
Author's Accepted Manuscript

A Petri net-based decision-making framework
for assessing cloud services adoption: The use
of spot instances for cost reduction

Maristella Ribas, C.G. Furtado, Neuman Souza,
Giovanni Barroso, Antão Moura, Alberto S.
Lima, Flávio R.C. Sousa

PII: S1084-8045(15)00156-3
DOI: http://dx.doi.org/10.1016/j.jnca.2015.07.002
Reference: YJNCA1429

To appear in: Journal of Network and Computer Applications

Cite this article as: Maristella Ribas, C.G. Furtado, Neuman Souza, Giovanni
Barroso, Antão Moura, Alberto S. Lima, Flávio R.C. Sousa, A Petri net-based
decision-making framework for assessing cloud services adoption: The use of
spot instances for cost reduction, Journal of Network and Computer Applications,
http://dx.doi.org/10.1016/j.jnca.2015.07.002

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/jnca

http://dx.doi.org/10.1016/j.jnca.2015.07.002
http://dx.doi.org/10.1016/j.jnca.2015.07.002
http://dx.doi.org/10.1016/j.jnca.2015.07.002
http://dx.doi.org/10.1016/j.jnca.2015.07.002
http://dx.doi.org/10.1016/j.jnca.2015.07.002
http://dx.doi.org/10.1016/j.jnca.2015.07.002

A Petri net-based decision-making framework for assessing cloud

services adoption: The use of spot instances for cost reduction

Author1 (corresponding author):

Name: Maristella Ribas

Address: Rua Francisco Teixeira Alcantara, 500 Fortaleza, Brasil CEP 60182360

Email: mari@techne.com.br

Author 2

Name: Corneli Gomes Furtado Júnior

Address: Rua Juvenal Galeno, 722 - Benfica - Cep 60015-340

Email: cjunior@ifce.edu.br

Author 3

Name: José Neuman de Souza

Address: UFC-DC-Campus do Pici - Bloco 910 - 60440-504 - Fortaleza - CE

Email: neuman@ufc.br

Author 4

Name: Giovani Cordeiro Barroso

Address: Rua Princesa Isabel, 1618/101 CEP: 60.015-061 Fortaleza-Ce, BR

Email: gcb@fisica.ufc.br

Author 5

Name: J. Antao B. Moura

Address: Av. Aprigio Velloso 882 Bloco CN Sala 210 CEP 58429-140 Campina Grande, PB, Brasil

Email: antao@dsc.ufcg.edu.br

Author 6: Alberto Sampaio Lima

Address: Rua Bento Albuquerque, 550 Apto 300 - Coco - Cep 60192-060 Fortaleza - Ceara - Brazil

Email: albertosampaio@ufc.br

Author 7

Name: Flávio R. C. Sousa

Address: Rua Bento Albuquerque, 550 Apto 550 - Coco - Cep 60192-060 Fortaleza - Ceara - Brazil

Email: flaviosousa@ufc.br

A Petri net-based decision-making framework for assessing cloud

services adoption: The use of spot instances for cost reduction

Maristella Ribasa, C. G. Furtadob, Neuman Souzac, Giovanni Barrosoc, Antão Mourad, Alberto
S. Limac, Flávio R. C. Sousac

aTechne Engenharia e Sistemas, São Paulo, Brazil

bFederal Institute of Ceará (IFCE), Fortaleza, Brazil
cFederal University of Ceará, Fortaleza, Brazil

dFederal University of Campina Grande, C. Grande, Brazil
mari@techne.com.br, neuman@ufc.br, cjunior@ifce.edu.br, gcb@fisica.ufc.br, antao@dsc.ufcg.edu.br,

albertosampaio@ufc.br, flaviosousa@ufc.br

Abstract

Cloud services are widely used nowadays, especially in Infrastructure as a service (IaaS), with vendors

offering several purchasing options and expanding the range of services offered on almost a daily basis. Cost

reduction is a major factor promoting the adoption of cloud services among enterprises. However, qualitative

factors need to be evaluated as well, thus rendering the decision regarding the adoption of cloud services

among enterprises a non-trivial task for Information Technology (IT) managers. In this paper, we propose a

place/transition or Petri net-based multi-criteria decision-making (MCDM) framework to assess a cloud

service in comparison with a similar on-premises service. The framework helps IT managers choose between

two such options, and can be used for any type of cloud service: Infrastructure as a Service (IaaS), Platform as

a service (PaaS), Software as a service (SaaS), etc. Because its low cost is among the most important reasons

for adopting cloud services, we also propose a Petri net to model cost savings using the spot instances

purchasing option in public clouds. Through simulation of several scenarios, we conclude that spot instances

present a very interesting cost-saving option in the auto-scaling process, even for simple business applications

using few servers.

Keywords—Cloud computing, Spot instances, BDIM, AHP, Petri nets.

1. Introduction
Cloud computing is defined by the National Institute of Standard and Technology (National Institute

of Standards and Technology, 2009) as a “model for enabling on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider interaction.”

Infrastructure as a service (IaaS), Platform as a service (PaaS), and Software as a service (SaaS) are
the classical categories of cloud services, although there are other proposed categories such as Database
as a Service (DBaaS), Cache as a Service (CaaS), Unified Communications as a Service (UCaaS). In fact,
cloud services are becoming so popular that some authors mention the category Everything as a Service
(XaaS).

One of the many difficult decisions facing Information Technology (IT) managers nowadays is to
choose between adopting an IT service in its cloud model and having the service hosted according to the
conventional, on-premises model. The manager has to consider a large number of criteria, with cost being
possibly the most important one. Cloud services are attractive because of the low-initial investment
involved. However, if a cloud service is adopted by an organization, its IT department will no longer have
any control over the infrastructure, and will completely rely upon the fulfillment of the Service-level
Agreement (SLA) clauses in the contract to obtain the required service.

In this paper, we aim to shed some light on the business management problem of identifying the
factors and parameters to determine the advantages and disadvantages of using cloud services in
comparison with on-premises solutions for enterprise business applications. Furthermore, we focus on
modeling and reducing the cost of the elasticity of cloud services. Also known as dynamic provisioning,
elasticity “has become one of the most important features of a cloud computing platform” (Han et al.,
2014). By using this feature, application owners can scale up or scale down resources used based on the
computational demands of their applications, and need to pay only for the resources they actually use.
Elasticity poses new challenges to resource management, as pointed in , and makes it more difficult to
estimate cost, thus contributing to the greater complexity of the decision-making process.

As an example of the above-mentioned decision problem, consider a company that is developing a
new platform to offer cloud services for developers of enterprise applications in a PaaS model.

Developers will use PaaS to build and publish their applications. The PaaS provider will be required to
host all applications, and will need the corresponding infrastructure. This infrastructure can be leased
from public clouds, fully hosted on premises, or supplied in a hybrid manner, partly on-premises and
partly rented from public clouds. The IT manager must determine the services that the company will host
internally and those that will be hosted on public clouds in the most cost-efficient manner, all the while
ensuring an acceptable quality of service for PaaS clients. There are instances of commercial PaaS that
internally host their infrastructure (Google, AWS) as well as others that lease public IaaS (Heroku).
Hence, the choice of service can be a very difficult decision for the IT manager.

In a previous study (Ribas et al., 2014), we proposed an initial version of a framework to support
decisions on whether to lease cloud services by considering factors related only to SaaS. This initial
framework combined several of the most relevant factors for decisions of this type (according to the
literature) and provided an assessment of both options (public clouds and on-premises hosting). The
framework was designed using Petri nets (PNs) in order to benefit from their formal description and
provide a visual interface that is simple, yet powerful enough to perform simulations for different
purposes. In this paper, we extend the framework to capture cost elements for any type of cloud service,
and propose a Petri net model to simulate IaaS utilization and compute cost savings in several scenarios.
The PN model used to estimate cost savings uses a particular purchasing option for virtual machines,
called spot instances . This purchasing option is currently supported by Amazon Web Services (AWS),
the leader in the public IaaS market according to the Gartner Group . Spot instances work in exactly the
same manner as any other Amazon Elastic Compute Cloud (EC2) virtual machine. The difference lies
only in the price scheme: the hourly price for spot instances is not fixed, and clients bid on how much
they are willing to pay. AWS dynamically defines spot price, which varies in real-time based on supply
and demand. If a client’s bid is higher than the spot price, the spot instance commences. If the spot price
changes and rises above the client’s bid, the instance is terminated by AWS. In this paper, we refer to any
type of virtual machine that can be rented in a public cloud as an “instance.” Our contributions to the
literature are constituted by: 1) Our proposed framework, where we selected, using recent literature as
well as practical experience, important factors to be considered as well as a reliable method to assess all
factors and provide a simple final score. Moreover, the diagram of the Petri net makes it very easy to
understand the underlying methodology. 2) The results of simulation scenarios executed while
investigating cost reduction through spot prices, where a discount of up to 60% can be obtained without a
significant effort, simply by efficiently using cloud resource purchasing options.

The rest of this paper is organized as follows: Section 2 is devoted to a review of related work in the

literature, which provides the parameters need to build the decision-making model. In Section 3, we
present and discuss the PN model that we constructed to implement our decision-making framework, and
provide an example in Section 4 to explicate our decision-making model. Section 5 contains an
introduction to our PN models built to investigate cost reduction using spot prices, whereas Section 6
contains a description of our simulation scenarios, their results, and our discussion. We offer our
conclusions and directions for future research in Section 7.

2. Related work
The literature on cloud computing is growing as cloud services are becoming more popular. For a

systematic literature review, we searched for the terms “SaaS” and “evaluation,” “evaluating,” or
“evaluate” among publications after 2011 on IEEE explore, the ACM digital library, and Science Direct
(Elsevier). From the 228 items yielded by the search, we selected 32 papers that seemed relevant to our
study. Many of these focused on the evaluation of SaaS strictly from the perspective of technical
performance. However, our work follows research on business-driven IT management (BDIM) , which
includes technical as well as business-centric views.

A few studies have assessed cloud solutions from the point of view of BDIM. The framework
proposed in is useful for comparing the cost of IaaS with that of on-premises datacenters. The primitive
cognitive network process approach presented in is useful for selecting an offer of service (SaaS) from a
list of providers of the same software. The survey in revealed that cost advantages were the strongest and
the most consistent opportunity factor significantly affecting perceived opportunities in SaaS adoption,
whereas security risks were the dominant risk factors, followed by performance and economic risks.

The study in presented results of a survey conducted in Korea to assess the adoption of SaaS and its
related benefit to business, thus confirming the premises of the balanced scorecard (BSC) . The research
in proposed a process based on goal-oriented requirements engineering (GORE) to provide a systematic
approach to evaluate a cloud provider. In , the authors have provided SWOT analysis for the cloud
computing industry, as well as various issues that will affect stakeholders.

