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In this article, a new evolutionary algorithm, Forest Optimization Algorithm (FOA), suitable for continu-
ous nonlinear optimization problems has been proposed. It is inspired by few trees in the forests which
can survive for several decades, while other trees could live for a limited period. In FOA, seeding proce-
dure of the trees is simulated so that, some seeds fall just under the trees, while others are distributed in
wide areas by natural procedures and the animals that feed on the seeds or fruits. Application of the pro-
posed algorithm on some benchmark functions demonstrated its good capability in comparison with
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Also we tested the performance of
FOA on feature weighting as a real optimization problem and the results of the experiments showed
the good performance of FOA in some data sets from the UCI repository.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Optimization is the process of making something better
(Rajabioun, 2011). In other words, optimization is the process of
adjusting the inputs to find the minimum or maximum output or
result. The input consists of variables and the output is the cost
or fitness. Some of the optimization methods are inspired by the
nature; for example Genetic Algorithm (GA) (Sivanandam &
Deepa, 2007), Cuckoo Optimization Algorithm (COA) (Rajabioun,
2011) and Particle Swarm Optimization (PSO) (Kennedy &
Eberhart, 1995) are all nature inspired algorithms. Forest Optimi-
zation Algorithm (FOA), which is inspired by the nature’s process
in the forests, is another attempt to solve nonlinear optimization
problems.

It has been for million years that trees are governing in the for-
ests and different kinds of trees use different ways to survive and
to continue their generations. But considering the rule of the nat-
ure, after some years most of the trees deem to die and aging is
inevitable. This time, the flow of the nature replaces the old trees
with the new ones and rarely some trees succeed to live for several
decades. The distinguished trees, which could survive for a long
time, are often the ones that are in suitable geographical habitats
and also they have the best growing conditions. In other words,
plant species immediately disperse their seeds to place the propa-
gules in safe sites where they can grow and survive (Green, 1983).
The procedure of the Forest Optimization Algorithm (FOA)
attempts to find these distinguished trees (near-optimal solutions)
in the forest with the help of natural procedures like seed dispersal.

In some forests like tropical dry forests, all species are either
clumped or randomly dispersed (Hubbell, 1979); where the mode
of dispersal affects the clumping of the trees. Different natural pro-
cedures distribute the seeds of all trees in the entire forest; these
procedures are known as seed dispersal. Seed dispersal deals with
the departure of diaspora, where diaspora is a unit of a plant like
seed or fruit (Howe & Judith, 1982). Mostly joint procedure of dis-
persal and establishment is considered and not just movement of
seeds to places where they can not establish (Cain, Milligan, &
Strand, 2000). Two kinds of seed dispersal methods exist in nature:
local seed dispersal and long-distance seed dispersal (Cain et al.,
2000; Murrell, 2009).

In the nature when the seeding process begins, some seeds fall
just near the trees and begin to sprout. This procedure is named as
local seed dispersal (Cain et al., 2000; Murrell, 2009) and we will
refer to this process as ‘‘Local seeding’’. But most of the times,
the interference of animals that feed on the seeds and also other
natural processes such as the flow of the water and wind carry
the seeds to faraway places. Also some trees give elegant wings
and plumes to their seeds to be transported to far places (Howe
& Judith, 1982). This way, the territory of various trees is expanded
in the entire forest. This procedure is named as long-distance seed
dispersal (Cain et al., 2000); which we will name it as ‘‘Global
seeding’’.

There is a hypothesis named as ‘‘Escape Hypothesis’’ and it
implies disproportionate success for seeds that move far from the
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Fig. 1. Flowchart of FOA.
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vicinity of their parent, while comparing those seeds that have
fallen nearby (Howe & Judith, 1982). Also, ‘‘Colonization Hypothe-
sis’’ assumes that parents can use the advantage of uncompetitive
environment with the help of long-distance dispersal (Howe &
Judith, 1982). Many studies have proved these hypothesis so, glo-
bal seeding in forests gains a great importance. In addition to these
hypothesis, Cain et al. expressed the importance of long-distance
dispersal in comparison with local seed dispersal (Cain et al.,
2000).

The seeds after being fall on the land – as the result of local or
global seeding – begin to sprout and soon they turn into young
trees. But not every seed gets the chance to grow up and become
a tree in the forest. This may happen because of many reasons.
Some trees themselves show unusual behavior; for example most
of the trees habitually produce a large amount of empty and dead
seeds in addition to live seed (Gosling, 2007). This strategy in addi-
tion to save energy, will encourage predators from wasting time
and energy in sorting through empty seeds. Another phenomenon
in the behavior of some trees is ‘Malingering’ seeds (Gosling, 2007)
or ‘Dormancy’; it means that some seeds need absolute require-
ments to be ‘pretreated’ before they will germinate at all. As the
result it is a realistic thought that all the trees of the future are
in a few seeds of today.

Das, Battles, Stephenson, and van Mantgem (2011) listed 3 main
factors that affects the death of trees: biotic (evidence of tree-
killing pathogens or insects), suppression and mechanical
(evidence of crushing, snapping, or uprooting). Among the listed
factors for death of a tree, suppression which encompasses mostly
density-dependant mortality or competition, plays a significant
role. As the result, one reason is obviously the rule of ‘‘survival of
the fittest’’ or competition (Das et al., 2011).

In the forests when the seeds fall on the land just near to the
tree itself, some of them began to sprout and they turn into seed-
lings. But even there is a competition among neighboring seedlings
to use the sunlight and other growing essentials. It is seen in nature
that as local density increases, mortality due to competition
increases too (LepS & Kindlmann, 1987; Murrell, 2009) and the
competition for limited resources will remove the nearby neigh-
bors. In other words, the primary reason of mortality is often con-
sidered to be competition and that competition for resources is the
only non-climatic, non-catastrophic, non-random mechanism that
affects the likelihood of mortality (Das et al., 2011). Also Green
(1983) studied the relation between dispersal and safe side abun-
dance. He reported that, although near the parent tree there exist
an overabundant of propagules, but there is too few safe sites to
accommodate. So, the winners of this competition are those seed-
lings that have begun the competition sooner than the others.
Others become losers because of the lack of sunlight and also other
life essentials at the beginning of the competition. As a result, few
seeds that have fallen near to each other have the chance to survive
and just the fittest one can survive. This competition for survival
takes place at very early age of the seedlings and when one of them
succeeds to be the winner, no other trees can grow just under that
tree in later years.

