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a b s t r a c t

Prompt response to customer demand has long been a point of major concern in supply chains. “Inventory

wars” between suppliers and their customers are common, owing to cases in which one supply chain party

attempts to decrease its stock at the expense of the other party. In order to ensure that suppliers meet their

commitments to fulfill orders on time, customers must formulate incentives or, alternatively, enforce penal-

ties. This paper deals with a customer organization that has a contract with a supplier, based on Just-In-Time

strategy. Initiating a policy of sanctions, the customer becomes the lead player in a Stackelberg game and

forces the supplier to hold inventory, which is made available to the customer in real-time. Using a class

of sanctioning functions, we show that the customer can force the supplier to hold inventory up to some

maximal value, rendering actual enforcement of sanctions unnecessary. However, contrary to expectations,

escalation of the enforcement level can in fact reduce the capacity of the supplier to replenish on time. Conse-

quently, the customer must sanction meticulously in order to receive his inventory on time. Having the pos-

sibility to devote a few hours each day to sanctioning activity significantly reduces the customer’s expected

cost. In particular, numerical examples show that the customer’s costs under an enforcement level may be

only 2 percent higher than his costs in a situation in which all inventory is necessarily replenished on time.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Prompt response to customer demand has long been a point of

ajor concern in supply chains and has given rise to such inven-

ory management strategies as Continuous Replenishment Program,

fficient Consumer Response, Just-In-Time (JIT) Supply, Ship-to-Order

nd Demand-Driven Supply (see, for example, Barnes et al., 2000;

arris, Swatman, & Kurnia, 1999; Raghunathan & Yeh, 2001; Ayers,

001). In the electronics industry, for example, original equipment

anufacturers (OEMs) frequently contract out their manufacturing

o electronics manufacturing services, and the latter are contrac-

ually obligated to meet the OEMs’ demands on a continuous basis

n a JIT mode, with little or no advance notice (Barnes et al., 2000).

ntra-supply-chain competition constitutes a main barrier to the

mplementation of such inventory management approaches. Indeed,

inventory wars” between suppliers (e.g., manufacturers) and their

ustomers (e.g., retailers) are a common occurrence, owing to cases

n which one supply chain party attempts to decrease its stock at the

xpense of another party (Cachon, 2001). As a result of such com-

etition, the likelihood of stockouts grows, and the replenishment
ead-time becomes uncertain.
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Management literature suggests various coordination approaches

o overcome intra-supply-chain competition. These approaches are

ased on specially designed incentives, penalties and cost sharing.

rout and Christy (1999), for example, examine how a supplier, com-

itted to a long-term contract with a customer based on a fixed sell-

ng price, responds to incentives for supplying JIT shipments on time,

s well as to penalties for failure to fulfill demand on time. The au-

hors show how increasing the incentive or penalties increases the

nventory capacities that the supplier holds. If there is no incentive

r, alternatively, the penalties are not enforced, the supplier is led to

educe his inventory capacities as well as his service level.

Vendor-managed inventories (VMI) are another successful ap-

roach to preventing the uncertain lead-times and low service levels

ssociated with intra-supply-chain competition. With VMI, suppliers

enerate orders based on mutually agreed-upon objectives for inven-

ory levels, fill rates and transaction costs, in addition to demand in-

ormation sent by their distributor customers. The supplier shares the

ustomer’s inventory-related costs and monitors the inventory status

nformation to make sure that the distributor customer always has

he appropriate amount of stock on hand (see, for example, De Toni &

amolo, 2005; Lee, So, & Tang, 2000; Vigtil, 2007; Yonghui & Raiesh,

004 for deliberations on information sharing between parties

mploying VMI). It has been shown that, in promoting information

haring between the customer and the supplier, vendor-managed

ystems enable the customer (distributor) to lower his inventory
EURO) within the International Federation of Operational Research Societies (IFORS).

forcement in order to increase supplier inventory in a JIT contract,
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levels, thereby leading to carrying-cost savings (Cachon & Fisher,

1997; Schenk & McInerny, 1998). Moreover, vendor-managed systems

provide the supplier with flexibility in its production operations (Fry,

Kapuscinski, & Olsen, 2001; Savaşaneril & Erkip, 2010). Given that the

firms maintain their independence, however, they can exercise dis-

cretion over the extent of information sharing, which may have com-

plex consequences. Notably, Lee et al. (2000) show that the supplier’s

on-hand inventory level may be affected by the level of information

shared with the customer. In particular, the authors find that if the

customer does not inform the supplier of the realized value of the de-

mand in each period, the supplier ends up holding an inventory level

that is almost two times greater than that under information sharing.

Another approach is to incentivize the supplier to increase its in-

ventory level, thereby reducing the lead-times and the likelihood of

stockouts on the customer’s side. This approach is realized through

so-called option contracts, in which the customer pays for the op-

tion to obtain additional supplies when needed. Specifically, in Wang

and Liu (2007) the customer orders a basic level of inventory, and the

supplier necessarily holds that level. In addition, the customer pays

an option cost for every additional unit of inventory that the sup-

plier chooses to hold for him. If, according to the realized demand,

the customer needs to exercise an additional purchase of inventory,

he pays an exercise cost. Consequently, it is in the supplier’s interest

to hold a greater level of inventory than that of the customer’s basic

order (see also Zhao, Wang, Cheng, Yang, & Huang, 2010). Fang and

Whinston (2007) consider an option contract in which the supplier is

dominant and sets the option and exercise costs. If a customer buys

options in advance (before the demand is realized), he receives prior-

ity over other customers in receiving the inventory. The authors show

that the inventory level that the supplier holds in this case is higher

than that under no option contract.

In this paper we examine the case of a customer who employs

the JIT management strategy when contracting with a supplier. The

JIT management strategy implies that lead-times are short. The cus-

tomer’s goal is to set an optimal enforcement policy in order to pre-

vent breach of contract by the supplier, and to minimize the associ-

ated costs.

Our study is motivated by a real-life supply chain involving the

Israel Police (customer) and a supplier of security products. The ar-

rangement between the customer and the supplier is based on a stan-

dard contract, according to which, at the beginning of each period, the

customer sets an order quantity to be supplied and pays for the order.

The supplier then ships the products over the course of the period in

response to the customer’s ongoing requests. When demand during a

given period is lower than expected, the customer might not request

that the entire order quantity be shipped during that period; in such

a case, the supplier will still fulfill the entire prepaid order by the end

of the period. Similarly, if, at any point in time over the course of the

current period, the supplier does not have sufficient stock to fulfill a

specific order, the unshipped quantity will be supplied by the end of

the period.

A key point of concern in the scenario described is that inventory

shortage can lead to deadly consequences. As a result, both the po-

lice (customer) and the supplier accumulate excessive inventories,

thereby consuming vast resources. The large order quantities dealt

with imply that high inventory costs are involved, even if the unit

holding cost is not high. In order to reduce his own holding costs,

the supplier attempts to reduce the quantity of stock he holds at any

given time. This implies that the supplier ships steadily in response

to the customer’s requests (i.e., his shipment costs are not affected)

but is not always able to completely fill the orders on time. As noted

above, in cases in which the supplier lacks sufficient stock to fulfill an

order, he ships the remaining quantity at the end of the period. This

behavior induces the customer to hold greater stocks. To prevent the

supplier from engaging in such behavior, the customer employs sanc-

tions against the supplier when the latter does not provide timely
Please cite this article as: M. Shnaiderman, L. Ben-Baruch, Control and en
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hipments. The supplier is then charged by the purchasing depart-

ent, which takes all the complaints into account and issues them

n the form of a monetary charge to the supplier. Note that the cus-

omer imposes sanctions only on days in which it requests products

which have been paid for as part of the prepaid order made at the

eginning of the current period) and the supplier is not able to ship

he products on those same days. Enforcement of sanctions inflicts

osts on the customer: the act of sanctioning is time-consuming and

s carried out in addition to the standard logistic functions executed

y customer’s management department. Thus, the time invested in

anctioning, referred to as the enforcement level, is a decision vari-

ble. That is, the customer’s effort level is measured with the time

pent on sanction-related activities, which is a common practice. The

ustomer’s goal is to find the optimal trade-off between the total in-

estment in sanctioning and the inventory holding cost.

