
Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Swarm and Evolutionary Computation

http://d
2210-65

E-m

Pleas
Evolu
journal homepage: www.elsevier.com/locate/swevo
Effective heuristics for ant colony optimization to handle large-scale
problems

Hassan Ismkhan
Department of Computer Engineering, University of Bonab, Bonab, East Azerbaijan, Iran
a r t i c l e i n f o

Article history:
Received 23 May 2015
Received in revised form
24 May 2016
Accepted 20 June 2016

Keywords:
Large-scale optimization
Ant colony optimization
ACO
Heuristics
Traveling salesman problem
x.doi.org/10.1016/j.swevo.2016.06.006
02/& 2016 Elsevier B.V. All rights reserved.

ail addresses: H.Ismkhan@bonabu.ac.ir, Esmkh

e cite this article as: H. Ismkhan, E
tionary Computation (2016), http://
a b s t r a c t

Although ant colony optimization (ACO) has successfully been applied to a wide range of optimization
problems, its high time- and space-complexity prevent it to be applied to the large-scale instances.
Furthermore, local search, used in ACO to increase its performance, is applied without using heuristic
information stored in pheromone values. To overcome these problems, this paper proposes new stra-
tegies including effective representation and heuristics, which speed up ACO and enable it to be applied
to large-scale instances. Results show that in performed experiments, proposed ACO has better perfor-
mance than other versions in terms of accuracy and speed.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

ACO algorithms have successfully been applied to many opti-
mization problems. These problems include combinatorial opti-
mizations such as versions of scheduling problems [1,2], finding
edge-disjoint paths problem [3], types of quadratic assignment
problem [4,5], QoS-based service selection problems [6], types of
vehicle routing problem [7–10], types of traveling salesman pro-
blem [11–16] and knapsack problem [17,18]. The ACO has also
applications in mobile networks [19], community mining in social
networks [20,21], solving clustering problems [22,23], finger print
matching [24] and many other problems [25,26]. ACO algorithms
also have successfully been applied to continuous optimization
problems. A previous work [27] proposes a type of ACO that is
applied to continues function optimization by archiving solutions
and utilizing a type of local search algorithm in its baseline algo-
rithm. Paper [28] suggests a niche ACO-based on the fitness
sharing principle to solve continuous optimization problems.
Continuous optimization problem have been solved by types of
ACO in two other works [29,30].

Ant algorithms are easy to implement and cover wide range of
applications [31], but their performance dramatically decreases in
dealing with large-scale problems. The proposed algorithm in [32]
is a hybrid method, which combines ACO with swarm algorithm
and a local search. The largest instance in the experiments of this
paper is Kroa200 with size of 200 (as number of nodes). Reference
an@gmail.com

ffective heuristics for ant c
dx.doi.org/10.1016/j.swevo.2
[33] proposes a version of ACO based on memetic algorithm. The
size of largest instance used in the experiments of this paper is
also 200. The largest instance used in [34], which is based on
combing ACO with a type of gradient search, is also KroA200. The
sizes of the largest instances in [35–41], which propose versions of
ACO, is 250 or even less. The word “large-scale” is in title of [41],
however, similar to [42,43], it has not been applied to instances
with size of larger than 1400. The size of the largest instance in
[44], which proposes an algorithm based on combination of ACO
with Artificial Bee Colony (ABC) algorithm, is 724. The parallel
algorithm proposed in [45] tries to overcome the premature con-
vergence, which is one of the major problems of ACO and leads to
trap in local optimum. The largest instance considered in this
paper is pr2392 with size of 2392. Where in almost all references
in this paper, the versions of ACO have been applied to instances
with the maximum size of less than 2300. The proposed parallel
strategy in [46] has been applied to Pcb3038, which is a TSP in-
stance with size of 3038.

Some drawbacks of current versions of ACO are as follows:
(1) Space complexity of holding pheromone in main memory is
high and the most famous current solution to solve this problem is
using candidate pheromone values which is too inflexible in many
situations. (2) Current versions of ACO use the local search algo-
rithms in their baseline algorithm, but they are not able to use
pheromone information to operate more efficiently. (3) The time
complexity of selecting next move is high. As the case 1, the cur-
rent available solution to solve this problem is using candidates-
sets, which reduces performance of ACO. This paper, states these
olony optimization to handle large-scale problems, Swarm and
016.06.006i

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
mailto:H.Ismkhan@bonabu.ac.ir
mailto:Esmkhan@gmail.com
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
drawbacks with more details. This paper also suggests some new
and effective strategies to eliminate these drawbacks. These stra-
tegies increase performance of ACO and enable it to apply to large-
scale problems.

Therefore, the rest of this paper has been organized as follows:
This paper reviews ACO in Section 2 and it points out some ACO
drawbacks in Section 3. Section 4 proposes and designs some new
strategies to eliminate current drawbacks of ACO algorithms.
Section 5 presents experimental results and finally Section 6
summarizes this paper.
2. Related works

ACO has been inspired by the behavior of real ants that enables
them to find the shortest paths between food sources and their
nest. In the process of finding the shortest path, the ants are gui-
ded by exploiting pheromone, which is deposited on the ground
by other ants.

Earlier versions of ACO were applied to traveling salesman pro-
blem (TSP) 1. To solve TSP by applying the ACO, some agents (ants)
locate on different positions begin to build a solution. Each ant
selects next move according to heuristic information and pher-
omone values. This is called transition rule. After all agents com-
pleted their solutions, pheromone values are updated. This process
is repeated until some condition is met. A simple version of ACO can
be implemented according to pseudo-codes in Algorithm 1.

Algorithm 1. ACO general pseudo codes.
1) while (!Some condition)
2) for k ¼ 1 to N(¼ number of nodes)
3) while (solutionk is incomplete)
4) agentk selects k’th move;
5) end while
6) update pheromone globally;
7) end for
8) end while
Ant system (AS), the earlier version of ACO, was designed to
solve TSP. TSP consists of finding the minimum Hamilton tour in
weighted graph. In AS, transition rule is defined as (1):

⎧
⎨
⎪⎪

⎩
⎪⎪

() =

[τ()] [η()]
∑ [τ()] [η()]

∈ ()

()

α β

∈ ()
α β

p r, s

r, s . r, s
r, u . r, s

if s J r

0 otherwise 1

k u J r
k

k

Where pk(r, s) is probability of choosing node s after node r by ant
k, Jk(r) is the set of unvisited nodes of ant k, η()= ()r s distance r s, 1/ ,
and τ()r u, is pheromone amount of ru. Parameters β and α show
the importance of edge weight and pheromone amount respec-
tively. After all ants tours are completed, pheromone update rule is
executed as (2).

