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a b s t r a c t

Supply Chains are complex networks that demand for decision supporting tools that can help the involved

decision making process. Following this need the present paper studies the supply chain design and planning

problem and proposes an optimization model to support the associated decisions. The proposed model is a

Mixed Integer Linear Multi-objective Programming model, which is solved through a Simulated Annealing

based multi-objective meta-heuristics algorithm – MBSA. The proposed algorithm defines the location and

capacities of the supply chain entities (factories, warehouses and distribution centers) chooses the technolo-

gies to be installed in each production facility and defines the inventory profiles and material flows during

the planning time horizon. Profit maximization and environmental impacts minimization are considered. The

algorithm, MBSA, explores the feasible solution space using a new Local Search strategy with a Multi-Start

mechanism. The performance of the proposed methodology is compared with an exact approach supported

by a Pareto Frontier and as main conclusions it can be stated that the proposed algorithm proves to be very

efficient when solving this type of complex problems. Several Key Performance Indicators are developed to

validate the algorithm robustiveness and, in addition, the proposed approach is validated through the solu-

tion of several instances.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction1

Traditionally the design and planning of supply chain networks2

(SCN) has been undertaken based on individual concepts and ap-3

plying only economic objectives, such as cost minimization or4

profit maximization. However, the increasing market competition,5

the customers’ change expectations, on the value of goods and6

services, combined with advances in technology and fast access7

to information demanded for an integrated view when managing8

supply-chain (SC) networks (Papageorgiou, 2009). In addition, the9

worldwide extension of business led to the availability of sets of al-10

ternative resources, as well as to a vast array of potential customers,11

justifying the current need of efficient SC management. Simultane-12

ously, society has been developing an increasing level of awareness13

for environmental sustainability and companies have been realizing14

that economic objectives ought no longer to be the single concern15

of supply chains as environmental impacts resulting not only from16

their structures, but also from their operation need to be minimized17
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(Seuring, 2013; Mota, Gomes, Carvalho, & Barbosa-Povoa, 2015). 18

Dekker, Bloemhof, and Mallidis (2012) state that “Improving environ- 19

mental quality comes at a cost, so the question is which trade-offs 20

occur between the environmental impacts of an economic activity 21

and its costs, and what are the best solutions for balancing ecologi- 22

cal and economic concerns?”. This raises the concept of building eco- 23

efficient solutions. Thus it becomes necessary to define an efficient 24

integration of these SC main aspects when planning and designing 25

SC so as to minimize environmental impacts while maximizing profit 26

and responsiveness. 27

Some research has already been done towards this identified goal, 28

where the most used methodologies have been based on exact ap- 29

proaches, as MILP and MINLP (Papageorgiou, 2009), but focusing in 30

single objectives. The inclusion of several objectives requires a multi- 31

objective approach, which adds to the already high computational 32

burden characterizing SC problems resolution (Papageorgiou, 2009; 33

Barbosa-Póvoa, 2014). Thus new solutions approaches are to be ex- 34

plored to overcome this drawback. Some of them may be problem ori- 35

ented, such as heuristics, evolutionary algorithms, meta-heuristics, 36

hybrid methods or even math-heuristics. 37

This paper follows this need and aims to contribute to fulfill this 38

gap by proposing a multi-objective, multi-start, meta-heuristics algo- 39

rithm, MBSA, for the design and planning of supply chains (SC) where 40
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both economic and environmental objectives are taken into account.41

At the strategic level the algorithm provides the location and ca-42

pacities of facilities, warehouse and distributions centers and se-43

lects the best multipurpose technology to be allocated to each fa-44

cility. To cope with realistic problems multiproduct characteristics45

are considered, triggering flexible and multipurpose facilities. At the46

tactical level, the algorithm, defines the production planning, ma-47

terial flows, inventory profiles and distribution strategies allowing48

for X-docking. Moreover, the environmental aspects are integrated49

at the design level by using an end-point indicator, where all the50

emissions associated to products productions and distribution are51

quantified. The multi-objective approach where profit maximization52

and environmental impacts minimization are considered simulta-53

neously uses small amounts of computation time. This appears as54

quite innovative having in mind the complexity of the problem in55

study. Such performance is based on the use of an efficient multi-56

start local search algorithm that trough a Simulating Annealing meta-57

heuristic is able to search the entire objective space. The quality,58

robustness and variability of the algorithm solution are analyzed59

through a sensitive analysis followed by a comparison with the exact60

approach.61

As main result the proposed approach presents to the decision-62

maker a set of non-dominated solutions that define the Pareto fron-63

tier, where for each solution the strategic and tactical aspects are64

characterized.65

This remain of this paper is organized as follows; in Section 2 a66

literature review is presented, followed by the problem description67

in Section 3. Section 4 characterizes in detail the solution approaches68

developed and in Section 5 Key Performance Indicators (KPI) are pro-69

posed and explored in detail. The instance characterization is shown70

in the Section 6, followed by algorithm results analysis and discussion71

in Section 7. To finalize Section 8 presents the conclusion and some72

final remarks on future work.73

2. Literature review74

Supply Chain optimization is nowadays an important and thriving75

research area of modern enterprises as their supply chains are be-76

coming more and more complex systems demanding for supporting77
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the maximization of the customer demands. The problem involves 105

a single-product, four-echelon supply chain architecture. Zhang, Li, 106

Qian, and Cai (2014) also explored the supply chain network design 107

problem with the aim of defining the locations of the distribution 108

centers and the assignment of customers and suppliers to the corre- 109

sponding distribution centers. The formulation explored a Lagrangian 110

relaxation based algorithm and the results were compared with the 111

exact approach CPLEX showing that the proposed algorithm pre- 112

sented a stable performance and outperformed CPLEX for large-scale 113

problems. Recently, Ren et al. (2015) developed a mixed-integer non- 114

linear model with the aim of helping the decision-maker to select the 115

most sustainable design and planning supply chain network. The SC 116

structure considers multiple feed stocks, transport modes, regions for 117

production and distribution centers. A sustainable measure was ex- 118

plored, which was based on the energy sustainability index trough
Q3

119

a life cycle perspective. Fung, Singh, and Zinder (2015) developed a 120

procedure with the aims of infrastructure expansion minimization 121

cost to face future demand variability in a mineral supply chain. A 122

matheuristic formulation was designed based on the hybridization of 123

mixed integer linear programming (MILP) and a simulated anneal- 124

ing approach taking advantages of different levels of data aggrega- 125

tion. The procedure demonstrated the ability to solve industrial prob- 126

lems of different sizes. Camacho-Vallejo, Munoz-Sanchez, and Luis 127

Gonzalez-Velarde (2015) considered in its work the production plan- 128

ning and distribution of a supply chain with the aim of operation and 129

transport costs minimization in a four echelon supply chain. A heuris- 130

tic algorithm based on Scatter Search that considers the Stackelberg’s 131

equilibrium was developed for the problem solution. The algorithm 132

developed shown better results than the existing best known results 133

in the literature, 134

The above works show the increasing investment on alterna- 135

tive solution techniques to support the development of expert sys- 136

tems able to solve real supply chains problems. Such works pre- 137

sented promising solution approaches but are still away from pro- 138

viding solution techniques that account for multi-objective SC prob- 139

lems where simultaneously with the SC modeling complexity both 140

economic and environmental objectives are considered. Within this 141

context the main contributions of the present work are twofold. 142

On one hand, from a formulation viewpoint the SC decision com- 143
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ls to inform the involved decision making processes (Grossmann,