Wu (2011) attempted to develop an explorative model that examined important factors affecting
SaaS adoption, such as integrating Technology Acceptance Model (TAM)-related theories with additional
imperative constructs, such as marketing effort, security, and trust. Security is the major risk affecting
SaaS adoption according to most researchers (Benlian & Hess, 2011; Wu, 2011a and b; Wu, Lan, & Lee,
2011; Bayrak, 2013), whereas cost reduction is the major expected benefit (Benlian & Hess, 2011; Wu,
2011; Gupta, Seetharamana, & Raj, 2013; Bayrak, 2013).

Other interesting studies of cloud evaluation and adoption relate to pricing schemes , facets of
security in the cloud , selection of cloud providers based on security, and privacy requirements . The cost
analysis of on-premises solutions against SaaS solutions was conducted in detail in . In this study, unlike
in our framework, the authors did not include qualitative benefits and risks to obtain a final score. Garg,
Versteeg, and Buyya (2013) used the analytic hierarchy process (AHP) to combine quality of service
(QoS) attributes in order to address the problem of selecting a cloud provider, which differs from our
problem of comparing on-premises solutions with cloud solutions.

We also conducted a search for “cloud cost model” and selected 43 papers relevant to our study. An
interesting comparison of on-premises services with cloud services was conducted by McGougha et al.
(2014). They compared cost and overhead for high-throughput computing (HTC) jobs in two
environments: a public cloud and a desktop cluster of non-dedicated resources. Their cloud cost model
considered hours of use of instances and upload/download data. They noted that the start of the billing
period varied among providers. Some, including AWS, charged from the start of the hour within which an
instance was initiated — e.g., billing from 7 pm for an instance initiated at 7:59 pm — whereas others
charged from the exact time at which the instance was initiated. Their on-premise cost model considered
factors such as cost of hardware acquisition, cost of technical support for the desktop cluster, charges
incurred for carbon emission, and energy cost (per kWh). They proposed six different cost saving policies
in the cloud: P1, limiting the maximum number of cloud instances, P2, merging different users’ jobs, P3,
instance keep-alive to avoid initialization time, P4, delaying the beginning of instances, P5, removing the
delay on starting an instance, and P6, waiting for the start of the next hour.

Alfonso et al. (2013) compared the cost of HPC using on-premises services with that using cloud.
The simplified cost of the on-premises cluster depended primarily on the purchase of the hardware, the
maintenance and operation of the cluster, and its energy consumption (which can be reduced by turning
off idle nodes). For the cloud cost model, they focused on hours of instance use and analyzed factors such
as purchasing options. They proposed an equation to help decide if the option of reserving instances was
preferable for a particular case, assuming one had sufficient information regarding cluster usage rate.
Reservation is a purchase option offered by AWS, where one can pay a flat fee in advance and obtain a
lower hourly rate for instance use. However, as of December 2014, AWS changed the reserved instance
price model, and hence the equation will need to be updated.

Elasticity in multi-tier cloud applications was analyzed by Han et al. (2014). They proposed an
algorithm that relied on online monitors to detect changes in workloads and perform corresponding
scaling in each tier. The algorithm was designed to measure the cost of adding a server divided by the
reduced response time due to this addition. Hence, this criterion is called the consumed cost/decreased
response time (CC/DRT) ratio.

Some interesting studies investigated cost optimization using linear programming techniques
(Malawski et al., 2013) by using Cache as a service (CaaS) to reduce input/output (I/O) costs and improve
performance (Han et al., 2012). Baars et al. (2014) explored factors that affect chargeback for cloud
services, mainly acceptability and effectiveness, and presented interesting insights on qualitative issues in
cloud service use.

Spot instances have been studied (Javadi et al., 2013) through statistical models to characterize their
behavior. The authors proposed probability density functions (pdfs) for the calculation of spot price and
the interval of price spot change. Another study on spot prices (Tang et al., 2014) proposed a framework
for bidding on spot prices in order to achieve monetary advantages, and still comply with SLA
regulations.

Petri nets were used in (Sousa et al., 2014) as a tool for stochastic generation of dependability and
cost models to represent cloud infrastructures.

To the best of our knowledge, no study provides a final ranking of cloud services in comparison
with on-premises solutions considering both cost and other qualitative attributes, including security,
which is a major concern. Furthermore, our search of the literature did not yield any study that proposed
models to estimate cost reduction using spot instances.

3. The proposed decision-making framework

We propose a novel framework that combines cost and qualitative issues to produce a final score.
We aim to employ a methodology that is simple for managers to visualize and understand (the PN visual
graph is very helpful for that), and one that can be easily adapted to different scenarios. The mechanism
of the framework can be divided into three steps:

1. Estimate the cost advantage (or disadvantage) of a cloud service over on-premise services
2. Evaluate the benefits and risks in a qualitative manner using a multi-criteria decision-making

(MCDM) framework, such as AHP.
3. Compute the cost/benefit ratio. The option with the highest ratio is better.

Figure 1 shows our framework. The left part shows Step 1, cost comparison, whereas the upper right
part shows Step 2, qualitative evaluation. Step 3 is shown in the lower right part, and contains the
final output of the model.

Figure 1: Proposed CPN multi-criteria decision-making (MCDM) framework.

The framework uses colored Petri nets (CPN), an extension of Place-Transition Petri nets, to model
complex data types (named colors) and makes use of ML programming. The CPN model contains places,
drawn as ellipses or circles, transitions drawn as rectangular boxes, directed arcs connecting places and
transitions, and some textual inscriptions next to the places, transitions, and arcs. In this manner, our
model can be summarized in one main graph. The model admits four input parameters — “cost elements
cloud,” “cost elements on premises,” “criteria weight,” and “alternatives weight” — and produces two
outputs: “final score cloud” and “final score on premises.” However, in order to completely understand
the model, one needs to understand the colors and functions used. These elements will be discussed as we
present each step of the framework.

3.1 Step 1: Cost estimates

 For cost estimation, the colored Petri nets (CPN) model uses the following elements:

• Color lc: a list of cost elements. Each cost element is represented by a triplet consisting of three
basic items of information: type of cost (Initial or Annual), name of cost element (e.g., labor,
hardware, software), and value in financial terms. As an example, an annual software
subscription of $500 can be modeled as (Annual, Subscription, $500). This color is used in the
“cost elements cloud” and the “cost elements on premises” parameters

• Place Cost Elements Cloud: it contains a list of cost elements to estimate the total cost of the
cloud service. This list is one of the input parameters of the model, since it is very specific to the
service. As an example, a list for an SaaS cloud service can be [(Initial, Training, $19.20),
(Annual, Salary, $60.00), (Annual, Connectivity, $36.0), (Annual, Subscription, $99.00)].

• Place Cost Elements OnPremises: it contains a list of cost elements to estimate the total cost for
the service when it is locally operated on premises. This is an input parameter of the model,
since it is specific to the service. The “OnPremises” list of cost elements is usually larger, as will
be shown in Section 4.

• Function initCost(list): it admits a list of costs and returns the sum of all cost elements of type
Initial in order to compute the initial investment necessary to operate the service. This function is
used in transitions Cloud Cost and OnPremise Cost.

• Function annualCost(list): it admits a list of costs and returns the sum of all cost elements of
type Annual in order to compute the annual expenditure required to operate the service. This
function is used in transitions Cloud Cost and OnPremise Cost.

• Transition Cloud Cost: it computes the initial investment and annual expenditure required to
operate the cloud service. Following computation, the function will set the computed values as
markings of places “Cloud initial cost” and “Cloud annual cost.”

• Transition OnPremise Cost: it computes the initial investment and annual expenditure required
to operate the cloud service. These costs then become the marking of places “OnPremise initial
cost” and “OnPremise annual cost.”

Cost estimates for IT services, both on-premises and cloud services, can vary significantly

depending upon the application, the size of the enterprise, and the complexity of the enterprise’s business
processes . In our previous work (Ribas et al., 2014), we followed Bibi, Katsaros, and Bozanis (2012).
Their proposed model addressed initial costs, which are one-time costs, as well as the expected annual
divestment and operational costs. To extend this model to capture all possible cost elements, we
introduced the color set lc, as described previously. Altmann and Kashef (2014) researched cost elements
in recent literature for IaaS cloud services. Table 1 shows a shorter version of the cost factors explored by
them. Since their work is related to hybrid clouds, a few cost factors listed are applicable to public cloud
services, a few are applicable to private cloud services, and some are applicable to both.

Table 1: List of cost elements adapted from

Cost Type Cost Elements

(a) Electricity (a1) Cooling private cloud

 (a2) Electronic devices (idle)

 (a3) Electronic devices (in use)

(b) Hardware (b1) Server

 (b2) Network device

(c) Software (c1) Basic server software license

 (c2) Middleware license

 (c3) Application software license

(d) Labor (d1) Software maintenance

 (d2) Hardware maintenance

 (d3) Other support

(e) Business Premises (e1) Rack, air conditioner

 (e2) Cabling

 (e3) Facility

(f) Cloud Service (f1) Internet connectivity

 (f2) Cloud service use

 (f3) Data transfer to cloud

 (f4) Data transfer from cloud

 (f5) Cloud storage

 (f6) Data transfer between clouds

(g) Deployment (g1) Number of deployments

 Our framework is built in order to easily accommodate any type of pre-computed cost element
for any type of cloud service.

Step 2: Evaluating benefits and risks
 In order to assess the benefits and risks, we use AHP , as a classical MCDM method, since
qualitative factors need to be analyzed and AHP has been often used in the literature to evaluate IT and
cloud services (Garg, Versteeg, & Buyya, 2013; Yuen, 2012). There are two competing services to be
ranked: cloud and on-premises. For benefits and risk evaluation, the CPN model uses the following
elements:

• Color lw: a list of tuples of a string and a real number (criterion, weight), where “criterion”
represents the name of the criterion and “weight” is the value assigned to that criterion (e.g., the
list could be [(“strategy,” 0.3), (“quality,” 0.4), (“risk,” 0.3)].

• Color la: a list of triples of two strings and a real number (criterion, alternative, weight) where
“criterion” represents the name of the criterion, “alternative” the name of the alternative, and
“weight” is the value assigned to that criterion for that alternative. (e.g., the list could be
[(“strategy,” “cloud,” 0.5), (“strategy,” “onP,” 0.5), (“quality,” “cloud,” 0.5), (“quality,” “onP,”
0.5), (“risk,” “cloud,” 0.5), (“risk,” “onP,” 0.5)]

• Color qual: a pair of real numbers (qc, qo) representing the qualitative evaluation of the cloud
service (qc) and the on-premise service (qo). Place Qualitative Evaluation is of this color.

