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Abstract

The p-hub center location problem aims to locate p hubs and allocate other nodes to these hub n-

odes in order to minimize the maximal travel time. It is more important for time-sensitive distribution

systems. Due to the presence of uncertainty, more researches are recently focused on the problem in non-

deterministic environment. This paper joins the research stream by considering travel times as uncertain

variables instead of random variables or fuzzy ones. The goal is to model the p-hub center problem based

on experts’ subjective belief in the case of lack of data. The uncertain distribution of the maximal travel

time is first derived and then a chance constrained programming model is formulated. The deterministic

equivalent forms are further given when the information of uncertainty distributions is provided. A hy-

brid intelligent algorithm is designed to solve the proposed models and numerical examples are presented

to illustrate the application of this approach and the effectiveness of the algorithm.

Keywords: uncertainty modelling; p-hub center location problem; uncertain variable; uncertain mea-

sure; chance-constrained programming.

1 Introduction

Hubs are, in practice, commonly used in transportation, logistics, telecommunication systems and serves

as consolidation, switching and sorting centers in a complex system (Campbell et al., 2007). The p-hub

center location problem involves the location of hub facilities and the routing from origins to destinations to

minimize the maximal travel time (or cost, distance, etc.) between any origin-destination pair. The problem

is useful for time-sensitive distribution systems such as emergency services, express mail service or timely

delivery of perishable products (Campbell et al., 2007). Therefore, since it was initialized by Campbell

(1994), more research interests are draw to study and extend the problem. The latest review can be found

in Compbell and O’Kelly (2012) and Farahani et al. (2013).

In general, hub location problems are strategic in nature, which implies that the travel times may change

with time. Therefore, it is meaningful to consider the problem within an uncertain environment. One

main stream of research is to deal with uncertainty as randomness, i.e., stochastic p-hub center location

problem. Sim et al. (2009) was first one to present stochastic p-hub center problem and established a chance-

constrained programming with service-level constraints. Then Yang et al. (2011) extended the problem by

assuming discrete random travel time, and Hult et al. (2013) developed exact solution approaches based on

variable reduction and a separation algorithm to solve an uncapacitated single allocation case.
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Another stream of research is to study p-hub center location problem in fuzzy environment. For instance,

Yang et al. (2013a) first proposed a fuzzy p-hub center problem in which the travel times are characterized

by normal fuzzy vectors. Based on the same setting, Yang et al. (2013b) further presented a risk aversion

formulation by adopting value-at-risk criterion in the objective function. By using the criterion, Yang et al.

(2014) recently developed a robust optimization method to describe travel times by employing parametric

possibility distributions. Similarly, Bashiri et al. (2013) considered a hybrid approach to the capacitated

case with fuzzy data and employed genetic algorithm to solve the problem.

In practice, there are often lack of data about future changes or the implementation will take consid-

erable time or cost. A more feasible and economic way is to estimate the parameters by experts based on

their subjective information and experiences. Liu (2010) proposed uncertainty theory to describe such a

nondeterministic phenomena. Since then, uncertainty theory has been applied to practical problems such

as Chen et al. (2012) and Gao et al. (2015) as a new approach dealing with uncertainty. Gao (2011)

introduced the shortest path problem and gave the uncertainty distribution of the shortest path length, and

Gao (2012) proposed single facility location model in which products assignment is evaluated by the concept

of satisfaction degree. Wen et al. (2014) presented chance-constrained formulation for capacitated facility

location-allocation problem when demands are uncertain. Han et al. (2014) studied the maximum flow in

an uncertain network in which arc capacities are uncertain variables.

This paper focuses on the single allocation p-hub center location problem with lack of data about travel

times. Instead of estimating the travel times by statistical methods, this paper assume that these quantities

are evaluated by domain experts. Specifically, in the framework of uncertainty theory, this paper regards

the travel times between the origins and destinations as uncertain variables and propose a new formulation

for the problem. Chance constrained programming approach is employed to model the problem and further

formulate an uncertain optimization model for decision makers. The proposed model is then transformed to

deterministic equivalent forms when uncertainty distributions are provided. In order to solve these models,

we design a hybrid intelligent algorithm by combining principle of nearby into genetic algorithm.

The rest of the paper is organized as follows. In Section 2, we first formulate a chance constrained

programming model and then discuss its deterministic equivalent forms. Sections 3 provides a heuristic

solution procedure to solve the proposed models. In Section 4, numerical examples are given to illustrate

the application and effectiveness of the proposed models. A brief conclusion is given in Section 5 and finally

some necessary preliminaries are given in Appendix.

2 Uncertain p-hub Center Problem

This section is divided into three subsections. The first subsection describes the p-hub center location

problem in uncertain environment, the second one formulates a chance constrained programming model,

and the third one discusses the deterministic equivalent forms of the proposed model.

2.1 Problem Description

Assume that there are n nodes in the network and the number of hubs to locate is given exogenously and

denoted by p. Let ηij be the travel time on the link from node i to j, which is considered as an uncertain

variable defined on the uncertainty space (Θ,P,M). A path i → k → m → j represents a unit of demand

originating at node i destined for j traveling through hub k first then hub m. If α is a discount factor denoting

economies of scale on the inter-hub linkage, then the total travel time on this path is ηik+αηkm+ηmj which
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is also an uncertain variable. Note that k = m implies that only one hub is used and naturally the discount

vanishes.

The decision variable xik is introduced as a binary variable to represent the assignment of node i to hub

k for i, k = 1, 2, · · · , n. Here xkk = 1 indicates that node k is assigned to itself and it is actually a hub node.

We assume that all of hub nodes are connected to one another, however, any two non-hub nodes are never

connected directly. Moreover, each non-hub node is assigned to a single hub. In addition, there is no cost

for setting up hubs and there are no capacity limits.

