some are based on the characteristic feature 
(e.g. gray level) histogram, others are based on local 
properties such as the gradient or Laplacian of an 
image. For an image consisting of object and back- 
ground where the percent of the object area is known, 
Doyle (19) suggested the 'p-tile' method which chooses 
as a threshold the gray level which most closely corre- 
sponds to mapping at least (i-p)~ of the gray levels 
into the object. If, for example, dark objects occupy 
205/o of the picture area, then the image should be 
thresholded at the 80th percentile, or, more precisely, 
at the largest gray level allowing at least 20~ of the 
picture points to be mapped into the object. This 
method is not applicable if the object area is un- 
known or varies from picture to picture. 

For segmenting images of white blood cells, Prewitt 
and Mendelsohn (2°) chose thresholds at the valleys on 
the gray level histogram. This technique, called the 
mode method, involves smoothing of the histogram 
into a predetermined number of peaks (modes) and 
placing thresholds at the valleys between peaks. The 
mode method has the advantage that it minimizes the 
probability of misclassifying an object point as back- 
ground or vice versa (t) (assuming hi-modal distribu- 
tion, both background and object are Gaussian distri- 
buted). In general, if we threshold at the bottom of a 
valley in the smoothed histogram, the results are rela- 
tively insensitive to the exact choice of the threshold 
level since the gray levels at a valley bottom are rela- 
tively unpopulated. However, there are a number of 
disadvantages. First, the knowledge of the class of 
pictures we are dealing with is assumed to be known 
since many pictures may have the same histogram 
and thresholding the pictures may give results that 
are not necessary meaningful. Second, no spatial 
information is used to arrive at the thresholds which 
means that there is no guarantee that the segmented 
regions are contiguous. Third, the method of finding 
minima between modes by smoothing, depending on 
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the smoothing method used, may smooth out small 
modes. Nevertheless, for a wide class of images, this 
method works reasonably well (for example, when 
there are isolated white blood cells in the image, see 
Fig. 1). However, in many cases, even when the histo- 
gram is bimodal, it may be difficult to accurately 
locate the valley bottom, since the valley may be 
broad and fiat, Weszka et al. proposed ways to shar- 
pen the valley between the two modes, by histo- 
gramming the gray values of points whose Lapla- 
cians ~2~ or gradients ~z2~ are in the p-tile range. Rosen- 
feld et al. ~2a~ proposed using iterative histogram modi- 
fication to sharpen the peaks in enhancing images and 
their histograms. 

Local properties can be used to select a global 
threshold. Watanabe et al. ~24~ used the gradient 
approach to determine a global threshold. For each 
gray level z, compute 

d = ~ p'(x,y) (2) 

where S.- is the set of points having gray level z; 
p'(x,  y) is the magnitude of the gradient at the point 
(x, y). The threshold is then chosen at the level z for 
which d: is the highest. Since this level has a high 
proportion of large difference points, it should occur 
just at the borders between objects and background. 
Intuitively, this method would not work well on some 
images because equation (2) is not normalized by the 
number of pixels in S.-. So if S. consists of a large 
number of pixels, although p'(x,  y) may be small for 
every (x, y) in S.-, their sum is not necessarily small. 
Watanabe achieved good results on a data base of 
cervical smear images, but poor results were obtained 
by Weszka et  al. ~25~ on images of chromosomes, hand- 
writing, and cloud cover and also by Aggarwal et 
al. ~26~ on pap smear images. 

Ohlander ~29) used nine one-dimensional histograms 
of features such as color intensity for red, green and 
blue, overall intensity (the average of the three colors 
at each pixel), hue, etc. to segment natural scenes. 
Thresholding on values corresponding to valleys 
bounding sharpely defined peaks in a histogram fur- 
nished clusters of points which were uniform for the 
given feature. These regions were then thresholded. 
The procedure was repeated until all pixels were seg- 
mented. 

Geometric information can be used to refine the 
result of segmentation. Brenner et al. ~35~ segmented 
white cells in bone marrow images by first threshold- 
ing the image and then examining the shape of the 
resulting boundary. Using a graph of the Gallus 
eight-chain of the boundary. Brenner et al. success- 
fully distinguished between "'notches" which were the 
cusp formed when two convex objects touched each 
other and the vacuoles which were near the boun- 
daries of white cell. By joining appropriate pairs of 
"notches'. they were able to isolate the white cell of 
interest. Similarly, irregular boundary produced by 

vacuoles near the cell boundary could be repaired. 
Shrinking and expansion (or sometimes called con- 
traction and dilation) were used by a number of 
researchers (e.g. t36)) to perform segmentation. 