• Place Criteria weight holds a list of criteria and their precomputed weights. This is an input
parameter to the framework. In Section 4, we will exemplify qualitative criteria commonly
mentioned in the literature.

• Place Alternative weight: holds a list of weights assigned to the criterion in question for each
alternative to be used in AHP methods. This is also an input parameter to the framework.

• Transition MCDM: computes the final ranking based on the weight of each criterion using a
function (calcAHP) to perform the necessary calculations.

• Function calcAHP (lw, la): takes the list of criteria weights and alternative weights, and
computes final scores for each alternative. In our framework, this function implements the AHP
method, but it can be customized to use another method for multi-criteria decision making, e.g.,
the primitive cognitive network , as long as the function returns a pair of real numbers (qc, qo) to
represent the qualitative evaluation of cloud and on-premises services.

• Place Qualitative Evaluation: contains the result of the qualitative evaluation returned by
function calcAHP.

Step 3: Compute cost/benefit ratio
 The last step of the framework normalizes the costs computed in Step 1 and computes a
benefit/cost ratio that ranks the alternatives. For this step, the CPN model uses the following elements:

• Color scores: a list of real numbers to hold final scores for each alternative. The use of the list
allows the framework to produce several evaluations for each alternative. In our example in
Section 4, we will compute scores for one-year and five-year analyses for each alternative.

• Transition Normalize and Compute: takes cost estimates (initial and annual) for cloud services
and on-premises services as well as the qualitative evaluation for both, and generates the final
score. For this, it uses two customizable functions, ScoresCloud and ScoresOnP.

• Function ScoresCloud: computes a score based on user-defined techniques. In our example in
Section 4, we implement these functions to compute the total cost of ownership (TCO) for one-
year use and five-year use following . We then normalize to obtain values between 0 and 1, and
compute the cost/benefit ratio of using each service for one and five years, as shown in Figure 2.
This example function can be replaced by methods that include more complex financial
calculations to handle depreciation costs, for instance.

• Function ScoresOnP: similar to ScoresCloud, and is used to compute cost/benefit ratio for on-
premise services

Figure 2: User-defined ScoresCloud function

4.
In order to elaborate on the decision

al., 2014), where a private school with 2,000 students needs t
software. The current software was purchased when the school was much smaller
obsolete with the advent of new mobile technologies. The current software
Web and the other for the database. These two servers also need to be replaced
The IT manager, after careful research, decides to buy
options:

1) On-premises option: Perpetual license, where
of R$145,000 (Brazilian reais - value for up to 2,500 students). There is also an optional annual
maintenance fee of R$29,000 for technical support and software upgrades. An IT infrastructure is needed
to install and run the software.

2) SaaS option: Annual subscription of
technical support and software upgrades), whereby the school will
Web browser. Moreover, the vendor will sign a
performance, and security.

In both the two above options, the vendor recommends a training package

and power users to customize the software to
can operate the software in the most adequate and efficient
necessary to purchase two physical hosts (or a corresponding virtual solution) for
Web servers. Software licenses for a Windows Server and Microsoft SQL Server
well. We estimated the annual salary
estimated to be R$24,000 and energy
same, but the cost of service is 10% lower because there is no installation
than the on-premise option at R$36,000.
IT person will be required.

Table 2: Lists of cost elements (values in thousands)

On-premises

Initial Training R$19.20

Initial Services R$38.40

Initial Hardware R$8.00

Initial Software R$145.00

Initial Middleware R$11.00

Initial TOTAL R$221.60

Annual Salary R$120.00

Annual Connectivity R$24.00

Annual Software R$29.00

Annual Hardware R$0.96

Annual Energy R$3.60

Cloud function.

4. An Illustrative example
decision-making scenario, we used the problem presented

where a private school with 2,000 students needs to upgrade its academic management
The current software was purchased when the school was much smaller, and has been rendered

new mobile technologies. The current software uses two servers, one for the
for the database. These two servers also need to be replaced due to technical problems.

The IT manager, after careful research, decides to buy a new software, SCHOOL1, with two deployment

premises option: Perpetual license, whereby the school will have to pay an initial licensing fee
value for up to 2,500 students). There is also an optional annual

$29,000 for technical support and software upgrades. An IT infrastructure is needed

2) SaaS option: Annual subscription of R$99,000 (value for up to 2,500 students, which includes
technical support and software upgrades), whereby the school will be able to access the software using a

the vendor will sign an SLA to ensure a certain level of service for availability,

In both the two above options, the vendor recommends a training package that enables
power users to customize the software to meet the school’s requirements in order to ensure

can operate the software in the most adequate and efficient manner. In the on-premises option, it
two physical hosts (or a corresponding virtual solution) for the database and

eb servers. Software licenses for a Windows Server and Microsoft SQL Server would be
annual salary of two IT professionals to be R$60,000 each. Internet costs

$24,000 and energy at R$3,600 per year. For the SaaS option, the training prices
10% lower because there is no installation cost. Internet costs

$36,000. However, expenditure on salaries will decrease because only one

(values in thousands)

 Cloud

TCO 1st
year (initial
+ annual)

 Initial Training R$19.20

 Initial Services R$34.56

R$399.16

 Initial TOTAL R$53.76

 TCO 5
years
(initial + 5
× annual)

 Annual Salary R$60.00

 Annual Connectivity R$36.00

 Annual Subscription R$99.00

R$1,109.40

presented in (Ribas et
o upgrade its academic management

, and has been rendered
two servers, one for the

technical problems.
two deployment

the school will have to pay an initial licensing fee
value for up to 2,500 students). There is also an optional annual

$29,000 for technical support and software upgrades. An IT infrastructure is needed

$99,000 (value for up to 2,500 students, which includes
access the software using a

level of service for availability,

 IT personnel
sure that users

premises option, it is
database and the

would be required as
$60,000 each. Internet costs were

training prices are the
. Internet costs are higher

because only one

TCO 1st
year (initial
+ annual)

R$248.76

 TCO 5
years 5
(initial + 5
× annual)

R$1,028.76

Annual TOTAL R$177.56

Our model requires two input parameters for cost: “Cost Elements Cloud” and “Cost Elements On
Premises.” By using the estimates as described above, we built the cost elements table for both
alternatives, as shown in Table 2. We also computed the TCO for the one

We thus obtained the following costs
R$1,109.4 for five years. The SaaS option
years. Figure 3 shows the evolution of cost for both models.
the cloud option but, after five years,
cost function is linear, we expect that
However, depreciation costs were not consider
different financial method in the Score
also used in the literature for cloud cost comparison
services always cost less than on-premises

Figure 3: Cost evolution in the example

Following this, we performed
Step 2. We used previous studies [,

• Strategy: refers to strategic issues
3) quicker implementation of applications, 4) reduction of vendor lock
costs, and 5) concentrating efforts on

• Quality: refers to the efficiency and effe
services.

• Performance risks: refer to the possibility that the alternative might not deliver the expected
level of service.

• Security risks: refer to the possibility of data corruption, data leakage, error
and other threats to security. This is by far the most important inhibitor of SaaS adoption
al., 2013).

• Economic risks: refer to the possibility that a client may have to pay more to
expected level of service than in

We deliberately left cost out of this part because “discussing costs together with benefits can sometimes
bring forth many political and emotional resp
criteria, including costs, we believe pairwise comparison between cost and other qualitative criteria may
lead to inappropriate weight assignment for qualitative issues
that were not considered significant in previous studies, such as 1) access to specialized resources (human
and technological) internally unavailable, and 2) managerial risks, wh
personal reputation and career of the manager responsible for the application may be affected if the
software is sourced to an external service provider

To obtain a pairwise comparison, w
parameters in our example, whereby the consistency ind

 Annual TOTAL R$195.00

Our model requires two input parameters for cost: “Cost Elements Cloud” and “Cost Elements On
Premises.” By using the estimates as described above, we built the cost elements table for both
alternatives, as shown in Table 2. We also computed the TCO for the one-year and five-year periods.

the following costs for the on-premises model: R$399.16 for the first year and
he SaaS option would cost R$248.76 for the first year and R$1,028.76 for five

years. Figure 3 shows the evolution of cost for both models. We can see that costs are initially lower for
oud option but, after five years, they become similar to the cost of the on-premise service.

cost function is linear, we expect that cloud costs will be higher than on-premises costs in the long term.
However, depreciation costs were not considered in this instance of our framework. Had we chosen

ScoresCloud function, for instance net present value (NPV),
used in the literature for cloud cost comparison , we might have obtained a result whereby

premises services.

the example.

 the qualitative evaluation to obtain the parameters of the model for
 and] to select the most important criteria for evaluation:

: refers to strategic issues, such as: 1) flexibility in switching IT provider, 2) scalability,
3) quicker implementation of applications, 4) reduction of vendor lock-in due to lower initial

and 5) concentrating efforts on the specific core competencies of the enterprise

: refers to the efficiency and effectiveness of processes supported by the application

: refer to the possibility that the alternative might not deliver the expected

: refer to the possibility of data corruption, data leakage, errors in authentication,
other threats to security. This is by far the most important inhibitor of SaaS adoption

: refer to the possibility that a client may have to pay more to
expected level of service than initially anticipated — the so-called “hidden costs” .

We deliberately left cost out of this part because “discussing costs together with benefits can sometimes
bring forth many political and emotional responses” . Although AHP method could summarize all
criteria, including costs, we believe pairwise comparison between cost and other qualitative criteria may

assignment for qualitative issues. For simplicity, we also excluded
that were not considered significant in previous studies, such as 1) access to specialized resources (human

available, and 2) managerial risks, which constitute the possibility that the
personal reputation and career of the manager responsible for the application may be affected if the
software is sourced to an external service provider .

pairwise comparison, we asked experienced practitioners to assign reasonable values
our example, whereby the consistency indices CI and ratios CR were checked,

Our model requires two input parameters for cost: “Cost Elements Cloud” and “Cost Elements On
Premises.” By using the estimates as described above, we built the cost elements table for both

year periods.
$399.16 for the first year and

$1,028.76 for five
We can see that costs are initially lower for

premise service. Since the
in the long term.