() ∑τ ρ τ τ() ← − () + ∆ ()
()=

r s r s r s, 1 . , ,
2k

m

k
1

Where 0oρo1 is a parameter, τ∆ ()=r s,k

⎪
⎪⎧⎨
⎩

()if edge r s is in ant k tour, ,

0, & otherwise
tour length of ant k

1

, and m is the number of

ants.
1 There are two types of TSP including symmetric TSP and asymmetric TSP. In
this paper, “TSP” refers to symmetric TSP.

Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
In AS, after some iterations, some pheromone values increase
with too high rate, then AS traps in local optima. To solve these
problems, Max-Min ant system (MMAS) [47] limits pheromone
values between τmin and τmax (τmin and τmax are parameters) and
updates pheromone belonging to the global best tour only.

Real ants deposit pheromone when they are moving from one
location to another. To simulate this behavior, in Ant Colony Sys-
tem (ACS) [12], local updating rule is defined as (3).

()τ τ τ() ← −ρ () + ρ ()r s r s, 1 . , . 30

Where 0oρo1 is a parameter and τ0 is an initial value of pher-
omones. In addition, transition rule and global updating rule are
performed by Eqs. (4) and (5) respectively.

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ }
()

=
τ() η() ≤

()

∈ ()

β

S
argmax r, u . r, u ,if q q

use 1 , otherwise 4

u J r 0

k

()τ α τ α() ← − () + () ()−r s r s the length of global best tour, 1 . , . 51

Where q is a random number uniformly distributed in [0 … 1]
and q0 (0rq0r1) is a parameter. For Eq. (5), 0oαo1 is a
parameter.

There are some research suggesting self-organizing ACO that
adapts parameters while it is running [48,49]. Paper [50] suggests
three bounds for pheromone trails and uses occasional pheromone
contractions, instead of regular evaporations. Paper [51] proposes
two-stage updating pheromone ACO and tries to enhance perfor-
mance of ACO by defining two-level pheromone update rule
where increasing search capability is the aim of the first stage and
ACO convergence speed-up is goal of second stage.

The choices for an ant to select next node in final steps are less
than primary steps [52]. An ant in primary steps can freely choose
next node because there are many nodes that have not been vis-
ited yet, but in final steps, there are just a few nodes that have not
been visited yet, so a bad choice in primary parts of a solution may
cause successive bad selections and finally bad solution. To solve
this problem, reference [52] supposes two strategies that both of
them have been based on changing local updating rule. In their
algorithms, some parameters like number of visited nodes and
length of recent completed path have been participated in local
updating rule.

Ant colony population size is another challenge in ACO algo-
rithms. When the stopping criteria is defined by a fixed number of
iterations, increasing ant colony population increases algorithm
time complexity, in other hand small population size of ant colony
leads to low quality solutions. To solve this problem, reference [53]
decreases colony population when it is running. Although this idea
may be effective, how to control decreasing colony population is
another challenge.

In some research, ACO takes advantage of other meta-heur-
istics. Combining ACO with GA is very usual. In paper [54] ant
operates as crossover operator and constructs solution according
to two solutions taken from population. Paper [11] uses Inver-over
operator, one of famous operators in evolutionary algorithm (EA).
Reference [5] combines GA with ACO in two separate phases.

ACO also can solve continuous optimization problem. Pher-
omone representation is a challenge when ACO is applied to
continuous optimization problem [29,30].

To speed up ACO, researchers suggest some versions [55–58]. In
order to speedup ACO, paper [58] limits the length of solutions,
which are built by ants. In addition, in order to deal with large
graphs, it suggests representing pheromone trails by a type of hash
table. Paper [59] suggests interesting parallel ACO based on

olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

1

2

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
message passing interface (MPI) but it has critical problem in
communication and it has to transfer pheromone values between
master and slaves workstations at the end of each step. There is
another type of parallel ACO by MPI that each workstation exe-
cutes ACO serially. At the end of each step, they transfer data (may
be the best solution so far or only updated data) among them-
selves [59]. However all MPI based parallel ACO algorithm have
bottleneck in communication level. This problem may be solved by
using shared memory model [60], however these models have not
been applied to TSP instances larger than 2000 nodes. Even, in
research-work with title “Large-Scale”, ACO has never been applied
to problem with size more than 2500 [6,41].
3

3. ACO drawbacks

Although many shortcomings of ACO have been found and
solved by researchers, there are many shortages in recent ACO
versions that decrease its performance and applicability. All re-
viewed papers are interesting, but why these methods can not be
applied to larger instances? Some drawbacks of current ACO al-
gorithm can be introduced as following:

) For large problem instances, consuming high space of memory
is the typical shortage of the current versions of ACO algorithms.
ACO algorithms need pheromone values during the run of the
algorithm. Unfortunately in many applications, ACO algorithms
needΩ(n2) space complexity to hold pheromone values in main
memory. Usually, pheromones are implemented by two-di-
mensional arrays that are not satisfactory for large instances.
This implementation also leads a problem when we search
pheromone value with some conditions. For instance, suppose
we want to design a new heuristic that requires maximum
pheromone value from each position (Our first strategy which is
stated in Section 4, is such a heuristic that needs moves with
high level of pheromone value). In this case, for TSP and some
other problems, for each position such as i, we have to consider
τij for all j (≠ i) that takes O(n) time complexity for moves from
each position, and takes O(n2) for all positions. Using candi-
dates-set concept is an easy way to avoid the two-dimensional
arrays implementation of pheromone values. Although utilizing
some choices as candidates for each position may solve space
complexity problem, using static choice, can cause local optima
trap. In other hand, updating candidates dynamically needs to
justify some questions of when and how algorithm updates the
candidates. Which moves should be removed from the
Ant Colony Algorithm

pheromones

Local Search
Algorithm

Ants use local
search

Candidates-Sets

Fig. 1. (A) Shows classical view, in which, local search does not uses phero

Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
candidates? Which moves should be added to the candidates?
In fact, we should design a new representation and implemen-
tation with efficient heuristic.

) For TSP, in each iteration, each ant should complete its solution
in N (¼ problem size) steps, and in each step, in average, it has
to probe N / 2 nodes by calling transition rules. It means that
each ant completes its solution in O(n2) time so the total time
complexity becomes O(n2 � number of iterations) that is too
high for applying the ACO to large instances. To solve this pro-
blem, researchers usually use candidates list for each position
[12,47]. This simple solution may aid ACO to increase its speed
but as it was said above, using fix candidates list can cause local
optima trap.

) Combining ACO algorithms with other meta-heuristics can en-
hance their performance. In recent years, local searches have
been utilized in ACO algorithms to increase quality of solutions.
Although this idea is very effective, enabling local searches to
utilize stored knowledge in pheromone trails can improve the
performance of ACO, even more.

