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Highlights

We model a real-world problem in the area of combined transport.

We study integrated tactical planning of hub locations and service network design.

We present a path-based model and solve it with a branch-price-cut algorithm.

Computational experiments verify the practical applicability of our approach.
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Branch-and-Price-and-Cut
for a Service Network Design and Hub Location Problem

Ann-Kathrin Rothenbécher®*, Michael Drexl®, Stefan Irnich?

@Chair of Logistics Management, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz,
Germany.

® Fraunhofer Centre for Applied Research on Supply Chain Services SCS, Nordostpark 93, D-90411 Nuremberg,
Germany.

Abstract

In the context of combined road-rail freight transport, we study the integrated tactical planning of
hub locations and the design of a frequency service network. We consider a number of real-world
constraints such as multiple transshipments of requests at hubs, transport time limits for requests,
request splitting, and outsourcing possibilities. We present a path-based model and solve it with a
branch-and-price-and-cut algorithm. Computational experiments show that large realistic instances
from a major German rail freight company can be solved close to optimality within one hour on a
standard desktop computer, allowing our algorithm to be used for practical planning purposes.

Keywords: Service network design, Hub location, Intermodal transport,
Branch-and-price-and-cut

1. Introduction

In this paper, we consider a real-world integrated tactical service network design and hub lo-
cation problem (SNDHLP) for combined transport by road and rail. Combined transport is a
special kind of intermodal transport. The latter is defined by the Economic Commission for Eu-
rope (2001) as the movement of freight in one and the same loading unit, such as a container or
swap body, which uses successively two or more modes of transport without handling the freight
itself in changing modes. Combined road-rail transport is characterized by the additional con-
dition that the main part of the transport is by rail, and only the initial and the final leg are
performed by road, see Figure 1. Intermodal and combined transport are economically attractive
because of the consolidation effects they offer and the resulting potential for cost savings and ef-
ficiency gains. Combined transport traffic has more than doubled in the European Union since
1990. In 2011, about 6.4 million containers were transported with a freight performance of 44.7
billion tonne-kilometres. Combined transport has thus become a well-established sector of freight
transport, with a market encompassing dozens of companies generating a joint turnover of several
billion Euros per year (European Commission, 2014). A further aspect of combined transport is
its presumed environment-friendliness. Although this view is not undisputed (Dekker et al., 2012),
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combined transport is commonly considered more ecologically beneficial than pure road transport
(Craig et al., 2013), and the European Union and national governments have set up programmes
for fostering combined transport (Council of the European Communities, 1992). In short, planning
problems in combined transport are of considerable significance for a large number of enterprises
as well as the economy and society as a whole.

Origin Transport Transshipment Transport Transshipment Transport Destination
by road in hub by rail in hub by road

Figure 1: Schematic structure of combined transport

The SNDHLP we consider is as follows. We are given a set of transport requests (or shipments).
Each request consists of one or more containers that must be transported from an origin location
to a destination location. Each location may be the origin and/or the destination of more than one
request, but all containers with the same origin and the same destination constitute one request.
There are two possibilities for transporting a container: combined road-rail transport and direct
transport from origin to destination by road. In the former case, the number of hops, i.e., the
number of times a container may be transshipped at hubs, is limited to at most four (this is an
operational requirement of our industry partner). This number includes the transshipments from
road to rail at the start hub and from rail to road at the end hub. Combined transport is relevant
only for requests beyond a certain origin-destination distance, so that, for any request, the start
and the end hub used are always different, and the number of hops is always at least two. There
is a maximal time en route, including travelling and transshipment, for each request. This time is
assumed non-restrictive in the case of road transport. The decision whether to transport a request
by combined transport or entirely by road is part of the problem.

There are two types of hubs, fired and potential ones. Fixed hubs are open and may be used
in any solution. In addition, a number of potential hubs is available and may be opened and used.
Because of the considered tactical planning horizon of between six months and one year, no fixed
costs are incurred for using or not using a fixed hub or for opening and using a potential hub.
From the practical point of view, the reason is that these costs are not known in advance. This
is because using a fixed or opening a potential hub actually means that the rail company books a
certain part of a hub’s overall processing capacity, so that the costs are negotiable and depend on
the booked capacity. Therefore, instead of opening costs, the number of hubs used in the solution
is limited. The decision which hubs to use is part of the problem whenever the number of allowed
hubs lies between the number of fixed hubs and the total number of available hubs. In the special
case when only the fixed or all hubs may be used, the location aspect of the problem disappears,
and only the service network design has to be determined. Each request can enter the rail network,
i.e., be transshipped from road vehicle to rail wagon, at a given request-specific set of start hubs.
Similarly, a request can leave the rail network, i.e., be transshipped from rail wagon to road vehicle,
at a given request-specific set of end hubs. For any request, these two sets are disjoint, and they
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may each contain one element only. The selection of the start and the end hub for each request
that uses combined transport is part of the problem.

We consider two problem variants, with unsplittable and splittable requests. ‘Unsplittable’ means
that all containers belonging to the same request must take the same itinerary. ‘Splittable’ means
that the itineraries of two containers from one request may be different (including different start
and end hubs), and that some containers from one request may be transported by road and some by
combined transport. Unsplit requests are required by customers who want to receive all containers
of a request at the same time. On the other hand, the option to split requests can lead to cost
savings for the transport company.

Owing to the tactical nature of the problem, the capacities of the rail links are assumed nonre-
strictive. This means that at any point in time, an unlimited number of trains may use a rail link
without affecting the travel time of a train. The number of trains to operate between an ordered
pair of hubs is part of the problem. Similarly, the transshipment capacities at the hubs are assumed
nonrestrictive, too. This means that an unlimited number of requests can be transshipped at a hub
without any requests having to wait for transshipment. Moreover, due to the tactical nature of
the problem and the averaged request data, our industry partner assumes homogeneous equipment,
i.e., there is only one type of container, road vehicle, and rail wagon. In particular, we assume that
each available road vehicle and rail wagon can carry only one container at a time. The number of
wagons, i.e., the capacity of a train, is limited and identical for all rail connections. The cost of a
train trip between two hubs is independent of the actual capacity utilization of the train, i.e., of the
number of rail wagons actually pulled. Costs for direct road transport are known for each request.
Hence, from the point of view of a combined transport operator, direct road transport can be seen
as outsourcing. The time for transshipping one container is hub-specific, but at each hub, it is the
same for all requests. Hub-specific transshipment costs could be incorporated analogously but were
not provided by our industry partner.