Population of the trees in forests can exchange individuals or
colonize empty and suitable habitats by long-distance dispersal.
The unusual events that moves seeds long distances are of critical
importance because most seeds move short distances (zero to a
few tens of meters) (Cain et al., 2000). Although most of the seeds
that are carried to better places have a good chance of survival, but
some limitations should be considered on the number of whole
seeds that can grow even for a few years.

In this paper, we have introduced a new evolutionary optimiza-
tion algorithm, which is inspired by the procedure of a few trees in
the forests that could survive for many years. It seems that we can
use the procedures that the nature has shown us for millions of
years to optimize our solutions in some optimization problems.
To do so, we have simulated the local seed dispersal and long-
distance seeds dispersal of the trees (Howe & Judith, 1982) as local
seeding and global seeding in FOA respectively. Local seeding helps
the trees to locally spread their seeds in better growing conditions.
Also, animals or other natural procedures distribute the seeds by
global seeding in wide areas to get rid of local optima.

In Section 2, Forest Optimization Algorithm (FOA) is introduced
and its stages are studied in details. The application of the
proposed algorithm on different benchmark functions is tested in
Section 3. Section 4 is devoted to feature weighting as a real opti-
mization problem. In Section 5 we have provided a comparison
between FOA and other search methods. Finally, the conclusions
and the future works are presented in Section 6.

2. The proposed Forest Optimization Algorithm

The proposed Forest Optimization Algorithm (FOA) involves
three main stages: 1- local seeding of the trees 2- population lim-
iting 3- global seeding of the trees. Fig. 1 shows the flowchart of the
proposed algorithm. The overall procedure of FOA is as the follow-
ing and later in Sections 2.1–2.6 we will discuss the algorithm in
more details.

Like other evolutionary algorithms, FOA starts with the initial
population of trees, so that each tree represents a potential
solution of the problem. A tree, in addition to the values of the
variables, has a part that represents the age of the related tree.
The age of a tree is set to ‘0’. After initialization of the trees, the
local seeding operator will generate new young trees (or seeds in
fact) from the trees with age 0 and add the new trees to the forest.
Then, all the trees, except new generated ones, get old and their
age increases by ‘1’. Next, there is a control on the population of
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the trees in the forest and some trees will be omitted from the for-
est and they will form the candidate population for global seeding
stage.

In the global seeding stage a percentage of the candidate popu-
lation is chosen to move far in the forest. Global seeding stage adds
some new potential solutions to the forest in order to get rid of
local optimums. Now, the trees of the forest are ranked according
to their fitness value and the tree with the biggest fitness value
is chosen as the best tree and its age is set to 0 in order to avoid
the aging and afterward removing the best tree from the forest
(because local seeding stage increases the age of all trees including
the age of best tree). These stages will continue until the termina-
tion criterion is met. In the following, the stages of the proposed
algorithm are studied with more details.

2.1. Initialize trees

In Forest Optimization Algorithm (FOA), the potential solution
of each problem has been considered as a tree. Each tree shows
the values of the variables. In addition to the variables, each tree
has a part related to the ‘‘Age’’ of that tree. The ‘‘Age’’ of each tree
is set to ‘0’ for each newly generated tree – as the result of local
seeding or global seeding. After each local seeding stage the age
of the trees, except the new generated trees in local seeding stage,
increases by ‘1’. This increase in the age of the trees is used later as
a controlling mechanism in the number of trees in the forest. Fig. 2
shows a tree for an Nvar-dimensional problem domain, where vis
are the values of the variables and the ‘‘Age’’ part shows the age
of the related tree.

A tree can also be considered as an array of length 1� ðNvar þ 1Þ
as in Eq. (1), where Nvar is the dimension of the problem and ‘‘Age’’
represents the age of the related tree.

Tree ¼ ½Age;v1;v2; . . . ;vNvar � ð1Þ

The maximum allowed age of a tree is a predefined parameter
and is named as ‘‘life time’’ parameter. ‘‘life time’’ parameter should
be determined at the start of the algorithm. When a tree’s ‘‘Age’’
reaches to the ‘‘life time’’ parameter, that tree is omitted from the
forest and is added to the candidate population. If we choose a
big number for this parameter, each iteration of the algorithm just
increases the age of the trees and the forest will be full of old trees,
which do not take part in the local seeding stage. Otherwise, if we
choose a very small value for this parameter, the trees will get old
very soon and they will be omitted at the beginning of the compe-
tition. Therefore, this parameter should provide a good chance of
local search.

We have done experiments on the optimal value of ‘‘life time’’
parameter and the related results are presented later in Section 3.2
as Table 3.

2.2. Local seeding of the trees

In the nature when seeding procedure of the trees begins, some
seeds fall just near the trees and after some time they turn into
young trees. Now, the competition between near trees starts and
those trees that have better growing conditions like enough sun-
light and better location, become the winners of this competition
to survive. Local seeding of the trees attempts to simulate this
Fig. 2. A solution representation of FOA.
procedure of the nature. This operator is performed on the trees
with age 0 and adds some neighbors of each tree to the forest.
Two iterations of this operator on one tree are illustrated as
Fig. 3. The written numbers inside the trees of Fig. 3 show the
related tree’s ‘‘Age’’ value; which is considered to be zero for each
newly generated tree. After the local seeding is executed on the
trees with age 0, the age of all trees, except the new generated
trees in this stage, is increased by 1.

Increasing the age of the trees acts like a controlling mechanism
on the number of the trees of the forest and effects in this way: if a
tree is promising, the procedure of the algorithm resets the age of
that tree to ‘0’ and as the result, it will be possible to add neighbors
of the good tree to the forest through performing local seeding
stage. Otherwise, non-promising trees get old with each iteration
of the algorithm and eventually die after some iterations.

The number of the seeds that fall on the land near the trees and
then turn into trees as neighbors is considered as a parameter of
this algorithm and is named as ‘‘Local Seeding Changes’’ or ‘‘LSC’’.
The value of this parameter is 3 in Fig. 3. As the result, performing
local seeding operator on one tree with age 0 will produce 3 new
trees. This parameter should be determined according to the
dimension of the problem domain. We have done an experiment
to find the optimal value of ‘‘LSC’’ parameter and the results are
reported on Section 3.2 as Table 4.

At first iteration of the algorithm that all trees have the age 0,
local seeding operator is executed on all trees of the forest. So,
for each zero-Aged tree of the forest, the number of ‘‘LSC’’ new trees
are added to the forest. At next iterations, the number of added
trees by local seeding operator decreases, because there will be
trees with age bigger than 0, which do not take part in local seed-
ing stage. Local seeding operator simulates local search for this
algorithm.