We model the competition in the described two-echelon supply

hain with a Stackelberg game such that the customer is the leader,

hereas the supplier is the follower. Our results show that the cus-

omer can force the supplier to hold inventory up to some maximal

alue. This value depends on the total time that the customer can ac-

ually spend enforcing penalties on each day, on the rigorousness of

he punishment toward the supplier due to not replenishing on time

see below), on the holding cost and on demand distribution. More-

ver, we find that when the customer escalates the enforcement level,

he supplier does not necessarily increase the inventory level that he

olds throughout the period (and can thereby replenish on time) and

ay even reduce it.

The rest of this paper is organized as follows. Section 2 presents

description of the problem and the corresponding model. Section 3

escribes the decision of the supplier (follower player) regarding the

nventory level he holds for the customer. This decision is made in

esponse to the decisions of the customer (leader player) about the

rder quantity and enforcement level; the customer’s model is de-

cribed in Section 4. Both Sections 3 and 4 include analytical models

s well as numerical illustrations. Section 5 concludes the paper.

. Problem formulation

We consider a multi-period two-echelon supply chain model con-

isting of one supplier and one customer. During each period, n, of τ
ays, the customer’s inventory has to satisfy a total periodic demand

f Dn. This demand is stochastic with realization dn, probability den-

ity function fn(dn) and cumulative distribution function Fn(·). As in

any studies, including Khmelnitsky and Caramanis (1998), Kogan

nd Lou (2002) and Kogan and Tell (2009), the demand rate Dn/τ
ithin a given period n is assumed to be constant. Let N be the to-

al number of periods. At the beginning of each period n, before the

emand is realized, the customer orders qn units of inventory based

n his initial inventory In. According to the contract, the supplier has

o replenish that quantity of inventory over the course of period n, in

hipments of quantities that correspond to the customer’s needs. The

upplier is a distributor or a wholesaler that can deliver in no time

f his stocks are sufficient. Moreover, in the type of environment that

e consider (i.e., a small country), distances are small, so the deliv-

ry process is quick and efficient. Therefore, we assume the supplier’s

ead time is negligible. On the other hand, it takes time to his subcon-

ractors to manufacture and deliver the products. Therefore, the sub-

ontractors’ lead-time is not zero, that is, the supplier cannot wait un-

il the last moment for the demand to realize as he might not be able

o meet the demand and thus incur penalties. However, in an attempt

o avoid holding costs, the supplier may choose not to hold the entire

uantity qn in his warehouse during the period and instead to hold

nly some fraction αn of qn. We refer to αnqn as the “held quantity”

t period n. Thus, the quantity of inventory that is available for the

ustomer during period n is In+ αnqn. The customer will necessarily

eceive the rest of the order, (1−αn)qn, at the end of that period. On
forcement in order to increase supplier inventory in a JIT contract,
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he basis of the value of αn (as well as the values of qn and Dn; see be-

ow), the customer chooses how many hours he will spend each day

ngaging in enforcement activity; this number of hours is denoted by

n and is referred to as the enforcement level. Enforcement activity

an include, for example, submitting reports and complaints to the

ustomer’s purchasing department regarding the supplier. The value

f xn, which is a function of αn, must be lower than or equal to a max-

mal capacity xmax. The customer pays cost c for every hour he spends

ngaging in sanctioning activity. At the end of period n, the supplier is

harged by the purchasing department. The cost, or penalty, that the

upplier pays as a result of the customer’s enforced sanctions, is de-

oted p(xn); this function is increasing, convex and satisfies p(0) = 0.

nce the customer orders a product quantity (which naturally ac-

ounts for his inventory on hand, In), the customer’s intention is to

enalize the supplier not fulfilling the order on time, even if the cus-

omer will have no shortage in his stock by the time the shipment is

equired. Therefore, the supplier’s inventory policy does not depend

n the stock that the customer holds.

Previous research shows that, in games such as that described

bove, the customer can gain a significant advantage by being the

eader rather than the follower (Dukes, Geylani, & Srinivasan, 2009;

atsui, 2010; Xue, Demirag, & Niu, 2014). In order to fortify his lead-

rship in the game, at the beginning of period n and after determin-

ng the order quantity qn, the customer defines the enforcement level

unction xn(αn) and shares it with the supplier. (Note that, since this

unction’s structure is affected by qn as well as by the demand Dn,

ts complete notation is x
qn,Dn
n (αn); however, we only use this symbol

hen it is essential.) The supplier responds by setting αn. Depend-

ng on the demand realization dn, the enforcement level function is

random variable (with realization x
qn,dn
n (αn)) for every value of αn.

his function is decreasing in the interval [0,1], and satisfies xn(0) ≤
max as well as

qn,Dn
n (αn) = 0 for αn ≥ min

{
Dn

qn
, 1

}
. (1)

The reasoning for (1) is as follows. If αn = 1, then no sanctions are

equired. Moreover, if the held quantity αnqn is greater than the re-

lized demand dn, then during period n the supplier holds inventory

hat meets the whole periodic demand. Thus, the customer does not

mpose any sanctions. Note that as the demand grows, the value of

n becomes higher for every value of αn. This situation is fair, since

he supplier knows that higher demand is associated with greater

hortage—and thereby greater damage to the customer—in the event

hat the supplier has failed to hold the quantity of inventory that the

ustomer requires. The customer’s and supplier’s unit holding costs

uring the whole period of duration τ are denoted by hc and hs, re-

pectively. The customer pays cost w for every unit of inventory he

eceives, and the supplier pays cost b for every unit that he orders.

e assume that all of the unit costs and demand distributions are

nown to both of the players. As stated above, the customer sets the

ptimal order quantity and the corresponding enforcement level be-

ore the periodic demand is realized, based on its distribution. On the

asis of Stackelberg equilibrium, the customer is able to calculate the

upplier’s decision regarding the level of held quantity (which is also

et at the beginning of the period, before realization of the periodic

emand).

Given an order quantity qn, there are numerous different types of

unctions that can be used to set the optimal enforcement level xn. In

his paper we consider the following type of function:

qn,Dn,K
n (α) =

⎧⎪⎨
⎪⎩

xmax

(
1 −

[
max ( qn

Dn
, 1) · α

]K
)
, if 0

≤ α < min( Dn

qn
, 1)

0, if min( Dn

qn
, 1) ≤ α ≤ 1

(2)

or K > 0, where K is a parameter representing the rigorousness level of

he enforcement policy, i.e., the extent to which sanctions are actually

nforced.
Please cite this article as: M. Shnaiderman, L. Ben-Baruch, Control and en
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emark 1. If Dn ≥ qn, then (2) becomes x
qn,Dn,K
n (α) = xmax(1 − αK)

or every 0 ≤ α ≤ 1.

As we show in Section 4.3.1 below, under policy (2) the customer

oes not actually have to implement the sanctions. He only needs to

ave the possibility to do so for the sake of deterrence. Since higher

alues of xmax imply more effective deterrence, it is preferable for the

ustomer to set the whole xmax as a coefficient in the first term of

2), and increase the held quantity. Even though this choice may in-

rease his sanctioning cost, this cost remains theoretical and does not

ctually occur.

For every realized demand dn, the corresponding func-

ion x
qn,dn,K
n (αn) is continuous in [0,1]; twice differentiable in

0, min( dn
qn

, 1)); and vanishes in [min( dn
qn

, 1), 1]. For every fixed

alue of αn, the value x
qn,dn,K
n (αn) is non-decreasing in K. If K > 1,

hen x
qn,dn,K
n (αn) is concave in [0, min( dn

qn
, 1)), and if 0 < K < 1, then

t is convex in that interval. Moreover, as K increases and tends to

nfinity, x
qn,dn,K
n (αn) becomes more rigorous and converges to the

imit function x
qn,dn
n (αn) = xmax for 0 ≤ αn < min(dn/qn, 1). On the

ther hand, as K decreases and tends to zero, the enforcement level

ends to the limit function x
qn,dn
n (α) = 0 for 0 < α ≤ min(dn/qn, 1).

s we show below, the quantity of inventory that the supplier holds

or the customer, αnqn, does not necessarily increase in K.