Young and Paskowitz, ~32~ and Ingrain and Pres- 
ton ~34~ segmented blood cell images by logically com- 
bining three threshold images taken at three different 
wave lengths. Recently Weszka et al. ~26~ proposed two 
threshold evaluation techniques. One is based on gray 
level co-occurrence matrix, the other is based on per- 
centage of misclassification. For descriptions of local 
and dynamic threshold selections, see Weszka. tl 8~ 

(B) Structural .  Tomita et al. ~3°~ and Tsuji et al. ~3~ 

described a method for detecting texturally homo- 
geneous regions based upon uniform values of some 
local picture property. In their approach, pictures 
were first segmented into "elements" or "'atomic 
regions" e.g. connected components of constant gray 
level. A set of properties such as shape, size, position 
and density was measured for each atomic region. For 
each property, a histogram was constructed. When 
the histogram consisted of a small number of distinct 
modes, it was plausible that there existed a partition 
of the picture into regions whose elements had similar 
property values. These modes were then separated by 
establishing thresholds in the valleys between the 
peaks. Elements whose property values belong to a 
given mode were tagged and this gave rise to clusters 
of similarly tagged elements in the picture. Next, some 
heuristics were applied to connect similarly labelled 
elements into regions. The above procedure was then 
applied to newly formed regions until the histograms 
of the region descriptors did not show any valleys. 
The approach was tested out on a few highly artificial 
pictures (e.g. a white cube with black dots on its sur- 
faces) and no real data example was given. 

Keng and Fu t33~ and Keng ta~ used syntactic tech- 
niques to recognize highways, rivers, bridges and 
commercial/industrial areas from LANDSAT images. 
They used different LANDSAT bands for recognition 
of concrete-like objects and water-like objects. The 
primitives were obtained by thresholding the different 
bands. The images consisting of these primitives were 
then smoothed. A finite state automaton or a set of 
templates was used to perform the recognition of line 
objects such as highways, rivers and bridges; commer- 
cial/industrial areas were obtained by subtracting 
highway from the thresholded "concrete" image. In 
Keng, taT) a tree automaton was used to process tex- 
tural primitives of terrain and tactical targets from 
LANDSAT and infrared images respectively. 

1.2 Clus ter ing  

Clustering of characteristic features applied to im- 
age segmentation is the multidimensional extension of 
the concept of thresholding. Typically, two or more 
characteristic features are used and each class of 
regions is assumed to form a distinct cluster in the 
space of these characteristic features. A clustering 
method is used to group the points in the character- 
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Fig. I. A successful example of the segmentation technique of smoothing a monochromatic optical 
density histogram into three peaks and two valleys. (a) Original histogram and computer printout of 

image, (b) smoothed histogram and computer printout of segmented image. 

istic feature space into clusters. These clusters are 
then mapped back to the original spatial domain to 
produce a segmentation of an image. The character- 
istic features that are commonly used in image seg- 
mentation by clustering not only include gray values 
through different filters as in white blood cell image 
segmentation, it may include any feature that one 
thinks is helpful to this segmentation problem; for 
example, texture measures defined on a local neigh- 
borhood(46.49.5o) may be used. The reason one wants 
to use two or more characteristic features to perform 
image segmentation is that sometimes there are prob- 
lems not resolvable with one feature that can be 
resolved with 2 or more features. Figure 2 illustrates a 
case where in two dimension feature space (x, y) the 
clusters can be easily separated, but in each of the one 
dimensional projections, there is a high degree of 
overlap of the two distributions corresponding to the 
two classes of regions such that no valley may exist 
between the modes of the distributions. Conversely, 
one may easily resolve two modes in one dimension 
feature space. This is equivalent to a decision bound- 
ary which is a straight line in two dimension space. 
Figure 3 illustrates this idea, 

The use of clustering techniques to perform image 
segmentation goes back to as early as 1969. 
Wacker (3a) used a clustering algorithm proposed by 

Swain and Fu t39) to find boundaries in remote sensing 
data which had up to 12 channels of information. He 
divided the image into windows of size about 20 x 20 
called "boundary cells •• . For each "boundary cell", the 
boundary finding algorithm was applied. His bound- 
ary finding algorithm consisted of a clustering algor- 
ithm followed by an edge finding algorithm. The 
input to the clustering algorithm consisted of M,,, the 
maximum number of modes permitted and a thresh- 
old Twhich determined if two modes were distinct or 
not. The clustering algorithm first established M,, 
initial mode center ink, k = 1,2 . . . .  M,, where 

f 2(k - 1) ) 
mk = l' + ~ ~ ( - - ~ -  I) 1_ (3) 

such that /a = (pl•/~2 . . . . .  /JL) and a = (trl,a 2 . . . . .  O'L) 

were the sample mean and variance for each of the L 
dimensions respectively. (L was the number of chan- 
nels used.) 

Each vector of a "'clustering cell '• (a "'clustering cell" 
is a window slightly larger than a "boundary cell") 
was classified to the nearest mode center using a mini- 
mum Euclidean distance rule. After all the vectors of 
a "'clustering cell" were classified, a new mode center 
for each mode was computed and this classification 
process iterated until there was no change in mode 
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Fig. 2. Illustration of an example where one can easily resolve the two clusters in two dimension feature 
space (a), but not in each of the one dimension feature spaces (b) and (c). 