Had we chosen a
(NPV), which was

a result whereby cloud

to obtain the parameters of the model for
] to select the most important criteria for evaluation:

IT provider, 2) scalability,
in due to lower initial

of the enterprise.

the application

: refer to the possibility that the alternative might not deliver the expected

s in authentication,
other threats to security. This is by far the most important inhibitor of SaaS adoption (Lee et

: refer to the possibility that a client may have to pay more to obtain the

We deliberately left cost out of this part because “discussing costs together with benefits can sometimes
Although AHP method could summarize all

criteria, including costs, we believe pairwise comparison between cost and other qualitative criteria may
excluded criteria

that were not considered significant in previous studies, such as 1) access to specialized resources (human
the possibility that the

personal reputation and career of the manager responsible for the application may be affected if the

e asked experienced practitioners to assign reasonable values to the
atios CR were checked, yielding a

value of CR < 0.1, which is acceptable. Tables 3 and 4 show weights obtained in our pairwise
comparisons.

Table 3: Weights for criteria and alternatives

Criterion Alternative Weight

Strategy OnPremises 0.357

Strategy Cloud 0.643

Quality OnPremises 0.42

Quality Cloud 0.58

Performance Risks OnPremises 0.643

Performance Risks Cloud 0.357

Security Risks OnPremises 0.75

Security Risks Cloud 0.25

Economic Risks OnPremises 0.9

Economic Risks Cloud 0.1

Table 4: Weights for criteria

Criterion Weight

Strategy 0.15

Quality 0.2182

Performance Risks 0.2417

Security Risks 0.2077

Economic Risks 0.1821

Using these weights, transition MCDM (Figure 1) will use AHP method (calcAHP function) and
will compute qualitative evaluation as (0.62, 0.38), meaning that OnPremises option was ranked first,
with value 0.62, and Cloud option was ranked second, with values 0.38. Finally, we calculated the
cost/benefit ratio in Step 3. Table 5 shows the results. The on-premises option has the best ratio for the
first year as well as for the five-year analysis. This is because of the poor evaluation of SaaS in Step 2.
The cloud option, even with lower cost, did not convince our decision makers.

Table 5: Final scores

 On-premises SaaS

First year 1.028 0.956

Five years 1.210 0.778

The ratio of the cloud service was closer to that of the on-premises service in the first year because

the latter recorded higher initial costs. However, in the five-year analysis, the on-premises option fared
much better. These conclusions are valid only for our example, which was based upon a scenario in
Brazil, which has high Internet costs, medium income ranges, and a strong perception of security and
economic risks. Practitioners fear for internet hackers and changes in pricing of cloud services. In fact, the
qualitative analysis was the major hindrance to choosing the cloud service, and its advantage in terms of
cost was not sufficiently strong to revert to this situation. In our example, in order to appeal more to
customers, cloud costs would have to be less than 61% of on-premises costs to compensate for the
qualitative ranking of 0.62 assigned to on premises option.

We presented this example to clarify the use of our framework by assigning values to the inputs of
the model and following the calculations step by step. Each step can help users organize ideas and reason
through each part of the problem. The model produced as output scores that reflected the restrictions on
and the preferences of the decision maker; hence, each output was unique. However, we believe that

using our framework, the decision maker will have a better insight of the problem and thus can make a
better decision. Complete face validity of this model is listed as a future work.

5. Using spot instances for cost reduction

Our decision-making framework takes as input a list of cost elements, a list of qualitative criteria

and weights, and generates as output scores for
example in Section 4, in some scenarios
decision makers to adopt this option.
the server use cost, i.e., the monthly charge
cloud. Cloud providers usually charge customers
pays for each hour (or minute, or month
is no charge.

Each IaaS provider has its own billing model for virtual machines. In this paper, we
three purchasing options currently available for

• On-demand: In this option, charges are
“instances”) are turned on. There is no upfront investment and no commitment of use. It is
simple use-and-pay method

• Reserved: As of December 2014, in this option, customers pay for the period of reservation
instead of hours of use. Payment options may be no upfront, partial upfront
Figure 4 shows prices for the eastern r
3.75 Gb, 1 × 4 SSD Storage).
with the on-demand option
period (month, year) and not by
for a month is purchased, it makes no difference
The prices of reserved instances prices can be equivalent to on
local server.

• Spot: In this option, charges are
However, the hourly rate is not fixed. Clients bid on how much they are willing to pay for the
hour. AWS dynamically defines
demand. If a client’s bid is
If the spot price changes to
AWS.

Figure 4: Reserved instances prices for eastern

To investigate how the use of spot instances can help cost reduction,
model hierarchically organized in modules that
2) savings by using spot instances. In our model, there
instance that is always switched on to guarantee
switched on, the reserved option is the most cost
whenever needed by monitoring the demand for servers
manner, the model will simulate the
decomposed into four subnets: Monitor Auto
will discuss these in detail in sections 5.1 to 5.5.

using our framework, the decision maker will have a better insight of the problem and thus can make a
mplete face validity of this model is listed as a future work.

Using spot instances for cost reduction

framework takes as input a list of cost elements, a list of qualitative criteria
as output scores for the cloud and on-premises services. As seen in the

, in some scenarios, the cost of cloud services needs to be very low to convince
option. An important part of the cost elements of cloud services for IaaS

, the monthly charge levied by providers for the use of their virtual machines in the
cloud. Cloud providers usually charge customers according to a pay-per-use basis, whereby

, or month) for which the machine is turned on. If the machine is off, there

Each IaaS provider has its own billing model for virtual machines. In this paper, we investigate
three purchasing options currently available for Amazon Web Services (AWS):

n this option, charges are levied for each hour the virtual machines (
on. There is no upfront investment and no commitment of use. It is

method but usually incurs the most expensive hourly rate.

s of December 2014, in this option, customers pay for the period of reservation
instead of hours of use. Payment options may be no upfront, partial upfront, or all upfront.

the eastern region of the US and instance size m3.medium (1 vCPU,
4 SSD Storage). AWS provides an hourly estimate of cost to help compare prices

demand option. However, reserved instances are paid for according to
period (month, year) and not by number of hours of use. This means that if a reserved instance

, it makes no difference whether it stays on: the cost will be the same.
instances prices can be equivalent to on-premises costs of operating a

n this option, charges are levied for hours of use, similar to the on-demand option
is not fixed. Clients bid on how much they are willing to pay for the

hour. AWS dynamically defines spot price, which varies in real time based on supply and
bid is higher than the current spot price, that particular instance is

to rises above the client’s bid, the particular instance is terminated by

instances prices for eastern US with instance size m3.medium .

investigate how the use of spot instances can help cost reduction, we created an additional CPN
modules that compute 1) the monthly cost of all running instances

. In our model, there is one (could be more, if necessary)
on to guarantee the service at all times. Since the instance

on, the reserved option is the most cost-effective option. Other instances are turned on and off
whenever needed by monitoring the demand for servers by simulating the auto-scaling process.

the elasticity of server use. Figure 5 shows the main CPN model that
subnets: Monitor Auto-scaling, Scale Up, Scale Down, and Spot Termination.

in sections 5.1 to 5.5.

using our framework, the decision maker will have a better insight of the problem and thus can make a

framework takes as input a list of cost elements, a list of qualitative criteria,
As seen in the

be very low to convince
ud services for IaaS is

by providers for the use of their virtual machines in the
 the customer

. If the machine is off, there

investigate the

for each hour the virtual machines (called
on. There is no upfront investment and no commitment of use. It is a

s of December 2014, in this option, customers pay for the period of reservation
or all upfront.

instance size m3.medium (1 vCPU,
compare prices

according to the relevant
of use. This means that if a reserved instance

will be the same.
of operating a

demand option.
is not fixed. Clients bid on how much they are willing to pay for the

time based on supply and
instance is initiated.

instance is terminated by

we created an additional CPN
the monthly cost of all running instances, and

(could be more, if necessary) reserved
the instance is always

turned on and off
scaling process. In this

CPN model that is
and Spot Termination. We

Figure 5: CPN model for instance use simulation.

5.1 CPN Model: Instance Use Simulation

The above model represents our
elasticity where instances will be turned on and off in the auto scaling process
parameters for the model:

• Hourly price for on-demand

• Hourly price for the reserved instance, represented by the constant

• Hourly price for spot instance. These values
application programming interface
used a special programming interface for Java

• demand() function: This function represents the
It returns the number of servers needed at
using the model. Figure 6
example, the function return
or more” servers for daytime (6
we use a normal distribution with
hypothetical pattern of use.
during daytime, the number of
should be adopted to reflect each scenario
For instance, Han et al. (2014)
servers. AWS offers a specific cloud service,
such as CPU use, memory use,
function makes the framework easily adaptable

fun demandaNorm() =
 let
 val h = intTime() mod 24
 val extra = normal (3.0, 0.5)
 in
 if h < 7 or else h > 22 then
 1
 else
 1 + floor(extra)
 end;

instance use simulation.

CPN Model: Instance Use Simulation

our proposed mechanism for using spot instances for cost savings in
where instances will be turned on and off in the auto scaling process. There are

demand instance, represented by the constant demPrice in the model.

eserved instance, represented by the constant resPrice in the model.

pot instance. These values are obtained dynamically by using
amming interface (API) during the simulation period. To accomplish

a special programming interface for Java and CPN Tools .

demand() function: This function represents the demand for servers in the auto-scaling process.
the number of servers needed at a given point in time. It must be customized when

Figure 6 shows an example of the use of the demand() function. In this
returns “1” (i.e., one server needed) for nighttime (11 pm to 6

daytime (6 am to 10 pm). To compute the number of extra servers needed,
ormal distribution with the average value of µ = 3 and standard deviation

hypothetical pattern of use. Our hypothetical extra load is then µ ± 2δ 95% of the time,
number of extra servers needed varies between two and four. This function

to reflect each scenario involving the need for extra servers in auto
Han et al. (2014) monitored the request queue size to infer the need for extra

servers. AWS offers a specific cloud service, called CloudWatch, to monitor computing metrics
CPU use, memory use, etc., that can trigger the need for extra servers. The demand()

function makes the framework easily adaptable to specific needs.

for cost savings in
. There are four input

in the model.

in the model.

obtained dynamically by using the AWS
during the simulation period. To accomplish this, we

scaling process.
point in time. It must be customized when

demand() function. In this
to 6 am) and “1

extra servers needed,
and standard deviation δ = 0.5, as a

 95% of the time, i.e.,
This function

need for extra servers in auto-scaling.
request queue size to infer the need for extra

atch, to monitor computing metrics,
, that can trigger the need for extra servers. The demand()

Figure 6: Example of a customizable demand() function.

There are two output values of the model:

• Cost: total monthly cost of the use of EC2 instances, including charges for all instances
(reserved, spot, and on-demand)

• Saving: total savings obtained by using spot instances compared to those using on-demand
instances.