If all the travel time ηij are all known in advance, i.e., deterministic values, the uncertain p-hub center

location problem becomes to a traditional deterministic one, the aim of which is to minimize the maximal

travel time. We denote the travel time by wij in this part. Typically, the deterministic p-hub center problem

can be formulated as 

min
x

f(w,x) = max
i,j,k,m

{(wik + αwkm + wmj)xikxjm}

s.t.
∑n
k=1 xkk = p (i)∑n
k=1 xik = 1, i = 1, 2, · · · , n (ii)

xik ≤ xkk, i, k = 1, 2, · · · , n (iii)

xik = {0, 1}, i, k = 1, 2, · · · , n (iv)

(1)

where w = (wij) and x = (xij), i, j = 1, · · · , n.

For model (1), the objective function f(w,x) represents the maximal travel time between two nodes in

the p-hub location x. Constraint (i) stipulates that exactly p hub nodes are chosen and constraints (ii)

stipulate that non-hub node i is assigned to precisely one hub node. Constraints (iii) enforce that node i is

assigned to a hub node at k only if a hub is located at node k. Finally, constraints (iv) define the decision

variable types. For sake of simplicity, we write

X = {x|x satisfies constraints (i), (ii), (iii) and (iv) of model (1)} ,

which is the collection of all feasible solutions of p-hub center location problem.

Denote by x∗ the optimal solution of model (1). Then the optimal objective value of model (1) can be

expressed as follows

F (w) = f(w,x∗) = min
x∈X

f(w,x). (2)

In other words, considering all the feasible solutions, F (w) represents the minimum value of maximal travel

time. Furthermore, F (w) is determined by the number of nodes n, the number of hubs p and link travel

times w. It is easy to verify that F (w) is a strictly increasing function with regard to wij , i, j = 1, · · · , n.

More precisely, for given w = (wij) and w′ = (w′ij), F (w) has the following monotonicity,

(1) F (w) ≤ F (w′) when wij ≤ w′ij for all i, j = 1, · · · , n;

(2) F (w) < F (w′) when wij < w′ij for all i, j = 1, · · · , n.

Generally speaking, if some links’ travel times increase, then the maximal travel time will not necessarily

increase. However, if all the travel times increase, then it is certain that the maximal travel time will increase.

As a result, the monotonicity of F (w) is a natural thing.

If the travel times are not deterministic values, i.e., w = (wij) being replaced with uncertain travel

times η = (ηij), i, j = 1, 2, · · · , n, then model (1) will not work. This is because the travel time of path

i → k → m → j, namely, (ηik + αηkm + ηmj), is an uncertain variable, and we can not compare uncertain

variables in a similar way to compare deterministic ones. Moreover, we may not find a p-hub location x∗

3

 

 

 



  

which has a minimum value of the maximal travel time in all situations. In order to modify model (1) in

uncertain environment, next we first consider the uncertainty distribution of the maximal travel time.

Since in the uncertain environment ηij may take many different values, the minimum value of maximal

travel time F (η) may naturally take different values. As a result, a more meaningful way is to investigate

the uncertainty distribution of F (η), which is denoted by Ψ(t), i.e.

Ψ(t) = M{F (η) ≤ t},

where t is a positive real number.

Assume that ηij has a regular uncertainty distribution Φij(t) for i, j = 1, · · · , n. Since F is a strictly

increasing function, according to the operational law of uncertain variables (Lemma 1 in Appendix), the

inverse uncertainty distribution function Ψ−1(β) of F (η) can be calculated by

Ψ−1(β) = F (Φ−1β ), β ∈ (0, 1)

where Φ−1β = (Φ−1ij (β)), i, j = 1, · · · , n. According to formula (2), Ψ−1(β) can be specifically expressed as

Ψ−1(β) = min
x∈X

f(Φ−1β ,x). (3)

Obviously, Ψ−1(β) is just the optimal value of model (1) with wij = Φ−1ij (β), i, j = 1, · · · , n. Via formula (3),

we can numerically obtain Ψ−1(β), β ∈ (0, 1), which is the inverse function of Ψ(t).

2.2 Formulation of Chance Constrained Programming

In the uncertain environment, the decision makers sometimes need to determine a time level T̄ , such that

there exists a p-hub location x satisfying M{f(η,x) ≤ T̄} ≥ β where β is a predetermined chance level.

For instance, given β = 0.9, the decision makers have to determine a time level T̄ and then choose a p-hub

location x satisfying M{f(η,x) ≤ T̄} ≥ 0.9. That is to say, if the decision makers choose the p-hub location

x, then the travel time between any two nodes will be lower than T̄ with a chance of at least 90%. Of course,

for a given chance level β, the decision makers always wish to determine a sufficiently low time level T̄ .

With that in mind, Charnes and Cooper (1959) proposed the method of chance constrained programming,

which has been developed as a major approach to model uncertain decision systems. To further investigate

the uncertain models, we first give a concept of β-optimal p-hub location.

Definition 1. For a p-hub center location problem with uncertain link travel time η, given chance level β,

the feasible solution x∗ is called the β-optimal p-hub location, if for any feasible solution x, the solution x∗

satisfies

T̄ = min
{
T |M {f(η,x∗) ≤ T} ≥ β

}
≤ min

{
T |M {f(η,x) ≤ T} ≥ β

}
,

where f(η,x) = max
i,j,k,m

{(ηik + αηkm + ηmj)xikxjm}.

Based on the idea of Definition 1, the following uncertain chance constrained programming (UCCP) for

the p-hub center location problem is meaningful and suitable, i.e.,

(UCCP)


min T̄

s.t. M{f(η,x) ≤ T̄} ≥ β, (v)

x ∈ X,

(4)

It is easy to see that the optimal solution of model (4) is just the β-optimal p-hub location.
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2.3 Deterministic Equivalent Forms

Similar to stochastic situation (Sim et al., 2009), we assume that the travel time on each link is independent

of those on all other links of the network. The sense of independence is given in Definition 3 in the framework

of uncertainty theory. Then we present the deterministic equivalent forms of Model UCCP when there are

more information about the uncertainty distributions of the travel times.