2). From strategic to operational decision levels this need has

n clearly identified by academics and industrials (Papageorgiou,

9). The most common developed approaches to tackle this prob-

s are based on exact formulations (e.g. Cardoso, Barbosa-Povoa,

elvas, 2013; Pasandideh, Niaki, & Asadi 2015; Salema, I., Barbosa-

oa, & Novais, 2010), which when applied to real case problems of-

present solution difficulties associated with large computational

es. Thus the development of alternative solutions methodologies

t prove efficient is still a challenge research area where much has

l to be done (Melo, Nickel, & Saldanha-da-Gama, 2009; Barbosa-

oa 2014). Recently some authors have been trying to address this

blem using methodologies that embed the problem characteris-

resulting in heuristics algorithms.

In, Wang, Makond, and Liu (2011) addressed a location–allocation

blem through a bi-level stochastic formulation of a two-echelon

ply chain considering uncertainty in the demand. The authors de-

oped a genetic algorithm with greedy heuristics and the results
eal that the algorithm can efficiently yield nearly optimal solu-

s against stochastic demands. Later on, Kadadevaramath, Chen,

nkar, and Rameshkumar (2012) explored several variations of par-

e swarm algorithms for solving a constrained multi echelon sup-

chain network considering the minimization of the total supply

in operating cost. One year later, Shankar, Basavarajappa, Chen,

Kadadevaramath (2013) developed a multi-objective hybrid par-

e swarm algorithm that considered simultaneously the costs min-

zation, defined by facilities location and shipment costs, and
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xity is modeled where simultaneously the design and planning 1

blems are considered allowing for the location and sizing of dif- 1

nt entities and associated technologies, while pursuing trade- 1

between economic and environmental objectives. On the other 1

d and from an algorithm solution viewpoint an efficient solu- 1

approach is developed, which, from the best of our knowl- 1

e, explores for the first time a multi-objective approach using a 1

lti-start strategy, to characterize and define the Pareto frontier 1

ution. 1

Problem description 1

The work by Pinto-Varela, Barbosa-Povoa, and Novais (2011) pre- 1

ted a generic formulation for the design and planning of SCs, while 1

sidering simultaneously economic and environmental aspects. 1

supply chain network is characterized by n-echelons, where first 1

second level suppliers, manufacturers, wholesalers, retailers and 1

rkets are present. It includes a set of manufacturing facilities that 1

ploy a set of resources technologies that are multipurpose in na- 1

e (i.e. more than one product can be produced sharing the avail- 1

e resources). From a strategic point view, the network comprises 1

eral entities, namely production facilities, warehouses (WH) and 1

tribution centers (DC) selected from a set of potential locations 1
ere the former employ the selected so-called resource technolo- 165

s (i.e. production lines, storage resources, connections, etc.). At a 166

tical level the supply chain defines the capacities, the planning 167

each resource usage, as well as the materials flows within the 168
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First-Tier

Suppliers

Suppliers

WH/DC

Plants

Technologies

Products

Markets

Second-Tier

Suppliers

Pi

Fac

Fig. 1. Schemat

network are defined. Production levels, material storage handlin

and resources’ capacities are limited within certain bounds, while t

final products amounts to be sold in each market are to be sat

fied. Storage at the warehouses and distribution centers can be

ther multipurpose or dedicated and just-in-time procedures or

nite capacity storage may also co-exist with X-docking. In econom

terms, the cost of facilities installation, as well as operational, sto

age, transportation and raw materials costs are considered simu

taneously with products’ revenues. In environmental terms the im

pacts generated by electricity and diesel consumption over the ent

SC are accounted for. Fig. 1 depicts the structure considered and

characteristics.

4. Solution approach

The previous problem representation will be implemented and

explained through the characterization of one illustrative instance

and applying a novel bi-objective meta-heuristic algorithm. The

results obtained are compared with those of a bi-objective exact

approach obtained through the ε-constraint as presented by

Pinto-Varela et al. (2011). The problem formulation involves the

following sets parameters, variables, objectives functions and

constraints:

Sets:

d set of damages

f set of facilities

k set of processes(tasks) embedded in a resource technolo

p set of pollutants emitted

r set of all resources, both renewable and non-renewable

u set of utilities

Parameters:

CCi
r fixe/variable installation cost

CCF capital charge factor

Ff maximum amount of resource technologies availab

in facility f

H planning horizon per year

HourYr number of hours per year

NormFg weighted value of damage g

Qmin
r , Qmax

r min, max capacity available for resource r
Please cite this article as: N. Chibeles-Martins et al., A multi-objective

chains - MBSA, Expert Systems With Applications (2015), http://dx.doi
First-Tier
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P1 P6
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Pi Pi
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Second -Tier

Customers

P1

P1

P2

P2

P5

P5

P3

P6

P4

P4
Pi

Pi

/ WH

esentation of the SCN.

Rmin
r ,Rmax

r minimum, maximum demand of the resource at H

vr ,Pr resource price, raw material and product, respective

α0
k

,α1
k

fixed and variable cost coefficients for technologic

processes

αF
u k

,βF
u k

fixed and variable utility cost coefficients for the tec

nological process

αWD
u r ,βWD

ur fixed and variable utility cost coefficients for ded

cated warehouse and distribution center

μkrθ , νkrθ renewable or non-renewable resource utilization

φmax
r , φmin

r resource technology size factor

�u,p quantity of pollutant emitted to generate an unit

consumed utility u

ηu amount of diesel consumed m3/km

ςdp impact factor coefficient

λpr, λp f , λpu defines the quantity of pollutants p, emitted per un

mass of resource r used, soil occupation and util

consumed, respectively

Decision variables:

Prt amount of material delivered from the resource technolo

r in instant t

Qr capacity of resource technology r

Rrt excess of resource at t

UTu total amount of utility consumed

ξkt production, storage size of technological process k

time t

Nkt technological process selection k at instant t

yr= –1 if resource technology r is used; 0 otherwise

y f = 1 if the facility is opened; 0 otherwise

Environmental variables:

DamSC
d

set of damages

Eco99 environmental indicator

QUtotal
p total amount of pollutants emitted

Bi-objective model: max Profit, min Eco99

Eco99 =
∑

d

NormFdDamSC
d (
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Pr of it =

⎡
⎢⎢⎢⎢⎣

∑
(Rrt + Prt )pr −

⎛
⎝

∑
r∈Cf

(Rro − Rrt )νr + ∑
t

∑
k∈TP

(
α0

k
Nkt + α1

k
ξkt

)
+ ∑

r∈Cr/Cf

RrtCCs
r

+ ∑
r∈WC

(
yrCC0

r Kmr + QrCC1
r

)
⎞
⎠

−∑
νu

[
ηu

∑
Kmry

c
r + UTu

]
⎤
⎥⎥⎥⎥⎦ × HourY r

H

−
( ∑

r∈W p

(
yrCC0

r + QrCC1
r

)
+

∑
r∈Wν

(
yrCC0

r + QrCC1
r

))
× CCF (2)

Subjecto to:240

Rrt =Rr0|t=1+Rr,t−1|t≥2 +
∑

k

τk∑
θ=0

(μkrθ Nk,t−θ +υkrθ ξk,t−θ ) +Prt (3)

241

∀r ∈ Wpt = 1, . . . , H + 1

×
H∑

t ′=t−τk+1

∑
k ∈ Tr

Nkt ′ ≤ yr ∀r ∈ Wp (4)

242
φmin

kr QrNkt ≤ ξkt ≤ φmax
kr QrNkt ∀k ∈ Tp, r ∈ C, t = 1, . . . , H (5)

243

Nkt =
Nmax

k∑
j=1

j Ñ jkt ∀k ∈ Tp, t = 1, . . . , H (6)

244 Nmax
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UTu + ηu
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Kmryr
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+

∑
f

λp f |p∈Ly f

+
∑
r∈Cf

λpr|p∈N

(
R

r
0

− Rrt|t=1+H

)
+

∑
u

λpu|p∈NUTu (21)

259
DamSC

d =
∑

p

ςdpQUtotal
p ∀d ∈ D (22)

In this model, the first objective Function (1) minimizes the sum 260

of all environmental impacts from diesel and electricity consumption 261

along the SC. The second objective Function (2) expresses the SC net- 262

work profit. The resource balances for every resource is performed by 263

Constraint (3). Constraint (4) guarantees the technologies’ multipur- 264

pose operation. The nonlinear Constraint (5), which characterizes the 265
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Ñjkt ≤ 1 ∀k ∈ Tp, t = 1, . . . , H (7)

inÑjkt ≤
∼
Q

r jkt

≤ Qmax
r Ñ jkt

∀ k ∈ Tp, r ∈ Wp, j = 1, . . . , Nmax
k , t = 1, . . . , H (8)

x

∼
Qr jkt = Qr ∀k ∈ Tp, r ∈ Wp, t = 1, . . . , H (9)

in

Nmax
k∑

j=1

j
∼
Qr jkt ≤ ξk t ≤ φmax

kr

Nmax
k∑

j=1

jQ̃r jkt

∀ k ∈ Tp, r ∈ Wp, t = 1, . . . , H (10)

inyr ≤ Qr ≤ Qmax
r yr ∀r ∈ Wp (11)

≤ φmax
r Qr ∀r ∈ Wv, k ∈ TV , t = 1, . . . , H + 1 (12)

inyr ≤ Qr ≤ Qmax
r yr ∀r ∈ Wv (13)[

R
r0

− Rrt

]
≤ Qr|r∈Wrm

t = 1, . . . , H + 1 (14)

Rrt ≤ Qr|r ∈Wf p
t = 1, . . . , H + 1 (15)

≤ φmax
kr Qr ∀k ∈ TT , r ∈ Wc (16)

inyr ≤ Qr ≤ Qmax
r yr ∀r ∈ Wc (17)

in ≤ Rrt ≤ Rmax
r ∀r ∈ Cp, t = 1, . . . , H + 1 (18)

≥
∑
r∈T f

r

yr ∀ f ∈ F (19)

=
∑

t

∑
k∈Tp

τ
k∑
θ

(
αF

u kNk t−θ + βF
u kξk t−θ

)
+
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αWD
u r yr +

∑
t

∑
r∈Wν

βWD
ur Rrt (20)
plic
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ount of material being processed through each technological pro- 2

s, is replaced by linear Constraint (10) and auxiliary Constraints 2

until (9). The resource technology capacity and design is defined 2

ough Constraint (11). The capacity and design constraints of ware- 2

ses (WH) and distribution centers are guaranteed by Constraints 2

) to (15). Constraints (16) and (17) define the transportation con- 2

ints. The market demand is defined by Constraint (18), while the 2

ice of a certain facility is defined by the choice of any of the tech- 2

ogical resources associated to it, Constraints (19). The remaining 2

straints, (20)–(22), defined utilities consumption, pollutants in- 2

tory, and environmental impact quantification, respectively. 2

Bi-objective exact approach 2

The mathematical formulation for the ε-constraint method can be 2

marized as follows: 2

aximize fu(x)
t. fm(x) ≤ εm m = 1, 2, . . . , M and m 	= u

gj(x) ≤ 0 j = 1, 2, . . . ;
hk(x) = 0 k = 1, 2, . . . , K;
x(L)

i
≤ xi ≤ x(U)

i

(23)

ere εm represents an upper bound of the value of fm. This tech- 2

ue entails handling one of the objectives and restricting the others 2

hin user-specified values. Firstly the upper and lower bounds are 2

ermined by the maximization of the profit and minimization of 2

Eco99. The optimization problem (maximization) is implemented 2

h the objective function being the profit and the Eco99 as a con- 2

int, varying between its lower and upper bounds. As result the ef- 2

ent frontier is obtained, which allows the decision maker to select 2

solution depending on the relative worthiness of each objective. 2

. Bi-objective meta-heuristic approach 2

The model presented when applied to large problems often re- 2

ts in high time consuming. In order to overcome this issue, a meta- 2

ristic approach is here developed. This is based on the Simulated 2

nealing (SA) algorithm proposed by Kirkpatrick, Gelatt, and Vec- 2

(1983) and Černy et al. (1985), where several adaptations were 2

eloped so as to improve the algorithm’s efficient and effective ap- 2
ation to the SCN characteristics. 296
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Fig. 2. Classic Simulation Annealing algorithm.

SA can be classified as a Local Search Meta-Heuristic, which r

quires not only an initialization procedure that can be done by

randomly feasible solution or with a constructive heuristic. A clas

SA characterization is shown in Fig. 2. A random initialization pr

cedure is used by the algorithm, where the initial random feasib

solution is improved iteratively and another solution from the neig

borhood of the current one is chosen. In order to prevent an ea

stop of the algorithm on a local optimum and to guarantee efficien

and effectiveness, a mechanism based on the Metropolis Algorithm

incorporated.

To overcome the mono-objective classic SA approach, this wo

goes one step forward and, a SA bi-objective approach is develope

An approximation of the Pareto frontier (PF) is explored, as exhau

tive as possible, using as objective functions the profit maximizati

and environmental impact minimization. The efficient SC designs s

lutions are characterized in the Pareto Frontier and, for each SC topo

ogy a reasonable number of efficient solutions should be include

This information becomes more relevant in situations where a tig

budget exists and the decision maker will need a decision suppo

tool to help him/her on the selection of the most adequate compr

mise solution based on the knowledge of those efficient solution

characteristics (similar cost and within the available budget). The

results became more relevant as the problem complexity increas

and the exact approaches face computational difficulties to explo

the efficient region. This work aims to overcome this limitation,

proposing the MBSA algorithm.