assignment of the vectors. A pairwise measure of sep- 
aration was then computed for each pair of modes. 
Let S~j be this measure for modes i and j. If S u >t T 
for all i, j = 1,2 . . . .  , M (where M was the present 
number  of modes), then the M modes were taken to 
be distinct and the clustering procedure was termin- 
ated. If one or more S u < T, then the two modes 
corresponding to the smallest S u were merged yield- 
ing M - 1 modes. The clustering procedure was then 
repeated with M - 1 modes until all the modes were 
distinct. The results of clustering were then mapped 
back to the original spatial domain and a procedure 
called Edge Finding Algorithm was initiated to find 
the boundaries between segmented regions. A corre- 
lation distance k was introduced to smooth out some 
noisy results. A vertical boundary existed between 

pixel (i,j) and (i,j + 1) if the first (k - 1) pixeis to the 
left of (i,j) all belong to one mode, and (i,j + 1) and 
the first (k - 1) pixels to the right of (i,j + 1) all 
belong to another mode. Horizontal boundaries were 
found in an analogous manner.  Since no knowledge 
of the scene was assumed in Wacker's approach, (38) a 
great deal of computat ion time was spent in determin- 
ing the number  of clusters. Also, the iterative assign- 
ment of pixels until  there is no change in mode 
assignments is a costly computat ion process. Further 
reduction in computat ion time can be achieved by 
dealing with the histogram rather than with the pixels 
individually. 

Haralick and Dinstein (51) proposed a spatial clus- 
tering technique applicable to multi-spectral image 
data. The procedure thresholded the gradient image, 

Downloaded from http://iranpaper.ir
http://www.etransteam.com



8 K.S. Fu and J. K. Mut 

pCx) 

Pi = A PRIORI PROBABILITY 
OF CLASS i 

p(x) = PROBABILITY DENSITY 
FUNCTION OF x (FEATURE I )  

Pi(x) = PROBABILITY DENSITY 
FUNCTION OF x 
GIVEN CLASS i 

~ , ~  p(x) 

X=X d x 

(a) 

x = FEATURE 1 
y = FEATURE 2 

Pi(x,y)  = PROBABILITY DENSITY 
FUNCTION OF (x,y) 
GIVEN CLASS i 

EQUAL [ 
PROBABILITY 

PlPl (x,y) I 
! 

X=Xdl x 

P2P2(X ) 

(b) 

Fig. 3. Illustration of the idea that distributions that can be 
resolved in one dimension feature space can also be 
resolved in two dimension feature space. In (a) x = x~ is 
the decision threshold. This is equivalent to a decision line 

x = xd in the two dimension feature space. 

cleaned the threshold image, labeled the connected 
regions in the cleaned image and clustered the labeled 
regions. Each labeled connected regio n was assigned a 
class code by the clustering algorithm. One of the 
critical problems of the above approach is the prob- 
lem of distinct spatial clusters merging because of a 
low gradient bridge between them. 

Schachter e t a / .  (a3. 4.4) used clustering to perform 
image segmentation on multispectral remote sensor 
imagery. In Schachter et al., (.3) they used the gray 
level values of several channels as features in the 
feature space. In Schachter et al., (*4) they tried instead 
to use just one monochromatic image, using features 
such as mean gray level, median filtered minimum 
total variation, and mean typicality computed over a 
3 x 3 local neighbourhood to do clustering. They 

concluded that the results of using one monochro- 
matic image with locally computed features were not 
as good as those obtained with gray level values of 
several channels as features. 

Carlton and Mitchell ('~6) used texture and gray level 
information for image segmentation. They used a tex- 
ture measure that counted the number of local 
extrema in a window centered at each pixel. Using 
three thresholds called "low", "medium" and "high",  
they produced three intermediate "gray level" pictures 
whose values are the number of local extrema (aver- 
aged over a window) produced by that threshold. 
These intermediate pictures were used to derive the 
number of segments in which to divide the original 
image. The segmentation was then performed by 
assigning each pixel in the original image to a region 
by using a four-dimensional distance measure on the 
intermediate pictures, comparing each pixel to each 
selected segment. This process was then repeated in a 
hierarchical structure using decreasing window sizes 
so that smaller regions within the larger ones were 
defined. Only one example, an aerial scene of a mili- 
tary simulation area was given. There are several par- 
ameters which are critical to the success of this 
approach, namely extreme size, window sizes, and dis- 
tance similarity criteria. These parameters are not 
easily determined and they may vary from picture to 
picture depending on the details one wants to seg- 
ment. 

We proposed to segment blood cell neutrophil im- 
ages using iterative segmentations. (52) With some 
basic assumptions on the image such as that its inten- 
sity histogram generally has three peaks and two val- 
leys, we obtained an initial segmentation. Based on 
this initial segmentation, we determined some critical 
information from the image such as the presence or 
absence of points of maximal concavity which would 
help to determine the number of clusters. The initial 
segmentation also helped in determining the initial 
locations of cluster centres of the clusters in the bivar- 
iate "color-density" histogram. Segmentation was 
achieved by dividing the "color-density" histogram 
into a number of clusters and these clusters were 
mapped back to the spatial domain. Of the neutrophil 
images, 97% were correctly segmented based on a 
data set of 378 images. 

Aggarwal et  al. (26) used a combination of threshold- 
ing and clustering techniques to segment cervical 
smear images. Thresholding at a pre-set gray level 
was used to extract the nucleus. A ceiling lowering 
clustering technique on the bivariate histogram was 
used to segment the cytoplasm. A success rate of 
87.6~o in extracting the nucleus and a success rate of 
88.1~ in isolating cytoplasm based on 233 scenes 
were achieved. 