Overall, the problem is to decide on the itineraries of the requests, the usage of hubs, and the
number of trains operating between hubs, with the objective of minimizing the overall costs for
fulfilling all requests, either by combined transport or by pure road transport. These overall costs
are comprised of the costs for operating trains between hubs and of the road transport costs. In the
well-known classification of network design problems by Crainic (2000), the SNDHLP we consider
is a frequency service network design problem, because it focuses on determining which traffic
itineraries to operate and how often over the planning horizon to offer a train service. Scheduling
aspects referring to when services depart, which are the subject of dynamic service network design,
are not considered. Additionally, our problem possesses a hub location component, because a
restricted number of hubs to use must be selected from a larger set.

Figure 2 shows a small example network consisting of six hubs and two requests with different
numbers of containers (orange: two containers from o7 to dj; red: one container from oy to d2). A
solution is depicted in which both requests are routed via combined road-rail transport via hubs 2
and 6, making use of consolidation.

The contributions of the present paper consist in the development of (i) a path-based mixed-
integer programming model for the SNDHLP, and (ii) a branch-and-price-and-cut algorithm capable
of solving instances with up to 100 requests and 10 potential hubs to optimality. For real-world
instances with up to 5300 requests and 43 hubs, feasible solutions with a gap of less than 2 %
are obtained within 60 minutes. This allows to use our implementation for practical planning
purposes. Moreover, our solution approach consistently outperforms a state-of-the-art commercial

Jdaded 2uwraadedas )

corre

EE AR



Figure 2: Example problem instance with solution

Hub k

—> Ralil arc

—» Road arc

solver applied out-of-the-box to an arc flow model.

The remainder of this paper is organized as follows. The next section provides a review of
literature on hub location and service network design problems related to the SNDHLP. Section 3
presents our path-based formulation of the SNDHLP. In Section 4, the branch-and-price-and-cut
algorithm is explained. Computational results are presented in Section 5, and we give a conclusion
in Section 6.

2. Literature review

Assad (1980) was the first to present a survey of planning problems in rail transport. Further
reviews were given by Crainic and Laporte (1997), Crainic (2003), and, especially for intermodal
transport, by Bontekoning et al. (2004), Crainic et al. (2006), Caris et al. (2013), and SteadieSeifi
et al. (2014). The problem we consider addresses both service network design and hub location
aspects. Often, these two topics are treated independently. Wieberneit (2008) and Yaghini and
Akhavan (2012) gave reviews of service network design problems occurring in freight transport. A
good overview of hub location problems can be found in Alumur and Kara (2008). The simultaneous
consideration of hub location and request routing decisions, as in our SNDHLP, increases the
complexity of the models, but makes much more efficient solutions possible. There are several
problem variants studied in the literature. In the following, we briefly describe important variants
and then refer chronologically to papers dealing with problems that share properties with the one
we study. We did not find a paper dealing with the same combination of problem features as our
SNDHLP. A summarizing comparison of papers with respect to the considered problem aspects and
the applied solution procedures is provided in Table 1.

As mentioned, requests can either be enforced to be transported as a whole (unsplittable re-
quests) or the loading units of a request can use different routes (splittable requests). If several
requests starting or ending at the same location have to be assigned to the same hub, this is called
single allocation, whereas the opposite is called multiple allocation. Most papers model economies
of scale caused by consolidation with the help of a discount factor smaller than 1, which is multi-
plied with the transport costs incurred for the use of links between two hubs. In this case, there
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is no reason for transshipments when a fully connected network is considered. A more accurate
treatment determines the number of required means of transport to provide the needed capacity
for each link individually. This causes discretely increasing costs and thereby a significantly higher
complexity (Crainic, 2000). With this discrete capacity determination of the links, transshipping
at hubs between means or modes of transport can improve the utilization and should be taken into
account, though this also increases the difficulty. Furthermore, as in our problem, some papers view
the option of a direct transport from origin to destination at potentially higher costs, and there are
also papers considering bounds for the transport times.

The first to consider hub location and routing of goods simultaneously was O’Kelly (1986).
The positions of the hubs were not chosen out of a discrete set but located freely in the plane.
Only the cases of one and two hubs were considered. Campbell (1994) gave several formulations
for different variants of a hub location problem, regarding explicitly the decision of the usage of
links. Brockmiiller et al. (1996) studied a network design problem arising in the telecommunication
sector, addressing the decision over integral numbers of capacities to be installed on the arcs. The
problem was solved heuristically with the help of valid inequalities. Barahona (1996) considered a
similar problem with the same application regarding both splittable and unsplittable flows. Yoon
and Current (2008) were the first to study an integrated hub location and network design problem
similar to our setting. However, they decided only on the usage of arcs and not on arc capacities.
The first author looking at transport time limits in the context of hub location and network design
was Campbell (2009). Ishfaq and Sox (2011) also addressed time limits. They used the context
of combined road-rail transport and supported the possibility to choose between both modes of
transport on each arc.

Bauer et al. (2010), in a follow-up to earlier work by Andersen et al. (2009), studied a problem
similar to our SNDHLP. They considered two different objective functions: (i) the minimization
of greenhouse gas emissions, disregarding any costs, and (ii) the minimization of the total costs of
providing the services plus the sum of the time-en-route of all requests weighted by corresponding
values of time. They developed an arc flow model based on a time-space network. Using a com-
mercial solver and two types of valid inequalities, they were able to solve small real-world instances
with up to 15 requests and 5 hubs to optimality. Bauer et al. (2010) compared the results obtained
with the two objective functions and concluded that the cost minimization version leads to more
services being offered, so that the capacity utilization of the services is higher when emissions are
minimized. Another problem closely related to our setting was regarded by Uster and Agrahari
(2011). While looking at the same decisions, they restricted themselves to the case of splittable
requests and assumed that only one long-haul link is used by each request. They solved the problem
with Benders decomposition.