Fig. 4 illustrates an example of local seeding operator for real
problems in 4 dimensional continuous space and where the value
of ‘‘LSC’’ is considered to be 2. r and r0 are two randomly generated
values in the range [�4x,4x].4x is a small value and it is smaller
than the related variable’s upper limit. This way the search proce-
dure is done in a limited interval and local search can be simulated.

In order to perform this operator, a variable is selected ran-
domly. Then its value is added with a small random value r 2
[�4x, 4x]. This procedure is repeated for LSC times for each tree
with age 0. Numerical example for local seeding operator is shown
as Fig. 5. The value of ‘‘LSC’’ is 1 in Fig. 5 and 4x is considered to
be 1. As a result, the value of one variable will be added with a
randomly generated value in the range [�1, 1] like 0.4. Now the
new tree with age 0 will be added to the forest.

In the case of adding values, it may be situations where the val-
ues of the variables become less or more than the related variables
lower and upper limits. In order to avoid these situations, values
less than variable’s lower limits and values bigger than upper lim-
its are truncated to the limits.

Local seeding operator adds many trees to the forest, so there
must be a limitation on the number of the trees. This control is
done by the next stage of the proposed algorithm.

2.3. Population limiting

Number of the trees in the forest must be limited to prevent
infinite expansion of the forest. There are 2 parameters which limit
the population of trees: ‘‘Life time’’ and ‘‘area limit’’ parameters. At
first the trees whose age exceeds the ‘‘life time’’ parameter are
removed from the forest and they will form the candidate popula-
tion. Second limitation is ‘‘area limit’’ in which after ranking the
trees according to their fitness value, if the number of the trees
is bigger than the limitation of the forest, extra trees are removed
from the forest and are added to the candidate population. The
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Fig. 3. An example of local seeding on one tree for 2 iterations.

Fig. 4. An example of local seeding for continuous search space.

Fig. 5. A numerical example of local seeding on one tree, LSC ¼ 1; r0 ¼ 0:4: 2 ½�4 x;4x] = [�1,1].
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limitation of the forest is another parameter and is named as ‘‘area
limit’’. In the tests of this article the value of the ‘‘area limit’’ param-
eter is considered to be the same as the number of the initial trees.
So, after performing this stage, the number of the trees in the forest
will be equal to the number of the initial trees.

After population limiting of the forest, global seeding stage is
performed on some percentage of the candidate population as will
be describe later.

2.4. Global seeding of the trees

There are different kinds of trees in the forests and different ani-
mals and birds feed on the seeds and fruits of these trees. So, the
seeds of the trees are distributed in the entire forest and as a result,
the habitat of the trees becomes wider. Also other natural
processes like wind and the flow of the water helps distributing
the seeds in the entire forest and guarantees the empire of the
different kinds of trees in different regions. Global seeding stage
attempts to simulate the distribution of the seeds of the trees in
the forest.

Global seeding operator is performed on a predefined percent-
age of the candidate population from the previous stage. This per-
centage is another parameter of the algorithm that should be
defined first and is named as ‘‘transfer rate’’.

Global seeding operator works as the following: at first, the
trees from the candidate population are selected. Then, some of
the variables of each tree are selected randomly. This time, the
value of each selected variable is exchanged with another ran-
domly generated value in the related variable’s range. This way
the whole search space is considered and not a limited area. As a
result, a tree with age 0 is added to the forest. This operator
performs a global search in the search space. The number of the
variables whose values will be changed, is another parameter of
the algorithm and is named as ‘‘Global Seeding Changes’’ or ‘‘GSC’’.

Fig. 6 is an example of the performing global seeding operator
for one tree in continuous space. In Fig. 6, the value of ‘‘GSC’’
parameter is considered to be 2 so, two variables are selected ran-
domly and their values are exchanged with two other randomly
generated values like r and r0 in the related variable’s ranges.

The numerical example for global seeding operator is illustrated
as Fig. 7, where the value of ‘‘GSC’’ parameter is 2 and the range of
all variables is the same and it is [�5, 5]. As the result, the value of
2 randomly selected variables are exchanged with other values in
the range [�5, 5] like �0.7 and 1.5.

2.5. Updating the best so far tree

In this stage, after sorting the trees according to their fitness
value, the tree with the highest fitness value is selected as the best
tree. Then the age of best tree will be set to 0 in order to avoid the
aging of the best tree as the result of local seeding stage. In this
way, it will be possible for the best tree to locally optimize its loca-
tion by local seeding operator; because as mentioned before, local
seeding is performed on trees with age ‘0’.

2.6. Stop condition

Like other evolutionary algorithms, three stop conditions can be
considered: 1- predefined number of iterations 2- observance of
no change in the fitness value of the best tree for several iterations
3- reaching to the specified level of accuracy.

The main stages of FOA are shown as a pseudo code in Fig. 8. In
the next part, FOA is applied to some benchmark optimization
problems. As the optimal solutions are known for benchmark
functions in advance so, reaching to a specified level of accuracy
is considered as stop condition in the experiments of Section 3.

3. Benchmarks on Forest Optimization Algorithm

In this section, Forest Optimization Algorithm (FOA) is tested
with 4 benchmark functions. All these problems are minimization
problems. Because the global optimum of the benchmark functions



Fig. 6. An example of global seeding on one tree.

Fig. 7. A numerical example of global seeding on one tree GSC ¼ 2.

Fig. 8. Pseudo code of Forest Optimization Algorithm (FOA).

Table 1
Test functions adopted for our experiments.

Function Equation Search range

F1 f1ðxÞ ¼ x� sinð4xÞ þ 1:1y� sinð2yÞ 0 < x; y < 10
F2 f2ðxÞ ¼ 1

4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1 �600 6 xi 6 600

F3 f3ðxÞ ¼
Pn

i¼1jxijiþ1 �1 6 xi 6 1

F4 f4ðxÞ ¼ 10nþ
Pn

i¼1 x2
i � 10 cosð2pxiÞ

� � �5:12 6 xi 6 5:12
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is known in advance so, reaching to the specified level of accuracy
is considered to be the stop condition of the experiments in this
section. In order to do a comparison, continuous GA with selection
with elitism and uniform cross-over and also PSO algorithm are
applied to the benchmark functions and the results of the FOA is
compared with both GA and PSO. To well study the performance
of FOA in comparison with GA and PSO, three of the functions
are implemented in 5 and 10 dimensions; this will increases the
complexity of the optimization task.