Theorem 1. Suppose that travel times ηij (i, j = 1, 2, · · · , n) are mutually independent uncertain variables

with regular uncertainty distributions Φij, respectively. Then Model UCCP is equivalent to the following

deterministic integer programming model,
min T̄

s.t. [Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β)]xikxjm ≤ T̄ , i, j, k,m = 1, 2, · · · , n

x ∈ X.

(5)

Proof: Note that for any x ∈ X, f(η,x) = max
i,j,k,m

{(ηik + αηkm + ηmj)xikxjm} is a strictly increasing

function with ηij , i, j = 1, 2, · · · , n. Denote by Ψx(t) the uncertainty distribution of f(η,x). According to

Lemma 1, Ψx(t) has an inverse uncertainty distribution

Ψ−1x (β) = f(Φ−1β ,x) = max
i,j,k,m

{
(Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β))xikxjm

}
, (6)

where Φ−1β = (Φ−1ij (β)), i, j = 1, 2, · · · , n. According to the definition of uncertainty distribution, the

constraint (v) of Model UCCP can be rewritten as

Ψx(T̄ ) = M{f(η,x) ≤ T̄} ≥ β. (7)

It follows from the definition of regular distribution (Definition 2 in Appendix) that Ψx(Ψ−1x (β)) = β. Since

the uncertainty distribution Ψx(t) is an increasing function with t, formula (7) can be reformulated as

Ψ−1x (β) ≤ T̄ .

That is,

max
i,j,k,m

{
(Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β))xikxjm

}
≤ T̄ ,

which is equivalent to

[Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β)]xikxjm ≤ T̄ , i, j, k,m = 1, 2, · · · , n.

The proof is completed. �

Theorem 1 states that as long as the uncertainty distribution of each travel time is obtained, Model

UCPP can be converted into a deterministic mathematical programming. Further, if these travel times have

the same type of uncertainty distributions, then we can obtain a simpler form. Next three corollaries are

given when all the uncertainty distributions are linear, zigzag and normal, respectively.

Corollary 1. If the travel times ηik = L(aik, bik), ηkm = L(akm, bkm) and ηmj = L(amj , bmj) are mutually

independent linear uncertain variables, then Model UCPP is equivalent to the following form,

min T̄

s.t. T̄ ≥ (1− β)akmij + βbkmij , i, j, k,m = 1, 2, · · · , n

(aik + αakm + amj)xikxjm = akmij , i, j, k,m = 1, 2, · · · , n

(bik + αbkm + bmj)xikxjm = bkmij , i, j, k,m = 1, 2, · · · , n

x ∈ X.

(8)
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Corollary 2. If the travel times ηik = Z(aik, bik, cik), ηkm = Z(akm, bkm, ckm) and ηmj = Z(amj , bmj , cmj)

are mutually independent zigzag uncertain variables, then when 0 < β ≤ 0.5, Model UCPP is equivalent to

the following form, 

min T̄

s.t. T̄ ≥ (1− 2β)akmij + 2βbkmij , i, j, k,m = 1, 2, · · · , n

(aik + αakm + amj)xikxjm = akmij , i, j, k,m = 1, 2, · · · , n

(bik + αbkm + bmj)xikxjm = bkmij , i, j, k,m = 1, 2, · · · , n

x ∈ X.

(9)

and when 0.5 ≤ β ≤ 1, Model UCPP is equivalent to the following one,

min T̄

s.t. T̄ ≥ (2− 2β)bkmij + (2β − 1)ckmij , i, j, k,m = 1, 2, · · · , n

(bik + αbkm + bmj)xikxjm = bkmij , i, j, k,m = 1, 2, · · · , n

(cik + αckm + cmj)xikxjm = ckmij , i, j, k,m = 1, 2, · · · , n

x ∈ X.

(10)

Corollary 3. If the travel times ηik = N (eik, σik), ηkm = N (ekm, σkm) and ηmj = N (emj , σmj) are mutually

independent normal uncertain variables, then Model UCPP is equivalent to the following form,

min T̄

s.t. T̄ ≥ ekmij +

√
3

π
ln

(
β

1− β

)
σkmij , i, j, k,m = 1, 2, · · · , n

(eik + αekm + emj)xikxjm = ekmij , i, j, k,m = 1, 2, · · · , n

(σik + ασkm + σmj)xikxjm = σkmij , i, j, k,m = 1, 2, · · · , n

x ∈ X.

(11)

Assume that x∗ is the optimal solution to model (5) and T̄ ∗ is the corresponding optimal objective value.

The following equation always holds,

T̄ ∗ = max
i,j,k,m

{
(Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β))x∗ikx

∗
jm

}
.

Consequently, we may obtain the following conclusion.

Theorem 2. The optimal solution of Model UCCP is just that of the following model min f(Φ−1β ,x) = max
i,j,k,m

{
(Φ−1ik (β) + αΦ−1km(β) + Φ−1mj(β))xikxjm

}
s.t. x ∈ X.

(12)

Remark 1. Comparing with model (1), Theorem 2 states that given a chance level β, model (12) equivalently

presents a deterministic p-hub center location problem with n nodes and the link travel times are Φ−1β =

(Φ−1ij (β)), i, j = 1, 2, · · · , n.

Remark 2. Comparing with formula (3), it can be observed that for any given chance level β, the optimal

objective value of Model UCCP is just equal to Ψ−1(β), in which Ψ−1 is the inverse uncertainty distribution

of F (η).
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3 Solution Procedure

As stated in the above section, to solve the Model UCCP, we can first transform it into a deterministic p-hub

center location model based on the given uncertainty distributions. In this section, we will propose a hybrid

intelligent algorithm, which combines the principle of nearby and the genetic algorithm (GA), to solve the

transformed optimization models.