4.2.1. MBSA algorithm characterization

The new algorithm characterization, defined as MBSA algorith

is shown in Fig. 3. The main procedures are highlighted and will

addressed in detail below.

MBSA involves five different procedures. The first procedure (I)

related with the generation of the initial solution of each algorith

restart. The second (II) one defines the neighbor solution generatio

The third procedure (III) analyzes the new solution acceptability.

nally the fourth and fifth procedures (IV, V), define respectively t
Please cite this article as: N. Chibeles-Martins et al., A multi-objective

chains - MBSA, Expert Systems With Applications (2015), http://dx.doi
neighbor solution efficiency, the restart mechanism and the stop c

terions control.

4.2.2. First Procedure I

Procedure (I) is related with the generation of the initial soluti

of each algorithm restart. These solutions are obtained from a co

structive heuristic, which raise several questions

1. How should solutions be codified when the Meta-Heuristic

being implemented?

2. Which facilities will be opened?

3. Which production technologies will be selected?

4. When/How much/What products in each facility will be pr

duced?

5. How will be the product distribution performed?

After those variables are settled, the SCN design will be define

since the available capacities will have to be sufficient to ensure th

all the required production, warehousing and transportation are sa

isfied. Finally, the associated profit and environmental impact a

quantified.

Constructive Heuristic Characterization: this procedure follow

several steps which will be detailed, using the time horizon defin

as H.

1. For each market, assume that all distribution centers are i

stalled and randomly generate a final stock of each final pro

uct that verifies the demand constraints;

2. Select randomly the production facilities to be installed;

3. Set the time instant t = H;

4. For every production facility generate randomly the batch si

being processed;

5. Calculate the flows outgoing from the facilities to the war

houses/distribution centers, at the end of each process;

6. Calculate the flows incoming to the facilities from warehous

(or other facilities, for the intermediate products) and sele

randomly when these flows have to occur;

7. Decrease t by one unit, t = t – 1;

8. If there are any incoming flows occurring at time t, correct t

inventory levels, and for every intermediate product select

unoccupied facility that is going to process it and when;

9. If there is a process starting at t then for each of them ge

erate randomly the batch size being processed. Calculate t

flows incoming to the facilities from warehouses (or other f

cilities, for intermediate products) and select randomly wh

these flows have to occur;

10. Go to 7, until either t = –1 or the inventory levels for all inte

mediate and final products are null.

4.2.3. Second Procedure II

Procedure (II) of the MBSA is the neighbor solution generation. T

neighborhood function in this case has to accommodate both obje

tive functions, unlike the classic SA algorithms. Its characterizati

is detailed and a motivating example, which enhances the proble

characteristics, is used to illustrate the four movements. It should

noted that the algorithm considers the Eco-Indicator symmetric v

ues, so both functions have the same optimization direction.

The nomenclature used for the MBSA algorithm characterizati

is the following:

i – the current iteration;

si – the current solution;

s’i – the randomly generated neighbor solution;

f1(s), f2(s) – respectively, the Profit and the Eco-Indicator 99 assess

for solution s;

Pac – the probability of accepting the neighbor solution;

T1i, T2i – the temperatures associated respectively to objecti

functions f (s) and f (s) at iteration i.  
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Fig. 3. Schematic representation of
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Fig. 4. Generic solution.

The temperature updating is based on a Geometric Cooling

eduling, defined by the temperate decrease every kth iteration

h the following expression:

Tk+1=αTk

ere α is a constant close to 1.

For each Objective Function the temperature T0 is empirically ad-

ted in order to allow at the initial steps of the algorithm the ac-

tance of all neighbor solutions with a probability close to 1. The

ling rate α was adjusted empirically to allow a slow decrease in

temperature so that the process will remain in quasi-equilibrium.

1. Quan�ty increase or decrease of final product dem

1.1. A final product is randomly selected and a ra

1.2. A technological process that produces this pr

1.3. This process has its batch size rec�fied in ord

1.4. The affected flows are rec�fied;

1.5. The inventory levels of all involved products 

1.6. For each intermediate product affected by th

Fig. 5. Neighbo
ease cite this article as: N. Chibeles-Martins et al., A multi-objective meta

ains - MBSA, Expert Systems With Applications (2015), http://dx.doi.org/1
the MBSA algorithm.

Neighbor Solution Generation: a neighbor solution is derived 4

m the current through four possible movements 4

1. Quantity increase/decrease of a final product demand; 4

2. Delay/anticipate by 1 time unit the use of a technological pro- 4

cess; 4

3. Two equivalent process may be aggregated or one single pro- 4

cess may be slip in two equivalent ones; 4

4. Change facility’s location. 4

A generic and illustrative solution is presented in Fig. 4. This in- 4

ves a supply chain formed by 3 production facilities (facility 1, 2 4

3), a warehouses (WH)/distribution center (DC). The SC planning 4

epresented by rectangles. The triangles represent the inventory 4

els of final and intermediate products stored in Warehouses and 4

tribution Centers, at the end of each time period. The arrows indi- 4

e transportation flows occurring at each instant. 4

When a movement is performed, it is illustrated by the corre- 4

nding rectangle’s size or a shade modification and all changes on 4

entory levels or transportations flows will be indicated by vertical 4

ck arrows. 4

Movement 1. Quantity increase/decrease of a final product de- 4

nd neighbor solution. 4

This movement procedure is detailed in Fig. 5 and illustrated on 4

s. 6 and 7. In the presented example, as can be seen in Fig. 6, 4

final product selected on step 1.1 is processed in Facility 3, 4

 varia�on generated;

 is also randomly selected;

 accommodate the varia�on generated in 1.1;

c�fied;

nges in 1.5, repeat 1.2, 1.3, 1.4 and 1.5.

move 1.  
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Fig. 6. Selected process.

Fig. 7. Rectified processes and flows.

2. Delay or an�cipate by 1 �me unit the use of a technological 
process 
2.1. An exis�ng process is randomly selected; 

2.2. Selec�on of the type of movement (delay/an�cipa�on), 

2.3. The change is applied and the flows rec�fied;  

Fig. 8. Neighborhood move 2.

il-428

s429

n-430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

Fig. 10. Anticipated process and its flows rectified.

3. One single process is split in two equivalent ones

3.1. An exis�ng technological process is randomly selected, under the 

condi�on that exists a facility available to use it;

3.2. The batch’s selected process is split in half and the second half is allocated 

to the available facility; 

3.3. Incoming/outgoing flows are rec�fied.

Fig. 11. Neighborhood movement 3 – Spliting.