The CPN model uses the following elements:

• Color server: represents an instance currently turned on. It is a 3-tuple consisting of (type, price,
time), where “type” can be res, dem, or spot, to identify the purchasing option (reserved, on-
demand, or spot), “price” is the hourly rate of the particular instance, and “time” is the start time
of use of the instance.

• Color srv: list of active instances representing all servers currently turned on.

• Color costSave: a 2-tuple consisting of real numbers (r1, r2), where r1 represents the total
monthly cost and r2 represents the total savings.

• Place Begin: contains a one-time token to start the simulation process at model time 0.

• Transition Open: establishes a connection with the Java programming interface and initializes
the list of servers, including a reserved instance.

• Function inSrv (type, price, list): inserts a server of a given type and price to the list of active
servers.

• Transition Monitor Autoscaling: a substitution transition to model the autoscaling process
(turning servers on and off as needed). We discuss this in detail when presenting the
corresponding subnet.

• Transition Spot Termination: a substitution transition to model the spot termination process
(turning servers off due to changes in spot prices), and is discussed in detail when the
corresponding subnet is presented.

• Place cs: used as a temporary space to add the cost of using a server when it is turned off. One
can compute the total hours of use of the server and multiply the result by the hourly price. It is
discussed in detail when we present the Monitor Autoscaling and Spot Termination subnets.

• Place end: receives a token when the simulation reaches a predefined age (720 hours = 24 hours
× 30 days), representing the end of the month being analyzed.

• Transition Close: terminates the connection with the Java programming interface and finalizes
the simulation process, modeling the action of turning off all servers.

• Function addVal(list): computes the cost of use of each server in the list, multiplying hours of
use by the hourly price and adding up the cost of use of all servers.

• Function econSpotsRemoved (list): computes the savings of using each spot instance in the list,
multiplying hours of use by (on-demand hourly price - spot hourly price). It then adds savings
for all instances.

• Place Cost: at the end of simulation, its marking represents the total cost of server use.

• Place Saving: at the end of simulation, its marking represents the total savings using spot
instances.

We now discuss the subnets used in the main model.

5.2 Subnet: Monitor Auto-scaling

This subnet models the auto-scaling process. Figure 7 shows the CPN model that implements the

transition “Monitor Autoscaling” in the main net. It is executed at each time unit and monitored to
determine whether there is a need to turn servers on or off. With regard to our objective of cost
comparison, the time unit was one hour. The model would not have been significantly different if we had
used smaller time units, such as minutes or seconds. Monitor Autoscaling model compares the needs of
the servers at a particular time (given by the demand() function) with the number of active servers (the
length of the list of active servers). When demand is greater than the current number of servers in use, it
places a token in High Use, which drives the Scale Up process. When demand is smaller than the current

number of servers in use, it places a token in
neither greater nor smaller than the current number of servers in use, it waits until the next hour by
placing a token in Wait that will only be available then. It also checks the end of the simulation and, in
this case, places a token in End.

Figure 7: Monitor Auto-scaling subnet.

5.3 Subnet: Scale Up

This subnet models actions needed to add servers to our server list at the least cost possible. Figure 8
shows the subnet Scale Up.

Figure 8: Scale Up subnet.

The policy implemented by this subnet is to obtain the current spot price, place a slightly higher bid,

and verify whether the spot instance or the on
notice that on-demand instances are always available such that this subnet will always add one server to
our server list. The CPN model uses the following elements:

• Place High use: has a token when scale up is needed

• Transition GetPrice: computes an optimal
interface to obtain the current spot price for the model time passing parameters
modelTime) where “simulation#” represents a set of parameters needed to obtain spot prices and
“modelTime” represents the day of month and time to obtain the spot price. Tables 6 and 7 list
input parameters to the Java interface.

• Place Spot Price: holds the bid for the spot instance, which is the spot price (a real number)
returned by the Java interface plus $0
high to obtain a spot instance at the least possible cost.

• Transition Launch Demand
demand price. In this case, it is not rea

number of servers in use, it places a token in Low Use, which drives the Scale Down process. If demand is
neither greater nor smaller than the current number of servers in use, it waits until the next hour by

that will only be available then. It also checks the end of the simulation and, in

scaling subnet.

This subnet models actions needed to add servers to our server list at the least cost possible. Figure 8

The policy implemented by this subnet is to obtain the current spot price, place a slightly higher bid,
and verify whether the spot instance or the on-demand instance has the lowest price. It is important to

demand instances are always available such that this subnet will always add one server to
our server list. The CPN model uses the following elements:

: has a token when scale up is needed

computes an optimal bid for a spot instance. For this, it uses the Java
interface to obtain the current spot price for the model time passing parameters (simulation#,

where “simulation#” represents a set of parameters needed to obtain spot prices and
epresents the day of month and time to obtain the spot price. Tables 6 and 7 list

input parameters to the Java interface.

: holds the bid for the spot instance, which is the spot price (a real number)
returned by the Java interface plus $0.0001. In this manner, we ensure that our bid is sufficiently
high to obtain a spot instance at the least possible cost.

Launch Demand: fired when the marking in Spot Price is higher than that in the on
demand price. In this case, it is not reasonable to use the spot instance because it is more

process. If demand is
neither greater nor smaller than the current number of servers in use, it waits until the next hour by

that will only be available then. It also checks the end of the simulation and, in

This subnet models actions needed to add servers to our server list at the least cost possible. Figure 8

The policy implemented by this subnet is to obtain the current spot price, place a slightly higher bid,
demand instance has the lowest price. It is important to

demand instances are always available such that this subnet will always add one server to

bid for a spot instance. For this, it uses the Java
(simulation#,

where “simulation#” represents a set of parameters needed to obtain spot prices and
epresents the day of month and time to obtain the spot price. Tables 6 and 7 list

: holds the bid for the spot instance, which is the spot price (a real number)
.0001. In this manner, we ensure that our bid is sufficiently

is higher than that in the on-
sonable to use the spot instance because it is more

expensive. Transition launch demand inserts a server purchased using the on-demand option into
the list of active servers with its corresponding demPrice (input parameter). For this, it uses the
inSrv function (type, price, list) that saves the model time when the server is inserted into the list
and updates the list of active servers.

• Transition Launch Spot: fired when the marking in Spot Price is lower than that in the on-
demand price. In this case, it is reasonable to use the spot instance because it is currently
cheaper. Transition launch spot inserts a server purchased using the spot option into the list of
active servers with its corresponding price, i.e., the bid. It uses the inSrv function.

Table 6: Parameters for obtaining spot prices in AWS

Simulation Region OS Instance Type

1 South America Windows m3.medium

2 South America Windows m3.2xlarge

3 South America Linux/UNIX m3.medium

4 South America Linux/UNIX m3.2xlarge

5 US-East Windows m3.medium

6 US-East Windows m3.2xlarge

7 US-East Linux/UNIX m3.medium

8 US-East Linux/UNIX m3.2xlarge

…

Table 7: Model time and corresponding time of day in simulation

Model Time Day of Month Hour of day

1 1 0

2 1 1

… … …

24 1 23

25 2 0

... … …

720 30 23

5.4 Subnet: Scale Down

This subnet models actions needed to remove servers from our server list, selecting first the servers
with the greatest possible cost in order to keep using the cheaper ones. Figure 9 shows subnet Scale
Down.

The policy implemented by this subnet is to select and turn off the most expensive server in terms of

hourly price. It also implements the policy of leaving always on the server covered by a reservation
(where the client paid an upfront fee to obtain bette
utilization, a server will be available. By leaving one server always on, we to model real
in business applications available 24 hours a day. It can also model situations where the “re
is actually an internally hosted server, as in hybrid clouds. It is worthy of note that in terms of cost in
some scenarios, the cost of a “reserved” server is identical to that of an internally hosted server
model uses the following elements:

• Place Low use: has a token when a scale down is needed

• Transition Pick server: picks the most expensive server to be turn off. It uses the function
maxPrice(list) that selects the server with the highest hourly rate. This function excludes
reserved instances because turning these off makes no difference to the final cost, as reserved
instance are always charged for the entire period regardless of use.

• Transition Turn Off: excludes the selected server from the server list. It also computes the total
cost of using the instance in question, as well as savings generated by using spot instances in
comparison with those obtained through on
EconSpot

• Function CostServer computes the cost of using the server using the expression: Cost of use =
(hours of use) × (hourly price).

• Function EconSpot computes savings using the expression: Savings = (hours of use) × ((hourly
price for on-demand) – (hourly price for spot)). It is important to note that savings are be
computed when turning off spot instances because they are set to zero when turning off on
demand instances (hourly price for on

5.5 Subnet: Spot Termination

This subnet models the regular verification of the spot price market. As mentioned in the beginning
of section 5, spot instances are automatically terminated by AWS when the spot price rises above the rate
that the client is currently paying. Figure 10 shows the subnet Spot Termination.

Figure 9: Scale Down subnet.

The policy implemented by this subnet is to select and turn off the most expensive server in terms of
hourly price. It also implements the policy of leaving always on the server covered by a reservation
(where the client paid an upfront fee to obtain better hourly rates). In this manner, even when there is low
utilization, a server will be available. By leaving one server always on, we to model real-world scenarios
in business applications available 24 hours a day. It can also model situations where the “reserved” server
is actually an internally hosted server, as in hybrid clouds. It is worthy of note that in terms of cost in
some scenarios, the cost of a “reserved” server is identical to that of an internally hosted server

: has a token when a scale down is needed

: picks the most expensive server to be turn off. It uses the function
list) that selects the server with the highest hourly rate. This function excludes

reserved instances because turning these off makes no difference to the final cost, as reserved
instance are always charged for the entire period regardless of use.

: excludes the selected server from the server list. It also computes the total
cost of using the instance in question, as well as savings generated by using spot instances in
comparison with those obtained through on-demand instances by using functions CostServer

computes the cost of using the server using the expression: Cost of use =
(hours of use) × (hourly price).

computes savings using the expression: Savings = (hours of use) × ((hourly
(hourly price for spot)). It is important to note that savings are be

computed when turning off spot instances because they are set to zero when turning off on
demand instances (hourly price for on-demand = hourly price)

This subnet models the regular verification of the spot price market. As mentioned in the beginning
of section 5, spot instances are automatically terminated by AWS when the spot price rises above the rate

g. Figure 10 shows the subnet Spot Termination.