Using three-stage backward dynamic programming, we start by

alculating the supplier’s response to the customer’s decisions re-

arding qn and xn.

. The supplier’s model

.1. Model setup

The supplier’s (stochastic) cost at period n, denoted by
s
n(qn, xn, αn, Dn), is calculated as follows.

If αnqn ≤ Dn, then the supplier’s cost at period n is

s
n(qn, xn, αn, Dn) = p

((
1 − αnqn

Dn

)
τxqn,Dn

n (αn)
)

+ (b − w)qn + α2
n q2

n

2Dn
hs. (3)

The first term on the right-hand side of (3) is equal to the penalty

nflicted on the supplier, i.e., the cost the supplier pays as a result of

he customer’s enforced sanctions. Assuming that the demand rate

s fixed during the period, the supplier provides new inventory dur-

ng a fraction of αnqn
Dn

out of the total period duration, τ days. Dur-

ng the remaining fraction of the period (1 − αnqn
Dn

), the customer

pends on average x
qn,Dn
n (αn) hours on sanctioning each day. There-

ore, the total number of hours spent on sanctions in period n is equal

o (1 − αnqn
Dn

)τx
qn,Dn
n (αn). Note that the supplier may hold zero inven-

ory and supply at the beginning of the next time period rather than

uring the current period, but then he will incur excessive penalties.

he second and third terms on the right-hand side of (3) are the sup-

lier’s order and holding costs, respectively.

On the other hand, if αnqn ≥ Dn, then the supplier’s periodic cost

s

s
n(qn, xn, αn, Dn) = (b − w)qn +

(
αnqn − Dn

2

)
hs, (4)

ontaining only the order and holding costs.

The supplier’s goal at period n is to minimize the total expected

ost-to-go. Let

s
n(qn, xn) = min

(αn,...,αN)
E

(
N∑

m=n

Cs
m(qm, xm, αm, Dm)

)
, (5)

nd let (ECs
n)(qn, xn, αn) denote the supplier’s expected value of (4).
forcement in order to increase supplier inventory in a JIT contract,
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According to the Bellman equation (Bellman, 1957; Kogan &

Shnaiderman, 2010), the minimal cost (5) recursively satisfies the fol-

lowing:⎧⎪⎨
⎪⎩

Bs
N(qN, xN) = min

0≤αN≤1
(ECs

N)(qN, xN, αN)

Bs
n(qn, xn) = min

0≤αn≤1

(
(ECs

n)(qn, xn, αn) + E
[
Bs

n+1(qn+1, xn+1)
])

,

n < N.

Consequently, we recursively define the supplier’s objective

function{
Js
N(qN, xN, αN) = (ECs

N)(qN, xN, αN)

Js
n(qn, xn, αn) = (ECs

n)(qn, xn, αn) + E
[
Bs

n+1(qn+1, xn+1)
]
, n < N,

(6)

and obtain the following:

Bs
n(qn, xn) = min

0≤αn≤1
Js
n(qn, xn, αn).

The customer’s subsequent decisions qn+1 and xn+1 depend on his

inventory level In+1, which fulfills the following conditions.

Remark 2. The initial inventory at period n+1 satisfies

In+1=In+qn−Dn, and depends neither on the fraction αn nor on

the enforcement level xn.

Taken together, the second term of (6) and Remark 2 lead to the

following proposition, which substantially simplifies the supplier’s

calculations.

Proposition 1. The only component of Jn
s that depends on the deci-

sion variable αn is ECn
s, that is, the expected cost of the current pe-

riod. Thus, the supplier can myopically set the value of αn to be that

one that minimizes ECn
s, namely, the supplier deals with the follow-

ing periodic problem:

min
0≤αn≤1

(ECs
n)(qn, xn, αn). (7)

By (3) and (4), the supplier’s expected cost at period n, as a func-

tion of αn (given qn and xn), is

(ECs
n)(qn, xn, αn) = (b − w)qn +

∫ αnqn

0

(
αnqn − dn

2

)
hs fn(dn)ddn

+
∫ ∞

αnqn

[
p

((
1 − αnqn

dn

)
τxqn,dn

n (αn)
)

+ α2
n q2

n

2dn
hs

]
fn(dn)ddn. (8)

In order to solve (7), we differentiate (8) and obtain

∂(ECs
n)

∂αn
=

∫ αnqn

0

qnhs fn(dn)ddn

+
∫ ∞

αnqn

[
p′
((

1 − αnqn

dn

)
τxqn,dn

n (αn)

)(
− qn

dn
τxqn,dn

n (αn)

+
(

1 − αnqn

dn

)
τ · (xqn,dn

n )′(αn)

)
+ αnq2

n

dn
hs

]
fn(dn)ddn

(9

as well as

∂2(ECs
n)

∂α2
n

=
∫ ∞

αnqn

⎡
⎢⎣p′′

((
1 − αnqn

dn

)
τxqn,dn

n (αn)
)(

− qn

dn
τxqn,dn

n (αn) +

+p′
((

1 − αnqn

dn

)
τxqn,dn

n (αn)
)(

(1 − αnqn

dn
)τ · (x

+ p′(0)
qn

αn
τxqn,αnqn

n (αn) fn(αnqn).

Note that, though the conditions for the supplier’s objective func-

tion to be convex are very awkward and therefore not useful, the sec-

ond derivative (10) of the objective function contains five terms, only
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αnqn

dn
)τ · (xqn,dn

n )′(αn)
)2

′′(αn) − 2qn

dn
τ · (xqn,dn

n )′(αn)
)

+ q2
n

dn
hs

⎤
⎥⎦ fn(dn)ddn

(10)

ne of which, (1 − αnqn
dn

)τxn
′′(αn), may be negative, and this is the sit-

ation if xn(αn) is strictly concave. Consequently, the second deriva-

ive is likely to remain positive even if the enforcement level is rigor-

us. Our numerical experiments also show that the objective function

s either convex and monotonically decreasing or quasi-convex (with

unique optimal value 0 <αn
∗ < 1). Therefore, we next assume that

he supplier’s objective function (8) is quasi-convex in αn. Also, sub-

tituting αn = 0 in (9) leads to∫ ∞

0

[
p′(τxqn,dn

n (0)
)(

− qn

dn
τxqn,dn

n (0) + τ · (xqn,dn
n )′(0)

)]
fn(dn)ddn < 0, (11)

nd substituting αn = 1 in (9) leads to∫ qn

0

qnhs fn(dn)ddn

+
∫ ∞

qn

[
p′(0)

(
(1 − qn

dn
)τ · (xqn,dn

n )′(1)
)

+ q2
n

dn
hs

]
fn(dn)ddn. (12)

We obtain the following proposition.

roposition 2. Let the supplier’s objective function (8) be quasi-
onvex. According to (11), if xn(0) > 0 then the supplier will always
hoose αn

∗ > 0. If the value of (12) is greater than or equal to 0, then
here exists a unique optimal value 0 < αn

∗< 1 that solves the follow-
ng equation:

∫ α∗
nqn

0

qnhs fn(dn)ddn +
∫ ∞

α∗
nqn

×

⎡
⎣p′

((
1 − α∗

nqn

dn

)
τxqn,dn

n (α∗
n)
)
×(

− qn

dn
τxqn,dn

n (α∗
n) + (1 − α∗

nqn

dn
)τ · (xqn,dn

n )′(α∗
n)
)

+ α∗
nq2

n

dn
hs

⎤
⎦

× fn(dn)ddn = 0. (13)

Otherwise, αn
∗=1. �

Proposition 2 determines that the supplier will always hold some

ositive level of inventory for the customer (while the order quantity

s positive and the enforcement function does not identically van-

sh) during the period. Furthermore, if the supplier’s holding cost

s high while the penalty cost p is not rigorous (e.g., in the case of
′(0) = 0), then he will hold only a partial quantity of the order.

therwise, he will prefer to hold the total quantity. However, be-

ow we show numerically that even in the former case, if the or-

er quantity qn is lower than or equal to an upper bound Qn, then

he customer can set an enforcement level that leads to an optimal

alue of αn, that is approximately equal to 1. Once qn exceeds Qn,

hen αn
∗ necessarily becomes lower than 1. In other words, when

he customer’s order quantity does not exceed the maximal value

n, the supplier is forced to hold that entire quantity during the

urrent period. On the other hand, the supplier will never hold any

uantity that is greater than Qn (even if qn is much higher than that

uantity).