In his doctoral thesis, Homfeld (2012) addressed rail freight services with explicit decisions on
the number of trains running on each link between hubs. He looked at a special hierarchical order
of consolidation centres and considers the requirement that two requests with the same destination
have to use the same remaining route, once they meet at a hub. By their own account, the most
general form of a hub location and network design problem addressed in the literature was regarded
by Alumur et al. (2012). They allowed multiple modes of transport on each link. Contreras
and Fernandez (2012) studied the simultaneous optimization of hub locations and network design
under the additional requirement that the chosen arcs result in a tree, connecting all hubs with a
unique path between them. Zhang et al. (2013) studied the optimization of intermodal networks
considering road, rail, and inland waterway, taking into account costs for COs emissions. As in
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our problem, they considered multiple commodities and request-specific sets of start and end hubs.
However, they did not consider splittable requests, time-en-route limits, or transport economies of
scale through consolidation. They solved their problem with heuristic bilevel programming. The
upper level, which is solved by a genetic algorithm, searches for hubs to be opened and adequate
COg4 emission prices. The lower level, which is solved by a shortest-path algorithm for each request,
computes minimal transport and COs costs given a certain network structure and COs prices.
The recent paper by Crainic et al. (2015) presents a more integrated model for combined location
and service network design. The model links strategic and tactical decisions, considers different
types of transport resources, i.e., a heterogeneous fleet, and takes into account vehicle scheduling
and repositioning. Their solution approach consists of representing the problem as a time-space
network to which a matheuristic combining column generation and slope scaling is applied.

3. Mathematical model

Let G = (V, A) be a digraph with node set V' and arc set A. The node set V' contains one
origin and one destination node for each request, and one node for each hub. The set of all hub
nodes is denoted by H, and the set of fixed hubs by Hy, with Hy a subset of H. The number of
hubs that may be used is given by ng. The set of arcs contains the rail arcs between any two hubs,
Ay, with costs per kilometre ¢; and the road arcs, As, with costs per kilometre ¢;. The road arcs
are composed of the direct road arcs from the origins to the destinations of the requests and the
arcs connecting the origins and destinations to the hub network. Each request » € R comprises m”
containers. The length of an arc a is given by [,. The train capacity is k;.

We tackle the problem with a path-based model, due to past experiences (Homfeld, 2012) as
well as tests and comparisons with arc-based models (cf. Section 5). A feasible combined transport
path for a request is an elementary path from the origin of the request to the destination, passing
through an allowed start and an allowed end hub, performing at most the allowed number of hops,
and maintaining the travel time constraint. A road transport path for a request is simply the
single-arc path from the origin of the request to the destination and is feasible by definition. The
set of feasible paths for a request r is denoted by P". P; and P, indicate the sets of paths containing
hub 7 and arc a respectively, with P/ = P, N P" and P] = P, N P".

The model contains three types of decision variables: binary variables h; indicate whether hub
i € H is used. General integer variables t, count the number of trains that use arc a € A;.
Continuous variables y; € [0,1] indicate the fraction of the containers of request r € R which are
transported via path p € P".

Given these definitions, the SNDHLP can be formulated as follows:

min Z Celgta + Z Z Z cslamy,, (1la)

ac€ Ay reRpeP” a€pNAs

st. hj=1 VieH; (1b)
i€H
d yy=1 VreRr () (1d)
pepr
N> miyp <kte Vach (84) (1e)
reRpePy
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S y<h VieHreR (€f) (1f)

pEP[

hi € {0,1} VieH (1g)
to€Ng VacA (1h)
y, € 10,1} VreRpeP" (1i)

The objective function, (1a), seeks to minimize the total costs incurred by the covered rail and
road kilometres. Conditions (1b) and (1lc) ensure that all fixed hubs are opened and that at least
the allowed number of hubs is used. Constraint (1d) makes sure that every request is transported.
Constraint (1le) calculates the used capacity and determines the number of needed trains per arc. By
constraint (1f), a hub is forced to be opened if a path passes through it. The last three constraints
determine the domains of the variables.

The above model targets the case of unsplittable requests, but the following simple domain
modification approximates the case of splittable requests:

Yy, € [0,1] VreRpeP"

Note that this condition does not model the option to select different itineraries for the containers
of one and the same request in an exact manner, because it allows all fractional solutions, not
only multiples of # Hence, solutions with distinct routes for parts of containers can occur,
which is impossible in reality. Nevertheless, this inaccuracy is acceptable, because train costs are
independent of train load, and train capacity is high in relation to the typical number of containers
of single requests (40 to 3). Therefore, most requests are not split anyway, and any remaining
inaccuracies result from the road transport parts only.

The problem can also be formulated with arc variables. Then, the feasibility of the routes
concerning transport times and limits for the number of hops has to be expressed explicitly in the
model. For the unsplittable case, this is straightforward, whereas for the splittable case, additional
time and hop counter variables are needed. Linear formulations for these models can be found in
the Appendix.

4. Branch-and-Price-and-Cut

The number of feasible paths can be huge, so an enumeration of all possible routes is not
practicable. Instead, we use delayed column generation to dynamically generate promising paths.
To achieve integrality, this is embedded in branch-and-bound. Besides, we use valid inequalities to
strengthen the linear relaxation.

To solve our path-based SNDHLP model (1), we developed a branch-and-price-and-cut algo-
rithm, see Barnhart et al. (1996), Desaulniers et al. (2005), and Liibbecke and Desrosiers (2005).
In the following subsection, we illustrate our pricing algorithm to find new paths with negative
reduced costs. Afterwards, we present our branching scheme and some valid inequalities, for which
we describe their influence on the pricing problem. At the end of this section, we mention some
techniques that enhance the performance of the branch-and-price-and-cut algorithm.