The policy implemented by this subnet is to select and turn off the most expensive server in terms of
hourly price. It also implements the policy of leaving always on the server covered by a reservation

r hourly rates). In this manner, even when there is low
world scenarios

served” server
is actually an internally hosted server, as in hybrid clouds. It is worthy of note that in terms of cost in
some scenarios, the cost of a “reserved” server is identical to that of an internally hosted server . The CPN

: picks the most expensive server to be turn off. It uses the function
list) that selects the server with the highest hourly rate. This function excludes

reserved instances because turning these off makes no difference to the final cost, as reserved

: excludes the selected server from the server list. It also computes the total
cost of using the instance in question, as well as savings generated by using spot instances in

CostServer and

computes the cost of using the server using the expression: Cost of use =

computes savings using the expression: Savings = (hours of use) × ((hourly
(hourly price for spot)). It is important to note that savings are be

computed when turning off spot instances because they are set to zero when turning off on-

This subnet models the regular verification of the spot price market. As mentioned in the beginning
of section 5, spot instances are automatically terminated by AWS when the spot price rises above the rate

Figure 10: Spot Termination subnet.

The CPN model uses the following elements:

• Transition Check for Spot Termination (simulation#, modelTime)
monitor spot prices and simulate the termination of spot instances. To this end, it uses the same
Java interface used in the transition
current spot price. It is only fired when there is at least one spot i
servers. Following firing, it waits for two hours by placing a token in
available then. It also checks the end of the simulation and, in this case, places a token in

• Place Spot Price: contains the current spot price returned by the Java interface.

• Transition Turn Off if spot price raised
instances with hourly rates lower than current spot prices. These instances are terminated (turn
off). It uses valSpotsRemoved
terminated instances and savings as computed in the Scale Down subnet. The only difference is
that Turn Off if spot price raised
active servers. In our model, the termination of these instances may cause several Scale Up
transitions to be fired if utilization levels are still high.

6. Cost reduction simulation results

The experimental design of the
region, where AWS stored their datacenters and the spot instances were available.
services in nine regions: US-East (N. Virginia), US
(Ireland), EU (Frankfurt), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), and
South America (São Paulo). Each region has at least two availability zones (AZs), which are datacenters
in different locations connected through low
demand and reserved instances. Spot instances price may also vary by AZs in each region. Figure 11
shows spot prices for different availability zones in US
random but remains stable (and low) for long periods. Note that for the availability zone US
prices were almost constantly low ($0.0591) for two months
graph shown below was available at the AWS c
under the option “EC2 – Spot Requests.”

The CPN model uses the following elements:

Check for Spot Termination (simulation#, modelTime): is executed every two hours to
or spot prices and simulate the termination of spot instances. To this end, it uses the same

Java interface used in the transition GetPrice in the subnet Scale Up in order to obtain the
current spot price. It is only fired when there is at least one spot instance in the list of active
servers. Following firing, it waits for two hours by placing a token in Wait that will only be
available then. It also checks the end of the simulation and, in this case, places a token in

: contains the current spot price returned by the Java interface.

Turn Off if spot price raised: checks the list of active servers looking for spot
instances with hourly rates lower than current spot prices. These instances are terminated (turn

valSpotsRemoved() and econSpotsRemoved() to compute the cost of the use of
terminated instances and savings as computed in the Scale Down subnet. The only difference is

Turn Off if spot price raised may simultaneously remove several servers from the list of
active servers. In our model, the termination of these instances may cause several Scale Up
transitions to be fired if utilization levels are still high.

6. Cost reduction simulation results

The experimental design of the simulations followed a fractional 2k design for each geographic
region, where AWS stored their datacenters and the spot instances were available. AWS currently offers

East (N. Virginia), US-West (Oregon), US-West (N. California
(Ireland), EU (Frankfurt), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), and
South America (São Paulo). Each region has at least two availability zones (AZs), which are datacenters

connected through low-latency links. Each region has its own pricing table for on
demand and reserved instances. Spot instances price may also vary by AZs in each region. Figure 11
shows spot prices for different availability zones in US-East. One can see that the distribution
random but remains stable (and low) for long periods. Note that for the availability zone US
prices were almost constantly low ($0.0591) for two months — November and December. The dynamic
graph shown below was available at the AWS console, but an AWS account was needed to access it

Spot Requests.”

: is executed every two hours to
or spot prices and simulate the termination of spot instances. To this end, it uses the same

in the subnet Scale Up in order to obtain the
nstance in the list of active

that will only be
available then. It also checks the end of the simulation and, in this case, places a token in End.

: checks the list of active servers looking for spot
instances with hourly rates lower than current spot prices. These instances are terminated (turned

() to compute the cost of the use of
terminated instances and savings as computed in the Scale Down subnet. The only difference is

ervers from the list of
active servers. In our model, the termination of these instances may cause several Scale Up

design for each geographic
AWS currently offers

West (N. California), EU
(Ireland), EU (Frankfurt), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), and
South America (São Paulo). Each region has at least two availability zones (AZs), which are datacenters

latency links. Each region has its own pricing table for on-
demand and reserved instances. Spot instances price may also vary by AZs in each region. Figure 11

East. One can see that the distribution of prices is
random but remains stable (and low) for long periods. Note that for the availability zone US-East-1c,

November and December. The dynamic
onsole, but an AWS account was needed to access it

Figure 11: Price history for US-East region.

The GetPrice function returns the lowest price among all availability zones in a given region. This is
to ensure the highest possible savings. Other factors that affect instance prices in AWS are:

• Operating System: AWS has different prices for hours of use of EC2 instances depending, on the

OS: Linux/Unix, SUSE Linux, and Windows.

• Instance type: EC2 prices vary with the size of instance. For our experiments, we considered

m3.medium (1 vCPU, operating at 3 elastic compute units (ECUs) with 3.75 GB of memory, and

a 1HD-type solid-state drive (SSD) with a storage capacity of 4 GB) and m3.2xlarge (8 vCPU, at

26 ECUs, 30 GB memory, and a 2HD-type SSD with a storage capacity of 80 GB)

Table 8 lists factors and levels in the experimental design of our simulations, and Table 9 lists the
corresponding AWS instance prices. For each of the selected 9 × 22 = 36 simulations, we initially ran 10
simulations to obtain relevant statistical information.

Table 8: Factors and levels for our experimental design

Factor Levels Selected for Experiment

Region 9 All

OS 3 Windows, Linux/Unix

Instance
Type

Over 20 m3.medium, m3.2xlarge

Table 9: Instance prices used in simulations

 Hourly price

Simulation Region OS Instance
Type

On-
demand

Reserved
(1 year all
upfront)

Upfront
Investment

1 South America Windows m3.medium 0,1580 0,1410 1.235,00

2 South America Windows m3.2xlarge 1,2650 1,1205 9.816,00

3 South America Linux/UNIX m3.medium 0,0950 0,0509 446,00

4 South America Linux/UNIX m3.2xlarge 0,7610 0,4063 3.559,00

5 US-East (N.Virginia) Windows m3.medium 0,1330 0,0855 749,00

6 US-East (N.Virginia) Windows m3.2xlarge 1,0640 0,6809 5.965,00

7 US-East (N.Virginia) Linux/UNIX m3.medium 0,0700 0,0425 372,00

8 US-East (N.Virginia) Linux/UNIX m3.2xlarge 0,5600 0,3412 2.989,00

9 US-West (Oregon) Windows m3.medium 0,1330 0,0855 749,00

10 US-West (Oregon) Windows m3.2xlarge 1,0640 0,6809 5.965,00

11 US-West (Oregon) Linux/UNIX m3.medium 0,0700 0,0425 372,00

12 US-West (Oregon) Linux/UNIX m3.2xlarge 0,5600 0,3412 2.989,00

13 US-West (California) Windows m3.medium 0,1400 0,0983 861,00

14 US-West (California) Windows m3.2xlarge 1,1200 0,7829 6.858,00

15 US-West (California) Linux/UNIX m3.medium 0,0770 0,0532 466,00

16 US-West (California) Linux/UNIX m3.2xlarge 0,6160 0,4216 3.693,00

17 EU (Ireland) Windows m3.medium 0,1330 0,0983 861,00

18 EU (Ireland) Windows m3.2xlarge 1,0640 0,7829 6.858,00

19 EU (Ireland) Linux/UNIX m3.medium 0,0770 0,0522 457,00

20 EU (Ireland) Linux/UNIX m3.2xlarge 0,6160 0,4187 3.668,00

21 EU (Frankfurt) Windows m3.medium 0,1460 0,0998 874,00

22 EU (Frankfurt) Windows m3.2xlarge 1,1690 0,7924 6.941,00

23 EU (Frankfurt) Linux/UNIX m3.medium 0,0830 0,0564 494,00

24 EU (Frankfurt) Linux/UNIX m3.2xlarge 0,6650 0,4522 3.961,00

25 Asia Pacific (Singapore) Windows m3.medium 0,1610 0,0973 852,00

26 Asia Pacific (Singapore) Windows m3.2xlarge 1,2880 0,7711 6.755,00

27 Asia Pacific (Singapore) Linux/UNIX m3.medium 0,0980 0,0578 506,00

28 Asia Pacific (Singapore) Linux/UNIX m3.2xlarge 0,7840 0,4623 4.050,00

29 Asia Pacific (Tokyo) Windows m3.medium 0,1510 0,0981 859,00

30 Asia Pacific (Tokyo) Windows m3.2xlarge 1,2060 0,7846 6.873,00

31 Asia Pacific (Tokyo) Linux/UNIX m3.medium 0,1010 0,0566 496,00

32 Asia Pacific (Tokyo) Linux/UNIX m3.2xlarge 0,8100 0,4589 4.020,00

33 Asia Pacific (Sydney) Windows m3.medium 0,1610 0,0973 852,00

34 Asia Pacific (Sydney) Windows m3.2xlarge 1,2880 0,7711 6.755,00

35 Asia Pacific (Sydney) Linux/UNIX m3.medium 0,0980 0,0578 506,00

36 Asia Pacific (Sydney) Linux/UNIX m3.2xlarge 0,7840 0,4623 4.050,00

For all our experiments, the variations among the runs were very small. Table 10 presents the

performance report obtained from CPN Tools for Simulation 30 — Asia Pacific (Tokyo), OS Windows,
and instance size m3.2xlarge, where one can observe standard variation and confidence intervals. We
observed that for a 99% confidence level, the average savings were between $1337.73 and $1403.95,
close to the average of $1370.84. For this reason, we used 10 runs for each experiment.

Simulations were run using spot prices for December 2014, which were the latest prices available at

the time we performed this experiment. Figures 12 and 13 summarize the simulation results. Savings
varied from 0 to 70% depending on region, OS, and instance type. The only case where there were no
savings was in the South American region for Linux/UNIX OS and instance type m3.2xlarge. This was
because during the entire simulation period, spot prices were higher than on-demand prices ($1.2240 for
spot and $0.7610 for on-demand). In this case, our model did not use spot instances and, hence, there
were no savings. In most regions, higher savings were obtained for larger instances (m3.2xlarge) using
Windows OS.