In what follows we numerically examine these theoretical results.

.2. Numerical examples and sensitivity analysis

In our numerical example, we assume that the duration of each

eriod is 90 days (i.e. τ = 90), that is, one quarter. Let also xmax = 3,
forcement in order to increase supplier inventory in a JIT contract,
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Fig. 1. Optimal fractions of order quantities (a) and actual held quantities (b) for different values of K and qn .
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nd assume that the periodic demand is uniformly distributed in the

nterval [0, 500]. Let the penalty cost inflicted by the purchasing de-

artment be of the following quadratic type

p(xn) = a · xn
2 (14)

with a > 0), which becomes more rigorous as a increases. Given (2)

nd (14), we find that the supplier’s objective function (8) is either

trictly convex or decreasing in [0, 1], namely, it is quasi-convex in

his interval. We first consider how the parameter K affects the held

uantity for fixed orders qn. As expected, lim
K→0

α∗
n(qn, x

qn,dn,K
n )qn = 0,

nd in addition, there exists a limit �n(qn) = lim
K→∞

α∗
n(qn, x

qn,dn,K
n )qn.

he value of �n is equal to qn, if qn is lower than or equal to some

uantity qn
0;otherwise, it is equal to a limit Ln (which does not de-

end on qn).

Let hs = 2 and a = 0.5. We then obtain Qn = 453 (the maximal pos-

ible held quantity) as well as Ln = 422. The fraction αn
∗(qn, x

qn,dn,K
n )

nd the held quantity are presented in Fig. 1 as functions of K, for

everal values of qn.

The jumps in the figures show the existence of an upper bound on

he supplier’s held quantity. Up to this bound, the supplier maintains

ufficient stock to fill the customer’s order, thereby avoiding sanc-

ions. Beyond that bound the supplier incurs sanctions that are al-

ost quantity-invariant sanctions. As a result, in cases in which the

upplier is understocked, i.e., incurs sanctions, the optimal level of in-

entory held by the supplier is lower than the upper bound. Therefore

e observe jumps in the figures from the upper bound (no sanction)

o the new optimal level (quantity-invariant sanctions).

For values of qn that are lower than or equal to 453, the customer

an choose values of K that lead to a value of αn
∗ that is very close

o 1. As p ′(0) = 0, these values of K must be lower than 1 (see (12)).

owever, they are found to be closer to 1 than to 0.999. If qn = 300

r qn = 440, then the held quantity is monotonically increasing in

. Once K exceeds 23 (in the former case) and 230 (in the latter),

n
∗ becomes approximately 1 and the held quantity is equal to qn.

his situation does not change when K grows and tends to infinity.

f the value of qn is close to Qn, then the customer can still force the

upplier to hold the entire ordered quantity during the current pe-

iod. However, once qn exceeds Qn, the maximal held quantity de-

reases. For instance, if qn = 450, then the whole order quantity can
Please cite this article as: M. Shnaiderman, L. Ben-Baruch, Control and en
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e held by the supplier during the current period. Nevertheless, once

n becomes greater than Qn, then the maximal held quantity, which

s lower than qn, is even smaller than Qn. When qn = 455 (just slightly

reater than Qn), the maximal held quantity drops to 427 (but is still

igher than Ln). If qn increases further, then the held quantity mono-

onically tends to Ln, that is, it will never be greater than that limit

see qn = 600 in Fig. 1).

The decrease of the maximal held quantity for values of qn that

xceed Qn is due to the following. If the order quantity qn is a little

igher than Ln (up to the value of Qn), then the supplier prefers to

old the whole quantity during period n, preventing sanctions and

penalty (in spite of paying higher holding costs). Once qn exceeds

he value of Qn, the supplier knows he will not hold the whole cus-

omer’s order quantity due to his holding cost. Hence, he expects to

ay some penalty cost anyway (under (2)), and chooses to reduce the

eld quantity (to even a lower value than Qn), as doing so does not

ubstantially increase his penalty cost, whereas it does decrease his

olding cost.

Moreover, the value of αn
∗ is not necessarily increasing in K, and

ay even decrease (see the cases of qn = 450 and qn = 455 in

ig. 1). This situation is explained as follows. If the value of K is high,

ut not huge, then xn is strictly concave, and there exists an optimal

alue αn
∗ that is extremely close to 1, and xn(αn

∗) almost vanishes.

his value is optimal, since reducing αn beyond this value may signif-

cantly increase the total time that the customer spends on sanction-

ng activity. As a result, the supplier’s penalty may grow substantially.

n the other hand, once K grows even more and becomes very large,

n becomes piecewise linear; it is constant (and equal to xmax) in an

nterval [0, 1−δ) for some very small value δ, which includes αn
∗.

ow xn(αn
∗) becomes approximately xmax, and in order to reduce

is penalty cost, the supplier may increase the value of αn. However,

here is an alternative choice: the supplier may significantly reduce

n, such that the penalty cost remains the same (but does not grow),

ut the holding cost decreases significantly. As our example shows,

he latter possibility may be preferable for the supplier.

Fig. 2 below presents how the maximal held quantities (as func-

ions of qn) are affected by the parameters hs and a. As expected, these

uantities become lower as the supplier’s unit holding cost hs grows,

nd higher when the penalty cost p becomes more rigorous (i.e., a in-

reases). If hs=2 and a = 0.5, then Qn is equal to 453 and Ln = 422,
forcement in order to increase supplier inventory in a JIT contract,
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Fig. 2. The impact of the supplier’s holding cost (a) and punishment level (b) on held quantities.
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as we found above. When hs decreases to 1 or increases to 6, then Qn

increases to 463 (and Ln = 446) or decreases to 410 (and Ln = 372), re-

spectively. If a decreases to 0.1 or increases to 3, the maximal quantity

Qn becomes 381 or 478, respectively. The corresponding limit value Ln

is equal to 340 or to 467, respectively.

We now go through the customer’s periodic problem.

4. The customer’s problem

4.1. Model setup

In order to satisfy his periodic demand, the customer makes all

decisions such that In+αnqn ≥ Dn necessarily holds (see below). The

customer’s periodic cost is

Cc
n

(
In, qn, xqn,Dn

n , Dn

)
= c ·

(
1 − α∗

n(qn, xqn,Dn
n )qn

Dn

)
τxqn,Dn

n

(
α∗

n(qn, xqn,Dn
n )

)
+ wqn

+
(

In − Dn

2
+ α∗

n(qn, xqn,Dn
n )qn − (α∗

n(qn, xqn,Dn
n ))

2
q2

n

2Dn

)
hc (15)

while αnqn≤ Dn≤In+ αnqn, or

c
n

(
In, qn, xqn,dn

n , Dn

)
= wqn + Inhc, (16)

if Dn≤αnqn. The first term on the right-hand side of (15) is the cost

that the customer pays due to sanctioning (recall that the expression

(1 − α∗
n(qn,x

qn ,Dn
n )qn

Dn
)τx

qn,Dn
n (α∗

n(qn, x
qn,Dn
n )) represents the total time

that the customer devotes to sanctions, as described in Section 3.1

above). The third term on the right-hand side of (15) refers to the

customer’s holding cost, which is obtained as follows. The customer

first uses the inventory that is replenished by the supplier. If this in-

ventory does not satisfy the periodic demand (i.e. Dn>αnqn), the cus-

tomer then uses the inventory from his own warehouse (and may also

implement sanctions at the same time).