- 445

ed 446

is 447

 

 

Fig. 9. Selected process.

consequently the algorithm selects randomly one from two possib

ities and change the corresponding batch size (1.2 and 1.3). The flow

taking raw or intermediate material into the selected process, at i
stant 2, are moving final products from Facility 3 to the WH or DC, at

instant 3 have to be rectified (1.4).

Inventory levels of selected Final Product from instant 3 and on-

ward are rectified (1.5).

Finally, if the selected process consumed intermediate products

then some previous processes that generated these products have to

be modified (1.6), as shown in Fig. 7.

However, to accommodate the variation generated in step 1.1, an

iterative procedure between steps 1.2 to 1.5 could be necessary.

Movement 2. Delay/anticipate by 1 time unit the use of a techno-

logical process.

The delay/anticipation of a technological process is detailed in

Fig. 8 and illustrated in Figs. 9 and 10. The algorithm randomly se-

lects the process starting at instant 1 (2.1), defining an anticipative

Please cite this article as: N. Chibeles-Martins et al., A multi-objective

chains - MBSA, Expert Systems With Applications (2015), http://dx.doi
Fig. 12. Selected process.

Fig. 13. Process divided and flows rectified.

movement, shown in Fig. 9. From this movement, not only the incom

ing and outgoing flows, but also the inventory levels must be rectifi

(2.3), as shown in Fig. 10. Another, possible movement to be chosen
the process starting at instant 0, in Facility 1, which could be delayed 448

to instant 1. 449

Movement 3. Two equivalent processes may be aggregated or one 450

process may be split in two equivalent ones. 451

The characterization of the splitting movement is detailed in 452

Fig. 11 and illustrated in Figs. 12 and 13, followed by the aggregation 453

movement detailed in Fig. 14 and illustrated in Figs. 15 and 16. 454

The splitting movement can be done, using the starting process at 455

instant 2, on Facility 2, which is divided into two. One process remains 456

in Facility 2, and the other in Facility 1, at the same instant, t = 2, 457

shown in Fig. 13 (3.1). Half of the batch is allocated to a new process 458

being held at Facility 1 (3.2) and the flows are rectified (3.3). 459

Observe that the execution time of a process can differ from one 460

facility to another because that depends on the technologies available 461

meta-heuristic approach for the design and planning of green supply
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4. Two equivalent process are aggregated

4.1. An exis�ng technological process is randomly selected, under the 

condi�on that exists another equivalent process being held on a different 

facility, during the same period;

4.2. The batch’s selected process is aggregated into the other equivalent 

process; 

4.3. The selected process is ex�nguished; 

4.4. Incoming/outgoing flows are rec�fied.

Fig. 14. Neighborhood move 3 – Aggregating.

Fig. 15. Selected processes.

Fig. 16. Processes agglomerated and flows rectified.

5. Change facility’s loca�on

5.1. If one facility is close in one loca�on, another one may be open in another 

loca�on.  

Fig. 17. Neighborhood move 4.

for each facility. Consequentially in some instances the new process462

created by the splitting can have a different duration than the original463

pro464

465

illu466

at F467

sel468

Fac469

and470
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pro473
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4.2476

477

rith478
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Fig. 18. Relocation of a facility.

This evaluation is based in an independent procedure, which eval- 480

uates if solution s’i is accepted as a current solution. The procedure 481

uses the probability of acceptance, Pac, to evaluate, which depends 482

on the adopted Local Search Strategy. The solution s’i is randomly ac- 483

cepted with probability Pac. 484

The classic SA algorithm with one objective function f, proposes 485

the following acceptation probability (Kirkpatrick et al. (1983) and 486

Černy et al. (1985)): 487

Pac =
{

1, f
(
s′i

)
> f (si)

e
f(s′ i)−− f(si)

Ti
, otherwise

(24)

In each iteration, the algorithm generates a neighbor solution, s’I, 488

and the Local Search (LS) strategy defines the probability of accep- 489

tance of a worst solution, Pac. 490

However, in this work several local search strategies were ex- 491

plored, and a detailed characterization is provided by Chibeles- 492

Martins, Pinto-Varela, Barbosa-Povoa, and Novais (2014). The sim- 493

plest strategy (strategy A) explored changes in the objective function 494

controlling Pac, at each restart. This strategy produced a suitable ap- 495

proximation in the lower and upper end of the PF, as the approxima- 496

tions are skewed towards the respective optimal values, defined in 497

Eq. (24). However, a sparse approximation in the middle region of the 498

Pareto Frontier (PF) was reached by this strategy. 499

Therefore, strategies combining both objective functions to define 500

Pac procedure were explored, and the lack of middle region PF char- 501

acterization was overcome, through the use of Eq. (25) (Strategy B). 502

However, this strategy kept the Local Search exploring only the mid- 503

dle region of the PF. 504

Consequently, a LS Strategy must be expanded and should con- 505

sid 06

run 07

Pac

08

ced 09

res 10

sib 11

Pl
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cess.

The aggregation movement is detailed in Fig. 14, followed by its

stration in Figs. 15 and 16. The process selected to be aggregated is

acility 2, starting at instant 0, shown in Fig. 15, (4.1). The process

ected is aggregated into another equivalent process, which is in

ility 1, instant 0. In Fig. 16 the selected process is removed (4.3),

the flows and inventory levels are rectified (4.4).

Movement 4. Change facility’s location

This movement does not affect neither transportation flows or

duction planning, nor the equipment design. The movement is de-

ed in Fig. 17 and illustrated in Fig. 18, where a random selected

nt is relocated, from location A to location B.

.4. Third Procedure III

In procedure (III) and, after a neighbor solution available, the algo-

m will evaluate if this solution will be accepted as a new current

ution, based in local search strategies, as defined in Fig. 3.
ease cite this article as: N. Chibeles-Martins et al., A multi-objective meta

ains - MBSA, Expert Systems With Applications (2015), http://dx.doi.org/1
er the both approaches simultaneously (strategies A and B), in one 5

to reach all PF extension. 5

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
f 1(S′ i)− f 1(Si)

Ti , f 1(S′i) ≤ f 1(Si)∧
f 2(S′i)> f 2(Si)

e
f 2(S′ i)− f 2(Si)

Ti , f 1
(
S′i

)
> f 1(Si) ∧

f 2
(
S′i

)
≤ f 2(Si)

Min

(
e

f 1(S′ i)− f 1(Si)

Ti , e
f 2(S′ i)− f 2(Si)

Ti

)
, f 1

(
S′i

)
≤ f 1(Si)∧

f 2
(
S′i

)
≤ f 2(Si)

1 otherwise

(25)