4. New strategies for ACO

In this section, we try to eliminate the stated drawbacks by
suggesting three new strategies. These strategies, including new
representation, implementation, and designing efficient heuristics,
not only help ACO to apply to large-scale instances of TSP, but also
increase its performance including speed and produced solutions
quality.

4.1. The first strategy, using pheromone information in local search

In previous versions of ACO, local searches did not use pher-
omone information but it is logical that local search should be
able to use existing information when pheromone values are
ready to use. We can use pheromone values directly in local
searches. For example, if we use 2-opt as local search then we can
use transition rule value of edges instead of cost, but this approach
increases calculation only without any improvement, so we
suggest that it is better to use pheromone information in calcu-
lating candidates-sets that used by local search. By this approach,
local search can use dynamic candidates-set of best possible
nodes. Fig. 1 shows a better view about this approach. Based on
this approach, after each step, ACO should update candidates
according to pheromone information.

To apply this strategy, in each step, candidates-set of each node
Ant Colony Algorithm

pheromones

Local Search
Algorithm

Ants use local
search

Candidates-Sets

to update, uses pheromone values
information

mone values. (B) Proposed strategy suggests to use pheromone values.

olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

node 1 τ11 τ12 τ13 τ14

node 2 τ21 τ22 τ23 τ24

node 3 τ31 τ32 τ33 τ34

node 4 τ41 τ42 τ43 τ44

node 1 node 2 node 3 node 4

To

From

Fig. 2. Holding pheromone values for a problem of size four, using classical
method.

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

is updated based on Algorithm 2. At the first step, candidates-set
of each node is initialized using nearest-neighbors (For a node, its
first nearest-neighbor is located in the first place of candidates-set,
its second nearest-neighbor is located in the second place of
candidates-set and so on). Then after each other step, for a node n,
its corresponding nodes with maximum value of pheromone is
inserted into the first place of candidates-set of n. In addition,
successor node of n in the best tour is inserted into the first place
of candidates-set of n. Before each insertion, a node in the last
place of candidates-set of n should be removed (structure of the
candidates-set is similar a queue) and repetition is not allowed in
candidates-sets.

Algorithm 2. Candidates-set updating algorithm.
for each n in instance

best ¼ Iwhere ∀ J ≠ n then τ[n][J] r τ[n][I] //variable best is

argmax { τ[n][0], τ[n][1], … τ[n][size - 1]}
Remove the last node of candidates-set of node n.
Insert best into the first place of candidates-set of node n.
Remove the last node of candidates-set of node n.
Insert successor of n in best tour into the first of candidates-

set of node n.
end for

4.2. Second strategy, new representation for pheromone values

Previous versions of ACO were holding pheromone information
entirely in memory but it may be not possible for large instances.
In addition, we cope with a problem when we search pheromone
value with some conditions. For example, please assume a pro-
blem with four nodes. If we use classical method to holding
pheromone values like Fig. 2, to find the maximum (or minimum)
corresponding pheromone value from the first node, we have to
consider τ12, τ13 and τ14. When we have n nodes, then the time
complexity of O(n) is needed. If we want to find the maximum
corresponding pheromone value from each node, then we need
time complexity of O(n2).

To solve these problems, we should attend to the pheromone
values. Fortunately, majority of pheromone values are initiated τ0
and remained fix until the end of algorithm so it can be easily
concluded that we are faced with sparse matrix so we represent
pheromone values as (6).
⎧
⎨⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟() ()

()

τ
=

=

′ ()

pheromones i j cost of the best solution in initial phase
pheromones i j has not been updated

corresponding value of node j ini s list pheromones i j has been updated

,
1

, & ,

, , 6

0

Fig. 3 shows some parts of pheromone values of burma14, in-
stance from TSPLIB [61], after 300 iterations. For this instance, we
have τ =0 1.71�10�5. For ()τ 3,4 we have ()τ = × −3,4 5.65 10 5 because
this value has been updated along the algorithm and inserted to
spars matrix. For ()τ 1,8 , we have ()τ τ= = × −1,8 1. 71 100

5 because its
value has not been updated along algorithm and it has been re-
mained in its initial value. To find the maximum (or minimum)
corresponding pheromone value from the first node, we need to
consider only two values, instead thirteen.

Space complexity of stated method to implement pheromone
shows linear behavior. We probed this method in dealing with
Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
some instances and in all of them the number of inserted items to
spars matrix were less than 50�n, however to confide, we limit
the size of each node list to Max-Size (as a parameter). During the
algorithm, if for a list of pheromone trails of a node, the number of
pheromone trails that have value different from initial state be-
comes larger than Max-Size, then we cut the element with lower
pheromone value.

4.3. Third strategy, ACO speedup

Time complexity of selecting next move is a bottleneck of ACO
in some applications. In recent research, we try to solve this pro-
blem by using genetic crossover operator in body of ACO [54] but
we could not extend this approach to large instances. To speed up
this process, researchers also use candidate lists as Algorithm 3.

Algorithm 3. Usual algorithm to speed up transition rule.
Instructions for Antk, to select next node of node r:

1) Probe Eq. (4) for candidates of r at first and if choosing them is
impossible go to next step.

2) Probe Eq. (4) for all not visited nodes.
To operate more heuristically, in selection process, we rationalize
that if a node, say j, has been selected as the next node of i in the
previous steps so it has high chance to be selected as the next node
of i in the current step. According to this fact, to select next node of
i, algorithm should not only probe candidate list of node i but also
probe all nodes in corresponding list of node i in pheromone spars
matrix. For all nodes j in corresponding list of node i in pheromone
spars matrix, we have τ(i, j) ≠ τ0. It means that τ(i, j) is updated
along ACO then it can be concluded that node j have been selected
as the next node of node i in the previous steps and it is logical to
consider as the next node of i in the current step (Algorithm 4).
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Algorithm 4. Proposed algorithm to speed up transition rule.

In
H

F

Please cite t
Evolutionary
List of node 1 node: 2 node: 10
structions for Antk, to select next node of node r:

5-5.54×10value: 5-×107.1value:

it do-
main:{
.

.

1) Probe Eq. (4) for candidates of r at first and if
choosing of them are impossible, go to next step.

2) Probe Eq. (4) for all nodes in corresponding list of
node r in pheromone spars matrix and if choosing
of them are impossible, go to the next step.
 .

node: 4 node: 14
ault do-
main:{
3) Probe Eq. (4) for all not visited nodes.
.

.

.

List of node 3 value: 5.65×10-5

List of node 14

value: 5.44×10-5

node: 2
value: 6.41×10-5

node: 3
value: 5.44×10-5

Fig. 3. Some parts of spars matrix for pheromone values of burma14 after 300
iterations.
4.4. Proposed ACO

We define ACO as Algorithm 5 according to stated strategies in
previous section. We use the proposed new effective strategies in
ACO so we name it ESACO (Effective Strategies þ ACO). ESACO differs
with other ACO versions in three: 1) its pheromone space complexity
is linear. 2) It uses pheromone information in its local search (line
11). 3) It uses new method to next node selection (line 5).