4.1. Generation of new columns
For the column generation, we consider the linear relaxation of the master problem. To have
a feasible problem initially, we start with a small subset of paths, containing, for each request,
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one path that represents the complete transport by road. Recall that the pricing problem searches
for variables with negative reduced costs to add them to the current set of columns of the master
problem. Let 7, be the dual variable associated to constraint (1d) for request r € R, J, the dual
variable corresponding to the capacity restriction (le) of arc a € A, and €] the dual belonging to
constraint (1f) for hub ¢ € H and request » € R. Then, the reduced costs for a path p for request

r are
Cp = Z csm'ly — v — Z m’ g — Z €. (2)
a€EpNAs a€EpNA; i€pNH

The subproblem for a certain request r € R is a shortest path problem with resource constraints
(SPPRC). SPPRCs are well studied, because they appear in many applications, see Irnich and
Desaulniers (2005). They are usually solved by dynamic-programming based labelling algorithms.
One of the first algorithms in this category is the one proposed by Aneja et al. (1983). More
recent papers compare mono- and bi-directional extensions (Righini and Salani, 2006) and deal
with special properties of such algorithms in the context of branch-and-price-and-cut algorithms
(Zhu and Wilhelm, 2013).

Let 7 € R be a request for which we solve the pricing problem. We define a label [ = (v, 1, 2)
that marks a path from the origin to a node v € V with [ as the previous label on the path and
z € R as the vector of resource consumptions of the path. For our purposes, the resource vector
z = (21, 22,23) = (¢,d, h) contains the sum of the modified arc costs ¢, the transport time d and
the number of hops h of the partial path up to the associated node. As most dual variables are
zero, particularly at the beginning of the column generation process, and as shorter paths tend to
be cheaper and are more likely to be part of an optimal solution, it seems reasonable to search for
paths with the most negative reduced costs and, among these, the one with the shortest transport
time and the lowest number of hops. Therefore, we consider a lexicographic order of objectives
with bounds for the downstream targets. All labels belonging to the same node can be compared
according to the order of the objectives (¢ —d — h):

Definition 4.1 (Order of labels). A label | = (v,[,2) is better than a label I’ = (v,l’, 2), written
L<l,if
Fie{1,2,3}: (25 =2; V¥ j <i) A (2 < 2).

Besides, we say a label dominates an other label belonging to the same node, if the former is at
least as good as the other label in all resource categories and strictly better in at least one resource
consumption:

Definition 4.2 (Dominance between labels). A label [ = (v,[,2) dominates a label I’ = (v,l’, 2'),
written [ < I, if
<2 ANJFie{l,2,3}:z < 2.

In general, an SPPRC can be solved with a monodirectional or a bidirectional algorithm. Be-
cause of the special structure respecting the limited hop-number, we implemented both a monodi-
rectional forward and a bidirectional pricing routine in order to compare them. In the former case,
we extend partial paths only from the origin, always continuing with the best unprocessed label as
in the Dijkstra algorithm. In the latter case, we start from both the origin and the destination,
make a predefined number of hops from both sides, determine all non-dominated paths, and choose
the best alternative from a concluding merge step.
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In the following, we describe the forward extension of the paths. The dual prices corresponding
to the hub usage, the transshipment times on the hubs, and the increase of the hop counter are
assigned to the ingoing arcs. Starting from a label [, we look at all outgoing arcs to other hubs,
add the weight and resource consumptions for this path extension, and create a new label. Let the
hub indicator (; be 1 if ¢ € H and 0 otherwise, and let the arc indicator &, be 1 if a € A; and
0if a € As. For the sake of readability, we write &;; for & ;) (similar for other variables). With
d, as the transport time over arc a and d; as the transshipment time on hub i, the new label is
determined as follows:

lnew = (.77 l: é(lnew)y d(lnew); h(lnew)) (3)
with
E(lnew) = €(1) + (1 = &ij)esm”lij — &iym”6ij — (je€; (4a)
d(lnew) = d(1) + dij + (jd; (4b
h(lnew) = h(l) + Cj' (4C

Then we test whether this is feasible with regard to the resource limits. In addition, we check
whether a feasible extension of the new label to the destination exists. Afterwards, we check
whether the new label is dominated by one of the labels already assigned to the node. If yes, it
is discarded, otherwise it is added to the label list of the node. Finally, all other labels are tested
for dominance by the new one and are deleted in this case. We store the label list of a node as an
ordered list, so that insertion and dominance are performed simultaneously and take time linear
in the number of labels at the node, see Algorithm 1. The backward extension of paths works
analogously.

Algorithm 1: Potential insertion of a new label

Input: An ordered label list list belonging to a node, a new label l,ew

[ = list first();
while [ < I, do
if [ < [0 then

Delete lhew;
return,;

| 1 = listnext();

Insert lew before I;
while [ # list.end() do
if lew < [ then

L Delete ;

I = list.next();

The monodirectional pricer is applied on the network defined in Section 3. For the bidirectional
pricer, we use a layered network constructed as follows: if upyax is the maximal allowed number of
hops, we copy the hubs up.x + 1 times to create umax + 1 hub node layers, numbered from 1 to
Umax + 1. The first (last) layer contains only copies of hubs in the request-specific set of start (end)
hubs. The bidirectional pricer propagates labels forward from the origin vertex only up to layer
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|umax/2] + 1, and backward from the destination vertex only up to layer |umax/2] + 2. Hence,
forward (backward) road arcs are inserted from the origin (destination) vertex to all copies in the
first (last) layer, and forward (backward) rail arcs are inserted between any two copies of different
hubs in neighbouring layers from layer 1 up to layer |umax/2] + 1 (from layer umax back to layer
| umax/2] + 2). This yields a network as depicted in Figure 3, on which the shortest path search is
done in both directions.

In this approach, we store label lists for each hub on each layer, so that the dominance criterion
only needs to consider the modified arc costs and the transport time of the labels, but not the
hop counter resource. To take into account all possible numbers of hops (2, ..., umax), We merge
the label lists of all hubs at the last backward layer (|umax/2] + 2) with all forward layers except
the first (1) and the label lists of the first forward layer with all backward layers except the first
(Umax + 1). The exceptions are motivated by the requirement that start and end hub of a request
path are always different, as mentioned in the Introduction.

***********
i ' %~ f-oCIooooIIs — Rail arc
' %“?‘?’g{{i 77777777777 —> Street arc
P9 R Merge
'S -
NN T
T

Hub k

Layer: 1 2 3 4 5

Figure 3: Layered network for the bidirectional pricing algorithm, umax = 4

4.2. Branching

For a feasible solution, the hub variables (h) must be binary, the number of trains running
between any two hubs (#) must be integer, and, in the case of unsplittable requests, also the path
variable values (y) must be binary. To achieve this, we use the following branching scheme.