Due to the multi-start nature of the algorithm, it is a simple pro- 5

ure to change the way Pac is computed every time the algorithm 5

tarts, with a new Initial Solution, on a different region of the Fea- 5

le Region. 5 
-heuristic approach for the design and planning of green supply
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In the proposed strategy the LS procedure is controlled 1/3 of512

restarts by Profit, 1/3 by Environmental Impact and the remaining by513

both OF simultaneously. The LS is controlled alternately by only one514

of the OF for a fixed number of iterations, while Pac is calculated by515

Eq. (24).516

4.2.5. Fourth Procedure IV517

This procedure analysis the neighbor solution efficiency during518

the algorithm run and, the non-dominated solutions are stored in the519

Pareto array. These solutions are sorted, from the highest to the low-520

est profit values. Due to the fact that the problem is bi-objective, all521

solutions in the Pareto array will be automatically sorted accordingly522

to f2. For each iteration, Fig. 3 (IV), the algorithm verifies if the solu-523

tion s’i is non-dominated by comparing it with the solutions stored524

in the Pareto array. If is a non-dominated solution, s’I, is added to the525

array which is corrected and re-sorted using an Insertion Sort Algo-526

rithm (Cormen, Leiserson, Rivest, & Stein, 2009).527

4.2.6. Fifth Procedure V528

The algorithm last procedure, the restart mechanism and stop cri-529

terions control is the fifth procedure. In this work, the main goal is to530

define a PF and approximate it to the optimal one. This differs signif-531

icantly from the classical SA algorithm, where the goal is to approxi-532

mate the optimal solution.533

To do that, the proposed algorithm has a multi-start procedure534

that allows the exploration of different regions of the PF. The algo-535

rithm restarts when both T1i and T2i are smaller than a pre-set value536

close to zero. Temperatures T1i and T2i are reset to their initial val-537

ues T10 and T20 and a new initial solution is randomly generated by538

the constructive heuristic described above. The restart procedure is539

repeated several times and the number of restarts is determined em-540

pirically after a sensitivity analysis.541

However, some parameter tuning is necessary in order to adjust542

the algorithm to the problem characteristics. Besides initial temper-543

atures (T10 and T20) and the Cooling Schedule constant (α), the Stop544

criterion of each restart and following parameters were also adjusted545

empirically taking into account the following criteria:546

• stop criterion of each restart;547

• The number of iterations of the Multi-start mechanism.548

5. Key performance indicators549

In order to compare the efficiency, quality, variability and robust-550

ness of the MBSA solution, three KPI are presented and two control551

charts are explored and extended to engage the problem specificity.552

The KPIs D-distance and Size of Concave Space Covered (SCSC) are553
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new proposed indicators, followed by the K-distance indicator, whi

is based on Zitzler and Thiele (1999). The X̄and R-Chart are extend

through the
=
X −Chart and

=
R −Chart to guarantee the results contr

It is assumed that the results are under control if the average a

variability are both under control. A detailed characterization of ea

indicator and charts is presented. To mitigate the scaling effect bo

objective functions were standardized.

D-distance: D-distance quantifies the distance between PF o

tained from the exact approach and the MBSA PF. The geometric re

resentation is shown in Fig. 19 through Fig. 21.

Let A be a point belonging to the MBSA algorithm PF with coord

nates (xS
A, yS

A). Let Mi and Mi+1 be the exact PF adjacent points of

with coordinates (xM
i, yM

i) and (xM
i+1, yM

i+1) respectively as show

in Fig. 22.

So, xS
A ∈ [xM

i, xM
i+1], and we define:

d−
A

=
∣∣y M

i − yS
A

∣∣ (2

d+
A

=
∣∣y M

i+1 − yS
A

∣∣ (2
Please cite this article as: N. Chibeles-Martins et al., A multi-objective

chains - MBSA, Expert Systems With Applications (2015), http://dx.doi
Fig. 20. Geometric representation when DA > 1.

Eqs. (27) and (28) measure how distant A is from Mi and Mi+
respectively, in terms of Environmental Impact, shown in Fig. 19.

The environmental impact range is defined by:

D[i,i+1] =
∣∣y M

i − yM
i+1

∣∣ (2

The distance of point A from MBSA algorithm and the exact a

proach PF is calculated using the expression (30):

DA

{
d−

A
D[i,i+1]

, i f |xS
A
−xM

i |≤|xS
A
−xM

i+1|
d+

A
D[i,i+1]

i f |xS
A
−xM

i |>|xS
A
−xM

i+1|
(3

If A is close to the exact PF front, then DA < 1, as is represented

Fig. 19.

On the other hand, when A is considerable distant from the exa

PF, the DA value from Eq. (30) is DA > 1, as illustrated in Fig. 20.

However, there are other situations requiring a different approac

which are going to be characterized. Consider M0 the exact soluti

that minimizes the Environmental Impact Objective Function. Ther

fore XM
0 is the profit value associated with solution M0, and the MB

algorithm solutions A, verifies xS
A < xM

0, shown is Fig. 21. In tho

situations Do and DA are defined by Eqs. (31) and (32) and, illustrat

in Fig. 21:

D0 = y M
0 (3

DA = d+
A

D0

(3

The D-Distance quantification is reached through the average

DA, characterized by Eq. (33).

D − distance =
∑

A ε SA FP DA

|SA FP| (3

Size of Concave Space Covered (SCSC): the SCSC development w

inspired from Zitzler and Thiele (1999) and a new KPI is present 
meta-heuristic approach for the design and planning of green supply
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Table 1

Facilities suitability technological resources and capacities.

Facilities Technological process Capacity (Tonnes) Final products

Site A TP1 85 P1, P2, P3, P4, P5, P6

TP2 45 P7, P8, P9

TP3 25 P10, P11, P12

Site B TP1 65 P1, P2, P3, P4, P5, P6

TP2 25 P7, P8, P9

TP3 25 P10, P11, P12

remains inside the boundaries, the algorithm is considered robust 612

and stable based on
=
X −Chart and

=
R −Chart respectively. 613

The control charts were derived considering KPI D-distance, using 614

nk observations from n Pareto frontiers. Each PF defines a subgroup 615

of distance and range values, so its average can be obtained, ¯̄X and ¯̄R, 616

respectively. However to analyze the algorithm robustness, a sensi- 617

tive analysis is undertaken defining subgroups of data, triggering the 618

control-chart for the ¯̄X and for ¯̄R characterization. Making use from 619

the Central Limit effect the Normal distribution can be assumed and 620

the respective control charts are derived (Eqs. 34 and 35). 621

UCL ¯̄X
= ¯̄X + zSX̄ and LCL ¯̄X

= ¯̄X − zSX̄ (34)

622
UCL ¯̄R

= ¯̄R + zSR̄ and LCL ¯̄R
= ¯̄R − zSR̄ (35)

6. Instance characterization 623

To illustrate the MBSA application a case study is used. The KPI 624

measures are explored and the case study instance supports a sensi- 625

tive analysis. 626

The SC operates with two production sites (A and B) and one cen- 627

tralized supplier. Each one of these production sites has the possibil- 628

ity 29

(TP 30

fina 31

and 32

pac 33

wh 34

pro 35

overed

Pl

ch

 

 

Fig. 21. Geometric representation when xS
A < xM

0.

easure the area covered by the non-dominated solutions in the

cave objective research space and consequently a concave PF (the

fit maximization and environmental impact minimization have

erent directions). To illustrate the concept, the geometric repre-

tation is shown in Fig. 22. This measure quantifies the percentage

he exact SCSC by the MBSA algorithm PF.