Cahn e t a / .  (97) separated the cytoplasm from back- 
ground in cervical cell images by thresholding the im- 
ages based on the stability of the perimeter of the cell 
as the threshold was varied. Once the cytoplasm 
threshold was determined, cytoplasm and nucleus 
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were segmented by clustering into three classes, 
namely cytoplasm, folded cytoplasm and nucleus. 
Evaluation of the proposed technique was based on 
the results of classifications using the automated seg- 
mentation technique described above vs manual seg- 
mentation. Manually thresholded cells were classified 
correctly 66.0% of the time for the 13-class problem 
and 95.2% of the time on the two-class (normal- 
abnormal) problem. The automated technique was 
52.9% and 90.0% correct, respectively based on 1500 
cervical cells that belong to one of eight normal 
classes and five abnormal classes. 

G'oldberg and Shlein ~45~ proposed the idea of clus- 
tering on the histogram of 4 bands of multispectral 
images. The scheme initially identified the most separ- 
able clusters in the data. It then ran on an interactive 
basis allowing the user to split specific clusters into 
subclusters at the expense of less separability. 

Coleman 1'~9~ proposed a bottom up procedure for 
image segmentation using clustering. A number of 
features such as gray level values through the red, 
green and blue filters, texture features and nonlinearly 
filtered features were used. The features were decorre- 
lated using Karhunen-Loeve rotation. The basic pro- 
cedure was a K-means clustering algorithm which 
converged to a local minimum in the average squared 
inter-cluster distance for a specified number of clus- 
ters. The algorithm iterated on the number of clusters, 
evaluating the clustering based on a parameter of 
clustering quality. 

Recently Yoo and Huang ¢5°1 proposed an image 
segmentation algorithm based on graph theoretic 
clustering. They used the gray level histogram and 
three different feature pairs which were mean-stan- 
dard deviation, local minimum-local maximum and 
an eigenvalue pair of the local characteristic matrix. 
These feature pairs were extracted from gray levels 
within a 3 x 3 local window. An unsupervised, non- 
iterative and non-parametric clustering technique 
based on graph theory ~92~ was employed to group the 
features into clusters. The results of clustering were 
mapped back to the original spatial domain. Segmen- 
tation results based on feature pairs were more homo- 
geneous than those based on histograms. A number of 
examples were given such as 'the girl', forward look- 
ing infrared images of tank and armored personnel 
carriers, a military testing site, etc. The results pro- 
duced by this technique were better than Carlton and 
Mitchell's ~.6~ on the image of a military testing site. 
There are a number of questions still unanswered: not 
all feature pairs would work properly in segmenting a 
given image and no automatic technique is available 
to determine which feature pairs should be used. The 
choice of clustering parameters also poses a problem. 

Since one of the shortcomings of using character- 
istic feature clustering as an approach to image seg- 
mentation is that no spatial information is used in 
performing the cluster analysis, sometimes the extent 
of clusters in feature space may be ambiguous. To 
correct these shortcomings, Nagin et al. ~53~ proposed 

a relaxation scheme in which the probability of a 
pixel belonging to a number of classes iterated using a 
compatibility relation. No results were published. The 
computation time is exorbitant because it takes a 
number of iterations for the relaxation scheme to 
converge. 

1.3 Comment s  on characteris t ic  f ea ture  thresholding or 
clustering approaches  to image segmentat ion 

The philosophy of this approach is basically a glo- 
bal one because some aggregate properties of the 
features are used. The similarity of feature values of 
each class of a segmented region form a 'mode' in the 
feature space. This technique is more immune to noise 
than, for example, edge detection techniques. Also, 
this technique gives closed boundaries although 
sometimes it is necessary to smooth out some of the 
noisy boundaries. ~3a' so~ Since this approach is based 
on the assumption that different classes of segments of 
an image are represented by distinct "modes" in the 
distribution of suitably chosen features extracted from 
the image, the technique will fail if this assumption is 
not true. Another drawback is that because, in gen- 
eral, the number of segments is not known, an un- 
supervised clustering scheme may not produce the 
right number of segments. Besides gray level values, 
other features are generally image dependent and it is 
not clear how these other features should be defined 
in such a way as to produce good segmentation 
results. Furthermore. most researchers who used this 
approach generally did not use the spatial informa- 
tion inherent in a image. Although attempts have 
been made to utilize such information t5~'53~ the 
results so far are no better than those that do not use 
spatial information, t5°,52~ 