Algorithm 5. Suggested ACO (ESACO) to solve large TSP instance.
1- Apply initialization;
2- for step ¼ 1 to Max-Iterations
3- for i ¼ 1 to number-of-nodes
4- for k ¼ 1 to number-of-ants
5- antk selects next edge according to Algorithm
4;

6- antk update corresponding pheromone value
of recent selected move by (3);

7- if i ¼ number-of-nodes
8- antk improve its tour by 2-opt local search;
9- end if
10- end for
11- end for
12- update global best tour;
10- update pheromone globally belong to the global best
tour;

11- update candidates-sets by Algorithm 2;
12- end for

5. Experimental results

In this section, we report experimental results of several ex-
periments that we set up to evaluate ESACO performance. We
selected TSP as a case study and picked up 22 instances from
TSPLIB [61]. We implemented ESACO by Cþþ language and used.
NET 2010; we ran all experiments on 2.0 GHZ Intel CPU with 1.0 G
RAM, under Microsoft Windows 7 system.

Subsection 5.1 reports the results of the experiment that had
been designed to estimate better possible values for α and ρ. We
evaluate performance of each proposed strategy separately. Sub-
sections 5.2 and 5.3 conclude efficiency of second and third stra-
tegies respectively. Subsection 5.4 compares ESACO with other
versions of ACO. Subsection 5.5 puts forward statistical results for
ESACO and finally subsection 5.6 shows efficiency of first strategy.

5.1. Parameters setting

For ESACO, similar to other meta-heuristics, the parameters
should be set with appropriate values. For ESACO, number of
nearest neighbors (of each node) ¼ 4, Max-Size ¼ 10. There is no
concern about these parameters, because ESACO dynamically up-
dates its candidates-sets using Algorithm 2. In order to have ap-
propriate run-time for large-scale instances, we set Max-Iterations
his article as: H. Ismkhan, Effective heuristics for ant c
Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
to 300, and number of ants is set to 10. For greater number of ants,
convergence of ACO becomes too time-consuming. Effects of the
parameter β on the performance of ESACO are predictable, because
high values for β increase the effects of distances between nodes,
so it causes to decrease effects of pheromone values. Therefore, we
set β to 2 and used an experiment to explore appropriate value for
α and ρ. So in this experiment, we explored appropriate values for
α and ρ using Algorithm 6. We applied this algorithm to lin318,
att532, pr1002 and pr2392. We set ∆ = ∆ =0.11 2 . In this experiment,
we ran this algorithm for 10 times. Figs. 4 and 5 show the average
cost and running time of these 10 runs for each corresponding α
and ρ by 3-dimensional surface diagram. In all diagrams of both
figures, violet color surface shows low cost and running time.
According to these diagrams deeply, we can easily found that in all
diagrams, the violet surface covers some coordinates specially (α
¼ 0.9, ρ ¼ 0.6). According to the results of this experiments we set
α ¼ 0.9 and ρ ¼ 0.6. In addition, after setting α and ρ, we
manually consider some values including 1.5, 2.0 and 2.5 for β.
Among these values, ESACO had better results with β¼2.0.

Algorithm 6. Algorithm to find best α and ρ.
for each test instance I

for α ¼ 0; αr1; α ¼ α þ∆1

for ρ¼0; ρ≤1; ρ ρ= + ∆2

Set αand ρas corresponding parameters of ESACO;
Solve I by ESACO for a number of iterations;
Record average cost for current α and ρ;

end for
end for
Report α and ρ for with the best average cost;

Report α and ρ for with the minimum average run-time;
end for

5.2. Second strategy analysis

Without using new representation for pheromone values it is
not possible to apply ESACO to the large-scale instances. Further-
more the space complexity of the above-mentioned method to
implement pheromone values is O(n), while holding whole of
pheromone in memory, which is common in the current versions
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

Fig. 4. Average cost for corresponding (α, ρ).

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

of ACO requires O(n2) space complexity. To examine the space
complexity of new representation of pheromone values, we ap-
plied ESACO to some large instances including fnl4461, pla7397,
and brd14051, then we observed that for each instance, the
number of inserted items into spars matrix was less than 50 � n.
This space complexity seems to be satisfactory. However, to con-
fide strongly, we limited the size of each node list to Max-Size (¼
10, as a parameter) it means that we limit space complexity to O
(Max-Size�n).

5.3. Third strategy analysis

To analyze the third strategy, we calculated hit rate by using
Eq. (7) for some instances from TSPLIB including Pr1002, fnl4461,
pla7397 and brd14051. For these instances, hit rate values were
greater than 0.97, which means that in only 3% of calling, all not
visited nodes have been probed and in 97%, next node has been
selected by probing only two Clr and P sets that have been de-
termined in Algorithm 4.

()
=

7
hit domain rate

number of calling next cityfunction in hit domoin
number calling second selection function
Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
5.4. Comparing ESACO with Recent ACO Versions

We have compared ESACO with recent ACO versions including
TSIACO [51], MMAS [47] and ACS [12]. In this experiment, in-
stances with size of less than 2000 have been considered because
the other versions of ACO were not applicable for larger sizes.
Table 1 gives some information about the used instances. Each
version has been applied to each instance for 30 times. Table 2
shows parameter setting for each version. Table 3 introduces the
experimental results including average, standard deviation (STDV)
and Wilcoxon signed ranks test result.

The three last columns in Table 3 have been specified for the
results of Wilcoxon signed ranks test at confidence level of 5% (if
the P-value is less than 0.05, then the difference is significant)
between ESACO results and each one of other versions. In these
columns the “þ” sign show that ESACO is significantly better than
other corresponding version of ACO and “�” shows that there is no
significant difference between ESACO and other version of ACO.
For none of instances, ESACO has been beaten.

For TSP, standard implementation of ACO algorithm has O(n2)
time complexity, increment by the size of instance [62] but in the
next sub section, based on performed experiment, we will show
that ESACO has very low running time increment by size. We will
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

Fig. 5. Average running time for corresponding (α, ρ).

Table 1
12 selected instances form TSPLIB.

Name Dimension Optimum Cost

eil51 51 426
eil76 76 538
kroA100 100 21282
lin105 105 14379
d198 198 15780
lin318 318 42029
pcb442 442 50778
att532 532 27686
rat783 783 8806
pr1002 1002 259045
fl1577 1577 22249
pr2392 2392 378032

Table 2
Parameters Setting.

Parameter ACS MMAS TSIACO ESACO

α 0.1 1.0 1.0 0.9
β 2.0 2.0 2.0 2.0
ρ 0.1 0.5 0.5 0.6
Local search 2-opt 2-opt 2-opt 2-opt
Num-Cndida 4 4 4 4
q0 0.9
Number of candidates for transition rule for ACS, MMAS and TSIACO is
20.