Table

Name Average
90% Half

Length

avrg_iid 641.992290 1.049975

avrg_iid 1370.843310 18.676026

Figure 12: Simulation results – savings in all regions for all analyzed factors (in %).

Figure 13: Monthly savings ($).

Table 10: Performance report for Experiment 30

Statistics

90% Half

95% Half

Length

99% Half

Length
Std. Dev. Min

Cost

 1.295714 1.861658 1.811409 640.220200

Savings

18.676026 23.047010 33.113521 32.219738 1339.329800

savings in all regions for all analyzed factors (in %).

Max

646.190700

1445.517300

Figure 14: Average savings by region.

Figures 14 shows the 2k factorial design
15 shows the impact of two factors, OS and instance size, on savings. Average savings were above 20%
in all regions, and the global average was 48%. We observed
most regions, since we obtained higher savings in larger instances.
impact of factor size in most regions, since we ob
observed a negative impact of the operating system as a factor, since we obtained slightly lower savings
on Linux in most regions. The interaction of the two factors produced a slightly positive impact in
regions. In some regions, however, we observed a high value of the effect of the interaction of OSxSize
factors, as in the EU (Frankfurt), the Western United States (Oregon), and South America. In these
regions, the variations in savings did not foll
we did not observe a significant impact of any specific factor, and the interaction of factors accounted for
a greater extent of the variation.

Figure 15: Impact of factors.

We found it interesting to compare the monthly cost of server use in a cloud by implementing our

autoscaling policy using spot instances with that of an on
reserved instances as a rough estimate for on
situations . We kept in mind, however, that on
local IT management. In the on-premise scenario, it was necess
order to handle the peak load. In our hypothetical
distribution with average µ = 3 and standard deviation
range µ ± 2δ, i.e., during the day, the number of extra servers needed varied between two and four. In this
manner, five servers would need to be provided, and would be idle for part of the time. Figure 16 shows
our cost comparison for m3.medium instances running L

factorial design in each region, including the average savings, and Figure

15 shows the impact of two factors, OS and instance size, on savings. Average savings were above 20%
l regions, and the global average was 48%. We observed a significant positive impact of factor size in

obtained higher savings in larger instances. We observed a significant positive
impact of factor size in most regions, since we obtained higher savings for larger instances. We also
observed a negative impact of the operating system as a factor, since we obtained slightly lower savings
on Linux in most regions. The interaction of the two factors produced a slightly positive impact in
regions. In some regions, however, we observed a high value of the effect of the interaction of OSxSize

, as in the EU (Frankfurt), the Western United States (Oregon), and South America. In these
regions, the variations in savings did not follow the most commonly observed pattern. In these regions,
we did not observe a significant impact of any specific factor, and the interaction of factors accounted for

We found it interesting to compare the monthly cost of server use in a cloud by implementing our
autoscaling policy using spot instances with that of an on-premise scenario. We used AWS charges for
reserved instances as a rough estimate for on-premise server cost because these are similar in some

. We kept in mind, however, that on-premise costs are highly dependent on the efficiency of
premise scenario, it was necessary to provide more servers than needed in

order to handle the peak load. In our hypothetical demand() function, our load varied as a normal
distribution with average µ = 3 and standard deviation δ = 0.5, which meant that 95% of values lay in the

, i.e., during the day, the number of extra servers needed varied between two and four. In this
manner, five servers would need to be provided, and would be idle for part of the time. Figure 16 shows
our cost comparison for m3.medium instances running Linux.

in each region, including the average savings, and Figure
15 shows the impact of two factors, OS and instance size, on savings. Average savings were above 20%

positive impact of factor size in
We observed a significant positive

tained higher savings for larger instances. We also
observed a negative impact of the operating system as a factor, since we obtained slightly lower savings
on Linux in most regions. The interaction of the two factors produced a slightly positive impact in most
regions. In some regions, however, we observed a high value of the effect of the interaction of OSxSize

, as in the EU (Frankfurt), the Western United States (Oregon), and South America. In these
ow the most commonly observed pattern. In these regions,

we did not observe a significant impact of any specific factor, and the interaction of factors accounted for

We found it interesting to compare the monthly cost of server use in a cloud by implementing our
premise scenario. We used AWS charges for

server cost because these are similar in some
premise costs are highly dependent on the efficiency of

ary to provide more servers than needed in
() function, our load varied as a normal

 = 0.5, which meant that 95% of values lay in the
, i.e., during the day, the number of extra servers needed varied between two and four. In this

manner, five servers would need to be provided, and would be idle for part of the time. Figure 16 shows

Figure 16: Cost comparison including OnPremises (estimated).

We observed that our estimated on-premise costs were always higher, as expected. However, the
amount of savings varied with the policy implemented for using spot instances as well as spot market
prices.

In summary, the simulations results lead us to the following conclusions:

• Spot instances are a good option to implement auto-scaling even in a small business scenario.
This is not a typical application for spot instances advertised by the vendor, but the savings can
reach up to 70% as advertised for other applications.

• There are considerable variation among regions. South America had the least savings, whereas in
Asia Pacific regions saving were consistently high.

• Higher savings were obtained using larger instances (m3.2xlarge), however savings using
smaller instances were also considerable in many regions.

• Impact of factors affecting savings did not point a specific factor as the main responsible for
variation.

Finally, we found a significant difference in cost when taking advantage of possibilities of public
clouds. Costs in public clouds may be fixed and easy to compute, by using reserved instances. However,
this is never cost-effective unless the server is fully used 100% of the time. Business applications tend to
have peak hours and idle periods. Thus, it is necessary to evaluate the scenario workload and plan for
rational use of cloud services to obtain the highest economic benefits from cloud use. Implementing auto-
scaling policies is the first step. Using spot instances wisely in the auto-scaling process is a step further.

7. Final considerations and future work
In this paper, we outlined a framework to evaluate the adoption of cloud services in comparison with

that of on-premises solutions by using a BDIM approach. Since cost is a major factor influencing the
decision to adopt cloud services, we also proposed a model for cost reduction in cloud services using spot
instances, and carried out extensive simulations to investigate possible savings.
 Our framework was intended to capture quantitative and qualitative factors, and to combine them in
an organized manner to produce a final ranking of the solutions. We proposed a set of policies in auto-
scaling that can help reduce the cost of cloud services by using spot instances and verified through
extensive simulations that in many scenarios, these policies can lead to substantive savings of up to 60%
more than those obtained from auto-scaling using on-demand instances, and even higher if compared with
on-premise scenarios.
 Preliminary studies indicated that security threats, performance uncertainty, and economic risks play
an important role in the overall ranking of the solutions. Cost advantages must be sufficiently high to
overcome these obstacles, or else it would be inefficient to adopt cloud services. We also concluded that
using spot instances in auto-scaling significantly reduces the cost of cloud services, and thus can facilitate
their adoption.
 In future research, we plan to complete the validity of our decision making model as well as the cost
reduction model using spot instances. To this end, we might need to develop an automated tool to gather
feedback from a wider audience. Evaluating the impact of spot termination on the quality of service is

also part of our research roadmap. Extending the framework to handle SLA requirements would be
interesting as well. For instance, the cost in terms of material and human resources can differ significantly
between a 99.9% or 99.99% availability of an application according to the SLA, especially in the on-
premises scenario over a five-year period. Another important extension to the framework would be
handling risks in detail to enhance qualitative evaluation.

8. References

Alfonso, C, et al. An economic and energy-aware analysis of the viability of outsourcing cluster

computing to a cloud. Future Gener Comput Syst 2013; 29(3): 704-712.
Altmann, J., Kashef, M. Cost model based service placement in federated hybrid clouds. Future Gener

Comput Syst 2014; 41: 79-90.
Amazon. Amazon EC2 Spot Instances. Retrieved from Amazon Web Services:

http://aws.amazon.com/ec2/purchasing-options/spot-instances. Accessed in December, 2014.
Amazon Web Services. (2014, December). Amazon EC2 Reserved Instances. Retrieved from Amazon

EC2 pricing: http://aws.amazon.com/ec2/purchasing-options/reserved-instances/?nc2=h_ls
Baars, T. et al. Chargeback for cloud services. Future Gener Comput Syst 2014; 41: 91-103,

http://dx.doi.org/10.1016/j.future.2014.08.002.
Bayrak, T. A decision framework for SME Information Technology (IT) managers: Factors for evaluating

whether to outsource internal applications to Application Service. Technol Soc 2013; 35(1): 14-
21.

Benlian, A., Hess, T. Opportunities and risks of software-as-a-service: Findings from a survey of IT
executives. Decis Support Syst 2011; 52:232-246.

Bibi, S., Katsaros, D., Bozanis, P. Business Application Acquisition: On-Premise or SaaS-Based
Solutions? IEEE Software 2012; 29(3): 86-93.

Boampong, P., Wahsheh, L. Different Facets of Security in the Cloud. Proceedings of the 15th
Communications and Networking Simulation Symposium, 2012.

CPN Group. CPN Tools. Retrieved from http://cpntools.org/.Accessed in November 2013.
E-fiscal. Computing e-Infrastructure cost estimation and analysis - Pricing and Business Models 2013.

Retrieved from Financial Study for Sustainable Computing e-Infrastructures:
http://www.efiscal.eu/files/deliverables/D2%203%20Computing%20e-
Infrastructure%20cost%20calculations%20and%20business%20_models_vam1-final.pdf

Furtado Junior, C. G., Soares, J. M., Barroso, G. C. A web cache simulator tool based on coloured Petri
nets and Java programming. Revista IEEE America Latina 2015; 13.

Garg, S., Versteeg, S., Buyya, R. A framework for ranking of cloud computing services. Future Gener
Comput Syst 2013; 29: 1012-1023.

Gartner Group. Magic Quadrant for Cloud Infrastructure as a Service. Retrieved from
http://www.gartner.com/technology/reprints.do?id=1-1UKQQA6&ct=140528&st=sb. Accessed
in December, 2014.

Gupta, P., Seetharamana, A., Raj, J. The usage and adoption of cloud computing by small and medium
businesses. Int J Inf Manag 2013; 33: 861-874.

Haas, R., Meixner, O. An Illustrated Guide to the Analytic Hierarchy Process. Retrieved from
http://alaskafisheries.noaa. gov/sustainablefisheries/sslmc/july-06/ahptutorial.pdf, Accessed in
November 2013

Han, H. et al. Cashing in on the Cache in the Cloud. IEEE Trans Parallel Distrib Syst 2012; 23 (1387-
1399).

Han, R. et al. Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Future Gener
Comput Syst 2014; 32 (82-98).