3.1 Principle of Nearby

In order to improve the efficiency of the algorithm, we propose a principle of nearby which means that each

non-hub node is assigned to the hub node that is nearest to it. Actually, this principle is widely adopted in

practice, no matter in location problems or not. In general, the item that is nearest naturally comes first in

the practical decisions. However, it is worth pointing out that the principle of nearby may not ensure that

a feasible solution is optimal. We consider the example shown in Figure 1 in which nodes a, b and c are hub

nodes. In Case 1, the assignment of non-hub nodes follows the principle of nearby, and the longest path is

e → b → c → f whose travel time is 13. In Case 2, the longest path is e → a → f whose travel time is

12. Although sometimes it does not provide an optimal solution, it does provide a pretty good one, which

is closer to the optimal solution.

e

b

d

f

a

c

3

5

3
5

5

3

e

b

d

f

a

c

3

6

3

6

5

3

Case  1 Case  2

Figure 1: An illustration of principle of nearby.

We only adopt this principle in the process of the assignment of non-hub nodes, i.e., to assign non-hub

nodes to hub nodes in the process of initialization and crossover of GA. Since the principle may lead to

non-optimal solutions, we do not use it to generate all solutions in the process of the algorithm. To be

more precise, we set a probability level Ppn in advance. Once an assignment for non-hub node is needed, a

random number r ∈ (0, 1) is first generated. If r < Ppn, then the principle of nearby is adopted to generate

an assignment for the non-hub node. Otherwise, the assignment is randomly generated.

3.2 Hybrid Intelligent Algorithm

In this part, we propose a hybrid intelligent algorithm by combining the principle of nearby into the genetic

algorithm. Genetic algorithm (Holland, 1975) is a stochastic search method based on the mechanics of natu-

ral selection and natural genetics. It has the characteristics of searching the optimal solution globally and is

easy to be combined with other algorithms. As a result, GA has achieved considerable success in providing

optimal or near-optimal solutions to many complex optimization problems (Gen and Cheng, 2000) since it
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was proposed. A typical GA first requires a representation of the solution and a fitness function to evalu-

ate the solutions, and then is implemented by the process of initialization, selection, crossover and mutation

operations. The key procedures and genetic operations of the hybrid intelligent algorithm is stated as follows.

Coding Rule: In the p-hub center location problem, we use a 2n-dimensional array to represent a chro-

mosome (i.e., a solution). The array consists of two parts: Hub-Array and Assign-Array. The former one

contains n bits and each bit indicates whether the corresponding node is a hub. In other words, if the value

of the kth bit is 1, then node k is a hub node; otherwise, the node k is a non-hub node. The latter one also

contains n bits and the value in each bit position indicates the number of hub location that the corresponding

node is assigned to. It is worth pointing out that each hub node is assigned to itself in the Assign-Array.

This is an effective representation since it can guarantee the feasibility of each chromosome. It was used

first by Topcuoglu et al. (2005) for deterministic hub location problem and then by Yang et al. (2013b) for

fuzzy hub center problem. Figure 2 illustrates a possible structure of a chromosome for the problem with

10 nodes and 3 hubs. In this figure, nodes 2, 6 and 9 are chosen as hubs. Hence, the corresponding bits of

0 1 0 0 0 1 0 0 1 0 2 2 9 9 2 6 2 6 9 6

Hub‐Array Assign‐Array

Figure 2: A potential code of a chromosome with 10 nodes and 3 hubs.

the chromosome are set equal to 1 and 0 otherwise. In the Assign-Array, the first bit is “2”, which implies

that non-hub node 1 is assigned to hub node 2. In addition, “2” in the second bit indicates that hub node

2 is assigned to itself.

Initialization Process: In this work, we assume that the number of hubs is exogenously given as p. Denote

by pop size the population size. In the initialization process, we need to generate pop size chromosomes

to construct an initial population. The following process is repeated for pop size times to obtain the first

generation and each time will generate a feasible chromosome.

Step 1: Generate a Hub-Array by randomly choosing p different nodes and set the value of bits in the

Hub-Array following the Coding Rule.

Step 2: Generate a random number r ∈ (0, 1). If r < Ppn, then assign non-hub nodes according to the

principle of nearby and then generate the Assign-Array following the Coding Rule. If r ≥ Ppn, then

generate the Assign-Array by randomly assigning each non-hub node to only single hub node.

Crossover Operation: Let Pc be the probability level for the selection of parent chromosomes to be

crossed over. Typically, a real number rc ∈ (0, 1) is randomly generated first. If rc < Pc, randomly select

two chromosomes i and j as the parents to crossover. Two offsprings i′ and j′ are produced according to

the following procedure (See Figure 3):

Step 1: Construct a set H of hub nodes by merging two sets of hub nodes represented by two parent

chromosomes.

Step 2: Randomly select hub nodes from H to produce two new Hub-Arrays which are as the hub nodes of

two offsprings i′ and j′.
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Step 3: Generate a random number r ∈ (0, 1). If r < Ppn, Assign-Arrays of two offsprings i′ and j′ are

respectively generated following the principle of nearby. If r ≥ Ppn, Assign-Arrays of offsprings i′ and

j′ are respectively generated by randomly assigning each non-hub node to only single hub node.

0 1 0 0 0 1 0 0 1 0 2 2 9 9 2 6 2 6 9 6 0 1 1 0 0 0 1 0 0 0 2 2 3 3 3 2 7 2 7 7

0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0

0 1 1 0 0 1 1 0 1 0

0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0

Merge

0 1 1 0 0 0 0 0 1 0 2 2 3 3 2 9 2 9 9 3 0 0 1 0 0 1 1 0 0 0 3 6 3 3 6 6 7 7 6 7

Generate new chromosomes

Chromosome i Chromosome j

Chromosome i’ Chromosome j’

Crossover

Candidate of hub nodes

Hub Assignment Mechanism

Randomly select hub nodes

Figure 3: An illustration of crossover operation

The above crossover operation is repeated for pop size/2 times. Next we take Figure 3 as an example to

interpret the whole process. Note that the nodes 2, 6 and 9 are hubs for chromosomes i and nodes 2, 3 and

7 are hubs for chromosomes j. Then, the union of hub sets is H = {2, 3, 6, 7, 9}, which is the candidate set

of hub nodes for the offsprings. In other words, two offsprings have to choose the nodes from H as hubs. In

this figure, two new Hub-Arrays are produced, and their hub nodes are {2, 3, 9} and {3, 6, 7}, respectively.