4.2.1. Branching on hub variables

Using or not using a hub has the biggest influence on the solution, so these decisions are taken
first. To identify the most important hub, we calculate the number of containers transshipped at
each hub in the current LP solution. For the hub ¢ with the largest such number and fractional h;,
we create two branches, one fixing the value of the corresponding variable h; to 0 and the other one
to 1 by changing the upper and lower bounds, respectively. Whereas the 1-branch has no impact on
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the pricing algorithm, the 0-branch requires arcs ending at the corresponding hub to be excluded
from the network.

4.2.2. Branching on train variables

For the number of trains, we first use a global approach, regarding the total number of trains
running in the whole network, n;. Whenever n; is fractional, we create two branches and add a
constraint to the master problem in both branches, setting the upper bound on the number of
trains to |n:] in one branch, and setting the lower bound to [n:] in the other. This requires no
change in the pricing problems. To guarantee integrality of the train variables on each arc, we have
to branch further by setting similar bounds on individual train variables. If the upper bound of
a train variable is set to zero, the corresponding arc has to be removed from the network of the
pricing problem. In all other cases, the branching decision does not affect the pricing problem. For
splittable requests, the described branching rules suffice to obtain a feasible solution.

4.2.8. Branching on path variables

In the case of unsplittable requests, variables generated in the pricing routine cannot simply be
forbidden by setting their upper bound to zero, because the excluded path will be regenerated by
the pricing problem solver. We devised two approaches to treat integrality requirements on path
variables, both concerning single arcs of a path.

The first possibility directly regards single arcs. To forbid an arc, all paths containing this arc
are excluded from the network, and the pricing problem ignores this arc. The branch that enforces
the arc a for request r, however, needs an additional constraint in the master problem:

> w=t

pEF]

The dual variable corresponding to this constraint takes nonnegative values, which can cause nega-
tive arc weights in the subproblem. To avoid cycles in the resulting paths, the algorithm searching
for the best new variable entering the master problem would have to be adapted.

We therefore chose a second possibility, one that does not change the nature of the pricing
problem. If u indicates the number of hubs in a path, this path will contain v+ 1 stages. The first
stage consists of the arc from the origin to the first hub, the (u + 1)th stage is the arc from the uth
hub to the destination. The second possibility to branch on path variables now uses the idea to
forbid and enforce arcs for use on certain stages of a path for a request. In the branch in which an
arc is forbidden, the upper bound of all paths using this arc on the chosen stage is set to zero, and
the arc is excluded from the pricing algorithm at this stage. In the other branch, in which the arc
is enforced to be used by this request on the requested stage, all path variables not fulfilling this
requirement are set to zero, and the pricing problem excludes all other arcs on this stage.

4.8. Cuts

To strengthen the linear relaxations of the master problem, we use several types of valid in-
equalities that are based on the main source of fractionality, the capacity restriction (le). With
b, = %T, this constraint for an arc a can be rewritten as

D 0Dy <ta
réeR  pePr
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Of course, because of the positive costs for the trains, this inequality will always be fulfilled with
equality in the LP relaxation, resulting in mostly fractional train variable values. Moreover, we see
that not individual paths, but the sum of all path variables, i.e., the total flow, for the same request
containing an arc has to be considered. In the following, we present three cuts with different appli-
cation areas. Additional cuts for fixed-charge network design problems are described in Chouman
et al. (2011).

4.8.1. Simple cuts

The simplest valid inequality, adapted from the strong cuts described in (Chouman et al., 2003),
is only useful for arcs with light traffic, i.e., for those arcs with train variable values of less than
one. In those cases, we can add the following cut:

ta> > Yy, VreR, (5)
pEFy

The separation of these cuts is done by inspection: we look at all train variables with values in
(0,1), compare them with the flows of the requests over this arc, and add all violated ones. In the
pricing routine, these cuts need to be incorporated through additional arc costs. Of course, the
dual price has to be added only for the request and the arc that are addressed by the simple cut.

4.8.2. Residual capacity cuts
For splittable requests, we use the so called residual capacity cuts, developed by Magnanti et al.
(1993). For a subset S C R, define the sum Bg := ) _gb,. Then, the cuts can be written as

(Bs — | Bs))ta + Bs — (Bs — | Bs|) [Bs] = > b > u. (6)
reS  pePr

To get the most violated inequality for an arc a, Atamtiirk and Rajan (2002) showed that one

has to choose the set S = {T ER:Y cpryp>ta— |t } Then, it suffices to check whether the
current solution satisfies
|ta] < Bs < [tq] and

D be(1= Y yp = Ttal +ta) < ([ta] —ta) [ta] -

reR pEPY
If so, the corresponding residual capacity cut can be added to the master problem. Otherwise, no
inequality of this type is violated by the current LP solution for the considered arc. Let ug, be the
dual price for a residual capacity cut represented by (S,a). Then, in the pricing algorithm for a
request 7, the weight b,ug, has to be added to the arc costs of an arc a, if r € S.

4.8.8. c¢-Strong cuts

In the case of unsplittable requests, a stronger valid inequality can be used. Brockmiiller et al.
(1996) presented the so called c-strong-inequality in the application area of telecommunication
networks, and Homfeld (2012) applied them to a rail freight transport problem.

For a ¢ € Ny, a set S C R is called c-strong if c =Y, cp [br] — [, crbr|. For such a c-strong
set S, a valid inequality for our problem for unsplittable requests can be written as

tate=) [0 Y yp+ > (-1 > w (7)

res pePT reR\S peP]
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To separate these inequalities, the following knapsack problem has to be solved:

max Z T Z Yp

r€R, pEPY

st Y (o] =b)m <c+1

TERa
m € {0,1} VreR,

Then, the set S = {r € R, | m, =1} yields the most violated c-strong cut for the arc a. The
consideration of these cuts in the subproblem solver is similar to above. Let A\g, be the dual
variable belonging to a c-strong cut with request-subset S and arc a. Then all requests in S must
add [b,] Agq to the modified costs of arc a, whereas all other requests have to add the rounded-down
variant |b, | Agq.