2. EDGE DETECTION 

Edge detection is a picture segmentation technique 
based on the detection of discontinuity. An edge or 
boundary is the place where there is a more or less 
abrupt change in gray level. Some of the motivating 
factors of this approach are: (1) most of the informa, 
tion of an image lies on the boundaries between dif- 
ferent regions, tt~ and (2) biological visual systems 
appear to make use of edge detection, but not of 
thresholding. ~11 Davis, ~421 Riseman et al., ~54~ Rosen- 
feld et al. ~) and Pavlidis ~5~ surveyed a number of 
edge detection techniques. Davis ~42~ categorized edge 
detection techniques into two categories, parallel and 
sequential. By a parallel solution to the edge detection 
problem, it is meant that the decision of whether or 
not a set of points is on an edge is made on the basis 
of the gray level of the set and some set of its neigh- 
bouts; but the decision is not dependent on first 
deciding if other sets of points lie on an edge~ So the 
edge detection operator in principle can be applied 
simultaneously everywhere in the picture. By a 
sequential solution to the edge detection problem, it is 
meant that the result at a point is contingent upon the 
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results of the operator at previously examined points. 
It should be noted that these definitions are with re- 
spect to edge element extraction. To produce a closed 
edge or boundary, the edge elements extracted have 
to be connected together to form closed curves. Al- 
though the method of generating edge elements is 
parallel in nature (e.g. gradient operator), the method 
of connecting these extracted edge elements could be 
sequential in nature (e.g. heuristic search tree) depend- 
ing on the method used; this method will be referred 
to as a parallel scheme. Parallel edge detection 
schemes can be broken down generally in two steps 
(A) edge element extraction and (B) edge element 
combination (or called "streak" boundary formation). 
Edge element extraction methods can be categorized 
as (A.I) high-emphasis spatial frequency filtering, (.4,.2) 
gradient operators, and (A.3),functional approxi- 
mations. Edge element combination consists of elim- 
inating false edge elements and merging the edge ele- 
ments into longer edge segments called streaks, elim- 
inating false streaks, combining the streaks into boun- 
daries and eliminating false boundaries. Some tech- 
niques (e.g. 4°~) require the thinning or skeletonizing of 
the edge elements before they are combined together. 
Edge element combination is generally carried out by 
three classes of techniques (B.1) heuristic search and 
dynamic programming, (B.2) relaxation, and (B.3) line 
and curve fitting. Most sequential techniques inc0r- 
porate edge element extraction as part of the process 
of boundary detection ~67-'69~ so there is no need for a 
separate edge element extraction process. However, 
sequential techniques such as heuristic se.arch t67,6s) 
may also be used for boundary formation. 

2.1 Parallel techniques 

(A) Edge element extraction 

(A. l ) High-emphasis spatial frequency filterino. Since 
high spatial frequencies are associated with sharp 
changes in intensity, so one can enhance or extract 
edges by performing high-pass filtering: i.e. take the 
Fourier transform of the picture, say FOC(x,y))= 
F(u, o) where f(x, y) and F(u, v) are the original gray 
level function and its Fourier transform respectively, 
F is the Fourier operator. Multiply F by the linear 
spatial filter H: E(u, o) = F(u, v). H(u, v) and take the 
inverse transform e(x, y) = F- z(E(u, o)) where e(x, y), 
is the filtered picture off(x,  y) and E(u, v) its Fourier 
transform and F - t  is the inverse Fourier transform 
operator. The problem here is filter design. 

(A.2) Gradient operators. The gradient operator is 
defined as 

Vf(x, y) = ~x ' + J (4) 

where 

/ q2h'" 
IVf(x, yll = + (5) 

and the direction of Vf(x, y) is 

(dOfx) (6) 

where f is the original gray level function; i and j are 
unit vectors in the positive x and y directions respect- 
ively. 

Quite a few proposed edge detection techni- 
ques~55-ss. 93-95) are based on the digital approxi- 
mations on variations of equation (4) which will pro- 
duce a high magnitude where there is an abrupt 
change in gray level and a low magnitude where there 
is little change in gray level. Roberts' cross opera- 
tor ~93~ is based on a 2 × 2 window 

g(i,j) = [(f(i,j) - f ( i  + 1,j + 1)) 2 
+ (f(i + l,j) 
- - f ( i , j  + 1)) 2] (7) 

wheref(i,j) and g(i,j) are the gray level function and 
magnitude of gradient of point (i,j) respectively. 

The operator requires that there is a distinct change 
in intensity between two adjacent points in the gray 
value function, so only very sharp edges with high 
contrast between the surfaces which form the edges 
will be detected. This method cannot detect ill defined 
edges (edges which are formed by a gradual change in 
intensity across the edge). Since the computation is 
based on a small window, the result is quite suscep- 
tible to noise. Kirsch's, ~561 Sobel's, ~57~ and Prewitt's ~s~ 
operators are based on a 3 x 3 neighborhood. The 
main difference between these operators are the 
weights assigned to each element of the 3 x 3 tem- 
plate. 