3.1. Test functions

The test functions that we have used to validate our experi-
ments are summarized in Table 1. F2, F3 and F4 are chosen from
Marcin and Smutnicki (2005).

F1 is a test function with the minimum value of f ðxÞ ¼
�18:5547 in position (9.039, 8.668). F2 is Griewangk function
and it has many widespread local minima regularly distributed.
It has global minimum of f ðxÞ ¼ 0 at xi ¼ 0 for i ¼ 1; . . . ;n. F3 is
Sum of different powers function and it is a commonly used test
function. Its global minimum of f ðxÞ ¼ 0 is obtainable for
xi ¼ 0; i ¼ 1; . . . ;n in the range �1 6 xi 6 1. F4 is Rastrigin function
and it is a commonly used multimodal test function. Its global
minimum of f ðxÞ ¼ 0 is obtainable for xi ¼ 0; i ¼ 1; . . . ;n in the
range �5:12 6 xi 6 5:12.

We will study F1 in details but for summarization, we will just
list the results for other test functions in 5 and 10 dimensions.
3.2. Results of the experiments on benchmark functions

F1 is a test function and Fig. 9 shows a 3D plot of it. Initial forest
with 30 trees is illustrated as Fig. 10(a). Fig. 10(a–h) show the



Fig. 9. 3D plot of F1.
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population of the forest in iterations 1–4, 8–9, 12 and 15. As it is
obvious from the Fig. 10(a–h), FOA has obtained the global mini-
mum just in 15 iterations with level of accuracy 0.1. In iteration
12 most of trees are in global minimum and in iterations 12–15
the algorithm continues in order to just reaching to the specified
level of accuracy. Finally at iteration 15 most of trees are near to
the best location of the forest, which is the global minimum of
the problem. This location is (9.039, 8.668) with the cost value of
�18.5547. Those trees that are in different positions are due to glo-
bal seeding stage at final iteration.

For better illustration the procedure of FOA, digital values of the
4 iterations on a forest with 5 trees on F1 is shown as Fig. 11. In
each iteration, the best tree is shown with an arrow in front. In
Fig. 11 the first and second column shows the values of the
variables of F1 and the third column represents the fitness of the
corresponding tree. The age of each tree is illustrated as the forth
column.

As it can be seen from Fig. 11, in the first iteration of the
algorithm the age of all trees is 0 so, local seeding operator will
generate the neighbors of all trees. In next iterations, there are
trees with age bigger than 0 in the forest; which do not take part
in the local seeding stage.

In order to show the percentage of zero-aged trees on which
local seeding operator will affect, we have done an experiment.
To do so, we have chosen ‘‘Sum of different powers’’ (a unimodal
function) and ‘‘Griewangk’’ (a multimodal function) test functions
(Marcin & Smutnicki, 2005) in 5 dimensions. The results will defi-
nitely depend on the values of the parameters like the number of
initial trees, ‘‘area limit’’ parameter and ‘‘transfer rate’’. For our
experiments we set the parameters as the following; initial size
of forest to be 30, ‘‘area limit’’=30, LSC=1, GSC=1, ‘‘transfer rate’’=10%
and ‘‘life time’’=6; with these parameters the results are reported
as Table 2. The results relate to 3 runs on each function and they
show the average of the zero-aged trees in each iteration. This
experiment shows that in each iteration of both test functions –
regardless of being unimodal or multimodal – approximately 1/5
of the trees in the forest take part in local seeding.

While the execution of the algorithm continuous, the age of the
best tree remains 0; this will give the chance for the best tree to
locally optimize its location by local seeding operator and at later
iterations the forest will be full of the neighbors of the best tree.
Convergence to the best tree can be seen in Fig. 10(h). In
Fig. 10(h) most of the trees converge to the location of the best
tree. This convergence will continue until the location of the best
tree changes due to global seeding stage. The ‘‘life time’’ parameter
in Fig. 11 is considered to be 2; this means that if a tree is not the
best tree of the forest, at worst case and if it is not removed
because of limitation of the forest, it will be removed from the
forest after 2 iterations.
Our experiments are done on MATLAB R2013a environment and
on a system with 2.5 GHz of CPU, 4GB of RAM and on Windows7
(64 bit) operating system. Due to the fact that different initial pop-
ulations of each method affect directly to the final result and the
speed of algorithm, a series of test runs – here 30 runs – are done
to have a mean expectance of performance for each method.

Fig. 12 depicts the fitness of best tree versus iteration number
for F1 in 2 dimensions with level of accuracy 0.1. It can be seen
from Fig. 12 that, FOA converges to the optima position in less than
10 iterations and later iterations continue until reaching to the
specified level of accuracy. In order to test the stability of FOA,
Fig. 13 depicts the stability diagram for 30 independent runs;
which shows a stable behavior of FOA.

In this article we have done experiments in order to find the
optimal values of ‘‘life time’’ parameter and ‘‘LSC’’ parameter. To
do so, we have tested different values for ‘‘life time’’ parameter –
‘‘life time’’2 f1;2; . . . ;8g – on F1 and the results are summarized
as Table 3. The results are compared in the case of number of eval-
uations (num eval) and iterations (iter). As the small number of
evaluations in experiments is desirable, we have chosen the opti-
mal value for ‘‘life time’’ parameter according to small number of
evaluations. From the results of experiments in Table 3, it seems
that optimal value for ‘‘life time’’ parameter is 6; as the number
of evaluations does not decrease so much after the ‘‘life time’’
reaches to 6. In the later experiments, we will set the value of ‘‘life
time’’ parameter to 6.

Also, in order to find the optimal value for LSC parameter, we
performed experiments on F4 with 10 dimensions where ‘‘life
time’’ is 6 and GSC=1. The results of the experiments are shown
as Table 4. Again the results are compared in the case of number
of evaluations (num eval) and iterations (iter). According to Table 4,
the value 1 for LSC parameter seems suitable according to small
number of evaluations but, while comparing the number of itera-
tions the value LSC=2 is desirable than value LSC=1.

As we mentioned earlier, the optimal value for this parameter
depends on the dimension of the problem domain. From the exper-
iments in this section, we will set the value of LSC parameter to be
2/10 of the problem dimension in our later experiments when the
dimension is bigger than 5; for dimensions less than 5, the value of
LSC will be 1.