Further, two Assign-Arrays are regenerated following the hub assignment mechanism stated in Step 3. Fi-

nally, two new chromosomes i′ and j′ are obtained by the crossover operation.

Mutation Operation: Two types of mutation operations are adopted in our algorithm, namely hub node

mutation and non-hub node mutation. The corresponding probability levels of these two mutations are set

Pm and P ′m, respectively.

0 1 0 0 0 1 0 0 1 0 2 2 9 9 2 6 2 6 9 6

0 1 0 0 0 1 0 0 1 0 6 2 9 9 2 6 2 2 9 6

Mutation

0 1 0 0 0 1 0 0 1 0 2 2 9 9 2 6 2 6 9 6

0 0 0 1 0 1 0 0 1 0 4 4 9 4 4 6 4 6 9 6

Mutation

Figure 4: An illustration of hub node mutation

For the hub node mutation, one hub node and one non-hub node of one chromosome are randomly chosen,

the positions of which are then exchanged. Specifically, the original hub node becomes a non-hub node, and

meanwhile the original non-hub node becomes a hub node. Then, the non-hub nodes that were assigned to

original hub node are reassigned to the new hub node. In the example given by Figure 4, node 2 can be

replaced by node 4 as a hub node in order to avoid repetition and maintain a balance of number of assigned
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nodes to hubs. After the mutation, the non-hub nodes 1, 2, 5 and 7 that were assigned to node 2 are now

reassigned to the new hub node 4. Naturally, node 4 is also reassigned to itself.

For the hub node mutation, we will keep the hub nodes unchanged and randomly choose two non hub

nodes that are assigned to different hubs. Then we exchange these two non-hub nodes. An illustration in

Figure 5 shows that non-hub nodes 1 and 8 are chosen then reassigned to hub nodes 6 and 2, respectively.

0 1 0 0 0 1 0 0 1 0 2 2 9 9 2 6 2 6 9 6

0 1 0 0 0 1 0 0 1 0 6 2 9 9 2 6 2 2 9 6

Mutation

1 0 0 0 1 0 0 0 1 0 1 5 9 9 5 9 1 1 9 5

0 0 0 1 1 0 0 0 1 0 4 5 9 4 5 9 4 4 9 5

Mutation

Figure 5: An illustration of non-hub node mutation

In our algorithm, the mutation operation is processed in the following two steps,

Step 1: Randomly generate a real number r1 ∈ (0, 1). If r1 < Pm, then carry out the hub node mutation.

Otherwise, go to Step 2.

Step 2: Randomly generate a real number r2 ∈ (0, 1). If r2 < P ′m, then carry out the non-hub node

mutation. Otherwise, keep the chromosome unchanged.

Note that the principle of nearby is not adopted in the mutation operation. This is because the aim

of mutation operation is to generate more solutions (chromosomes), which is crucial to search the optimal

solution globally. The principle of nearby, however, lowers the diversity of chromosomes.

Selection Process: Each time one chromosome is selected for a new child population, and continuing

this process for pop size times, we can get the next population. Let p0 = 0, and pi =
∑i
j=1 a(1 − a)i,

i = 1, 2, · · · , pop size, where the parameter a ∈ (0, 1). The selection process is summarized as follows,

Step 1: Set j = 1;

Step 2: Randomly generate a number r ∈ [0, ppop size];

Step 3: Find chromosome j satisfying pj−1 ≤ r < pj , and add chromosome j into the chromosome set of

the next generation;

Step 4: If j ≥ pop size, stop; otherwise, set j = j + 1 and go to Step 2.

The flowchart of the entire heuristic algorithm is shown in Figure 6 in which uncertain data preprocessing

is first required to calculate the inverse uncertainty distributions.

4 Numerical Experiments

In this section, we present the computational results of numerical experiments to illustrate the UCCP model

and to test the effectiveness of the proposed algorithm. The algorithm is coded in C++ programming

language by Microsoft Visual Studio 2010. The work station is a personal computer with Intel(R) Core(TM)

i5 3337U 1.80 GHz CPU and 4.00 GB RAM, using the Microsoft Windows 7(64bit) OS.

The experiments are divided into two parts. In the first part, we consider a small-scale problem with 10

nodes, which is referred to as the basic experiment. In the basic experiment, we present the detailed solution
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Yes

No

Figure 6: The flowchart of the hybrid intelligent algorithm

process, and compare the efficiency of the ordinary GA and the proposed hybrid intelligent algorithm. In the

second part, we further valid the effectiveness and efficiency of the hybrid intelligent algorithm by considering

some large-scale problems.

4.1 Basic Experiment

In this section, we consider a p-hub center location problem with 10 nodes in detail. Table 1 lists all the

information about travel time on each link. The symbol “〈i, j〉” represents the link from node i to node j.

In this paper, it is assumed that link “〈i, j〉” and link “〈j, i〉” are the same. That is to say, the travel time

from node i to node j is equal to that from node j to node i, i.e., ηij = ηji, i, j = 1, 2, · · · , 10.

The travel time ηij are all assumed to be zigzag uncertain variables. For example, the data “(11, 14, 17)”

indicates that the travel time on link 〈1, 2〉 is a zigzag uncertain variable Z(11, 14, 17). Here 14 is the most

possible travel time on link 〈1, 2〉, 11 is the minimum link travel time and 17 is the maximum link travel

time. Note that the travel times on some links may be crisp numbers. For instance, the travel time on link

〈2, 10〉 is 8. It follows from the definition of uncertain variable that a constant b can be regarded as a special

zigzag uncertain variable Z(b, b, b). Moreover, its inverse uncertainty distribution is equal to Φ−1(β) ≡ b for

each β ∈ (0, 1).