Based on (15) and (16) above, the customer’s expected periodic

cost (before the periodic realized demand is known), as a function of

In, qn and xn, is equal to

(ECc
n)(In, qn, xqn,Dn

n )

= wqn + Inhc +
∫ ∞

αnqn

(
c ·

(
1 − α∗

n(qn, xqn,dn
n )qn

dn

)
τx(qn,dn)

n (αn)
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+
(

α∗
n(qn, xqn,dn

n )qn − dn

2
− (α∗

n(qn, xqn,dn
n ))

2
q2

n

2dn

)
hc

)

× fn(dn)ddn. (17)

Similarly to the supplier, the customer’s goal is to minimize his

otal expected cost-to-go, and we denote

c
n(In) = min(

qn,...qN ,x
qn ,Dn
n ,...,x

qN ,DN
N

) E

(
N∑

m=n

Cc
m(Im, qm, xqm,Dm

m , Dm)

)
. (18)

According to the Bellman equation,

Bc
N(IN) = min

qN ,x
qN ,DN
N

(ECc
N)(IN, qN, xqN ,DN

N
)

Bc
n(In) = min

qn,x
qn ,Dn
n

(
(ECc

n)(In, qn, xqn,Dn
n ) + E

[
Bc

n+1(In+1)
])

, n < N,

(19)

uch that In+1 = In + qn −Dn.

Based on (19), we define the following objective function:

Jc
N(IN, qN, xqN ,DN

N
) = (ECc

N)(IN, qN, xqN ,DN

N
)

Jc
n(In, qn, xqn,Dn

n ) = (ECc
n)(In, qn, xqn,Dn

n )

+ E
[
Bc

n+1(In + qn − Dn)
]
, n < N,

(20)

eceiving

c
n(In) = min

qn,x
qn ,Dn
n

Jc
n

(
In, qn, xqn,Dn

n

)
.

In order to prevent inventory shortages during period n, the cus-

omer must ensure that his total available inventory during this pe-

iod, In + αnqn, meets the demand Dn. In other words, the customer

as to determine his order quantity and enforcement level such

hat

r (Dn > In + α∗
n(qn, xn) · qn) ≤ ε (21)

or a small positive number ε. Constraint (21) implies that, theoreti-

ally, a situation of a shortage is possible for every small ε > 0 if the

emand probability distribution is not bounded. Since the probability

or such shortage is very small, this approximation does not affect the

ain results. Let dmax
n = F−1

n (1 − ε); then inequality (21) is satisfied

f and only if

n + α∗
n(qn, xn) · qn ≥ dmax

n . (22)
forcement in order to increase supplier inventory in a JIT contract,
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According to the previous section, the left-hand side of (22) is

ounded from above by In+Qn, so a necessary condition for the ex-

stence of a solution that satisfies (22) is

n ≥ dn
max − Qn (23)

it should be noted that as the supplier knows how Dn is distributed,

he value of Qn never exceeds dn
max). Furthermore, the initial inven-

ory of the next period, n + 1, must be taken into account, and the

urrent order quantity qn must be high enough such that In+1 will

ecessarily be greater than or equal to dn+1
max−Qn+1. That is,

r(In+1 < dn+1
max − Qn+1) ≤ ε (24)

at the beginning of period n, the inventory In+1 is a random variable

hat depends on Dn). Thus, qn must satisfy

n ≥ dn
max − In + dn

max
+1 − Qn+1. (25)

If the initial inventory In satisfies (23) but is very close to

n
max−Qn, then the customer is in need of a high quantity held by

he supplier which is close to the maximal possible capacity Qn. As

e saw in Section 3 above, the customer must order exactly that

uantity, and no more. However, from (25) we find that qn has to be

igher than dn
max−In, which is very close to Qn (while In is approxi-

ately dn
max−Qn). That is, qn must be greater than Qn. Consequently

here may be no value of qn that satisfies both (22) and (25). As a re-

ult, a more rigorous constraint regarding the initial inventory is re-

uired, and, accordingly, based on the previous section, we replace Qn

ith Ln in constraints (23) and (25), for n < N−1. In this situation, the

ustomer needs the supplier to hold for him Ln units of inventory at

ost during the current period. The customer can increase his order

n as much as required, provided that the quantity being held does

ot drop lower than Ln.

We now formulate the customer’s periodic problem. Assuming

hat

n > dn
max − Ln, (26)

he customer solves the following problem:

min
n,x

qn ,Dn
n

Jc
n(qn, xqn,Dn

n ) (27)

.t. α∗
n(qn, xqn,Dn

n ) · qn ≥ dn
max − In (28)

n ≥ dn
max − In + dn

max
+1 − Ln+1. (29)

In Sections 4.2 and 4.3 we solve problem (27)–(29). First, we find

he optimal solution in the last two periods.

.2. The last two periods

Let n = N. During the current period, the supplier must hold the

ustomer’s entire order quantity, since there is no “next period” to-

ards which he can supply the rest of the inventory. Hence,

N = LN = ∞, (30)

nd xn ≡ 0, and according to (17) and (20), the customer’s objective

unction is equal to

c
N(IN, qN, 0) = wqN + INhc +

∫ ∞

qN

(
qN − dN

2
− q2

N

2dN

)
hc fN(dN)ddN.

(31)

Jc
N−1(qN−1, xN−1) = wqN−1 + IN−1hc +

∫ ∞

qN−1

((
qN−1 − dN−1

2
− q2

N−
2dN

+
∫ IN−1+qN−1−dN

max

0

(
IN−1 + qN−1 − dN−1 − E[DN]

2

×
[

w(dN
max − IN−1 − qN−1 + dN−1) + (IN−1 + qN∫ ∞

dN
max−IN−1−qN−1+dN−1

(
dN

max−IN−1−qN−1 + dN
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In the last period, the customer only has to ensure that his avail-

ble inventory satisfies constraint (28). Consequently, if the initial in-

entory IN is lower than dN
max, the customer orders up to that bound.

therwise, the customer orders nothing, as indicated in the following

roposition.

roposition 3. The customer’s optimal order quantity in the last pe-

iod is

N
∗(IN) =

(
dN

max − IN
)+

. (32)

roof. To find an optimal order quantity, we differentiate objective

unction (31).

∂ Jc
N(IN, qN, 0)

∂qN

= A +
∫ ∞

qN

(
1 − qN

dN

)
hc fN(dN)ddN > 0.

Since the derivative is positive, the objective function is increas-

ng in qn. Therefore, the optimal order quantity is the minimal non-

egative value that meets constraint (28). �
Substituting the optimal quantity (32) in (31), the minimal ex-

ected cost at period N is as follows. If IN< dN
max, then

c
N(IN) = w(dN

max − IN) + INhc +
∫ ∞

dN
max−IN

×
(

dN
max − IN − dN

2
− (dN

max − IN)
2

2dN

)
hc fN(dN)ddN.

(33)

Otherwise,

c
N(IN) =

(
IN − E[DN]

2

)
hc. (34)

Next, we consider period N−1.