After finding the optimal value for ‘‘life time’’ parameter and LSC
parameter, we just list the results for the benchmark functions
from Table 1. Table 5 shows the parameters for implementation
of GA, PSO and FOA on benchmark functions and the results for
these implementations are presented as Table 6. For each function
the best performance according to the number of evaluations is
highlighted in bold form. F1 is implemented in 2 dimensions but
F2, F3 and F4 are implemented in 5 and 10 dimensions. Results
are averaged over 30 runs with the parameters listed in Table 5.
‘‘iter’’ indicates the average of iteration numbers to reach to the
specified level of accuracy in 30 individual runs and ‘num_eval’
indicates the average of the number of evaluations for each exper-
iments over 30 runs. ‘level of acc.’ indicates the accuracy of the best
tree found by FOA from the optimal solution of the test function. In
order to avoid infinite number of runs in the case of getting stuck
in the local optima, we have stopped the algorithm execution
when the number of evaluations exceeds 70,000 evaluations.

The results of Table 6 show that, FOA outperforms both GA and
PSO in reaching to the near optimal solution for F1, because the
number of evaluations and iterations for FOA is less than the others
(according to the 2D plot of F1 in Fig. 9, F1 has many local optima).

The experiments on F2 with many widespread local minima
shows that PSO reaches to the near optimal solution with less
number of evaluations than GA and FOA in 5 dimensions and with
less number of iterations. When the dimension for F2 increases
from 5 to 10, the results show a good improvement of FOA in
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a: Initial forest with 30 trees. e: 8th iteration.
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b: 2th iteration. f: 9th iteration.
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c: 3th iteration. g: 12th iteration.
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d: 4th iteration. h: 15th iteration.
Fig. 10. Location of trees on 2 dimensional test function F1 in iterations 1–4, 8–9, 12 and 15 of FOA. The best tree is found at the 15th iteration.
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comparison with GA and PSO both in number of evaluations and
iterations.

It can be seen from Table 6 that, FOA outperforms both GA and
PSO in F3 in 5 dimensions; which is a good improvement. Similar
results can be seen for F3 in 10 dimensions. F3 is a unimodal func-
tion so, the results show the good performance of FOA in unimodal
functions like F3 in comparison with GA and PSO. Because the
number of evaluations of FOA is less than both GA and PSO in F3
in 5 and 10 dimensions.

F4 is a highly multimodal function (Marcin & Smutnicki, 2005)
and the search methods tend to get stuck in local optima. The
results of Table 6 for F4 show that, FOA noticeably performs better
than both GA and PSO because the number of fitness evaluations
for FOA is much less than GA and PSO.



Fig. 11. Digital values of 4 consequent iterations of FOA on F1.

Table 2
Percentage of zero-aged trees on 2 Test function in 5 dimensions.

Test function Perc. of 0-aged trees
(average� standard deviation)

‘‘Sum of different powers’’ 21:54%� 7:6
‘‘Griewangk’’ 25:81%� 6:8

Fig. 12. Fitness of best tree versus iteration of FOA on F1 with level of accuracy 0.1.

Fig. 13. Stability diagram of FOA for 30 individual runs on F1 with level of accuracy
0.1.

Table 3
Performance evaluation of FOA on F1 according to different values of ‘‘life time’’
parameter.

‘‘life time’’ 1 2 3 4 5 6 7 8

num eval 3363 1611 1568 1264 1228 1092 1038 1086
iter 35 31 35 40 40 42 41 50

Table 4
Performance evaluation of FOA on F4 in 10 dimensions according to different values
of LSC parameter.

LSC 1 2 3 4 5 6

num_eval 13803 14063 21226 23527 31337 41643
iter 2222 820 660 431 350 278
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The results of the experiments show that local seeding of FOA
helps it to have better level of accuracy; because the number of
evaluations for FOA with fixed level of accuracy is less than both
GA and PSO in almost all of the experiments. Also the results for
F3 which is a unimodal function, illustrates that local search of
FOA helps it to have better performance.

In the following, we will study the performance of FOA on
feature weighting as a real optimization problem.

4. Application of FOA on feature weighting

After that the great performance of FOA is proven in test func-
tions, it is needed to investigate its performance in real optimiza-
tion problems. To do so, feature weighting, as one of the useful
methods for improving the performance of K-nearest neighbor
(KNN) classification algorithm, is studied. In this section, we have
attempt to find optimal weights for the features using FOA in order
to alleviate the drawbacks of KNN.

4.1. Feature weighting

Lazy learning algorithms are machine learning algorithms that
are welcome members of procrastinators anonymous (Aha David,
1998). The most famous lazy learner is the one that uses similarity
function to answer queries. KNN is the bases of many lazy learning
algorithms; but it has several drawbacks, such as high storage
requirements and sensitivity to noise. So, many researchers have
attempted to address these drawbacks. Feature selection, proto-
type generation/selection and feature weighting (FW) methods



Table 5
Parameters for implementation of GA, PSO and FOA.

Algorithm Parameters

GA # initial population = 30, pc = 0.8, pm = 0.1
PSO # initial population = 30, c1=2, c2 = 1, inertia

weight = 0.8
FOA in 2 and 5

dimensions
# initial population = 30, life time = 6, LSC = 1, ares
limit = 30, transfer rate=10%, GSC = 1

FOA in 10
dimensions

# initial population = 30, life time = 6, LSC = 2, area
limit = 30, transfer rate = 10%, GSC = 3

Table 6
Results for implementation of FOA, PSO and GA for test functions in different
dimensions. F2, F3 and F4 are ‘‘Griewangk’’, ‘‘Sum of different powers’’ and ‘‘Rastrigin’’
test functions respectively. The smallest number of evaluations (num_eval) is
highlighted in bold form for each function.

Func. Dim. Algorithm Level of acc. num_eval iter

F1 2 FOA 0.001 1092.9 141.6
F1 2 PSO 0.001 22258.31 104
F1 2 GA 0.001 43966 1523.5

F2 5 FOA 0.5 8847.1 1402.3
F2 5 PSO 0.5 4320.72 71
F2 5 GA 0.5 9911.3 324.53

F3 5 FOA 0.001 351.9 44.9
F3 5 PSO 0.001 1756 29.26
F3 5 GA 0.001 720.3 24.8

F4 5 FOA 0.1 3865.4 610.73
F4 5 PSO 0.1 36722 611.01
F4 5 GA 0.1 15919 551.87

F2 10 FOA 0.5 7510.5 173
F2 10 PSO 0.5 12057 199.95
F2 10 GA 0.5 19566 677.57

F3 10 FOA 0.001 924.4 27.6
F3 10 PSO 0.001 3432 57.02
F3 10 GA 0.001 2045.7 70.7

F4 10 FOA 0.1 14063 820.5
F4 10 PSO 0.1 70000 1160
F4 10 GA 0.1 52475.1 1818.5
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are all used to further improve the performance of KNN (Triguero,
Derrac, Garcia, & Herrera, 2012).