K-distance: the K-distance indicator proposed by Zitzler and

ele (1999) is used to estimate the Pareto Frontier density, by mea-

ing the average distance of an efficient point to the kth nearest ef-

ent points. This indicator allows sparse PF identification vs a high

urated PF.

The K-distance aim is the density comparison in the two ap-

aches. In this work is justified a value of K = 4, to avoid the use

ore than half of its elements in the exact quantification.

Control charts

The
=
X −Chart and the

=
R −Chart give to the decision maker com-

mentary information. The former is focused on the constancy of

average value and the latter is specially designed for detecting

nges in variability. These charts are characterized through an Up-

Control Limit (UBL), Lower Control Limit (LBL) and an average

ue definition. The data will float around the average value and if

Fig. 22. Size of Space C
ease cite this article as: N. Chibeles-Martins et al., A multi-objective meta

ains - MBSA, Expert Systems With Applications (2015), http://dx.doi.org/1
of installing three types of multipurpose technological resources 6

1, TP2 and TP3) to produce 12 different products. TP1 produces six 6

l products (P1 to P6), TP2 and TP3 three products each (P7 to P9 6

P10 to P12, respectively), shown in Table 1. The maximum ca- 6

ity associated to the facilities’ technologies is shown in Table 1, 6

ile in Table 2 is shown the demand for each market, using a multi- 6

duct DC. Fig. 23 illustrates the SC superstructure. 6

representation.  
-heuristic approach for the design and planning of green supply
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Table 2

Annual range product demand for each market.

Product Market Demand for each product (max Tonnes)

P1-P6 M1 200

M2 260

P7-P9 M3 200

M4 140

P10-P12 M5 100

M6 80

Table 3

Pollutants emitted per utility consumption (Duque, Barbosa-Povoa, & Novais, 2010

Utility CO CO2 NOx Sox Units

Diesel 14.828 2609.5 34.6 – kg/m3

Electricity 4.151e–3 7.306e–1 1.941e–3 3.872e–3 kg/kwh
Table 4

Damage to human health (Geodkoop & Spriensma, 2001).

Damage CO CO2 NOx SOx

Human health (DALYs/kg emission) – 7.5e–4 8.74e–5 5.35e–5

It is assumed that for each technological resource, some electricity

consumption will occur, generating an associated environmental im-

pact. Also environmental impacts related to transportation, namely

CO2, NOx and SOx emissions, are considered. The corresponding data

are given in Table 3. The transportation costs are not only geograph-

ical distance dependent, but also transported load depend. An as-

sumption of full truck load freights at an average speed of 80 km/h

is used.

The environmental impact quantification is based on the Eco-

indicator 99, focused on the Human Health (HH) damage, Table 4.

7. MBSA algorithm results analysis

In order to assess the algorithm results quality, robustness and

stability not only a comparison with the exact approach was per-

formed, but also, a sensitivity analysis is developed. For each anal-

ysis a variations of �I, ranging from –5% to +5%, with 1% increments

were applied, over the parameters: TP1 and TP2 technology capacity

Please cite this article as: N. Chibeles-Martins et al., A multi-objective

chains - MBSA, Expert Systems With Applications (2015), http://dx.doi
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tion for the second instance.

in site A and B, respectively; and demands of product P12 for M5 a

M6 Market.

The reason for those parameters selection results from the need

explore its impact in algorithm behavior, like: the algorithm soluti

impact when the most relaxed technology capacity suffers distu

bance, over TP1; the annual production planning behavior when va

ation of the lowest technology capacity available occur, over TP2; a

what happens to the production and transportation planning throu

product demand variation. Nevertheless, some of those algorithm r

sults are compared with the exact approach.

Beyond that, with the aim to compare the solution efficiency a

proach of the MBSA algorithm, three KPI measures and two co

trol charts: D-distance, K-distance, SCSC,
=
X −Chart and

=
R −Chart we

used.

The multi-objective approach requires a set of solutions to cha

acterize the efficient frontier, the ability of each method to fi
those solutions are defined by the quantity of non-dominated solu- 668

tions obtained. The number of non-dominated solution of MBSA over 669

each parameter variation is summarized in Table 5. As the literature 670

stated the exact approach is time-consuming, and this case was no 671

exception. 672

The computational time required for those solutions, over each 673

MBSA and the exact approaches’ run are shown in Table 6 and a com- 674

parison analysis in Table 9. The MBSA algorithm presents, on aver- 675

age a time improvement around 95% when compared with the exact 676

approach and defines an efficient frontier with a higher number of 677

non-dominated solutions. 678

An important aspect to analyze in the algorithm is the quality of 679

the obtained solutions. This is done through the comparison of the 680

area coved defined by the efficient frontiers of both approaches. The 681

higher % of exact area covered by the MBSA algorithm more quality 682

solutions are defined. The comparison of the % of exact area covered 683

by MBSA was quantified by the SCSC KPI. Its comparison shows the 684

ability of MBSA to cover more than 70% of the exact area as shown in 685

Table 7. 686

Another important aspect to qualify the solutions reached is its 687

density. Based on Zitzler, Laumanns, and Thiele (2001), the KPI K- 688

distance was applied. The K-distance KPI quantify the density of non- 689

dominated solution in the PF and characterize the distance between 690

the kth nearest non-dominated solutions, with K = 4, meaning the 691

lower the distance among solution, the higher its density and, a 692

higher PF characterization is achieved. From Table 8 it is shown that 693

meta-heuristic approach for the design and planning of green supply
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Table 5

Quantity of non-dominated solutions for each run for the MBSA algorithm approach.

–5% –4% –3% –2% –1% 0% +1% +2% +3% +4% +5% Average

TP 1 3154 2410 3090 2147 2544 2775 2735 2316 2985 2860 2754 2706,4

TP2 2628 3119 2806 3000 2790 2775 3830 2434 2329 2628 3225 2869,5

P12 in M5 2968 2623 3079 3000 2869 2775 3307 2956 3160 2904 2347 2908,0

P12 in M6 3110 3099 2282 3408 2955 2775 3276 2705 2950 2818 2707 2916,8

Table 6

Time for each run in both approaches (CPU seconds).

–5% –4% –3% –2% –1% 0% +1% +2% +3% +4% +5%

TP 1 Exact 15326 16451 18531 14016 12744 78708 23426 34646 12753 24243 20788

MBSA 1383 1255 1451 1440 1020 1389 1207 1221 1464 1254 1478

TP 2 Exact 10563 15104 15016 16389 25623 78708 15450 18412 14318 30878 14105

MBSA 1691 1476 1091 1275 1291 1389 1219 1269 1299 1203 1415

P12 in M5 Exact 13027 19162 11212 18281 19782 78708 36072 16120 16435 12131 25077

MBSA 1236 1180 1185 1180 1145 1389 1222 1322 1160 1250 1244

P12 in M6 Exact 23770 21850 32637 11629 22745 78708 15916 14868 17587 15447 19275

MBSA 1372 1412 1144 1258 1202 1389 1358 1217 1136 1085 1138

Table 7

Percentage of SCSC.