Suppose that the discount factor α = 0.3, and the number of hub is 3, i.e., p = 3. In this work, we

set β = 0.8 for the Model UCCP, which means that we want to find the 0.8-optimal p-hub center location.

According to Remark 1, the optimal solution of Model UCCP is just that of a deterministic p-hub center

location problem. Therefore, we should first calculate the inverse uncertainty distribution Φ−1ij (0.8) of each

travel time ηij , which are all listed in Table 2.

If we use LINGO to solve the deterministic p-hub center location model (12), we can obtain the optimal

objective value 28.76 after a computation time of about 200s. Then we use the hybrid intelligent algorithm

in Section 3 to solve model (12), which is expected to take less computation time. The parameters in the

algorithm are set as follows: the population size of chromosomes pop size = 40, the probability of crossover
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Table 1: The data information about travel times on links

link travel time link travel time link travel time

〈1, 2〉 (11, 14, 17) 〈1, 3〉 (13, 16, 18) 〈1, 4〉 (7, 9, 10)

〈1, 5〉 (10, 13, 14) 〈1, 6〉 (23, 26, 27) 〈1, 7〉 (13, 15, 16)

〈1, 8〉 (19, 23, 25) 〈1, 9〉 (12, 15, 17) 〈1, 10〉 (16, 19, 21)

〈2, 3〉 (18, 19, 20) 〈2, 4〉 (8, 11, 13) 〈2, 5〉 (12, 15, 17)

〈2, 6〉 (12, 14, 15) 〈2, 7〉 (8, 10, 12) 〈2, 8〉 (10, 12, 13)

〈2, 9〉 (8, 11, 12) 〈2, 10〉 8 〈3, 4〉 (13, 16, 18)

〈3, 5〉 (19, 20, 21) 〈3, 6〉 (12, 13, 14) 〈3, 7〉 (9, 12, 13)

〈3, 8〉 (8, 11, 13) 〈3, 9〉 (10, 12, 13) 〈3, 10〉 (13, 16, 18)

〈4, 5〉 (12, 14, 15) 〈4, 6〉 (9, 11, 12) 〈4, 7〉 (18, 21, 23)

〈4, 8〉 (21, 25, 27) 〈4, 9〉 (13, 14, 16) 〈4, 10〉 (14, 17, 18)

〈5, 6〉 (15, 18, 20) 〈5, 7〉 (20, 23, 24) 〈5, 8〉 (12, 13, 14)

〈5, 9〉 (9, 12, 13) 〈5, 10〉 (10, 12, 13) 〈6, 7〉 (16, 18, 19)

〈6, 8〉 (9, 10, 11) 〈6, 9〉 (20, 22, 23) 〈6, 10〉 (17, 19, 21)

〈7, 8〉 (13, 15, 17) 〈7, 9〉 9 〈7, 10〉 (12, 15, 17)

〈8, 9〉 (19, 22, 24) 〈8, 10〉 (12, 15, 17) 〈9, 10〉 (8, 11, 13)

Table 2: The value of Φ−1ij (β) when β = 0.8

link Φ−1
ij (β) link Φ−1

ij (β) link Φ−1
ij (β)

〈1, 2〉 15.8 〈1, 3〉 17.2 〈1, 4〉 9.6

〈1, 5〉 13.6 〈1, 6〉 26.6 〈1, 7〉 15.6

〈1, 8〉 24.2 〈1, 9〉 16.2 〈1, 10〉 20.2

〈2, 3〉 19.6 〈2, 4〉 12.2 〈2, 5〉 16.2

〈2, 6〉 14.6 〈2, 7〉 11.2 〈2, 8〉 12.6

〈2, 9〉 11.6 〈2, 10〉 8.0 〈3, 4〉 17.2

〈3, 5〉 20.6 〈3, 6〉 13.6 〈3, 7〉 12.6

〈3, 8〉 12.2 〈3, 9〉 12.6 〈3, 10〉 17.2

〈4, 5〉 14.6 〈4, 6〉 11.6 〈4, 7〉 22.2

〈4, 8〉 26.2 〈4, 9〉 15.2 〈4, 10〉 17.6

〈5, 6〉 19.2 〈5, 7〉 23.6 〈5, 8〉 13.6

〈5, 9〉 12.6 〈5, 10〉 12.6 〈6, 7〉 18.6

〈6, 8〉 10.6 〈6, 9〉 22.6 〈6, 10〉 20.2

〈7, 8〉 16.2 〈7, 9〉 9.0 〈7, 10〉 16.2

〈8, 9〉 23.2 〈8, 10〉 16.2 〈9, 10〉 12.2

Pc = 0.4, the probability of hub node mutation Pm = 0.2, the probability of non-hub node mutation

P ′m = 0.3, the probability of adopting the principle of nearby Ppn = 0.7, and the parameter in the rank-

based evaluation function a = 0.05. A run of the algorithm with 2000 generations shows that the optimal

value is 28.76 which corresponds to the p-hub center location {2 : 2, 8, 10}, {4 : 1, 4, 6}, and {9 : 3, 5, 7, 9}.
The symbol “{2 : 2, 8, 10}” represents that node 2 is chosen as hub and non-hub node 8 and 10 are assigned

to it. The computational time of the algorithm is around 0.15s, which is much less than that of LINGO.

Figure 7 plots the β-optimal p-hub center location for Model UCCP when β = 0.8.
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Figure 7: The β-optimal p-hub center location when β = 0.8

We test the effectiveness of the heuristic algorithm by running it 10 times with the same parameters.