An adaptive local operator was proposed by 
Rosenfeld et al. ~94'95~ The procedure involved taking 
averages over neighbourhoods of sizes 2kx 2 k at 
every point (x, y) in the image. For each size neigh- 
bourhood, at each point (x,y), differences between 
pairs of averages corresponding to pairs of nonover- 
lapping neighbourhoods just on opposite sides of the 
point in 4 directions (horizonal, vertical and the left 
and right diagonals) were computed. Of the 4 differ- 
ences corresponding to the 4 directions, the one that 
gave the highest absolute difference was selected. At 
each point, a best size neighbourhood which was 
defined to be the largest size neighbourhood for 
which the next smaller size did not give a significantly 
higher absolute difference was chosen. Specifically, if 
E,(x, y) was the best of the E's of size 2 ~ x 2 k neigh- 
bourhood in four directions at the point (x, y), and the 
sizes used were 1 x 1, 2 x 2 . . . .  2 L x 2 L, the "best 
size" was the largest K such that 

EL < 2EL-~ < 22EL-2 < ...  < ;tt'-rEx 
but E~/> 2E,_1 (8) 

where 2 = ¼. 
The value at a point was erased if there was a 

higher value at any point within a distance of half the 
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best size in a direction perpendicular to the best 
orientation at that point. This approach has the 
advantage of being able to detect a large variety of 
edges and also may be able to detect edges of texture 
regions if the average characteristic feature values (e.g. 
gray value) over the neighborhoods are different. 
However, the choices of the different sizes of neigh- 
borhood and ). are critical to the success of the 
algorithm. 

Wechsler and Kidode ~Sa~ proposed an edge detec- 
tion algorithm based on finite differences. For each of 
the four quadrants about the pixel in question, they 
computed finite differences up to the 3rd order and 
the central difference. Then the best "'edge" element of 
pixel Ix, y) was the one that gave the minimum finite 
difference. The results were reported to be compar- 
able to those obtained by Sakai t59~ and by Kasvand. ~6°~ 

(A.3t Functional approximations. Edge detection can 
be considered as an approximation problem. For 
every point (x',y') in an image, HueckeP 6~ used a 
circular neighbourhood D about (x', y') and asked the 
question 'Are the intensities (x, y) in D the noisy form 
of an ideal edge which is characterized by a step func- 
tion?" Let 

Flx, v.c, sp ,  b , d ) = S b  if c x + s y < p  O) " ) b + d  if c x + s y > p "  

where the x-y  co-ordinate system has its origin at the 
center of the circular region; F is the step function. 
The task of the operator is to best approximate a 
given empirical edge element whose gray values are 
,C(x.y) by an ideal edge element characterized by a 
step function F. As a measure of closeness, E tthe 
square of the Hilbert distances between f and F) was 
chosen. 

E =fo[y(x v) - F(x,y.c.s,p,b,d)]2dxdy. (10) 

Hueckel's operator is an efficient solution to the 
minimization of E. The minimization procedure was 
facilitated by choosing orthonormal functions (e.g. 
Fourier functions) over D. The results of the minimi- 
zation were the best edge and a measure of the good- 
ness of the edge. This technique was later extended to 
detect lines? 62~ Bullock ~°4~ qualitatively evaluated six 
edge detection techniques applied to the detection of 
textured edges of outdoor scenes. These six edge 
detection operators were (1) Robert's cross, ~93~ (2) 
high pass filter. ~ (3) Laplacian, I1~ (4) Sobel, ~5~> (5) 
Kirsch ~6~ and (6) Hueckel. ~61'6z~ He ranked Hueckel 
operator first although the complexity of this opera- 
tor was the highest of these operators. He justified 
using Hueckel operator in ~64~ because it performed 
better than the other five operators particularly on 
low contrast edges. He ranked the other operators in 
the following order: second Kirsch: third, Sobel; 
fourth. Robert's cross, high pass filter, and Laplacian 
lthe last three operators shared the same rank). Fram 
and Deutsch ~°~ evaluated three edge detection 

schemes quantitatively. They found Hueckel's opera- 
tor performed the poorest. Operators due to Mac- 
leod c66~ and Rosenfeld et al. ~94'95~ had similar per- 
formances. However only two sets of test pictures 
were used. The first set consisted of five pictures artifi- 
cially generated with various amounts of nominal 
contrast, The second set consisted of four pictures of a 
slanted edge taken from an ERTS photograph with 
various amounts of artificially generated random 
noise added to it. 

Persoon's c63) operator was defined over a window 
of size 5 x 5 pixels and the two columns to the left 
and to the right of the central one were approximated 
by linear functions. Deviations from the actual gray 
levels for the left and right linear function were com- 
puted and the right gradient (0 °) was defined as a 
function of the two deviations and the average gray 
values corresponding to the left and right two col- 
umns. The picture was then rotated 7 times through 
45: and seven additional gradients were computed. 
The maximum value of the 8 gradients was taken as 
an indication of the goodness of the edge which was 
perpendicular to the direction of the gradient. The 
technique was applied to rib outlining in chest X-rays. 
It was reported that this technique gave significantly 
better results than gradient type operators. This edge 
detector solves some of the problems related to edge 
direction and noise but takes more computation time 
than some simpler edge operators/55-58~ 

(B) Edge element combination (streak or boundary for- 
marion) 