Ho, W., Xu, X., Dey, P. K. Multi-criteria decision making approaches for supplier evaluation and
selection: A literature review. European Journal of Operational Research 2010; 202: 16-24.

Jain, R. Art of Computer Systems Performance Analysis Techniques For Experimental Design
Measurements Simulation And Modeling. Wiley Computer Publishing; 1991.

Javadi, B. et al. Characterizing spot price dynamics in public cloud environments. Future Gener Comput
Syst 2013; 29 (4), 988-999.

Jensen, K., Kristensen, L. Coloured Petri Nets — Modelling and Validation of Concurrent Systems,
Springer 2009.

Kaplan, R., Norton, D. The Balanced ScoredCard. Harvard Business Review Press 1996.

Lee, S. et al. Drivers and Inhibitors of SaaS adoption in Korea. Int J Inf Manag 2013; 33(3): 429-440.
Lee, S., Park, S., Lim, G. Using balanced scorecards for the evaluation of “Software-as-a-service.” Inf

Manag 2013; 50(7):553-561.
Malawski, M. et al. Cost minimization for computational applications on hybrid cloud infrastructures.

Future Gener Comput Syst 2013; 29(7):1786-1794.
Manvi, S. S., Shyam, G. K. Resource management for Infrastructure as a Service (IaaS) in cloud

computing: A survey. J Netw Comput Appl 2014; 424-440.
Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. Cloud computing — The business perspective. Decis

Support Syst 2011; 51:176-189.
McGougha, A.S. et al. Comparison of a cost-effective virtual Cloud cluster with an existing campus

cluster. Future Gener Comput Syst 2014;41:65-78.
Merig, J. M., Gil-Lafuente, A. M. New decision-making techniques and their application in the selection

of financial products. Inf Sci 2010; 180:2085-2094.
Mouratidisa, H., Islam, S., Kalloniatis, C., Gritzal. A framework to support selection of cloud providers

based on security and privacy requirements. J Syst Softw 2013;86 (2276-2293).
NIST - National Institute of Standards and Technology. NIST Definition of cloud computing.

Gaithersburg, MD 2009.
Peterson, J.L. Petri Net Theory and the Modelling of SYSTEMs. Prentice Hall 1981.
Ribas, M. et al. Assessing cloud computing SaaS adoption for enterprise applications using a Petri net

MCDM framework. Proceedings of the 9th workshop on business-driven IT management
(BDIM 2014) , IEEE NOMS 2014; 1-6.

Rohitratana, J., Altmann, J. Impact of pricing schemes on a market for Software-as-a-Service and
perpetual software. Future Gener Comput Syst 2012; 28 (1328-1339)

Sauvé, J., Moura, A., Sampaio, A., Jornada, J. An Introductory Overview and Survey of Business-Driven
IT Management. First IEEE/IFIP BDIM 2006; 1-10.

Sousa, E. et al. A modeling approach for cloud infrastructure planning considering dependability and cost
requirements. IEEE Trans Syst, Man, Cybern, Syst 2014; 99.

Sripanidkulchai, K., Sujichantararat, S. A Business-Driven Framework for Evaluating Cloud Computing.
Proceedings of 2012 IEEE/IFIP 7th Workshop on Business Driven IT Management 2012.

Tamanini, I., Pinheiro, P., Santos, M. An hybrid approach of verbal decision analysis and machine
learning. Lect Notes Artif Int 2012, 7413: 126-131.

Tang, S. et al. A framework for Amazon EC2 bidding strategy under SLA constraints. IEEE Trans
Parallel Distrib Syst 2014; 25(2-11)

The Yankee Group. Understanding Total Cost of Ownership of a Hosted vs. Premises-Based CRM
Solution 2013. Retrieved from
http://www.avecon.gr/photos/research/yankee%20group_undestanding%20tco%20of%20a%20h
osted%20vs.%20premises-based%20csm%20 solution.pdf.

Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic
Publishers. Available at: http://books.google.com.br/books?id=tuPGe ur-TYC.

Wu, W. (a) Developing an explorative model for SaaS adoption. Expert Syst Appl 2011; 38(12): 15057-
15064.

Wu, W. (b) Mining significant factors affecting the adoption of SaaS using the rough set approach. J Syst
Softw 2011; 84(3):435-441.

Wu, W., Lan, L., Lee, Y. Exploring decisive factors affecting an organization’s SaaS adoption: A case
study. Int J Inf Manag 2011; 31(6), 556–563.

Yuen, K. Software-as-a-Service Evaluation in Cloud Paradigm: Primitive Cognitive Network Process
Approach. Proceedings of the 2012 IEEE International Conference on Signal Processing,
Communication and Computing 2012.

Zardari , S., Bahsoon, R. Cloud Adoption: A Goal-Oriented Requirements Engineering Approach.
Proceedings of ACM SECLOUD 2011.

Appendix – Petri nets and MCDM

Petri net theory originated in the early work of Carl Adam Petri and has evolved into a useful tool
for modeling systems. Analysis of the Petri net can reveal important information concerning the structure
and dynamic behavior of the modeled system (Peterson, 1981).

A Petri net structure C is a 4-tuple C = (P, T, I, O). P = {p1, p2, ... , pn} is a finite set of places, where
n >= 0, and T = {t1, t2, ... , tm} is a finite set of transitions, where m >= 0. The set of places and the set of
transitions are disjoint, P ∩T = ∅. I: T → P∞ is the input function, a mapping from transitions to bags of
places, and O: T → P∞ is the output function, also a mapping from transitions to bags of places. A
graphical representation of a Petri net structure is useful for illustrating the concepts of the Petri net
theory. A Petri net graph G is a bi-partite directed multi-graph, G = (V, A), where V = {v1, v2, ... , vs} is a
set of vertices and A = {a1, a2, ... , ar} is a bag of directed arcs, ai = (vj, vk), with vj, vk∈ V. The set V can
be partitioned into two disjoint sets, P and T, such that V = P ∪T, P ∩ T = ∅ and, for each directed arc
ai∈ A, if ai = (vj, vk), then either vj∈ P and vk∈ T, or vj∈ T and vk∈ P. A marking µ of a Petri net C = (P,
T, I, O) is a function µ: P → N from the set of places P to non-negative integers N (Peterson, 1981).

Colored Petri net (CP-net or CPN) is a graphical language for constructing models. CPN is a
discrete-event modeling language combining the capabilities of Petri nets with those of a high-level
programming language. The CPN ML programming language, based on the functional programming
language Standard ML, provides primitives for the definition of data types, describing data manipulation,
and creating compact and parameterizable models .

CPN Tools is a tool for editing, simulating, and analyzing colored Petri nets. CPN tools offer
statistical functions that can be used to design stochastic Petri nets. We used CPN Tools to design
hierarchical Petri nets in our model. CPN Tools also supports the inclusion of timing information to the
model.

The problem of making decisions using several criteria has led to many proposed approaches.
MCDM methods can be divided into ones based on Multi-attribute Utility Theory (MAUT) and those
based on outranking. The most common MAUT methods are the weighted sum model (WSM), the
weighted product model (WPM), and the analytic hierarchy process (AHP). The most common
outranking methods are the Elimination Et Choix Traduisant la Realité (ELECTRE) method and the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method . The WSM method
is most commonly used due to its simplicity. However, it applies only when the additive utility
assumption applies.. Only criteria that use the same units and scale can be combined. This limits the
method severely, although many authors flout this restriction and use WSMs anyway. The WPM method
combines criteria by multiplying ratios of metrics for several alternatives being compared. This division
of metrics with the same unit cancels out the unit and, for this reason, is called dimensionless analysis.
AHP decomposes the decision problem into a hierarchy of criteria and alternatives, and uses pairwise
comparisons to express the relative importance of one criterion over another. Using these comparisons, it
is possible to build pairwise matrices and calculate the eigenvector in order to rank the criteria. AHP can
combine qualitative and quantitative criteria and is commonly used.

AHP is similar to WPM in that it uses ratios of metrics. It is therefore easy to combine criteria that
use different units or scales, since only relative values are used to compare two alternatives according to a
certain criterion. However, AHP differs from WPM in several important ways. It easily deals with
hierarchies of criteria, employs a nine-point scale easily used and understood by decision makers, and
allows a check to be performed to identify inconsistent pairwise comparisons between alternatives.
Outranking works as follows: Alternative A outranks B if, for a large number of criteria, A performs at
least as well as B (concordance condition), while its worse performance is still acceptable for the other
criteria (non-discordance condition). After determining, for each pair of alternatives, whether one
alternative outranks the other, these pairwise outranking assessments can be combined into a partial or
complete ranking of alternatives. An alternative is said to be dominated if there is another alternative that
excels it in one or more attributes and equals it in the remaining attributes.

The ELECTRE method uses outranking. With outranking, even when an alternative A does not
quantitatively dominate an alternative B, the decision maker may still take the risk of regarding A as
almost certainly better than B. The basic concept underlying TOPSIS is that the selected alternative
should be the closest to an ideal solution and the farthest from the negative-ideal solution. Euclidean
distance is commonly used.

Merig and Gil-Lafuente (2010) developed an approach that used the ordered weighted averaging
(OWA) operator in the selection of financial products. Their proposed aggregation operators are useful
for decision-making problems because they compare an ideal alternative with available options in order to
find the optimal choice. Ho, Xu, and Dey (2010) reviewed literature on multi-criteria decision-making
approaches for supplier evaluation and selection. Their results provided evidence that multi-criteria
decision-making approaches are better than the traditional cost-based approach. AHP was found to be the
most popular integrated approach. The choice of multi-criteria methodology to support the decision
process depends directly on the issue in question. Tamanini et al. (2012) claimed that the choice of a
method should be the result of an evaluation of the chosen parameters, the type and accuracy of the data,
and the decision maker’s manner of thinking and his/her knowledge of the problem.

Yuen (2012) used a variation of the AHP method, called the “primitive cognitive network process”
(P-CNP) that revised the AHP approach through practical changes. Yuen recommended a pairwise
opposite matrix as the ideal alternative to a pairwise reciprocal matrix, as in AHP. However, AHP is
largely used in the literature to assess cloud services (Garg, Versteeg, & Buyya, 2013; Yuen, 2012), and
was thus selected as the modified condition/decision coverage (MCDC) in our framework.

Highlights

1. A Petri net-based multi-criteria decision making framework to assess a cloud service

against a similar on-premises service.

2. Our framework helps IT managers choose between two such options, and can be used

for any type of cloud service.

3. We also propose a Petri net to model cost savings using the spot instances purchasing

option in public clouds.

4. Simulations showed that spot instances present a promising cost-saving option in the

auto-scaling process, even for simple business applications using few servers.