The computational results are shown in Table 3 in which the gap is calculated by the formula: (actual

value-optimal value)/optimal value×100%. Here actual value represents the obtained objective value of

one experiment with given generations, and the optimal value represents the best objective value found by

the algorithm. It can be seen that in the 500th generations only 3 experiments do not attain the optimal

solution, the gaps of which are all less than 5%; in the 1000th generation, only 1 experiment does not attain

the optimal solution, and the gap of which is less than 1%. The results indicate that the hybrid intelligent

algorithm designed in Section 3 has good convergence.

Table 3: Computational results of 10 experiments when β = 0.8

100 generations 200 gen. 500 gen. 1000 gen. 2000 gen.

value gap value gap value gap value gap value gap

1 31.36 9.04% 28.76 0.00% 28.76 0.00% 28.76 0.00% 28.76 0.00%

2 31.78 10.50% 28.96 0.69% 28.76 0.00% 28.76 0.00% 28.76 0.00%

3 31.36 9.04% 30.66 6.60% 28.76 0.00% 28.76 0.00% 28.76 0.00%

4 30.36 5.56% 29.98 4.24% 29.98 4.24% 28.76 0.00% 28.76 0.00%

5 28.76 0.00% 28.76 0.00% 28.76 0.00% 28.76 0.00% 28.76 0.00%

6 30.98 7.71% 28.76 0.00% 28.76 0.00% 28.76 0.00% 28.76 0.00%

7 31.76 10.43% 29.98 4.24% 29.98 4.24% 28.76 0.00% 28.76 0.00%

8 28.96 0.70% 28.96 0.70% 28.96 0.70% 28.96 0.70% 28.76 0.00%

9 29.98 4.24% 29.98 4.24% 28.76 0.00% 28.76 0.00% 28.76 0.00%

10 29.98 4.24% 29.36 2.07% 28.76 0.00% 28.76 0.00% 28.76 0.00%

With different discount factor α, the computational results are shown in Table 4, in which the last column

are the optimal objective value of Model UCCP when β = 0.8. It can be seen that different α will change

the hub location, and meanwhile the solutions are relatively robust to α.

Next, we investigate the sensitivity of confidence level β to the optimal objective values. When β = 0.7,

via the proposed algorithm we find that the optimal objective value of Model UCCP is 28.24 with hub
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Table 4: Computational results of experiments with different α

α hub assignment Opt. obj.

0.05 {1 : 1, 4}, {6 : 6, 8}, {9 : 2, 3, 5, 7, 9, 10} 25.20

0.1 {1 : 1, 4}, {6 : 6, 8}, {9 : 2, 3, 5, 7, 9, 10} 25.46

0.2 {3 : 3, 8}, {4 : 1, 4, 6}, {9 : 2, 5, 7, 9, 10} 27.32

0.3 {2 : 2, 8, 10}, {4 : 1, 4, 6}, {9 : 3, 5, 7, 9} 28.76

0.4 {2 : 2, 8, 10}, {4 : 1, 4, 6}, {9 : 3, 5, 7, 9} 30.28

location {3 : 3, 8}, {4 : 1, 4, 6} and {9 : 2, 5, 7, 9, 10}. Figure 8 illustrates the β-optimal p-hub center location

when β = 0.7, which is different from that when β = 0.8.
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Figure 8: The β-optimal p-hub center location when β = 0.7

The experiments are conducted by solving Model UCCP for different confidence levels β and the com-

putational results are summarized in Table 5 and in Figure 9. From the figure, we can observe that the

optimal objective values zigzag increase with the increase of β, the kink point of which is at β = 0.5.

Table 5: The optimal objective values obtained by UCCP

Confidence level β 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

β-cost 22.96 24.02 25.08 26.14 27.20 27.72 28.24 28.76 29.28 29.54 29.75

Finally, we discuss the introduction of the principle of nearby. Consider the deterministic p-hub center

location problem with link travel times listed in Table 2. As has been stated, the optimal solution of this

problem is {2 : 2, 8, 10}, {4 : 1, 4, 6}, and {9 : 3, 5, 7, 9}. Choosing nodes 2, 4 and 9 as hub nodes, Table 6

presents the link travel times between a hub node and a non-hub node. The symbol “H.k” represents “hub

node k”, and the symbol “N.i” represents “non-hub node i”. In each column, the minimum link travel time

is marked in red. Note that in the optimal solution, the non-hub nodes are all assigned to the hub node that

is nearest to them. Hence, in this example the principle of nearby produces the optimal solution.

The influence of Ppn is also investigated in our work. Keeping the other parameters unchanged, i.e.,

pop size = 40, Pc = 0.4, Pm = 0.2, P ′m = 0.3, a = 0.05 and p = 3, we repeat the algorithm 30 times
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Figure 9: The sensitivity of confidence level to the optimal objective values

Table 6: Link travel time between a non hub node and a hub node

N.1 N.3 N.5 N.6 N.7 N.8 N.10

H.2 15.8 19.6 16.2 14.6 11.2 12.6 8.0

H.4 9.6 17.2 14.6 11.6 22.2 26.2 17.6

H.9 16.2 12.6 12.6 22.6 9.0 23.2 12.2

for different Ppn. Table 7 presents the numbers of the experiments that attain the optimal solution within

given number of generations. For example, when Ppn = 0.1, there are 8 experiments that attain the optimal

solution within 1000 generations, and 11 experiments within 2000 generations. It can be seen that the

result is becoming better as Ppn increases to 0.7. For example, the quality of the result is nearly the same

when Ppn = 0.7 and Ppn = 0.9. It needs to be emphasized that when Ppn = 0, the hybrid intelligent

algorithm degenerates to an ordinary genetic algorithm. The first row of Table 7 shows that for the ordinary

genetic algorithm, there is no experiment attaining the optimal solution within 2000 generations. This again

highlights the effectiveness and efficiency of the proposed solution procedure.

Table 7: Results of 30 experiments for different Ppn

Ppn 100 generation 200 gen. 500 gen. 1000 gen. 2000 gen.