(B.1) Heuristic search and dynamic programming. 
Heuristic search is a technique using state space 
search methods where heuristic information is used to 
limit the space to be searched. Martelli ~67'6a) formu- 
lated the edge detection problem as a heuristic search 
for the shortest path on a graph. The graph nodes (or 
states) were edge elements defined by two neighbour- 
ing pixels, e.g. the points A = (i,j), B = ( i , j +  1) 
defined the directed edge element AB. The direction 
of the edge was obtained with the convention of mov- 
ing clockwise around the first pixel. He then stated 
that an edge was a sequence of adjacent edge elements 
that started in the top row (his arbitrary starting 
point), ended in the bottom row (his arbitrary ending 
point), contained no loops and had no element whose 
direction was "'up". So an edge was a path in the 
graph that represented the state space and the prob- 
lem of finding the best edge in a picture reduced to 
the problem of finding an optimal path in the graph. 
He then embedded properties of edges into an evalu- 
ation function and the edge which minimized this 
function was sought. Only two examples which were 
artifically generated with various amount of random 
noise were reported. Some of the drawbacks of this 
approach are that the algorithm is sequential in 
nature and the proposed approach does not provide 
for backtracking, so that once a mistake is made in 
the midst of the edge the detected edge could be far 
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off from the desired edge. The construction of a 
proper evaluation function is another problem. 

Lester et a/. (96) applied heuristic search technique 
and a simpler scheme, the least maximum cost tech- 
nique, to white blood cell image segmentation. They 
incorporated both threshold and gradient information 
in the cost function which guided the search. Both 
heuristic search and the least maximum cost tech- 
nique were applied to 50 examples of touching white 
cells. They reported that heuristic search technique 
produced more acceptable boundaries than the least 
maximum cost technique. 

Montanari (69) proposed using dynamic program- 
ming techniques to perform edge detection. A figure 
of merit representing the heuristic information was 
ued to determine the relative value of different paths 
but was not used to guide the search as in the heuris- 
tic search case mentioned above. This figure of merit 
determined the best path once they had all been enu- 
merated. Montanari discussed finding a smooth, dark 
curve of fixed length. The curve was embedded in a 
noisy background, but since the merit function did 
not guide the search, the computation time was inde- 
pendent of the noise level (which would not be the 
case if the merit function guided the search as in heur- 
istic search). 

The figure of merit of a path z t , . . ,  zn was defined 
a s  

n - i  

hlzt . . . . .  z.) = f ( z i ) - q  F. (d(z t+ , , z i )  
i = I  i=2 

- d(z~, z~_ t)) mod 8 (11) 

wheref(z3 is the gray level at z~ = (xl,y3, and d(z,z~) is 
the slope between adjacent points z~ and z~, so the 
second term is proportional to curvature. The follow- 
ing constraints were placed on the solution 

m a x ( l x , + t  - x , l , lY,+l  - y , ] )  - -  1 (12) 

(d(z~+ l,zi) - d(z,z~_ 1)) mod 8 ~< 1. (13) 

Montanari then used dynamic programming 
techniques to arrive at an optimum solution. An arti- 
ficially generated picture with various amounts of 
randomly generated noise was processed. Some of the 
criticisms of heuristic 'search can also be applied here. 
The procedure also requires high execution time and 
large memory. 

(B.2) Relaxation. Rosenfeld (7°) and Riseman et 
al. (s4) used a relaxation technique to connect edge 
elements. The technique is an iterative process where 
the probability that a canditate edge element is a true 
edge element is re-estimated at each iteration. Some of 
the advantages of this approach are that it is a 
parallel process and it utilizes spatial information. 
Some of the disadvantages are that the construction 
of the compatibility function which updates the prob- 
abilities of edge elements is not trivial and the conver- 
gence rate of the process is often slow. 

(B.3) Line and curve fittino. Another technique of 

connecting edge elements together is to fit lines (Tt) or 
curves (72) through the edge elements. Duda and 
Hart (7t) proposed an efficient solution to the Hough 
transform which is an ingenious way of detecting coli- 
near points. Suppose we have a set of n points 
{(xl,yt), (xZ,y2) . . . . .  (Xn, y,)} and we want to find a set 
of straight lines that fit them. We transform the points 
(xi,yl) into the sinusoidal curves in the 0-p plane 
defined by 

p = x~cos0 + y~sin0. 

It is obvious that curves corresponding to colinear 
points have a common point of intersection. This 
point in the 0--p space, say (00,Po), defines the line 
passing through the colinear points. The implementa- 
tion is to quantize the 0-# space into an array of cells 
and plot these sinusoidal curves on this array of cells. 
The number of curves that pass through every cell in 
the array is recorded. If the count in a given cell (O,pi) 
is k, then precisely k figure points lie (to within quan- 
tization error) along the line whose normal par- 
ameters are (O,p3. The Hough transform concept can 
be extended to curves. (72'7a) Some of the limitations 
are that the results are sensitive to the quantization of 
both 0 and p, and the technique finds colinear points 
without regard to contiguity. Thus the position of a 
best-fit line can be distorted by the presence of unre- 
lated points in another part of the picture. 

There are other techniques of edge detection such 
as template matching °) which can be applied not only 
in edge detection but in other areas as well, e.g. object 
extraction. ") Template matching works well in a very 
constrained environment but fails where there is great 
variation of the patterns to be matched. 

2.2 Sequential techniques 

In sequential edge detection, the result at a point is 
contingent upon the results of the operator at pre- 
viously examined points. The major components of a 
sequential edge detection procedure are: 

(l) The picking of a good initial point: the perform- 
ance of the entire procedure will depend upon the 
choice of a good starting point. 