4.4. Algorithmic improvements

In this section, we mention some techniques we use to improve our branch-and-price-and-cut
algorithm. These are partial pricing, dynamic constraint generation, early branching, and usage of
a MIP solver to obtain upper bounds.

4.4.1. Partial pricing

To accelerate the branch-and-price-and-cut algorithm, we perform partial pricing. Instead of
searching for a negative reduced cost path for all requests in each iteration, we sometimes restrict
ourselves to the most promising ones: requests for which an entering path variable was found
in the last pricing iteration. The reason is that these requests are more likely to yield another
negative reduced cost path in the following pricing step. Nevertheless, single path changes can cause
completely different dual variables and, hence, there may also be other requests with improving
columns in later iterations. Thus, with probability

1 Number of requests with new path in last iteration

Total number of requests ’

we search for new columns only for the most promising requests. Naturally, when the partial pricing
does not generate new columns, a full search has to be done to guarantee optimality.

4.4.2. Dynamic constraint generation

The number of constraints ensuring that hubs on used paths are opened can be very high
(number of hubs - number of requests) (1f). Because this can make the model unnecessarily large,
we generate them on demand. When no more improving paths are found, we enumerate all hub-
request pairs and add the corresponding constraint (1f) if it is violated. Since one request suffices
to enforce a hub to be opened, we limit the number of such constraints added in one iteration.

4.4.3. Farly branching

Although in general the cuts significantly increase the lower bound, they enlarge the model and
herewith increase the solution time for the LP relaxation. Sometimes, also the branching decision
has a considerable impact on the lower bound. Therefore, we restrict the separation of cuts in two
ways. Firstly, we set a fixed bound on the minimal violation required for a cut to be added to the
model. Secondly, we limit the number of cut-generation iterations per branch-and-bound node.
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4.4.4. Usage of a MIP solver

Our branch-and-bound algorithm works with a best-first branching strategy, so that always
the node with the smallest lower bound is explored next. Thus, there is no need for a good upper
bound to reject nodes early, as those nodes with lower bounds above the optimal solution are simply
fathomed as soon as the latter one is found. Nevertheless, the branch-and-price-and-cut algorithm
may stop because of a timeout without having found an optimal or even a feasible solution. To
improve the chances of obtaining a good feasible solution in such a case, we apply a MIP solver on
the restricted problem (1) with the current set of columns at different stages of the algorithm: after
solving the root node, we apply the MIP solver with a running time limited to 60 seconds. In the
case of a timeout, we start the MIP solver again. Because the model is much larger at this point
(compared to the root node) and the best found solution directly decreases the optimality gap, we
allow a running time of five minutes.

5. Computational study

In this section, we present computational experiments to analyze the effectiveness of the pro-
posed branch-and-price-and-cut procedure. The algorithm was implemented in C+-+, compiled
with Microsoft Visual Studio 2010, and used the CPLEX 12.6 library for solving linear programs
and as a MIP solver as described in the previous section. The experiments were performed on a
standard PC with an Intel Core i7-4790 CPU at 3.60 GHz, 8 GB of RAM, running Windows 7

Enterprise.

5.1. Instances

Europe’s largest railway company, DB Mobility Logistics AG, kindly provided us with two sets
of requests based on real-life data with different container-per-request ratios. According to company
information, the requests were obtained by computing daily averages over a representative period of
time. These instances respectively contain 3,300 and 5,300 shipments inside Germany, suitable for
combined transport, and 43 hub locations, 18 of which are considered fixed. By randomly choosing
subsets of requests and selecting the hubs with the largest capacity, we generated smaller instances.
The hubs selected in this way were still evenly spread throughout Germany. Furthermore, we varied
the maximal allowed number of hubs to be used. In total, we generated 144 smaller instances,
ranging from 100 to 500 requests and from 10 to 21 hubs. For these small instances, we assumed no
fixed hubs. The request-specific sets of allowed start and end hubs were constructed by considering
all hubs that were within 1/6 of the Euclidean origin-destination distance of a request. This resulted
in an average of 2.5 potential start and end hubs per request for the largest hub set. For 21 and 10
hubs, the averages were 1.9 and 1.1, respectively. The maximal number of hops was set to umax = 4.
The time-en-route limits were calculated by multiplying the road transport time with a factor of
between 1.5 and 2.5, increasing with growing origin-destination distances. To be precise, the factor
is 1.5 for requests with origin-destination distances of up to 300 km, 2.0 for those with distances of
up to 600 km, and 2.5 for all others. The ratio of the costs per kilometre on street to the costs per
kilometre on rail was assumed to be 3/7. All test instances were tackled by our algorithm regarding
the requests as splittable as well as unsplittable.

5.2. Algorithmic settings

We tried several algorithmic variants to solve the problem. Table 2 shows a comparison of
different settings: (i) use of bidirectional or monodirectional pricer, (ii) branching on the sum of
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Table 2: Comparison of lower bounds for different solving strategies

Use bidirectional pricer
true true false false
true 157 (1.71)  49.34 (49.71)  1.51 (1.72)  49.54 (49.66) | true
Branch gty | 169 (1.91)  50.22 (51.13)  1.75 (2.10)  50.51 (50.77) | false ~Generate
o of fse | 0.13(011) 4220 (4270)  0.22 (010)  42.33 (42.48) | true Sg;;lgfms
false | 0.15 (0.38)  42.94 (43.29)  0.38 (0.29)  43.22 (43.95) | false
true false true false
Use cuts

The values show the sum (over the twelve test instances used) of the relative deviations of the lower bound of
this setting from the best lower bound found among all settings for splittable requests (and, in parentheses,
for unsplittable requests).