Many studies have shown the sensitivity of KNN to the defini-
tion of distance function. Feature weighting is a continuous space
search problem and attempts to influence the distance function
by giving different weights to different features. In other words,
the aim of FW is to reduce the sensitivity of KNN to the existence
of irrelevant and redundant features by modifying its distance
function with weights (Triguero et al., 2012). This change in the
distance function improves the classification accuracy of KNN.

The most well known distance or dissimilarity measure for the
NN (Nearest Neighbor) rule is the Euclidean Distance (Triguero
et al., 2012) (Eq. (2)).

Euclidean DistanceðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

i¼0

ðxpi � xqiÞ2
vuut ð2Þ

FW DistðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

i¼0

Wiðxpi � xqiÞ2
vuut ð3Þ

where xp and xq are two examples and D is the number of features.
FW adds weights to Eq. (2); so, the distance function changes as
Eq. (3) where w0is are the weights of the features.

Many researchers have attempt to address feature weighting
problem. Tahir et al. in 2007 used Tabu search/K-nearest neighbor
classifier to simultaneous feature selection and feature weighting
(Tahir, Bouridane, & Kurugollu, 2007). They reported their meth-
od’s superiority to both simple Tabu search and sequential search
algorithms. Ozsen et al. applied GA to solve feature weighting
problem and they evaluated the weights that GA produces with
Artificial Immune System (AIS) (Ozsen & Gunes, 2009). In 2009,
Tosun et al. used feature weighting in software cost estimation
(Tosun, Turhan, & Bener, 2009). They assigned weights to project
features by benefiting from Principal Component Analysis (PCA).
Triguero et al. in 2011 tried to improve the performance of KNN
using prototype selection and generation methods (Triguero,
Garc, & Herrera, 2011) and later, Triguero and et al. integrated a
different evolution feature weighting scheme into prototype gen-
eration (Triguero et al., 2012). In the following we will apply Forest
Optimization Algorithm to solve feature weighting problem and
we will investigate the performance of FOA in FW problem.

4.2. Feature weighting using Forest Optimization Algorithm (FWFOA)

In order to apply FOA in real problems, we attempt to solve fea-
ture weighting problem using FOA. So, FOA is used to learn the
weights of the features before classification and then each solution
is evaluated by the KNN classification algorithm for k ¼ 1. The
stages of FOA for feature weighting problem are adapted as the
following:

4.2.1. Initialize trees
As it is mentioned before, first the forest is formed with ran-

domly generated trees. Because feature weighting (FW) is a contin-
ues space search problem, so the weights can be any number in the
range [0,1]. High weight for a feature shows the related feature’s
high importance in calculating the distance and as a result in
classification task; while low weight shows otherwise. At first
iteration, all the features have the relevant degree of 1; then, local
and global seeding will decrease or increase the weights in order to
find optimal weights.

4.2.2. Local seeding
After initializing the trees, FWFOA enters in a loop in which

local seeding, population limiting, global seeding and updating
the best tree guide the optimization of feature weights by generat-
ing new trees. Local seeding operator is performed on the trees
with age 0. In the local seeding stage, neighbors are formed by add-
ing or subtracting dx ¼ 0:1 from the weights of some randomly
selected features. After applying this operator, we check if there
have been values out of the range [0,1]. If a computed value is
greater than 1, we truncate it to 1. Furthermore, if this value is
lower than 0, we consider this feature to be irrelevant, and there-
fore, its weight is set to be 0. After finding the neighbors, the age of
all trees except new generated ones is increased by 1.

4.2.3. Population limiting
As it is mentioned before, the trees with age bigger than ‘‘life

time’’ parameter are removed from the forest and added to the
candidate population. Also, after ranking the trees according to
their fitness value, if the number of the trees is bigger than the
‘‘area limit’’ parameter, extra trees are removed from the forest
and are added to the candidate population.

4.2.4. Global seeding
After choosing some percentage of the candidate population, for

each chosen tree, ‘‘GSC’’ features are selected randomly. Then, the
weight of each selected feature is replaced with an other randomly
generated value in the range [0, 1]. As the result, new trees with
age 0 are added to the forest.



Table 9
Parameter specification for all the methods reported in Triguero et al. (2012).

Algorithm parameters

SSMA Population = 30, Evaluations = 10,000, Crossover
Probability = 0.5, Mutation probability = 0.001

SSMA-DEPGFW MAXITER = 20, PopulationSFLSDE = 40, IterationsSFLSDE = 50
PopulationDEFW = 25 ,
IterationsDEFW = 200, iterSFGSS = 8, iterSFHC = 20, Fl = 0.1,
Fu = 0.9

IPADECS Population = 10, iterations of Basic DE = 500, iterSFGSS = S,
iterSFHC = 20, Fl = 0.1, Fu = 0.9

IPADECS-DEFW MAXITER = 20, PopulationlPADECS = 10, iterations of Basic
DE = 50
PopulationDEFW = 25 , IterationsDEFW = 200, iterSFGSS = 8,
iterSFHC = 20, Fl = 0.1, Fu = 0.9

TSKNN Evaluations = 10,000, M = 10, N = 2, P = ceil(
p

#Features)

Table 10
Common parameters of FWFOA for all selected data sets.

Life time Area limit Transfer rate

6 30 10%

Table 11
The value of ‘‘LSC’’ and ‘‘GSC’’ for each data set.

Data set Bupa Cleveland Dermatology Glass Iris Pima Heart

‘‘LSC’’ 1 3 7 2 1 2 2
‘‘GSC’’ 2 4 10 3 1 2 4
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4.2.5. Updating the best so far tree
After sorting the trees according to their fitness value, the tree

with the maximum fitness value is selected as the best tree, and
its age will be set to 0.

4.2.6. Stop condition
In our experiments for FWFOA, observance of no change in the

fitness of best tree for 100 iterations is considered to be the stop
condition of the algorithm.

4.3. Experiments

In order to evaluate FWFOA, real-world data sets are chosen
from the UCI-Irvine repository (Blake, Keogh, & Merz, 1998). 1NN
of the WEKA software is used to evaluate the fitness of each tree
with Euclidean Distance as the distance function. Classification
accuracy (CA) of the 1NN shows the fitness of each tree. CA is
defined as the number of successful hits (correct classification)
(Triguero et al., 2012). All experiments have been run on a machine
with 2.40 GHz CPU and 4 GB of RAM.