–5% –4% –3% –2% –1% 0% +1% +2% +3% +4% +5% Average

TP 1 77,0 76,6 73,5 74,1 74,0 74,0

TP 2 76.6 76.3 75.3 71.7 74.9 74.0

P12 in M5 70,9 69,5 72,2 70,3 70,1 74,0

P12 in M6 73,3 73,7 71,6 70,7 71,6 74,0

Table 8

K-distance measures from the MBSA and exact approach.

–5% –4% –3% –2% –1% 0%

TP1 Exact 915,2 913,3 923,1 925,1 927,8 929,

MBSA 3,14 4,08 4,05 4,55 4,56 3,53

TP2 Exact 923,2 923,2 925,5 923,0 925,8 929,

MBSA 3,792 3,193 3,555 3,381 3,560 3,53

P12 in M5 Exact 928,9 926,6 923,1 928,6 928,7 1028

MBSA 3,506 3,655 3,696 3,253 3,354 3,53

P12 in M6 Exact 928,7 926,6 928,2 928,8 927,2 929,

MBSA 4,146 3,139 4,240 4,175 3,273 3,53

Table 9

Comparision analysis.

Time average % Time improve

TP1 Exact 26 650

MBSA 1324 95

TP2 Exact 23142

MBSA 1329 94

P12 in M5 Exact 24182
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MBSA 1228 95

P12 in M6 Exact 24948

MBSA 1247 95

values from the MBSA algorithm are much lower than the ex-

approach results. On average the MBSA has a K-distance around

compared with 930 in the exact approach, showing a much

her density PF characterization in the MBSA approach. The rea-

of higher solution results in the exact approach is from the model

plexity and computational burden strive the definition of non-

inated solutions. Once more the MBSA algorithm presents a bet-

performance and is shown an improvement around 99 %, shown

able 9.

Finally, the algorithm solutions variability and robustness are an-

zed using the proposed KPI D-distance over eight control diagram

Chart and
=
R −Chart , two control diagram for each analyzed pa-

eter, respectively. To summarize such information, data aggrega-

was performed, and the four
=
X −Chart were aggregated into one,
ease cite this article as: N. Chibeles-Martins et al., A multi-objective meta

ains - MBSA, Expert Systems With Applications (2015), http://dx.doi.org/1
75,5 74,8 73,3 74,4 75,2 74,8

73.9 72.4 72.0 72.8 71.2 73.7

71,9 70,9 70,9 67,0 72,6 70,9

70,8 71,0 70,0 69,9 69,4 71,5

+1% +2% +3% +4% +5% Average

6 931,2 932,1 933,6 935,1 938,0 927,6

3,63 4,24 4,25 3,50 3,58 3,92

6 930,2 928,4 930,2 933,9 934,1 927,9

4 3,519 4,074 4,242 4,225 3,733 3,710

,5 927,3 929,0 928,6 935,6 925,6 937,3

4 3,379 3,286 3,231 3,316 4,138 3,486

6 927,8 929,8 927,6 926,9 930,5 928,3

4 3,258 3,567 3,532 3,406 3,548 3,620

ment K-Distance % K improvement

927,6

3,92 99.5

927,9

3,710 99.6

937,3

3,486 99.6

928,3

3,620 99.6

wn in Fig. 24. The same procedure was adapted for
=
R −Chart , re- 7

ting Fig. 25. 7

The charts characterization requires the upper and lower control 7

its quantification, UCL ¯̄X
, LCL ¯̄X

, UCL ¯̄R
and LCL ¯̄R

, based on Eqs. (34) 7

(35). Two levels of control were characterized for the aggregated 7

rmation, one tighter than the other. In the Figures, the higher con- 7

l is characterized by the range [LCLMax, UCLMin], and the more re- 7

ed control, the solution may float in the range [LCLMin, UCLMax]. 7

algorithm is considered robust and stable if the D-distances re- 7

ins between its upper and lower control limits, [LCLi, UCLi]. 7

As can be seen in Fig. 24, the algorithm solution robust- 7

s is characterized and all the solution remains between the 7

gh boundaries, except one solution which is within the relaxed 7

ndaries. 7 
-heuristic approach for the design and planning of green supply
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Fig. 25. Variability control limit.

The algorithm solution variability is analyzed in
=
R −Chart , shown722

in Fig. 25. This chart quantifies the difference between the smallest723

and largest values in the sample, reflecting the solution variability724

instead of the tendency towards a mean value, like the
=
X −Chart .725

The algorithm solutions variability suggests a steady state trend726

in the variability values, indicating a steady and narrowed variability.727

This trend would reflect on the
=
X −Chart , by mean values closer to728

the chart center, and within limits. Based on the control charts the729

algorithm solution shows a robust and stable performance.730

8. Conclusion731

In this work a problem with increasing importance in the sup-732

ply chain area has been addressed, the so called green supply chain733

design and planning. Economic but also environmental objectives734

are accounted when designing and planning supply chains aiming735

at establishing tradeoffs between the traditional profit objective and736

such systems environmental impact. Due to the recognized difficul-737

ties that arise when solving these problems through the most com-738

o-739

at740

he741

ng742

743

h,744

r-745

m746

a747

ve748

a-749

of750

o-751

o-752

d.753

In addition to validate the proposed solution algorithm a sensitivity 754

analysis was performed and the resulted KPI values were analyzed 755

and discussed. 756

The results show that the MBSA proved to be an efficient and pow- 757

erful heuristic alternative when compared with exact methods pro- 758

viding the definition of the Pareto Frontier of Supply Chain Network 759

Design and Planning problems. Different trade-offs along the Pareto 760

Frontier were obtained informing the decision maker with the neces- 761

sary results to support his/her decisions. However the PF generated 762

by the algorithm is composed with solutions obtained approximately. 763

Without the exact PF it is not possible to assess the distance between 764

the algorithm solutions and the real efficient frontier. In addition, as 765

the methodology is based on a Metaheuristic the algorithm’s param- 766

eters tuning is always implied every time a new problem instance is 767

studied. 768

As future developments, different aspects should be explored. 769

First of all the algorithm should be tested in more complex instances. 770

A benchmarking analysis could be developed using the proposed KPI 771

performance indicators. In addition, and on the algorithm perfor- 772

mance it is important to explore the impact of using different heuris- 773

tics with greedy components in all or at least some of the restart 774

mechanisms. Furthermore it will also important to extend the devel- 775

oped approach to account with other important supply chain aspects 776

such has the treatment of the social objective when designing such 777

systems aiming at establishing sustainable supply chains. Other as- 778

pects could also be incorporated in this algorithm extension has risk 779

measures and uncertainty presence. Q4780
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