Let n =N−1. According to (30), constraint (29) is necessarily satis-

ed for every order quantity qN−1 ≥ 0. The customer has to replenish

is inventory up to dN−1
max, and if the initial inventory IN-1 is suf-

ciently large to meet (23), then this is possible. Moreover, as men-

ioned in the previous section, when 0 ≤ qN−1 ≤ QN−1, the customer

s able to force the supplier to hold his entire order quantity during

hat period, that is, αN−1=1, preventing any sanction cost. Thus, the

ustomer’s objective function (obtained by (17), (20), (33) and (34))

s

c

)
fN−1(dN−1)ddN−1

fN−1(dN−1)ddN−1 +
∫ ∞

IN−1+qN−1−dN
max

dN−1)hc+
N

2
− (dN

max−IN−1−qN−1+dN−1)
2

2dN

)
hc fN(dN)ddN

]
fN−1(dN−1)ddN−1. (35)

If the initial inventory is lower than dN−1
max, then the customer

ay order dN−1
max − IN−1 units of inventory. He does not need to

rder a greater quantity than this, since at the beginning of the next

eriod, after the demand of the current period is realized, he can ob-

erve his initial inventory IN and order (as well as receive) as much

s required. Indeed, the objective function (35)) is increasing, and the

ollowing proposition is obtained.

roposition 4. Assume that IN−1 satisfies (23). Then the customer’s

ptimal order quantity at period N−1 is

N
∗
−1(IN−1) = (dN−1

max − IN−1)
+
, (36)

nd the optimal enforcement level xN−1
∗ (for IN−1 < dN−1

max) is one

hat leads to α∗
N−1

((dmax
N−1

− IN−1)+, x∗
N−1

) = 1. �

We now examine the customer’s problem in earlier periods.
forcement in order to increase supplier inventory in a JIT contract,
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4.3. Period n, n < N−1

At the beginning of the current period, the customer’s initial in-

ventory In is assumed to meet (26). The ordered quantity qn and the

enforcement level xn must satisfy constraints (28) and (29). We first

calculate the customer’s optimal enforcement level given the order

quantity.

4.3.1. Setting the optimal enforcement level

Assume that the order quantity qn has been set, satisfying (29).

According to (20), we obtain the following remark.

Remark 3. Given the order quantity qn, the only component of the

objective function (20) that is affected by the enforcement level is

the expected cost of the current period, i.e., (ECc
n)(In, qn, xn). �

Given the order quantity qn, the enforcement level xn must be rig-

orous enough so that constraint (28) can be met. Additional rigorous-

ness increases the supplier’s held quantity α∗
n(qn, xn) · qn up to either

Qn (for qn ≤ Qn) or Ln (otherwise). Generally, a more rigorous pol-

icy leads to the supplier holding a larger inventory. This may reduce

the customer’s sanctioning cost but leads to higher holding costs. The

customer needs the supplier to hold (dn
max−In)+ units for him during

the current period. As shown in Section 3, there exists a nonempty

set of enforcement levels, which we denote by S(In, qn),, such that

α∗
n(qn, xn) · qn ≥ (dmax

n − In)+ for every xn ε S(In,qn). As a result, the

customer is able to set the following policy (for qn > 0):

x̃n(αn) =
{

xn(αn), if 0 ≤ αn <
(dmax

n −In)
+

qn

0, otherwise,
(37)

for any xn∈S(In, qn), receiving the following:

Proposition 5. Let xn ∈S(In,qn) such that (ECn
s)(αn) is quasi-convex.

Under policy (37), the supplier sets α∗
n = (dmax

n −In)+
qn

, that is, the held

quantity is equal to exactly (dn
max−In)+. Furthermore, x̃n is the cus-

tomer’s optimal enforcement level.

Proof. Let αn
∗∗ be the value that minimizes ECn

s under qn and xn;

then αn
∗∗ ≥αn

∗. As ECn
s is quasi-convex, it is decreasing in the in-

terval [0, αn
∗∗], and in particular in [0, αn

∗]. As a result, ECn
s is de-

creasing in [0,αn
∗) under x̃n as well. Since x̃n is integrable in [0,αn

∗]

(piecewise continuous), ECn
s is continuous in that interval. Namely,

for every 0 ≤ αn < αn
∗,

(ECs
n)(qn, x̃n, αn) ≥ (ECs

n)(qn, x̃n, α∗
n). (38)

The sanction policy x̃n vanishes in the interval [αn
∗, 1], and by sub-

stituting it in (8) we have

∂(ECs
n)

∂αn
=

∫ αnqn

0

qnhs fn(dn)ddn +
∫ ∞

αnqn

αnq2
n

dn
hs fn(dn)ddn > 0

there. From the continuity of ECn
s we find that (38) is satisfied for

every αn
∗ ≤ αn ≤ 1 as well.

Consequently, under x̃n, (ECs
n)(qn, x̃n, α∗

n) =
min

0≤αn≤1
{(ECs

n)(qn, x̃n, αn)}.

Now consider the customer’s expected cost under policy (37). Let

xn be an enforcement level such that constraint (28) is met, and let

α̂n be the supplier’s response. Then α̂n·qn ≥ ( dn
max− In)+. According

to (17),

(ECc
n)(In, qn, x̂n) = wqn + Inhc +

∫ ∞

α̂nqn

(
c ·

(
1 − α̂nqn

dn

)
τ x̂(α̂n) +

(

≥ wqn + Inhc +
∫ ∞

α̂nqn

(
α̂nqn − dn

2
− (α̂nqn)

2

2dn

)
hc fn(dn)ddn

≥ wqn + Inhc +
∫ ∞

(Dn−In)
+

((
(dmax

n − In)
+ − dn

2
−

(
(dmax

n − In)

2dn
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n − dn

2
− (α̂nqn)

2

2dn

)
hc

)
fn(dn)ddn

hc

)
fn(dn)ddn =(ECc

n)(In, qn, x̃n)

the second inequality is based on increasing the function g(y) =
∞

y (y − t
2 − y2

2t )hc f (t)dt). �
We now calculate the optimal order quantity.

.3.2. Setting the optimal order quantity

Unlike the optimal enforcement level, the optimal value of qn is

ot calculated myopically, but dynamically, taking into account the

erived expected costs of the next periods. Indeed, both the compo-

ents of the right-hand side of the second term of (20) depend on

n. The order quantity must lead to an enforcement level which sat-

sfies constraint (28), and according to policy (37) and Proposition 5,

onstraint (28) is met as well. We now show that the optimal order

uantity is

n
∗ =

(
dn

max − In + dn+1
max − Ln+1

)+
. (39)

The optimality of (39) is formulated in Proposition 6 below, and

ts proof is based on the following lemmas.

emma 1. The expected cost of the current period is increasing in qn

uch that
∂[(ECc

n)(In,qn,x̃n)]

∂qn
= w.

roof. According to (37) and Proposition 5, (17) becomes

Cc
n = wqn + Inhc +

∫ ∞

(dmax
n −In)

+

×
(

(dmax
n − In)

+ − dn

2
−

(
(dmax

n − In)
+)2

2dn

)
hc fn(dn)ddn.

�

emma 2. Let n ≤ N−2. If the Bellman function Bc
n+1(In+1) satisfies

dBc
n+1

dIn+1
> −w, then the objective function Jc

n(qn) is increasing. More-

ver, the Bellman function Bc
n(In) satisfies

dBc
n

dIn
> −w as well.

roof. According to Remark 2, Bc
n+1(In+1)= Bc

n+1 (In+qn−Dn), and

iven a value of Dn,

∂Bc
n+1

∂qn
= dBc

n+1

dIn+1

∂ In+1

∂qn
= dBc

n+1

dIn+1

· 1 > −w. (40)

As (40) is satisfied for every value of Dn, then the expected value

f that derivative is greater than –w, and by the Leibniz Integral Rule

e obtain

∂E[Bc
n+1]

∂qn
= E

[
∂Bc

n+1

∂qn

]
> −w.

Based on this result, as well as on Lemma 1, the objective function

atisfies

∂ Jc
n

∂qn
= ∂(ECc

n)

∂qn
+ ∂E[Bc

n+1]

∂qn
= w + ∂E[Bc

n+1]

∂qn
> w − w = 0. (41)

As a result, Jc
n is increasing, and the optimal order quantity is (39).