The data sets are partitioned using ten fold cross validation
(10-fcv) procedure and their values are normalized in the interval
[0, 1] to equalize the influence of attributes with different range
domains.

4.3.1. Data sets from UCI
All the data sets for our experiments have the features with real

values. The summary of these data sets are listed as Table 7. In fea-
ture selection problem, data sets are of small scale, medium scale,
or large scale if n belongs to [0,19], [20,49], or [50,1], respectively
(Tahir et al., 2007). So, six data sets among seven ones are small
scale data sets and one of them is a medium scale data set.

4.3.2. Comparison algorithms and parameters
We have compared FWFOA with the existing methods reported

by Triguero et al., 2012 on the same data sets. Triguero et al. inte-
grated feature weighting (FW) with prototype generation methods.
Table 8 shows the average and standard deviation of classification
accuracy for the selected data sets reported by Triguero et al.
(2012). The NN rule with k ¼ 1 (1NN) has been included as a base-
line limit of performance in their article. In all of the reported tech-
niques in Table 8, Euclidean Distance is used as a similarity
function (like our experiments) and those which are stochastic
Table 7
Summary of the selected data sets from UCI.

Data set # examples # features # class

Bupa 345 6 2
Cleveland 297 13 5
Dermatology 366 33 6
Glass 214 9 7
Iris 150 4 3
Pima 768 8 2
Heart 270 13 2

Table 8
Classification accuracy and standard deviation obtained reported in Triguero et al. (2012)

INN SSMA SSMA-DEPGFW

Data sets ACC SD ACC SD ACC SD

Bupa 61.08 6.88 62.7 8.47 67.41 7.9
Clevland 53.14 7.45 54.7 6.29 55.80 6.1
Dermatology 95.35 3.45 95.1 5.64 94.02 4.3
Glass 73.61 11.9 68.8 8.19 73.64 8.8
Iris 93.33 516 96.0 4.42 94.67 4.9
Pima 70.33 74.3 74.23 4.01 73.23 5.4
Heart 77.04 8.89 83.7 10.1 85.19 8.1
methods have been run three times per partition. The configura-
tion parameters, which are common to all problems in Triguero
et al. (2012), are shown as Table 9.

4.3.3. Parameters of FWFOA
Table 10 depicts the value of the parameters of FWFOA which

are the same for all the data sets. Because the value of ‘‘LSC’’ and
‘‘GSC’’ parameters depend on the number of the features of each
data set, so the value of these parameters are shown separately
as Table 11.

4.3.4. Results and discussion
Table 12 illustrates the result of FWFOA. For each data set, ACC

and SD show the average classification accuracy and standard devi-
ation of 10 times execution respectively. In each run, the algorithm
execution stops when the value of the best solution does not
change for 100 consequent iterations. Classification accuracy for
data sets that FWFOA outperformed to other methods is high-
lighted in bold form.

As it is obvious from comparing Tables 8 and 12, FWFOA out-
performs the methods from Triguero et al. (2012) in 5 data sets
among 7 ones; because classification accuracy for Bupa, Cleveland,
Dermatology, Glass and Iris data sets have been improved while
applying FWFOA. So, it can be concluded that FWFOA performs
. The best classification accuracy (ACC) is highlighted in bold form for each data set.

1 PA DECS IPADECS-DEFW TSKNN

ACC SD ACC SD ACC SD

6 65.67 8.48 67.25 5.27 62.44 7.90
1 52.46 4.48 54.14 6.20 56.43 6.84
1 96.18 3.01 96.73 2.64 96.47 4.01
6 69.09 11.13 71.45 11.94 76.42 13.21
9 94.67 4.00 94.67 4.00 94.00 4.67
3 76.84 4.67 71.63 7.35 75.53 5.85
1 83.70 9.83 80.74 9.19 81.48 6.42



Table 12
Classification accuracy (ACC) and standard deviation (SD) obtained by FWFOA.

Data set Bupa Cleveland Dermatolgy Glass Iris Pima heart

ACC 67.60 58.14 97.37 78.62 96.66 71.11 81.35
SD 0.43 0.82 0.31 0.7 0 0 0.37

Fig. 14. 3D plot of ‘‘Rotated hyper-ellipsoid’’ test function.
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better search in weight space of some data sets in comparison with
other methods. Also, the small standard deviation in all the results
of Table 12 proves the stability of FWFOA while comparing other
methods.

5. Comparison of Forest Optimization Algorithm with other
search methods

In this section we will compare FOA with other search methods.
To do so, we have compared FOA with Gradient-Based local
optimization, hill climbing, simulated annealing and random
search all as conventional search methods. Then we have provided
comparisons between FOA and other evolutionary algorithms like
GA and PSO. These comparisons will make clear the advancements
of FOA over other search strategies.

5.1. Comparison of FOA with conventional methods

Gradient-Based local optimization method is used when the
objective function is smooth and one needs efficient local optimi-
zation. This method needs computing derivations so, it may be
problematic with not derivable functions. Gradient-Based methods
duo to their need to auxiliary information like derivative in
comparison to evolutionary algorithms are not mostly used in mul-
tidisciplinary engineering problems (Foster & Dulikravich, 1997).
For more details please refer to (Sivanandam & Deepa, 2007;
Snyman, 2005).

Stochastic Hill Climbing is another conventional method for
search problems (Sivanandam & Deepa, 2007). It uses a kind of gra-
dient to guide the direction of search and is suitable for well-
behaved continuous spaces. The obvious disadvantage with hill
climbing methods is their inefficiency in noisy spaces with many
local optimum; as they are probable of getting stuck in local
optimum. As the result, they are not welcomed in noisy spaces.
Also, hill climbing methods are expensive in using resources and
its time complexity is high.

Random search, which is a basic method, explores the search
space by randomly selecting solutions. Although random search
never gets stuck in a local optimum, but if the search space is
not finite, this method seems useless (Sivanandam & Deepa, 2007).

Simulated Annealing (SA) mixes features of random search and
exploitation features of hill climbing to give quite good results
(Sivanandam & Deepa, 2007). SA is a serious competitor to Genetic
Algorithms, but evolutionary algorithms like GAs have two main
differences with SA which makes them more efficient. First, evolu-
tionary algorithms are population-based methods whereas SA only
examines one potential solution at each iteration. The great advan-
tage of evolutionary algorithms is their exceptional ability to be
parallelized, whereas SA does not have this advantage. More
details about SA and its derivations can be seen in Ingber (1993).