(2) The dependence structure: how do the results 
obtained at previously examined points affect both 
the choice of the next point to be examined and the 
result at the next point? 

(3) A termination criterion: there must be a way for 
the procedure to determine that it is finished. 

There are a number of sequential techniques such 
as using heuristic search and dynamic programming 
(both are discussed in B.l of Section 2.1). A guided 
search technique was used by Kelly. (75) Chien and 
Fu (74) used guided search with an evaluation function 
to detect cardiac and lung boundaries in chest X-ray 
images. 
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2.3 Comments on the edge detection 
approach to image segmentation. 

The problems with edge detection techniques are that 
sometimes edges are detected which are not the tran- 
sition from one region to another and detected edges 
often have gaps in them at places where the tran- 
sitions between regions are not abrupt enough. So 
detected edges may not necessarily form a set of 
closed connected curves that surround connected 
regions. As far as the applicability of edge detection 
techniques to cell image segmentation is concerned, 
for example, there are more than six types of white 
blood cell and each type has its own characteristic 
color and texture of the nucleus and cytoplasm. For 
neutrophils, the shape of the nucleus varies widely. 
For basophils, there are heavy cytoplasm granules 
that are on top of the nucleus. So it is very difficult to 
connect detected edge elements to form closed curves 
because the information used to connect these edge 
elements may vary for different cell types. Besides, it is 
computationally very expensive. Prewitt ~55~ applied 
an edge detection technique to neutrophil segmen- 
tation. However, her technique has not been proven 
to be robust. 

3. REGION EXTRACTION 

Another way of doing image segmentation instead 
of finding boundaries of regions, is to divide the im- 
age into regions. Zucker "61 wrote an excellent survey 
on region extraction methods. Region extraction tech- 
niques can be broken down into three categories, (1) 
region merging, (2) region dividing, and (3) a combi- 
nation of region merging and dividing. 

3.1 Region merging 

M u e r l e  and Allen ~6~ used regional neighbour 
search method to merge regions of similar properties. 
Brice and Fennema c77) formed connected components 
of equal intensity, refined with phagocyte and weak- 
ness heuristics. Pavlidis ~9°~ partitioned the image into 
a collection of one-dimensional strips, divided the 
strips into segments and merged the segments with 
similar approximation coefficients. Feldman and Yaki- 
movsky ~s's4~ used semantics to do region merging. 
They tried to maximize the probability that all 
regions and boarders were correctly interpreted. 
Rosenfeld et al. ~sa~ used a relaxation approach, also 
called iterative probabilistic process to do scene label- 
ling. 

Tenenbaum and Barrow ~ag~ proposed IGS (Inter- 
pretation Guided Segmentation) as an approach to 
region merging. The program iteratively processed the 
scene until its components were semantically consist- 
ent. For example: a picture hung on a wall, a tele- 
phone on top of a desk. Gupta and Wintz 179's°~ used 
a mimmum distance classifier which interpreted each 
initial region as belonging to one of a small prede- 
termined number of different classes such as corn, 
soybean, forest, water, etc. Neighboring regions were 
P.R. 1 3 / I - - e  

merged based on their class membership. Jarvis c91~ 
used a shared near neighbour clustering technique to 
do region merging. Tsuji and Fujiwara ~a3~ used 
linguistic techniques to perform region merging. 

3.2 Region dividinq 

One way of doing image segmentation by region 
extraction is the region dividing approach. Robertson 
et al, ~sS~ used a mean vector of gray levels of multi- 
spectral image to perform region dividing. 
Klinger ~a6'87~ proposed to use regular decomposition 
for image segmentation. 

3.3 Region merging and dividing 

Horowitz and Pavlidis ~al's2J approached the prob- 
lem using a "split and merge" principle. Regions were 
described in terms of an approximating function. 
They merged adjacent regions having similar approxi- 
mations and split those regions that had large ap- 
proximating errors. 

3.4 Comments on the region extraction approach to 
image segmentation 

One of the disadvantages of the region merging 
processes is their inherently sequential nature. The 
regions produced depend on the order in which 
regions are merged together. Almost all region extrac- 
tion algorithms use local information heavily. There is 
no simple way to incorporate global information into 
the model unless we severely restrict the class of pic- 
tures we are dealing with. All of the region extraction 
techniques process the pictures in an iterative manner 
and usually involve a great expenditure in computa- 
tion time and memory. Thus, they are not suitable for 
application in cell image segmentation. Up to the 
present moment, there is no published information on 
successfully applying region extraction techniques to 
a practical cytology pattern recognition system. 

CONCLUSIONS 

This paper surveys various existing approaches to 
image segmentation. So far, image segmentation tech- 
niques are strongly application dependent, For 
example, edge detection techniques are favoured by 
most researchers in chest X-ray image segmentation 
whereas thresholding and clustering techniques are 
widely used by researchers in cell image segmentation. 
Semantic and a priori information about the type of 
images are critical to the solution of the segmentation 
problem. One of the fruitful areas of reaearch is to 
combine spatial and semantic information with edge 
detection and thresholding or clustering techniques to 
perform image segmentation. 
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