Now consider Bc
n. Since Bc

n(In) = Jc
n(In, q∗

n(In), x̃n(In, q∗
n)), then ac-

ording to the chain rule,
forcement in order to increase supplier inventory in a JIT contract,
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L

a

a

a

(

C

o

P

t

t

t

o

s

t

p

P

P

I

1(dN

x−dma
N−
2d

N−1

]

−1 −

+
(dma

N

dBc
n

dIn
=

(
∂ Jc

n

∂ In
+ ∂ Jc

n

∂qn

dq∗
n

dIn
+ ∂ Jc

n

∂ x̃n

dx̃n

dIn

)∣∣∣∣
qn=q∗

n

=
(

∂ Jc
n

∂ In
+ ∂ Jc

n

∂qn

dq∗
n

dIn
+ ∂ Jc

n

∂ x̃n
· 0

)∣∣∣∣
qn=q∗

n

=
(

∂ Jc
n

∂ In
+ ∂ Jc

n

∂qn

dq∗
n

dIn

)
qn=q∗

n

. (42)

Define ϕn(In,qn)=E[Bc
n+1 (In+qn−Dn)]. Then according to (20) and

emma 1

∂ Jc
n

∂qn
= ∂(ECc

n)

∂qn
+ ∂ϕn

∂qn
= w + ∂ϕn

∂qn
.

If In ≤ dn
max, then

∂ Jc
n

∂ In
= ∂(ECc

n)

∂ In
+ ∂ϕn

∂ In

=
[

1 −
∫ ∞

dn
max−In

(
1 − dn

max − In

dn

)
fn(dn)ddn

]
hc + ∂ϕn

∂ In

Note that

∂ϕn

∂qn
= ∂ϕn

∂(In + qn)

∂(In + qn)

∂qn
= ∂ϕn

∂(In + qn)

s well as

∂ϕn

∂ In
= ∂ϕn

∂(In + qn)

∂(In + qn)

∂ In
= ∂ϕn

∂(In + qn)
,

nd therefore ∂ϕn

∂qn
= ∂ϕn

∂ In
.

Also, according to (39),
dq∗

n
dIn

= −1. Thus, (42) becomes

dBc
n

dIn
=

(
∂ Jc

n

∂ In
− ∂ Jc

n

∂qn

)∣∣
qn=q∗

n

=
[

1 −
∫ ∞

dn
max−In

(
1 − dn

max − In

dn

)
fn(dn)ddn

]
hc + ∂ϕn

∂ In

∣∣
qn=q∗

n

− w − ∂ϕn

∂qn

∣∣
qn=q∗

n

>

[
1 −

∫ ∞

dn
max−In

fn(dn)ddn

]
hc − w

>

[
1 −

∫ ∞

0

fn(dn)ddn

]
hc − w = −w.

If dn
max ≤ In ≤ dn

max+ dn+1
max −Ln+1, then

∂ Jc
n

∂ In
= ∂(ECc

n)

∂ In
+ ∂ϕn

∂ In
= hc + ∂ϕn

∂ In
(43)

Bc
N−1(IN−1) = w(dmax

N−1 − IN−1) + IN−1hc

+
∫ ∞

dmax
N−1

−IN−1

((
dmax

N−1 − IN−1 − dN−1

2
− (dmax

N−1 − IN−1)
2

2dN−1

)
hc

)
fN−

+
∫ ∞

dmax
N−1

−dmax
N

[
A(dmax

N − dmax
N−1 + dN−1) + (dmax

N−1 − dN−1)hc+∫ ∞
dmax

N
−dmax

N−1
+dN−1

(
dmax

N − dmax
N−1 + dN−1 − dN

2
− (dma

N

dBc
N−1(IN−1)

dIN−1

= −w +
[

1 −
∫ ∞

0

(
1 − dmax

N−1 − IN−1

dN−1

)
fN−1(dN−1)dd

Bc
N−1(IN−1) = IN−1hc − E[DN−1]

2
hc +

∫ IN−1−dmax
N

0

(
IN−1 − dN

+
∫ ∞

max

[
w(dmax

N − IN−1 + dN−1) + (IN−1 − dN−1)hc∫ ∞
(

dmax − I + d − dN −
IN−1−d
N dmax

N
−IN−1+dN−1 N N−1 N−1 2
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nd
dq∗

n
dIn

= −1. Thus, (42) is equal to

dBc
n

dIn
=

(
∂ Jc

n

∂ In
− ∂ Jc

n

∂qn

)∣∣
qn=q∗

n

= hc + ∂ϕn

∂ In

∣∣∣∣
qn=q∗

n

− w − ∂ϕn

∂qn qn=q∗
n

> −w.

If In> dn
max+ dn+1

max−Ln+1, then (43) is valid and
dq∗

n
dIn

= 0. Thus,

42) becomes

dBc
n

dIn
= ∂ Jc

n

∂ In

∣∣
qn=q∗

n
= hc + ∂ϕn

∂ In

∣∣
qn=q∗

n

= hc +
(

∂

∂ In
E
[
Bc

n+1(In + qn − Dn)
])∣∣

qn=q∗
n

= hc + E

[
∂

∂ In
Bc

n+1(In + qn − Dn)

]∣∣
qn=q∗

n

= hc + E

[
d

dIn+1

Bc
n+1(In+1)

∂ In+1

∂ In

]∣∣
qn=q∗

n

= hc + E

[
dBc

n+1(In+1)

dIn+1

]∣∣
qn=q∗

n
> hc − w > −w.

orollary 1. If
dBc

n0
dIn0

> −w for n0 ≤ N−1, then for every n < n0 the

bjective function Jc
n(qn) is increasing.

roof. According to the first result of Lemma 2, our assumption leads

o an increase of Jc
n0−1

(qn0−1). Moreover, from the second result of

hat lemma we have
dBc

n0−1

dIn0−1
> −w. Satisfying Lemma 2 again, we find

hat Jc
n0−2

(qn0−2) is increasing as well, and that
dBn0−2

dIn0−2
> −w, and so

n. �

We are now ready to formulate the main result of the current sub-

ection. The optimal order quantity is the minimal one that ensures

hat the demand of the current period is satisfied and that the next

eriod begins with a basic initial inventory.

roposition 6. The optimal order quantity at period n < N−1 is (39).

roof. Let n0 = N−1. Then according to (35) and (36), if

N−1 < dN−1
max then

−1)ddN−1 +
∫ dmax

N−1−dmax
N

0

(
dmax

N−1 − dN−1 − E[DN]

2

)
hc fN−1(dN−1)ddN−1

x
1+dN−1)

2

N

)
hc fN(dN)ddN

]
fN−1(dN−1)ddN−1

that is

hc > −w +
[

1 −
∫ ∞

0

fN−1(dN−1)ddN−1

]
hc = −w.

On the other hand, if IN−1> dN−1
max then

E[DN]

2

)
hc fN−1(tN−1)ddN−1

x−IN−1+dN−1)
2

2dN

)
hc fN(dN)ddN

]
fN−1(dN−1)ddN−1
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N−1(t
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a
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t
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c

e
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a

t

c

m

c

namely,

dBc
N−1(IN−1)

dIN−1

= hc +
∫ IN−1−dmax

N

0

hc fN−1(dN−1)ddN−1 +
∫ ∞

IN−1−dmax
N

[
−w

× fN−1(dN−1)ddN−1

= −w(1 − FN−1(IN−1 − dmax
N )) + 2hc −

∫ ∞

IN−1−dmax
N

[∫ ∞

dmax
N

> −w + 2hc−
∫ ∞

IN−1−dmax
N

[∫ ∞

dmax
N

−IN−1+dN−1

hc fN(dN)ddN

]
f

= −w + hc > −w.

According to Corollary 1, the solution (39) is optimal for every

n < N−1. �
Having determined the customer’s periodic optimal solution, we

present numerical examples in the next subsection.

4.4. Numerical illustrations

In our example, we consider a one-year contract such that every

quarter is a "period", namely, N = 4 and τ = 90. As in our previous

examples, the customer’s enforcement level is according to (2), and

the penalty that the customer inflicts on the supplier is calculated

as in (14). Let w= 10, c = 50, xmax = 3, a = 0.5 and ε = 0.025, and as-

sume that the demands of the four quarters are uniformly distributed

such that D1∼U[0,200], D2∼U[0,500], D3∼U[0,800] and D4∼U[0,300].