0.0 0 0 0 0 0

0.1 2 5 7 8 11

0.3 2 4 11 15 20

0.5 0 2 14 20 25

0.7 3 10 17 25 30

0.9 5 11 14 24 30
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4.2 Large-scale Experiment

As shown in the previous section, the computation time is quite short when the scale of the problem is small,

i.e., n = 10. In this section, we carry out experiments with different n, increasing from 20 to 100, to verify

the effectiveness and efficiency of the proposed hybrid intelligent algorithm. The probability parameters in

the algorithm are set as follows: the probability of crossover Pc = 0.4, the probability of hub node mutation

Pm = 0.2, the probability of non-hub node mutation P ′m = 0.3, the probability of adopting the principle

of nearby Ppn = 0.7. For different n and p, different pop size of chromosomes and generation number

(gen num) are used, which are listed in the third and the fourth column of Table 8 respectively.

For each pair of (n, p), we carry out 10 experiments. In each experiment, the travel times between any

two nodes are generated randomly from the uniform distribution U [5, 100]. For each experiment, we iterate

200000 times, and the obtained objective value is used to calculate the gap. The average gap and the average

computation time of the 10 experiments are then calculated, which are listed in the fifth and the sixth column

of Table 8 respectively.

Table 8: Computational results with different n and p

n p pop size gen num avg gap CPU[s]

20

3 40 6000 0.00% 2.1

4 60 8000 0.20% 2.5

5 80 10000 0.18% 3.7

40

3 40 6000 0.00% 3.4

4 60 8000 0.34% 4.9

5 80 10000 0.41% 6.3

60

4 60 8000 0.20% 9.6

5 80 10000 0.52% 12.2

6 100 12000 0.60% 22.0

80

5 80 12000 1.56% 49.3

6 100 14000 1.90% 64.5

7 120 16000 3.80% 103

100

6 80 16000 2.30% 122

7 120 18000 4.07% 175

8 160 20000 5.60% 240

Obviously, as n increase, both the average gaps and the average computation times increase. When n is

medium, i.e., n ≤ 60, the average gaps are all less than 0.6%, and the computation times are all less than

25s, which indicates that the hybrid intelligent algorithm converges to the optimal solution fast. When n

is large, i.e., n ≥ 80, the convergency becomes weak, i.e., the average gap may be greater than 5% after

a computation time of 240s. This indicates that the hybrid intelligent algorithm is more efficient for the

problems of medium-scale.
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5 Conclusions

This paper extended the classical p-hub center location problem to the uncertain setting by describing the

travel times as uncertain variables. We first derived the uncertainty distribution of the objective function

in the presence of uncertainty and then applied chance constrained programming approach to formulate

a new uncertain programming model. The deterministic equivalent models were obtained based on the

given uncertainty distribution of each travel time. Due to the computational complexity of the problem, we

designed a hybrid intelligent algorithm by combining principle of nearby into a genetic algorithm to solve the

proposed models. The effectiveness and efficiency of the proposed heuristic solution procedure was verified

by some numerical experiments. This modelling methodology and the algorithm may also be applied to

other optimization problems.

Appendix

This appendix introduces the basic definitions and results on uncertain measure and uncertain variable.

Uncertain measure was proposed by Liu (2007) to describe a belief degree that a possible event happens.

Let L be a σ-algebra on a nonempty set Γ. A set function M : L → [0, 1] is called an uncertain measure if

it satisfies: (1) M{Γ} = 1 for the universal set Γ; (2) M{Λ} + M{Λc} = 1 for any event Λ; (3)For every

countable sequence of events Λ1,Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M {Λi} .

The triple (Θ,P,M) is called an uncertainty space.

Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . Then the product uncertain measure M is

provided by Liu (2010) as an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

An uncertain variable was proposed by Liu (2007) to model a quantity under imprecision, which is a

measurable function from an uncertainty space (Γ,L,M) to the set of real numbers. That is, if ξ is an

uncertain variable, then for any Borel set B of real numbers, the set {ξ ∈ B} = {γ ∈ Γ
∣∣ ξ(γ) ∈ B} is an

event. For any x ∈ <, Φ(x) = M{ξ ≤ x} is called the uncertainty distribution of ξ.

Definition 2. (Liu, 2010) An uncertainty distribution Φ(x) is said to be regular if it is a continuous and

strictly increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

The inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ if it exists and is unique for

each α ∈ (0, 1).

For example, linear uncertainty distribution, zigzag uncertainty distribution, normal uncertainty distri-

bution, and lognormal uncertainty distribution are all regular. Inverse uncertainty distribution also plays a

crucial role in operations of independent uncertain variables.
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Definition 3. (Liu, 2010) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent if

M

{
n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel set B1, B2, · · · , Bn of real numbers.

Lemma 1. (Liu, 2007; operational law) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular

uncertainty distributions Φ1,Φ2, · · · ,Φn, respectively. If f(x1, x2, · · · , xn) is strictly increasing with respect

to x1, x2, · · · , xn, then ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable with an uncertainty distribution

Ψ(x) = sup
f(x1,x2,··· ,xn)=x

min
1≤i≤n

Φi(xi),

and with an inverse uncertainty distribution

Ψ−1(α) = f(Φ−11 (α),Φ−12 (α), · · · ,Φ−1n (α)).

It is worth pointing out that the product axiom is different from that of probability measure. Therefore,

the independence has a different definition in the framework of uncertainty theory. By the product axiom

and the definition of independence, the operation law of uncertain variables is absolutely different from that

of random variables.
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Highlights

A chance constrained programming approach for uncertain p-hub

center location problem

• We first investigate the p-hub center problem with subjective imprecision.

• We formulate a chance constrained programming model for uncertain p-hub center location problem.

• We give the analytical forms of the proposed model base on uncertainty theory.

• We present principle of nearby and design a hybrid intelligent algorithm to solve the uncertain

p-hub center models.

1

 

 

 