5.2. Comparison of FOA with other evolutionary algorithms

The procedure of most evolutionary algorithms is as the
following:

1. Generating an initial population randomly.
2. Calculating the fitness for each individual.
3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to 2.

While considering these steps, all the evolutionary algorithms
share many common points with other methods but, the opera-
tions make them different with each other. If we compare the
information sharing of GA, PSO and FOA, we will see that informa-
tion sharing of them are significantly different and we reach to the
following conclusions: Because in GA all the chromosomes share
information with each other, so the whole population moves
towards the optimal solution like a one group. But, in PSO just
the ‘global best’ particle shares its information with other particles
and all the particles converge to the best solution quickly
(Sivanandam & Deepa, 2007). In contrary in FOA, some of the trees
(zero-aged trees including the best tree) share their information
with just their neighbors and not all the trees. As the result, the
information sharing of GA, PSO and FOA is different. From the other
side, PSO uses extra memory to store best particle. In the following
we will statistically study the behavior of FOA ,GA and PSO in a
smooth function.
5.2.1. Study the behavior of FOA, GA and PSO in a smooth function
In order to compare the behavior of FOA, GA and PSO, we have

chosen ‘‘Rotated hyper-ellipsoid function’’ function as a unimodal
smooth function (Blake et al., 1998); which is plotted as Fig. 14
and its global minimum of f ðxÞ ¼ 0 is obtainable for
xi ¼ 0; i ¼ 1; . . . ;n in the range �65:536 6 xi 6 65:536. We have
compared the results in 2D and the results are the average of 25
independent runs. We have done two series of experiments with
the same parameters of Table 5 for GA, PSO and FOA in 2 dimen-
sion: At first we considered the level of accuracy of the best solu-
tion from the optimal solution to be fixed as 0.0001 for FOA, GA
and PSO and compared them in the case of number of evaluations
(num-evals) as Table 13. Next in another attempt, we fixed the
number of evaluations to be 2000 and compared them in the level
of accuracy of the best solution from the optimal solution and sum-
marized the results as Table 14.

As it is obvious from Table 13, FOA needs much less evaluations
than both GA and PSO algorithms to reach to the specified level of
accuracy (0.0001) of the best solution from the optimal solution.
Also considering the results of Table 14 illustrates that after the
fixed number of evaluations (2000 evaluations) FOA moves closer
to the optimal solution with better level of accuracy from the opti-
mal solution in comparison with GA and PSO. In conclusion, the
experiments show that FOA behaves much better than both GA
and PSO in ‘‘Rotated hyper-ellipsoid’’ function as a smooth unimodal
test function. Another result of this experiment could be the
acceptable performance of FOA in finding local optimum; because



Table 13
Comparison of FOA, GA and PSO in the number of evaluations (num_evals) with fixed
level of accuracy (0.0001).

Algorithm FOA GA PSO

(num_evals) 1155.6 1754.4 5012

Table 14
Comparison of FOA, GA and PSO in the level of accuracy with fixed number of
evaluations (num_evals) (2000).

Algorithm FOA GA PSO

(level_of_accuracy) 7.2076e�05 1.3473e�04 0.0521
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as we mentioned before local seeding stage performs local search
so, higher level of accuracy could represent the good performance
of FOA in performing local search.

6. Conclusions and future work

In this article, a new evolutionary algorithm – Forest Optimiza-
tion Algorithm (FOA) – is proposed. FOA is inspired by some proce-
dures in the forests and simulates the most obvious procedure in
the forest which is known as seed dispersal. In the forests, the trees
with enough sunlight and good growing conditions can live longer
than other trees and different procedures help trees to continue
their generation for millions of years, which is named as seed dis-
persal. When the seeding procedure begins, some seeds fall just
beneath the parent trees themselves and this event is known as
local dispersal (referred as local seeding in FOA). Mostly natural
procedures like animals and the wind distributes the seeds in wide
areas and this procedure is known as long-distance seed dispersal
(referred as global seeding in FOA). Also, there is always a compe-
tition between neighboring trees to use the life essentials and the
winners are those trees with better life conditions and other trees
eventually get old and die. In this article, we proposed FOA to sim-
ulate these procedures to further optimize the solutions of the
nonlinear optimization problems.

We have tested the performance of FOA in 4 benchmark func-
tions and feature weighting as a real optimization problem. We
chose 4 (unimodal and multimodal) benchmark functions and
evaluated the performance of FOA on them. Also we have done
experiments to find the optimal value for the parameters of FOA.
In order to better compare the behavior of FOA in comparison with
GA and PSO, we tested 3 of the 4 benchmark functions in 5 and 10
dimensions; which increase the complexity of the experiments.
The results of the experiments on almost all of the selected func-
tions in 2, 5 and 10 dimensions showed that, FOA needs less num-
ber of evaluations to reach to a specific level of accuracy in
comparison with GA and PSO; which is a good improvement. Also
in another experiment, we compared the behavior of FOA in a
smooth function with both GA and PSO; the results showed the
superiority of FOA to both GA and PSO, because FOA needs less
number of evaluations and it has high level of accuracy in compar-
ison with GA and PSO.

After observing the acceptable results of FOA in benchmark
functions, we have also attempted to solve feature weighting as a
real challenging optimization problem and we used FOA to guide
the feature weights as a preprocess step of data mining. We
selected some data sets from UCI repository and the application
of FOA on feature weighting problem (FWFOA) showed a good per-
formance of FOA; because in some data sets FOA succeed to find
optimal weights for features to improve the performance of KNN
(K-Nearest-Neighbor) as a learning algorithm.

In this article we have tried to simulate the most common pro-
cedures among the trees of the forest, which is known as seed dis-
persal; but different trees use interestingly different methods in
order to disperse their seeds in the forest. So, considering specific
kinds of plants with their own way of survival and dispersal could
lead us to better results and this consideration is one of our future
attempts. Also, studying the behavior of FOA in multi-objective
problems seems encouraging and it will help us to better study
the importance of each parameter of FOA. In addition, in the future
we will also apply FOA in more challenging optimization problems
to further study the behavior of this algorithm.

FOA is proposed to solve continuous search problems and
applying it to feature weighting showed its good performance in
solving real continuous problems. Our ongoing research is to adjust
FOA to solve discrete problems like feature selection; because fea-
ture selection is a special case of feature weighting with the
weights limited to just 0 and 1 and due to promising results in fea-
ture weighting, we expect good results in feature selection too. The
nature’s procedure in the forests is more complex than what we
have considered in this article and any more study on each proce-
dure could lead us to better results and this is what we will invest
on that in the future.
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