For example, the first value in the upper right corner indicates that the lower bounds for splittable requests
are on average 49.54 % above the best found lower bounds when branching on the sum of trains and
generating constraints (1f) on demand is activated while the monodirectional pricer is used and no cuts are
included.

all trains, (iii) using the cuts from Section 4.3, and (iv) dynamically adding constraints (1f) to
the model. The results are based on six instances with 100 requests and 21 potential hubs from
which 10 have to be chosen, and on six instances with 500 requests and 21 potential hubs from
which 15 have to be chosen, with a runtime of 15 minutes. The deviations listed in the table
demonstrate clearly that the cutting planes presented in Section 4.3 have a significant impact on
the lower bound. The benefits of the dynamically generated constraints are smaller, but appear in
all instances. Furthermore, the results indicate that branching on the sum of all used trains does
not improve the lower bound. The choice of the best pricing algorithm depends on the instance;
the bidirectional pricer produces slightly better lower bounds on average. Therefore, we decided to
choose as ‘best setting’ the one with the bidirectional pricing algorithm, without branching on the
sum of all trains, with the use of all described cuts, and with dynamic generation of constraints (1f).

5.3. Results

To assess the capabilities of our branch-and-price-and-cut algorithm, we compared its perfor-
mance, using the best setting mentioned above, to that of the standard solver Cplex, applied
out-of-the-box to arc-based formulations for the SNDHLP (specified in the Appendix). The find-
ings were unequivocal: for all test instances, our algorithm yielded much better lower bounds, up to
86 % above those obtained by Cplex, and 23.5 % higher on average. Both our algorithm and Cplex
had no problems in finding feasible solutions, but the upper bounds from Cplex were, on average,
27 % worse for splittable and 14.2 % worse for unsplittable requests. This justifies the modelling
and implementation efforts spent on the path-based formulation and the branch-and-price-and-cut
algorithm.

We then applied our algorithm (with the best setting) to all instances described in Section 5.1.
Tables 3 and 4 present the results. The time limit for the large instances was set to one hour, whereas
for the smaller instances, 30 minutes were allowed. Table 3 indicates, for each large instance, the
solution time (where ‘T.L." indicates that the time limit was reached), the relative gap between the
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final lower bound and the best found feasible solution, the percentage of the overall computation
time needed for cut separation, pricing, and reoptimization, the number of added cuts, the number

of pricing runs, the number of generated paths, the number of solved branch-and-bound nodes, and 2 £
the number of requests that were transported completely by road in the best integer solution. In EE
Table 4, the same information is displayed for each group of smaller instances. In addition, the RE
number of instances with a gap of less than 3 % is indicated. E;

The most important insights are the following;: Em

e Our algorithm was able to solve to optimality instances with up to 100 requests and 21 hubs.
For almost all instances, an optimality gap in the single-digit area was reached within one hour.

e Of the 36 instances with 100 requests, 18 split (19 unsplit) could be solved to optimality. For 500
requests, only 6 (10) of the 36 instances finished with a gap greater than 3 %. Of the 12 large
instances, 2 (4) could be solved with a gap of less than 1 %, and only three had a gap of more
than 3 %.

e Naturally, with an increasing number of requests, the problem becomes harder, and fewer in-
stances were solved to optimality. The same happened with growing numbers of hubs. This is
because more hubs allow disproportionately more connections and thus require a higher number
of train variables.

e A small number of potential hubs permitted the solution of much more branch-and-bound nodes,
as both the pricing algorithm and the reoptimization consumed less time. On the other hand,
the number of paths found was smaller, and much more requests were transported entirely by
road in solutions to such instances.

e The difference between settings with splittable and unsplittable requests was insignificant. Both
the solution times and the solution values were very similar. This is probably caused by the
fact that there are only few requests with a large number of containers relative to the train
capacity (there are only 38 requests overall with a number of containers exceeding 25 % of the
train capacity). Actually, many instances that could be solved to optimality even had the same
solution. For the large instances, however, the solution structure was different. On average,
about 150 fractional path variables occurred in the best found feasible solutions. Among those,
approximately 100 paths represented the transport of a fractional number of containers, which is
not practicable, i.e., the path variable is no multiple of #

e Finally, we remark that branching on hub variables is decisive, even for unsplittable requests
for which the hub variable integrality is a consequence of the feasibility of the path variables.
Without this, results were much worse: fewer instances could be solved to optimality, and the
average gap increased by more than 40 %.

5.4. Sensitivity analysis
We also tested some variations of the instance parameters for the two large instances:

e Regarding the maximal tour duration, we tried both instances with twice as well as half the
original time values. The results showed that the standard values are not very restrictive, because
the enlarged durations did not lead to significantly different solutions. On the other hand, the
shortened maximal tour durations caused many additional requests to be transported by road
(about 50 % more), and also the costs increased.

e Focussing on the cost relations between truck and train, it is remarkable that one kilometre on
the rail network costs less than the twentieth part of a road kilometre for one container, assuming
the train is used to its capacity. Therefore, modifying the cost for road transport does not change
the solution structure significantly. Even when solving the instances with a road cost parameter
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Figure 4: Solution characteristics for the two large instances with different numbers of hubs
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of only 10 % of the original value, the number of requests being transported completely by trucks
increases by a mere 10 % on average. The problem becomes more difficult, though, as the decision
between the modes of transport is less clear, and we observe a larger gap.

The two diagrams in Figure 4 visualize how different solution characteristics depend on the
number of allowed hubs. This number is displayed along the x-axes. The algorithm was run on
both large instances with the best setting with unsplittable requests and 18, 20, 22, ..., 40, 42,
and 43 allowed hubs. The (-#) labelled ‘Relative LB’ indicate the development
of the lower bound at timeout, where 100 % (left y-axes) correspond to the lower bound obtained
when only the 18 fixed hubs may be used. As can be seen, the lower bound decreases steadily
with increasing number of allowed hubs. When all 43 hubs may be used, the lower bound is
only about 40 % of the one for 18 hubs. Hence, the number of allowed hubs has a significant
impact on the total transportation costs. The dark green lines (-#-) labelled ‘Gap’ depict the
development of the remaining percentage gap at timeout (left y-axes). The gap increases steadily
with increasing number of hubs, indicating that the instances become more difficult to solve. This
is not surprising, given that the solution space regarding the train decisions grows exponentially
with the number of allowed hubs. From these lines, it can also be seen that the hub location aspect
does not strongly affect the difficulty of the problem: when no hub decision remains (because all
43 hubs may be used), the gap is at least as high as in scenarios where a proper subset of the
hubs must be selected. The blue lines (-4-) labelled ‘Only road’ indicate the number of requests
transported only by road (right y-axes). Clearly, this number decreases strongly with increasing
number of hubs, because more hubs make the use of trains cheaper and faster. Correspondingly,
the cyan lines (—4-) labelled ‘Trains’ show the number of trains running (right y-axes). As was
to be expected, this number increases with increasing number of hubs, albeit only moderately.
Finally (this can not be seen in the figure), we observed that the sets of selected hubs are quite
stable, as in most cases, allowing one more hub causes a superset of the former hub set to be
chosen.
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6. Conclusions