For MMAS, τmin, τmax, τ0 are set as in [47].
mb – – 5 –

clb 0.9 –

rb – – 5 –

a Num-Cndid: Number of candidates used in 2-opt.
b These parameters are for TSIACO.

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

show the speed of ESACO in dealing with very large instances in
the next section. In addition, according to Fig. 6, that introduces
the average running time of the considered versions of ACO in
performed experiment, ESACO is quicker than the other versions.
Diagram in Fig. 6 shows the speed of other versions are not
competitive with ESACO for size more than 1000.

In our experiment, Max-Iterations is 300, while MMAS may
have better accuracy for long runs. However, it should be noted
Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
that based on runtimes shown in Fig. 6, even with this number of
iterations, MMAS is slower than other versions. Therefore, at least,
we can conclude EASCO is quicker than MMAS.

In our experiments, we also used types of other meta-heuristics
such as a type of Particle Swarm Optimization (PSO) proposed in
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

Table 3
Compared results on instances with size of less than 2000.

ACS MMAS TSIACO ESACO Wilcoxon signed ranks test: ESACO vs

Average STDV Average STDV Average STDV Average STDV ACS MMAS TSIACO

eil51 426 0 426 0 426 0 426 0 � � �
eil76 538 0 538 0 538 0 538 0 � � �
kroA100 21282 0 21282 0 21282 0 21282 0 � � �
lin105 14411.63 43.62 14379 0 14379 0 14379 0 þ � �
d198 15983.5 200.67 15882.63 84.4 15832.77 16.85 15780 0 þ þ þ
lin318 42219.33 78.04 42278 98.33 42383.17 75.04 42058.2 45.86 þ þ þ
pcb442 50906.17 61.78 51011.63 46.54 50973.97 47.73 50792.3 32.65 þ þ þ
att532 27759.2 25.13 27815.77 72.48 27819.37 26.31 27698.97 10.09 þ þ þ
rat783 8845.37 14.47 8890.3 5.29 8903.03 9.81 8809.77 4.77 þ þ þ
pr1002 262150.97 420.5 262331.27 641.81 263334.1 519.06 259560.6 442.08 þ þ þ
fl1577 22581.9 83.51 22666.23 283.66 22744.97 128.56 22279.57 32.85 þ þ þ
pr2392 384325.83 641.22 384685.97 859.19 387170.03 800.01 379189.23 675.25 þ þ þ

0
50

100
150
200
250
300
350
400

5 1 7 6 1 0 0 1 0 5 1 9 8 3 1 8 4 4 2 5 3 2 7 8 3 1 0 0 2 1 5 7 7 2 3 9 2

TI
M

E
(S

)

SIZE

AVERAGE RUNNING TIME
ACS MMAS TSIACO ESACO

Fig. 6. Average run-times of the versions of ACO.

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

[63], named Improved Enhanced Self-Tentative PSO (IEST-PSO)
and a type of Artificial Bee Colony (ABC) algorithm proposed in
[44], which is a Hybrid Ant-Bee Colony (HBC) algorithm. The
Table 4
Results of ESACO for all instances.

Problem name Optimum Concorde-LK Best Average

cost Errc cost

eil51 426 426 426 0.000 426
eil76 538 538 538 0.000 538
kroA100 21282 21282 21282 0.000 21282
lin105 14379 14475 14379 0.000 14379
d198 15780 15878 15780 0.000 15780
kroA200 29368 29368 29368 0.000 29368
a280 2579 2594 2579 0.000 2579.1
lin318 42029 43066 42029 0.000 42053.9
pcb442 50778 51636 50778 0.000 50803.6
att532 27686 -n 27686 0.000 27701.2
rat783 8806 8833 8806 0.000 8809.75
pr1002 259045 260759 259045 0.000 259509
fl1577 22249 22870 22255 0.002 22292.8
fl3795 28772 29325 28787 0.001 28883.5
fnl4461 182566 183056 183254 0.004 183446
rl5915 565153 585203 567177 0.005 568935
pla7397 23260728 23633327 23345479 0.004 23389341
rl11849 923288 939937 928876 0.009 930338
usa13509 19982859 20043709 20172735 0.012 20195089
brd14051 469385 471170 473718 0.011 474087
d15112 1573084 1577204 1587150 0.009 1589288
d18512 645238 647471 652516 0.011 653154

n Concorde does not support ATT type.
b Standard deviation
c Err ¼ (value - optimum) / optimum
d ErrSTDV (or STDV Err) ¼ STDV / optimum

Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
results of IEST-PSO are not convinced. While we tried to enhance
its performance by combining 3-opt local search, the results of
IEST-PSOþ3-Opt were not convinced yet. While average error of
ESACO (which only uses 2-opt local search) for the first five in-
stances are zero, IEST-PSOþ3-opt only could gain average zero
error for the Eil51 (the first instance). The results of HBCþ3-opt
were better than IEST-PSOþ3-opt, but except for the first two
instances (eil51 and eil76), the result obtained by ESACO were
better than HBCþ3-opt for other remaining instances of this
experiment.

5.5. Large-scale instances and statistical results

To show applicability of ESACO, we applied it to some large-
scale instances. We ran this experiment for 20 times. We have
reported all experimental results for ESACO in Table 4. Results in
this table show that ESACO also have high accuracy in dealing with
large-scale instances. According to “Err” sub-column of “Average”
column, it can be easily seen that ESACO could solve all test
Worst STDVb Running Time (Sec)

Err cost Err cost ErrSTDVd

0.000 426 0.000 0.000 0.000 1.11775
0.000 538 0.000 0.000 0.000 1.3884
0.000 21282 0.000 0.000 0.000 2.6161
0.000 14379 0.000 0.000 0.000 1.9898
0.000 15780 0.000 0.000 0.000 6.50835
0.000 29368 0.000 0.000 0.000 4.65505
0.000 2581 0.001 0.733 0.00028 4.47645
0.000 42155 0.003 42.834 0.00102 10.1751
0.000 50954 0.004 64.215 0.00126 11.4644
0.000 27712 0.001 8.101 0.00029 23.0849
0.000 8817 0.003 6.883 0.00078 22.5959
0.001 260455 0.006 552.107 0.00213 35.8184
0.001 22522 0.002 10.559 0.00047 46.439
0.003 28994 0.007 51.142 0.00178 119.331
0.004 183637 0.006 122.266 0.00067 192.621
0.006 570911 0.011 965.671 0.00171 216.926
0.005 23476015 0.007 21694.114 0.00093 213.929
0.007 932258 0.009 742.573 0.0008 575.806
0.01 20221268 0.013 16453.184 0.00082 914.212
0.01 474517 0.011 229.824 0.00049 682.49
0.01 1590989 0.012 1153.602 0.00073 776.726
0.012 653891 0.014 396.461 0.00061 684.436

olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ei
l5

1
ei

l7
6

kr
oA

10
0

lin
10

5
d1

98
kr

oA
20

0
a2

80
lin

31
8

pc
b4

42
at

t5
32

ra
t7

83
pr

10
02

fl1
57

7
fl3

79
5

fn
l4

46
1

rl5
91

5
pl

a7
39

7
rl1

18
49

us
a1

35
09

br
d1

40
51

d1
51

12
d1

85
12

ESACO (Err×100) ESACO without First Sterategy (Err×100)

Fig. 7. Err of average cost: In performed experiment, for majority of instances,
ESACO has better results than the case without using first strategy.