Showing how the customer’s expected total cost is affected by the

model’s various parameters, we compare the results of our model

to two benchmarks. The first one ("Benchmark 1") is based on the

"ideal" case. The supplier always holds the whole ordered quantity

qn during period n. The second one ("Benchmark 2") corresponds to

the "worst" case. The supplier does not hold any inventory during pe-

riod n, and the customer receives his entire order at the end of that

period. Fig. 3 presents the impact of the parameters hc, hs, xmax and

a on the customer’s optimal cost, Bc
1 (the rest of the parameters in

each graph are assumed to be as given above). To be precise, this cost

includes the order cost of the initial inventory, i.e., w·I1, since as hs

increases or alternatively, xmax or a decreases, the supplier reduces

the held quantity (and the customer’s costs grow). As a result, the

customer must hold greater initial inventories in order to meet prob-

able demand. Therefore, the initial inventories are assumed to be the

minimal values that ensure that this demand is met.

As the unit holding costs hc and hs grow, a situation in which

the supplier holds the entire order quantity becomes more effec-

tive for the customer. According to Fig. 3a, the customer’s expected

cost under our model is only slightly higher than that of Benchmark 1
Fig. 3. Customer’s expected total costs as function of th
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−
∫ ∞

dmax
N

−IN−1+dN−1

(
1 − dmax

N − IN−1 + dN−1

dN

)
hc fN(dN)ddN

]

dN−1

(
1 − dmax

N − IN−1 + dN−1

tN

)
hc fN(dN)ddN

]
fN−1(dN−1)ddN−1

N−1)ddN−1 >−w+2hc−
∫ ∞

0

[∫ ∞

0

hc fN(dN)ddN

]
fN−1(dN−1)ddN−1

but significantly lower than that of Benchmark 2). If hc=hs=2, then

his cost is equal to 14,272 in Benchmark 1 and to 14,567 in our model.

hat is to say, the deterrence directed toward the supplier is effective,

uch that the customer’s actual cost is only 2 percent higher than that

f the ideal case. Moreover, the actual cost is reduced by 22 percent

ompared to Benchmark 2 (the latter is 18719). If hc and hs increase

o 5, then the total expected costs under Benchmark 1, our model and

enchmark 2 are, respectively 16,480, 17,817, and 25,365. The cost un-

er our model is 8 percent higher than Benchmark 1, and 30 percent

ower than Benchmark 2.

The maximal number of hours devoted to sanctions each day af-

ects the customer’s costs in our model (in contrast to Benchmarks 1

nd 2, where the costs are fixed at 14,272 and 18,719, respectively),

s shown in Fig. 3b. If xmax = 3, then the customer’s expected to-

al cost is equal to 14,567, as before. If xmax increases to 5, then the

ost decreases to 14,439 (i.e., it is only 1 percent higher than that

f Benchmark 1). Even if xmax is lower and is equal to 0.5, the cost,

5,806 in our model, is reduced by 16 percent, compared with that of

enchmark 2. Therefore, the ability to devote even 1 hour each day

o sanctions may constitute a significant deterrence measure. Simi-

arly to xmax, the purchasing department’s punishment level, a in our

xample, affects the customer’s expected cost, as shown in Fig. 3c.

In our research, we assume that shortages are unacceptable to the

ustomer, and that he orders sufficient inventory to ensure that the

ntire demand will be satisfied. Consequently, if demand uncertainty

s high, then the total quantity that the customer orders (
∑
n

qn) is sup-

osed to significantly exceed the actual required capacity (
∑
n

Dn). As

result, the customer’s total cost is expected to grow. Let the cus-

omer’s initial inventory be I1 = 80; then Fig. 4 illustrates how the

ustomer’s total order as well as his cost depends on variance in de-

and. Values on the horizontal axis represent the levels of variance

ompared with those of the distributions given above ("100 percent"
e parameters hc and hs (3a), xmax (3b) and a (3c).

forcement in order to increase supplier inventory in a JIT contract,
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Fig. 4. Influence of demand uncertainty on the customer’s total order quantities (a), percentage of used inventory (b) and total expected cost (c).
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eans that they are the same as those in the original examples). All

he means remain the same as in the original distributions.

If the possible ranges of the demands are reduced by half,

hen the demand distributions are D1∼U[50,150], D2∼U[125,375],

3∼U[200,600] and D4∼U[75,225], and the corresponding variances

onstitute 25 percent of the original ones. In this case, the total or-

ered quantity is reduced by 17 percent, from 1111 to 927 (see Fig. 4a).

he percentage of used inventory (out of the total ordered inventory)

rows from 74 percent (820 of 1111) to 88 percent (820 of 927), as

hown in Fig. 4b. According to Fig. 4c, the customer’s total expected

ost is reduced by 20 percent, from 13,832 to 11,123. As the variances

end to zero, the total ordered quantity decreases by 26 percent, to

20 (that is, the customer complements the initial inventory 80 to the

xact quantity of the total deterministic demand 900). The percent-

ge of inventory used tends to 100 percent, and the total expected

ost is reduced by almost 40 percent, to 8372.

. Conclusions

In order to ensure short replenishment lead times by suppliers,

rganizations have to enforce contracts and impose penalties. In this

aper we show how a customer can effectively enforce on-time re-

lenishment, by imposing sanctions on the supplier. Our model is

ased on a Stackelberg competition game. Initiating a enforcement

evel, the customer becomes the lead player and forces the supplier

o hold inventory, which is made available to the customer in real

ime, according to the JIT approach. This policy, which is analytically

ormulated in a mathematical function referred to as the enforcement

evel, takes into account the stochastic demand distribution as well;

he higher the demands are supposed to be, the greater the inven-

ory the supplier holds for the customer. Using a class of sanctioning

unctions, we show that the customer can force the supplier to hold

nventory up to some maximal value, such that actual enforcement

f sanctions is unnecessary. This value depends on the total time that

he customer can actually spend on enforcement each day; on the rig-

rousness of the penalty that the purchasing department inflicts on

he supplier when he does not fulfill orders on time; on the holding

ost; and on the demand distribution. Moreover, we find that, con-

rary to expectations, escalation of the customer’s enforcement level

ay decrease the level of inventory that the supplier holds, thereby

iminishing his capacity to replenish inventory on time.

The problem is solved using backward dynamic programming

uch that the total expected costs-to-go are minimized. The sup-

lier’s decision regarding the periodic held quantity (i.e., the inven-

ory quantity made available for the customer), as well as the cus-

omer’s decision regarding the periodic enforcement level, can be

et myopically, taking into account only the expected cost of the
Please cite this article as: M. Shnaiderman, L. Ben-Baruch, Control and en
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urrent period. The customer’s minimal periodic order quantity,

hich ensures that the customer is able to satisfy the current de-

and as well as to receive basic initial inventory for the next pe-

iod, is shown to be optimal. Having the possibility to spend a few

ours each day on sanctioning activity substantially reduces the cus-

omer’s expected cost. In particular, in a numerical example based

n the Israel Police’s data, the customer’s cost under an enforcement

evel was less than 10 percent higher than the cost in an "ideal" situa-

ion, in which all inventory was necessarily replenished on time. Un-

er certain parameter values, the difference was reduced to less than

percent. Moreover, as the customer must avoid any shortages, high

ncertainty regarding demand significantly increases the inventory

uantity that he orders. In our examples, a decrease of 50 percent in

he possible range of demand (for the same mean) was shown to re-

uce by almost 20 percent both the total order quantity and expected

ost. When demand variance tended to zero, the customer’s expected

ost was reduced by 40 percent.

We propose several important yet challenging directions for fu-

ure research. In this paper, we considered one organization that is

ommitted to a unique supplier. It would be very interesting to re-

earch scenarios in which several organizations work with a single

upplier. Furthermore, the possibility of adding an additional supplier

or backup, as suggested by Kouvelis and Li (2008), may be integrated

nto our model. In this paper we made several assumptions, including

i) a specific class of sanctioning functions; (ii) random total demand

n each period, but with constant demand rates over the course of

he period; and (iii) full transparency between the supply chain par-

ies, i.e., all unit costs and demand distributions were known to both

he supplier and the customer. These assumptions could be relaxed.

ikewise, some limited shortages could be allowed.
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