We have studied a specific variant of an integrated tactical service network design and hub loca-
tion problem for combined road-rail transport, considering several practically relevant constraints.
We have developed a branch-and-price-and-cut algorithm using different pricing algorithms, tai-
lored branching strategies, and problem-specific cutting planes. Computational experiments with
instances using real-world data show that our path-based algorithm clearly and consistently out-
performs a commercial solver using an arc-based model. Our algorithm is capable of finding close-
to-optimal solutions in less than one hour of computation time, even for instances of realistic size,
and can thus be applied for practical planning.

Further research could be done with respect to model extensions and with respect to algorithmic
enhancements. As for model extensions, balancing constraints for locomotives and wagons could be
added, as well as capacities at hubs and fixed costs for hub usage and train services. Focusing on
a model and solution approach for solving a concrete real-world problem, we have abstained from
doing so. However, in different application contexts, these aspects may be relevant, and they can
rather easily be integrated into our model.

With regard to algorithmics, our procedure could be improved by developing a primal heuristic
that runs faster than the current approach of solving an extended set-covering problem with existing
columns using a MIP solver. Furthermore, a method for which successful applications to network
design and hub location problems are reported in the literature is Benders decomposition. Therefore,
applying this technique to the problem described in this paper constitutes an interesting research
avenue.

Appendix: Arc-based models

Here, we describe the arc-based models for the unsplit and the split request variants of our
SNDHLP. We need the following additional notation: let d .. be the maximal allowed transport

max

time, and let A, and Al ; be the possible street arcs connecting the origin and destination of

request r to the hub network. Then, the problem proposed in this paper can be formulated with
an arc-based approach as follows:

Arc-based model with unsplittable requests

The following variables are used:
e h; € {0,1} indicates whether or not hub i € H is used
e t, € Ny counts the number of trains running on arc a € A,
e 1/ € {0,1} decides whether or not request r € R uses arc a € A

The model is then:

min Z celata + Z Z csmlgx], (8a)

a€Ay reRacAs

st. hi=1 VieH (8b)
Z hi =Ng (SC)
1€H
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Z x, =1 VreR (8d)

aeA;tart
S a=1 VreR (3¢)
a€A] 4
o a,— > a,=0 VreRicH (8f)
a€ATN6~ (3) a€ATNT (2)
Z m'xy, < kitg Vace A (82)
reR
> (datdja, <dp,, VreR (8h)
a=(1,j)€A"
Z:L“Zgumax—l VreR (81)
aEAt
xg < hy VreRa=(ij) e A (8j)
$2§hj VreRa=(i,j) € Ay (8k)
h; € {0,1} VieH (81)
ta€Ng VaedA (8m)
x, € {0,1} VreRaecA" (8n)
The minimization objective (8a) sums the costs for the covered kilometres. Constraints (8b)

and (8c) respectively ensure that the fixed hubs are opened and that the correct number of hubs is
available. The next three constraints ensure flow conservation. The train capacities are maintained
by constraints (8g). Constraints (8h) and (8i) limit the total transport time and the number of
transshipments for each request. Constraints (8j) and (8k) ensure that a hub is open if a request
traverses it, and the last three constraints describe the domains of the variables.

Arc-based model with splittable requests

The following variables are used:

h; € {0, 1} indicates whether or not hub i € H is used
e t, € Ny counts the number of trains running on arc a € A;

e 1z € ]0,1] describes the percentage of request r € R transported over arc a € A

e u; € {0,1} indicates whether or not a part of request r € R uses arc a € A

,
a
e m! € Ny measures the time en route of a part of request r € R upon reaching hub i € H

e n; € Ny counts the number of transshipments that a part of request » € R has performed up to
hubi e H

The model is then:

min Z cilata + Z Z csmlax] (9a)

a€A; reERacAs
st. hi=1 VieH (9b)
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i€H

> a=1 VreR (9d)
aeAgtart

Y ap=1 VreRr (9e)
a’eAgnd

> oap— ) ap=0 VreRicH (9f)
a€ATNS— (i) a€ATNS+ (4)
Z m'x], < kitg Vaec A (92)
reR
xy, < ul, VreRac A (9h

Ne)
=

(da + dj)uz < m; VreR,a= (Zaj) € Agtart
m; + (da + dj)ug < M5 + dipas (1 — ug) VreRa=(i,j) € Ay

L

max
m; + dgul < d .. VreRa=(i,j) € Agna (9k
up <nj VreRa=(i,j) € Ay (9L
ni + Uy < N5+ Umax(1 — ug) VreRa=(i,j) € At (9m

©
S

n; < Umax VreRa=(i7) € Alq
ug < hy VreRa=(ij7)€ A

Uy < hy VreRa=(i,j) €A
hie{0,1} VieH

te € Ng Vac A

xp, € 10,1] VreRaecA"

uy € {0,1} VreRacA"

m; € Ny VreRic€cH

n; € Ny VreR,ieH

o © O O ©
= - . gl S > ©
N e e e e e e S N S— S— S— S—

Again, the objective is to minimize the total costs for the covered kilometres. The next con-
straints, (9b)—(9g), are also the same as above. Constraint (9h) determines the correct values for
the binary flow variables on the basis of the fractional flow variables. The following three con-
straints ensure that the time en route of a request upon reaching a certain node is set correctly,
and that the time at the destination does not exceed the allowed maximal time en route. This
requirement is split into the first road leg (9i), the rail legs in between (9j), and the last road leg
(9k). The same is done for the number of transshipments per request on each hub in the following
three constraints, (91)—(9n). Then, the relation between the hub and path variables is expressed as
in the unsplittable case above by constraints (90) and (9p). The last six constraints regulate the
domains of the variables.
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