0

0.1

0.2

0.3

0.4

0.5

0.6

ei
l5

1
ei

l7
6

kr
oA

10
0

lin
10

5
d1

98
kr

oA
20

0
a2

80
lin

31
8

pc
b4

42
at

t5
32

ra
t7

83
pr

10
02

fl1
57

7
fl3

79
5

fn
l4

46
1

rl5
91

5
pl

a7
39

7
rl1

18
49

us
a1

35
09

br
d1

40
51

d1
51

12
d1

85
12

(STDV/Optimum)×100

ESACO ESACO without First Sterategy

Fig. 8. Err of STDV�100: This diagram shows that in performed experiments,
ESACO is more stable than when it does not use first strategy. For majority of in-
stances ESACO line is under ESACO without first strategy.

0

200

400

600

800

1000

1200

1400

ei
l5

1
ei

l7
6

kr
oA

10
0

lin
10

5
d1

98
kr

oA
20

0
a2

80
lin

31
8

pc
b4

42
at

t5
32

ra
t7

83
pr

10
02

fl1
57

7
fl3

79
5

fn
l4

46
1

rl5
91

5
pl

a7
39

7
rl1

18
49

us
a1

35
09

br
d1

40
51

d1
51

12
d1

85
12

Time (Sec)

ESACO ESACO without First Strategy

Fig. 9. Runtime of ESACO with and without the first strategy.

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
instances under 0.02 errors while other ACO versions rarely have
been applied to instances with size larger than 1500.

In Table 4, “Err” sub-column of “average” column shows that
ESACO solves all instance even very large ones by less than 0.02
errors. Similarly, “ErrSTDV” sub-column of “STDV” column shows
that ESACO is very stable.

The last column in Table 4 shows that ESACO speed is significant;
it could solve all instances in less than 950 seconds. By having deep
look at this column, another advantage of ESACO may be revealed. To
explain in more details, for example, please consider the average
running time of rat783 and fl1577; the size of fl1577 is twice greater
than rat783 and its running time is about twice.

In addition, in Table 4, results of a run of LK of Concorde TSP
solver software version 1.12 is included. It can be easily seen that in
many cases, worst cost of ESACO is better than results gained by
Concorde.
2 Available at http://www.math.uwaterloo.ca/tsp/concorde/

Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
5.6. The effects of the first strategy

To show the effects of the first strategy, we tested ESACO with
and without the first strategy. We have introduced all results of
this experiment by three diagrams in Figs. 7–9. All these diagrams
validate advantage of the first strategy.

6. Conclusion

In this paper, we point out some critical drawbacks of current
ACO algorithms, which prevent ACO to apply to large-scale pro-
blems. The current implementation of pheromone is inefficient,
selecting next move by transition rule is very time consuming, and
local search used in ACO operates without effective use of pher-
omone values. These drawbacks increase ACO time and space
complexities, decrease its performance, and do not let it be applied
to large-scale instances.

In this paper, we propose some strategies including the new
implementation and effective heuristics for suggested ACO (ESACO).

In order to show efficiency of ESACO, we set up multiple ex-
periments using several standard instances of TSP. Experimental
results show that the proposed methodologies are effective. In
conducted experiments, ESACO achieved better performance than
other versions of ACO in terms of speed and accuracy, and when
the size of instance is being increased, the ESACO significantly
overcomes the other versions.

Results of applying ESACO to large instances show that ESACO
is quick, accurate, and applicable to solve very large instances up
to 20000 while other versions of ACO rarely have been applied to
the instances with size of more than 1500.
Acknowledgment

This work is supported by University of Bonab (contract num-
ber: 94/D/AP/543).
References

[1] D. Merkle, M. Middendorf, Ant colony optimization with global pheromone
evaluation for scheduling a single machine, Appl. Intell. 18 (1) (2003) 105–111.

[2] C. Blum, M. Sampels, An ant colony optimization algorithm for shop sche-
duling problems, J. Math. Model. Algorithms 3 (3) (2004) 285–308.

[3] M.J. Blesa, C. Blum, Finding edge-disjoint paths in networks: an ant colony
optimization algorithm, J. Math. Model. Algorithm 6 (3) (2007) 361–391.

[4] L.M. Gambardella, É.D. Taillard, M. Dorigo, Ant colonies for the quadratic as-
signment problem, J. Oper. Res. Soc. 50 (1999) 167–176.

[5] L.Y. Tseng, S.C. Liang, A hybrid metaheuristic for the quadratic assignment
problem, Comput. Optim. Appl. 34 (1) (2006) 85–113.

[6] C. Zhang, H. Yin, B. Zhang, A N ovel Ant Colony Optimization Algorithm for Large
Scale QoS-Based Service Selection Problem, Discret. Dyn. Nat. Soc. 2013 (2013) 1–9.

[7] C.Y. Lee, Z.J. Lee, S.W. Lin, K.C. Ying, An enhanced ant colony optimization
(eaco) applied to capacitated vehicle routing problem, Appl. Intell. 32 (1)
(2010) 88–95.

[8] J.J.D.L. Cruz, C.D.P. Arboleda, V. Cantillo, J.R.M. Torres, A two-pheromone trail
ant colony system—tabu search approach for the heterogeneous vehicle
routing problemwith time windows and multiple products, J. Heuristics 19 (2)
(2013) 233–252.

[9] M. Reed, A. Yiannakou, R. Evering, An ant colony algorithm for the multi-
compartment vehicle routing problem, Appl. Soft Comput. 15 (2014) 169–176.

[10] K.V. Narasimha, E. Kivelevitch, B. Sharma, M. Kumar, An ant colony optimi-
zation technique for solving min–max Multi-Depot Vehicle Routing Problem,
Swarm Evolut. Comput. 13 (2013) 63–73.

[11] M. Mavrovouniotis, S. Yang, A memetic ant colony optimization algorithm for the
dynamic travelling salesman problem, Soft Comput. 15 (7) (2011) 1405–1425.

[12] M. Dorigo, A.L.M. Gambardella, Ant colony system: a cooperative learning approach
to the traveling salesman problem, IEEE Trans. Evolut. Comput. 1 (1) (1997) 53–66.

[13] S. Ghafurian, N. Javadian, An ant colony algorithm for solving fixed destination
multi-depot multiple, Appl. Soft Comput. 11 (1) (2011) 1256–1262.

[14] E. Lizárraga, O. Castillo, J. Soria, A method to solve the traveling salesman pro-
blem using ant colony optimization variants with ant set partitioning, Recent
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref1
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref1
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref1
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref2
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref2
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref2
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref3
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref3
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref3
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref4
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref4
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref4
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref5
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref5
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref5
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref6
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref6
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref6
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref7
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref7
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref7
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref7
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref8
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref8
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref8
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref8
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref8
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref9
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref9
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref9
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref10
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref10
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref10
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref10
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref11
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref11
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref11
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref12
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref12
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref12
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref13
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref13
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref13
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref14
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref14
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

H. Ismkhan / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
Advances on Hybrid Intelligent Systems, Springer, Berlin Heidelberg, 2013.
[15] I. Ariyasingha, T. Fernando, Performance analysis of the multi-objective ant

colony optimization algorithms for the traveling salesman problem, Swarm
Evolut. Comput. 23 (2015) 11–26.

[16] H. Ismkhan, Accelerating the Ant Colony Optimization By Smart ANTs, Using
Genetic, CoRR, vol. abs/1411.2897, 2014.

[17] L. Ke, Z. Feng, Z. Ren, X. Wei, An ant colony optimization approach for the
multidimensional knapsack problem, J. Heuristics 16 (1) (2011) 65–83.

[18] Z.G. Rena, Z.R. Fengb, A.M. Zhanga, Fusing ant colony optimization with la-
grangian relaxation for the multiple-choice multidimensional knapsack pro-
blem, Inf. Sci. 182 (1) (2012) 15–29.

[19] G. Singh, N. Kumar, A. Verma, OANTALG: An Orientation Based Ant Colony
Algorithm for Mobile Ad Hoc Networks, Wirel. Personal. Commun. 77 (3)
(2014) 1859–1884.

[20] L.B. Romdhane, Y. Chaabani, H. Zardi, A robust ant colony optimization-based
algorithm for community mining in large scale oriented social graphs, Expert.
Syst. Appl. 40 (14) (2013) 5709–5718.

[21] H. Dongxiao, L. Jie, L. Dayou, J. Di and J. Zhengxue, Ant colony optimization for
community detection in large-scale complex networks, in Seventh Interna-
tional Conference on Natural Computation, Shanghai, 2011.

[22] A. Chowdhury, S. Das, Automatic shape independent clustering inspired by ant
dynamics, Swarm Evolut. Comput. 3 (2012) 33–45.

[23] K.M. Salama, A.A. Freitas, Classification with cluster-based Bayesian multi-nets
using Ant Colony Optimisation, Swarm Evolut. Comput. 18 (2014) 54–70.

[24] K. Cao, X. Yang, X. Chen, Y. Zang, J. Liang, J. Tian, A novel ant colony optimi-
zation algorithm for large-distorted fingerprint matching, Pattern Recognit. 45
(1) (2012) 151–161.

[25] M. Geetha, G. Nawaz, Fuzzy-ant based dynamic routing on large road net-
works, in International Conference on Pattern Recognition, Informatics and
Medical Engineering (PRIME), Salem, Tamilnadu, 2012.

[26] R. Jovanovic, M. Tuba, An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover pro-
blem, Appl. Soft Comput. 11 (8) (2011) 5360–5366.

[27] T. Liao, M.A.M.D. Oca, D. Aydin, T. Stutzle, An incremental ant colony algorithm
with local search for continuous optimization, Iridia-Tech. Report. Ser. (2011).

[28] X. Zhang, L. Wang, B. Huang, An improved niche ant colony algorithm for
multi-modal function optimization, in international symposium on in-
strumentation & measurement, sensor network and automation, 2012.

[29] J. Xiao, L.P. Li, A hybrid ant colony optimization for continuous domains, Ex-
pert. Syst. Appl. 38 (9) (2011) 11072–11077.

[30] W. Tfaili, P. Siarry, A new charged ant colony algorithm for continuous dy-
namic optimization, Appl. Math. Comput. 197 (2) (2008) 604–613.

[31] R.J. Mullen, D.N. Monekosso, S.A. Barman, P. Remagnino, Review: a review of
ant algorithms, Expert. Syst. Appl. 36 (6) (2009) 9608–9617.

[32] M. Mahi, Ö.K. Baykan, H. Kodaz, A new hybrid method based on Particle
Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for
Traveling Salesman Problem, Appl. Soft Comput. 30 (2015) 484–490.

[33] M. Mavrovouniotis, F. M. Müller and S. Yang, An Ant Colony Optimization
Based Memetic Algorithm for the Dynamic Travelling Salesman Problem, in
the 2015 on Genetic and Evolutionary Computation Conference, 2015.

[34] T. Saenphon, S. Phimoltares, C. Lursinsap, Combining new Fast Opposite Gra-
dient Search with Ant Colony Optimization for solving travelling salesman
problem, Eng. Appl. Artif. Intell. 35 (2014) 324–334.

[35] L. Zhou, L. Ding, X. Qiang, A Multi-population Discrete Firefly Algorithm to
Solve TSP, Bio-Inspired Computing - Theories and Applications, Springer,
Berlin Heidelberg 2014, pp. 648–653.

[36] M. Mavrovouniotis, Y. Shengxiang, Y. Xin, Multi-colony ant algorithms for the
dynamic travelling salesman problem, in IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments, 2014.

[37] W. D. Gang, P. X. qiang, G. Hong, Y. Z. Gui, A Hybrid Model for Solving TSP
Based on Artifiial Immune and Ant Colony, in International Confrence on
Computer Application and System Modeling (ICCASM 2010), Wuhan, 2009.

[38] J. Ouyang, G.-R. Yan, A multi-group ant colony system algorithm for TSP, in
Proceedings of 2004 International Conference on Machine Learning and Cy-
bernetics, 2004.

[39] X. Song, B. Li, H. Yang, Improved Ant Colony Algorithm and its Applications in
TSP, in Sixth International Conference on Intelligent Systems Design and Ap-
plications, 2006. ISDA’‘06, Jinan, 2006.

[40] L. Wang, Q. Zhu, An Efficient Approach for Solving TSP: the Rapidly Convergent
Ant Colony Algorithm, in Fourth International Conference on Natural Compu-
tation, Jinan, 2008.

[41] X. Li, J. Liao, M. Cai, Ant Colony Algorithm for Large Scale TSP, in International
Conference on Electrical and Control Engineering (ICECE), Yichang, 2011.

[42] D. Weyland, R. Montemanni, L.M. Gambardella, An Enhanced Ant Colony
System for the Probabilistic Traveling Salesman Problem, Bio-Inspired Models
of Network, Information, and Computing Systems, Springer International
Please cite this article as: H. Ismkhan, Effective heuristics for ant c
Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.swevo.2
Publishing 2014, pp. 237–249.
[43] C. Qi, An Ant Colony System Hybridized with Randomized Algorithm for TSP,

in Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, Qingdao, 2007.

[44] A.S. Girsang, C.-W. Tsai, C.-S. Yang, A Hybrid Ant-Bee Colony Optimization for
Solving Traveling Salesman Problem with Competitive Agents, Mobile, Ubiqui-
tous, and Intelligent Computing, Springer, Berlin Heidelberg 2014, pp. 643–648.

[45] L. Chen, H.-Y. Sun, S. Wang, A parallel ant colony algorithm on massively
parallel processors and its convergence analysis for the travelling salesman
problem, Inf. Sci. v199 (2012) 31–42.

[46] A. Uchida, Y. Ito, K. Nakano, Accelerating ant colony optimisation for the tra-
velling salesman problem on the GPU, Int. J. Parallel, Emergent Distrib. Syst. 29
(4) (2014) 401–420.

[47] T. Stützle, H.H. Hoos, Max-min ant system, Future Gener. Comput. Syst. Arch.
16 (9) (2000) 889–914.

[48] L. L. S. Ju, Y. Zhang, Improved ant colony optimization for the traveling
salesman problem, in International conference on intelligent computation
technology and automation, 2008.

[49] Z. Cai, H. Huang, Ant colony optimization algorithm based on adaptive weight
and volatility parameters, in the 2008 second international symposium on
intelligent information technology application, 2008.

[50] N. Ivkovic, M. Golub, A New Ant Colony Optimization Algorithm: Three Bound
Ant System, Lect. Notes Comput. Sci. 8667 (2014) 280–281.

[51] Z. Zhang, Z. Feng, Two-stage updating pheromone for invariant ant colony
optimization algorithm, Expert. Syst. Appl. 39 (1) (2012) 706–712.

[52] H.M. Naimi, N. Taherinejad, New robust and efficient ant colony algorithms:
using new interpretation of local updating process, Expert. Syst. Appl. 36 (1)
(2009) 481–488.

[53] Z. Wu, N. Zhao, G. Ren, T. Quan, Population declining ant colony optimization
algorithm and its applications, Expert. Syst. Appl. 36 (3) (2009) 6276–6281.

[54] H. Ismkhan, K. Zamanifar, Using ants as a genetic crossover operator in gls to
solve stsp, in International conference of soft computing and pattern re-
cognition, 2010.

[55] T. Stützle, Parallelization strategies for ant colony optimization, Lect. notes
Comput. Sci. 1498 (1998) 722–731.

[56] M. Craus, L. Rudeanu, Parallel framework for ant-like algorithms, in Third
International Symposium on/Algorithms, Models and Parallel and Distributed
Computing/Third International Workshop on Tools for Parallel Computing on
Heterogeneous Networks, 2004.

[57] H. Koshimizu, T. Saito, Parallel ant colony optimizers with local and global
ants, in international joint conference on neural networks, 2009.

[58] E. Alba, F. Chicano, ACOhg: Dealing with Huge Graphs, in Proceedings of the
9th annual conference on Genetic and evolutionary computation (GECCO’‘07),
London, England, United Kingdom, 2007.

[59] X. Jie, L. Caiyun, C. Zhong, A new parallel ant colony optimization algorithm
based on message passing interface, in the 2008 ieee pacific-asia workshop on
computational intelligence and industrial application, 2009.

[60] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony
optimization, Appl. Soft Comput. 11 (8) (2011) 5181–5197.

[61] G. Reinelt, Tsplib—a traveling salesman problem library, Orsa J. Comput. 3
(1991) 376–384.

[62] Y. Zhou, Runtime analysis of an ant colony optimization algorithm for tsp
instances, IEEE Trans. Evolut. Comput. 13 (5) (2009) 1083–1092.

[63] J.-w. Zhang, W.-j. Si, Improved Enhanced Self-Tentative PSO Algorithm for TSP, in
Sixth International Conference on Natural Computation, Yantai, Shandong, 2010.

Hassan Ismkhan He is instructor of Faculty of En-
gineering, University of Bonab since 2011. His teaching
courses include Data Structures, Algorithm Design and
Theory of Formal Languages and Automata. His re-
search interests include Evolutionary Algorithms,
Clustering Algorithms and Operational Research.
olony optimization to handle large-scale problems, Swarm and
016.06.006i

http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref14
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref15
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref15
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref15
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref15
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref16
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref16
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref16
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref17
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref17
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref17
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref17
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref18
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref18
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref18
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref18
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref19
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref19
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref19
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref19
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref20
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref20
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref20
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref21
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref21
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref21
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref22
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref22
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref22
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref22
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref23
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref23
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref23
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref23
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref24
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref24
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref25
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref25
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref25
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref26
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref26
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref26
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref27
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref27
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref27
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref28
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref28
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref28
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref28
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref29
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref29
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref29
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref29
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref30
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref30
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref30
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref30
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref31
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref31
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref31
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref31
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref31
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref32
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref32
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref32
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref32
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref33
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref33
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref33
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref33
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref34
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref34
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref34
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref34
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref35
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref35
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref35
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref36
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref36
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref36
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref37
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref37
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref37
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref38
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref38
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref38
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref38
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref39
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref39
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref39
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref40
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref40
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref40
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref41
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref41
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref41
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref42
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref42
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref42
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref43
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref43
http://refhub.elsevier.com/S2210-6502(16)30058-X/sbref43
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006
http://dx.doi.org/10.1016/j.swevo.2016.06.006

	Effective heuristics for ant colony optimization to handle large-scale problems
	Introduction
	Related works
	ACO drawbacks
	New strategies for ACO
	The first strategy, using pheromone information in local search
	Second strategy, new representation for pheromone values
	Third strategy, ACO speedup
	Proposed ACO

	Experimental results
	Parameters setting
	Second strategy analysis
	Third strategy analysis
	Comparing ESACO with Recent ACO Versions
	Large-scale instances and statistical results
	The effects of the first strategy

	Conclusion
	Acknowledgment
	References

